author | huffman |
Mon, 02 Oct 2006 23:15:35 +0200 | |
changeset 20848 | 27a09c3eca1f |
parent 20792 | add17d26151b |
child 21141 | f0b5e6254a1f |
permissions | -rw-r--r-- |
10751 | 1 |
(* Title : Series.thy |
2 |
Author : Jacques D. Fleuriot |
|
3 |
Copyright : 1998 University of Cambridge |
|
14416 | 4 |
|
5 |
Converted to Isar and polished by lcp |
|
15539 | 6 |
Converted to setsum and polished yet more by TNN |
16819 | 7 |
Additional contributions by Jeremy Avigad |
10751 | 8 |
*) |
9 |
||
14416 | 10 |
header{*Finite Summation and Infinite Series*} |
10751 | 11 |
|
15131 | 12 |
theory Series |
15140 | 13 |
imports SEQ Lim |
15131 | 14 |
begin |
15561 | 15 |
|
19765 | 16 |
definition |
20692 | 17 |
sums :: "(nat \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> 'a \<Rightarrow> bool" |
18 |
(infixr "sums" 80) |
|
19765 | 19 |
"f sums s = (%n. setsum f {0..<n}) ----> s" |
10751 | 20 |
|
20692 | 21 |
summable :: "(nat \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> bool" |
19765 | 22 |
"summable f = (\<exists>s. f sums s)" |
14416 | 23 |
|
20692 | 24 |
suminf :: "(nat \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> 'a" |
20688 | 25 |
"suminf f = (THE s. f sums s)" |
14416 | 26 |
|
15546 | 27 |
syntax |
20692 | 28 |
"_suminf" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a" ("\<Sum>_. _" [0, 10] 10) |
15546 | 29 |
translations |
20770 | 30 |
"\<Sum>i. b" == "CONST suminf (%i. b)" |
15546 | 31 |
|
14416 | 32 |
|
15539 | 33 |
lemma sumr_diff_mult_const: |
34 |
"setsum f {0..<n} - (real n*r) = setsum (%i. f i - r) {0..<n::nat}" |
|
15536 | 35 |
by (simp add: diff_minus setsum_addf real_of_nat_def) |
36 |
||
15542 | 37 |
lemma real_setsum_nat_ivl_bounded: |
38 |
"(!!p. p < n \<Longrightarrow> f(p) \<le> K) |
|
39 |
\<Longrightarrow> setsum f {0..<n::nat} \<le> real n * K" |
|
40 |
using setsum_bounded[where A = "{0..<n}"] |
|
41 |
by (auto simp:real_of_nat_def) |
|
14416 | 42 |
|
15539 | 43 |
(* Generalize from real to some algebraic structure? *) |
44 |
lemma sumr_minus_one_realpow_zero [simp]: |
|
15543 | 45 |
"(\<Sum>i=0..<2*n. (-1) ^ Suc i) = (0::real)" |
15251 | 46 |
by (induct "n", auto) |
14416 | 47 |
|
15539 | 48 |
(* FIXME this is an awful lemma! *) |
49 |
lemma sumr_one_lb_realpow_zero [simp]: |
|
50 |
"(\<Sum>n=Suc 0..<n. f(n) * (0::real) ^ n) = 0" |
|
20692 | 51 |
by (rule setsum_0', simp) |
14416 | 52 |
|
15543 | 53 |
lemma sumr_group: |
15539 | 54 |
"(\<Sum>m=0..<n::nat. setsum f {m * k ..< m*k + k}) = setsum f {0 ..< n * k}" |
15543 | 55 |
apply (subgoal_tac "k = 0 | 0 < k", auto) |
15251 | 56 |
apply (induct "n") |
15539 | 57 |
apply (simp_all add: setsum_add_nat_ivl add_commute) |
14416 | 58 |
done |
15539 | 59 |
|
20692 | 60 |
lemma sumr_offset3: |
61 |
"setsum f {0::nat..<n+k} = (\<Sum>m=0..<n. f (m+k)) + setsum f {0..<k}" |
|
62 |
apply (subst setsum_shift_bounds_nat_ivl [symmetric]) |
|
63 |
apply (simp add: setsum_add_nat_ivl add_commute) |
|
64 |
done |
|
65 |
||
16819 | 66 |
lemma sumr_offset: |
20692 | 67 |
fixes f :: "nat \<Rightarrow> 'a::ab_group_add" |
68 |
shows "(\<Sum>m=0..<n. f(m+k)) = setsum f {0..<n+k} - setsum f {0..<k}" |
|
69 |
by (simp add: sumr_offset3) |
|
16819 | 70 |
|
71 |
lemma sumr_offset2: |
|
72 |
"\<forall>f. (\<Sum>m=0..<n::nat. f(m+k)::real) = setsum f {0..<n+k} - setsum f {0..<k}" |
|
20692 | 73 |
by (simp add: sumr_offset) |
16819 | 74 |
|
75 |
lemma sumr_offset4: |
|
20692 | 76 |
"\<forall>n f. setsum f {0::nat..<n+k} = (\<Sum>m=0..<n. f (m+k)::real) + setsum f {0..<k}" |
77 |
by (clarify, rule sumr_offset3) |
|
16819 | 78 |
|
79 |
(* |
|
80 |
lemma sumr_from_1_from_0: "0 < n ==> |
|
81 |
(\<Sum>n=Suc 0 ..< Suc n. if even(n) then 0 else |
|
82 |
((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n = |
|
83 |
(\<Sum>n=0..<Suc n. if even(n) then 0 else |
|
84 |
((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n" |
|
85 |
by (rule_tac n1 = 1 in sumr_split_add [THEN subst], auto) |
|
86 |
*) |
|
14416 | 87 |
|
88 |
subsection{* Infinite Sums, by the Properties of Limits*} |
|
89 |
||
90 |
(*---------------------- |
|
91 |
suminf is the sum |
|
92 |
---------------------*) |
|
93 |
lemma sums_summable: "f sums l ==> summable f" |
|
94 |
by (simp add: sums_def summable_def, blast) |
|
95 |
||
96 |
lemma summable_sums: "summable f ==> f sums (suminf f)" |
|
20688 | 97 |
apply (simp add: summable_def suminf_def sums_def) |
98 |
apply (blast intro: theI LIMSEQ_unique) |
|
14416 | 99 |
done |
100 |
||
101 |
lemma summable_sumr_LIMSEQ_suminf: |
|
15539 | 102 |
"summable f ==> (%n. setsum f {0..<n}) ----> (suminf f)" |
20688 | 103 |
by (rule summable_sums [unfolded sums_def]) |
14416 | 104 |
|
105 |
(*------------------- |
|
106 |
sum is unique |
|
107 |
------------------*) |
|
108 |
lemma sums_unique: "f sums s ==> (s = suminf f)" |
|
109 |
apply (frule sums_summable [THEN summable_sums]) |
|
110 |
apply (auto intro!: LIMSEQ_unique simp add: sums_def) |
|
111 |
done |
|
112 |
||
16819 | 113 |
lemma sums_split_initial_segment: "f sums s ==> |
114 |
(%n. f(n + k)) sums (s - (SUM i = 0..< k. f i))" |
|
115 |
apply (unfold sums_def); |
|
116 |
apply (simp add: sumr_offset); |
|
117 |
apply (rule LIMSEQ_diff_const) |
|
118 |
apply (rule LIMSEQ_ignore_initial_segment) |
|
119 |
apply assumption |
|
120 |
done |
|
121 |
||
122 |
lemma summable_ignore_initial_segment: "summable f ==> |
|
123 |
summable (%n. f(n + k))" |
|
124 |
apply (unfold summable_def) |
|
125 |
apply (auto intro: sums_split_initial_segment) |
|
126 |
done |
|
127 |
||
128 |
lemma suminf_minus_initial_segment: "summable f ==> |
|
129 |
suminf f = s ==> suminf (%n. f(n + k)) = s - (SUM i = 0..< k. f i)" |
|
130 |
apply (frule summable_ignore_initial_segment) |
|
131 |
apply (rule sums_unique [THEN sym]) |
|
132 |
apply (frule summable_sums) |
|
133 |
apply (rule sums_split_initial_segment) |
|
134 |
apply auto |
|
135 |
done |
|
136 |
||
137 |
lemma suminf_split_initial_segment: "summable f ==> |
|
138 |
suminf f = (SUM i = 0..< k. f i) + suminf (%n. f(n + k))" |
|
139 |
by (auto simp add: suminf_minus_initial_segment) |
|
140 |
||
14416 | 141 |
lemma series_zero: |
15539 | 142 |
"(\<forall>m. n \<le> m --> f(m) = 0) ==> f sums (setsum f {0..<n})" |
15537 | 143 |
apply (simp add: sums_def LIMSEQ_def diff_minus[symmetric], safe) |
14416 | 144 |
apply (rule_tac x = n in exI) |
15542 | 145 |
apply (clarsimp simp add:setsum_diff[symmetric] cong:setsum_ivl_cong) |
14416 | 146 |
done |
147 |
||
16819 | 148 |
lemma sums_zero: "(%n. 0) sums 0"; |
149 |
apply (unfold sums_def); |
|
150 |
apply simp; |
|
151 |
apply (rule LIMSEQ_const); |
|
152 |
done; |
|
15539 | 153 |
|
16819 | 154 |
lemma summable_zero: "summable (%n. 0)"; |
155 |
apply (rule sums_summable); |
|
156 |
apply (rule sums_zero); |
|
157 |
done; |
|
158 |
||
159 |
lemma suminf_zero: "suminf (%n. 0) = 0"; |
|
160 |
apply (rule sym); |
|
161 |
apply (rule sums_unique); |
|
162 |
apply (rule sums_zero); |
|
163 |
done; |
|
164 |
||
20692 | 165 |
lemma sums_mult: |
166 |
fixes c :: "'a::real_normed_algebra" |
|
167 |
shows "f sums a \<Longrightarrow> (\<lambda>n. c * f n) sums (c * a)" |
|
19279 | 168 |
by (auto simp add: sums_def setsum_right_distrib [symmetric] |
14416 | 169 |
intro!: LIMSEQ_mult intro: LIMSEQ_const) |
170 |
||
20692 | 171 |
lemma summable_mult: |
172 |
fixes c :: "'a::real_normed_algebra" |
|
173 |
shows "summable f \<Longrightarrow> summable (%n. c * f n)"; |
|
16819 | 174 |
apply (unfold summable_def); |
175 |
apply (auto intro: sums_mult); |
|
176 |
done; |
|
177 |
||
20692 | 178 |
lemma suminf_mult: |
179 |
fixes c :: "'a::real_normed_algebra" |
|
180 |
shows "summable f \<Longrightarrow> suminf (\<lambda>n. c * f n) = c * suminf f"; |
|
16819 | 181 |
apply (rule sym); |
182 |
apply (rule sums_unique); |
|
183 |
apply (rule sums_mult); |
|
184 |
apply (erule summable_sums); |
|
185 |
done; |
|
186 |
||
20692 | 187 |
lemma sums_mult2: |
188 |
fixes c :: "'a::real_normed_algebra" |
|
189 |
shows "f sums a \<Longrightarrow> (\<lambda>n. f n * c) sums (a * c)" |
|
190 |
by (auto simp add: sums_def setsum_left_distrib [symmetric] |
|
191 |
intro!: LIMSEQ_mult LIMSEQ_const) |
|
16819 | 192 |
|
20692 | 193 |
lemma summable_mult2: |
194 |
fixes c :: "'a::real_normed_algebra" |
|
195 |
shows "summable f \<Longrightarrow> summable (\<lambda>n. f n * c)" |
|
16819 | 196 |
apply (unfold summable_def) |
197 |
apply (auto intro: sums_mult2) |
|
198 |
done |
|
199 |
||
20692 | 200 |
lemma suminf_mult2: |
201 |
fixes c :: "'a::real_normed_algebra" |
|
202 |
shows "summable f \<Longrightarrow> suminf f * c = (\<Sum>n. f n * c)" |
|
203 |
by (auto intro!: sums_unique sums_mult2 summable_sums) |
|
16819 | 204 |
|
20692 | 205 |
lemma sums_divide: |
206 |
fixes c :: "'a::real_normed_field" |
|
207 |
shows "f sums a \<Longrightarrow> (\<lambda>n. f n / c) sums (a / c)" |
|
208 |
by (simp add: divide_inverse sums_mult2) |
|
14416 | 209 |
|
20692 | 210 |
lemma summable_divide: |
211 |
fixes c :: "'a::real_normed_field" |
|
212 |
shows "summable f \<Longrightarrow> summable (\<lambda>n. f n / c)" |
|
16819 | 213 |
apply (unfold summable_def); |
214 |
apply (auto intro: sums_divide); |
|
215 |
done; |
|
216 |
||
20692 | 217 |
lemma suminf_divide: |
218 |
fixes c :: "'a::real_normed_field" |
|
219 |
shows "summable f \<Longrightarrow> suminf (\<lambda>n. f n / c) = suminf f / c" |
|
16819 | 220 |
apply (rule sym); |
221 |
apply (rule sums_unique); |
|
222 |
apply (rule sums_divide); |
|
223 |
apply (erule summable_sums); |
|
224 |
done; |
|
225 |
||
226 |
lemma sums_add: "[| x sums x0; y sums y0 |] ==> (%n. x n + y n) sums (x0+y0)" |
|
227 |
by (auto simp add: sums_def setsum_addf intro: LIMSEQ_add) |
|
228 |
||
229 |
lemma summable_add: "summable f ==> summable g ==> summable (%x. f x + g x)"; |
|
230 |
apply (unfold summable_def); |
|
231 |
apply clarify; |
|
232 |
apply (rule exI); |
|
233 |
apply (erule sums_add); |
|
234 |
apply assumption; |
|
235 |
done; |
|
236 |
||
237 |
lemma suminf_add: |
|
238 |
"[| summable f; summable g |] |
|
239 |
==> suminf f + suminf g = (\<Sum>n. f n + g n)" |
|
240 |
by (auto intro!: sums_add sums_unique summable_sums) |
|
241 |
||
14416 | 242 |
lemma sums_diff: "[| x sums x0; y sums y0 |] ==> (%n. x n - y n) sums (x0-y0)" |
15536 | 243 |
by (auto simp add: sums_def setsum_subtractf intro: LIMSEQ_diff) |
14416 | 244 |
|
16819 | 245 |
lemma summable_diff: "summable f ==> summable g ==> summable (%x. f x - g x)"; |
246 |
apply (unfold summable_def); |
|
247 |
apply clarify; |
|
248 |
apply (rule exI); |
|
249 |
apply (erule sums_diff); |
|
250 |
apply assumption; |
|
251 |
done; |
|
14416 | 252 |
|
253 |
lemma suminf_diff: |
|
254 |
"[| summable f; summable g |] |
|
15546 | 255 |
==> suminf f - suminf g = (\<Sum>n. f n - g n)" |
14416 | 256 |
by (auto intro!: sums_diff sums_unique summable_sums) |
257 |
||
16819 | 258 |
lemma sums_minus: "f sums s ==> (%x. - f x) sums (- s)"; |
259 |
by (simp add: sums_def setsum_negf LIMSEQ_minus); |
|
260 |
||
261 |
lemma summable_minus: "summable f ==> summable (%x. - f x)"; |
|
262 |
by (auto simp add: summable_def intro: sums_minus); |
|
263 |
||
264 |
lemma suminf_minus: "summable f ==> suminf (%x. - f x) = - (suminf f)"; |
|
265 |
apply (rule sym); |
|
266 |
apply (rule sums_unique); |
|
267 |
apply (rule sums_minus); |
|
268 |
apply (erule summable_sums); |
|
269 |
done; |
|
14416 | 270 |
|
271 |
lemma sums_group: |
|
15539 | 272 |
"[|summable f; 0 < k |] ==> (%n. setsum f {n*k..<n*k+k}) sums (suminf f)" |
14416 | 273 |
apply (drule summable_sums) |
20692 | 274 |
apply (simp only: sums_def sumr_group) |
275 |
apply (unfold LIMSEQ_def, safe) |
|
276 |
apply (drule_tac x="r" in spec, safe) |
|
277 |
apply (rule_tac x="no" in exI, safe) |
|
278 |
apply (drule_tac x="n*k" in spec) |
|
279 |
apply (erule mp) |
|
280 |
apply (erule order_trans) |
|
281 |
apply simp |
|
14416 | 282 |
done |
283 |
||
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
284 |
text{*A summable series of positive terms has limit that is at least as |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
285 |
great as any partial sum.*} |
14416 | 286 |
|
20692 | 287 |
lemma series_pos_le: |
288 |
fixes f :: "nat \<Rightarrow> real" |
|
289 |
shows "\<lbrakk>summable f; \<forall>m\<ge>n. 0 \<le> f m\<rbrakk> \<Longrightarrow> setsum f {0..<n} \<le> suminf f" |
|
14416 | 290 |
apply (drule summable_sums) |
291 |
apply (simp add: sums_def) |
|
15539 | 292 |
apply (cut_tac k = "setsum f {0..<n}" in LIMSEQ_const) |
293 |
apply (erule LIMSEQ_le, blast) |
|
20692 | 294 |
apply (rule_tac x="n" in exI, clarify) |
15539 | 295 |
apply (rule setsum_mono2) |
296 |
apply auto |
|
14416 | 297 |
done |
298 |
||
299 |
lemma series_pos_less: |
|
20692 | 300 |
fixes f :: "nat \<Rightarrow> real" |
301 |
shows "\<lbrakk>summable f; \<forall>m\<ge>n. 0 < f m\<rbrakk> \<Longrightarrow> setsum f {0..<n} < suminf f" |
|
302 |
apply (rule_tac y="setsum f {0..<Suc n}" in order_less_le_trans) |
|
303 |
apply simp |
|
304 |
apply (erule series_pos_le) |
|
305 |
apply (simp add: order_less_imp_le) |
|
306 |
done |
|
307 |
||
308 |
lemma suminf_gt_zero: |
|
309 |
fixes f :: "nat \<Rightarrow> real" |
|
310 |
shows "\<lbrakk>summable f; \<forall>n. 0 < f n\<rbrakk> \<Longrightarrow> 0 < suminf f" |
|
311 |
by (drule_tac n="0" in series_pos_less, simp_all) |
|
312 |
||
313 |
lemma suminf_ge_zero: |
|
314 |
fixes f :: "nat \<Rightarrow> real" |
|
315 |
shows "\<lbrakk>summable f; \<forall>n. 0 \<le> f n\<rbrakk> \<Longrightarrow> 0 \<le> suminf f" |
|
316 |
by (drule_tac n="0" in series_pos_le, simp_all) |
|
317 |
||
318 |
lemma sumr_pos_lt_pair: |
|
319 |
fixes f :: "nat \<Rightarrow> real" |
|
320 |
shows "\<lbrakk>summable f; |
|
321 |
\<forall>d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc(Suc 0) * d) + 1))\<rbrakk> |
|
322 |
\<Longrightarrow> setsum f {0..<k} < suminf f" |
|
323 |
apply (subst suminf_split_initial_segment [where k="k"]) |
|
324 |
apply assumption |
|
325 |
apply simp |
|
326 |
apply (drule_tac k="k" in summable_ignore_initial_segment) |
|
327 |
apply (drule_tac k="Suc (Suc 0)" in sums_group, simp) |
|
328 |
apply simp |
|
329 |
apply (frule sums_unique) |
|
330 |
apply (drule sums_summable) |
|
331 |
apply simp |
|
332 |
apply (erule suminf_gt_zero) |
|
333 |
apply (simp add: add_ac) |
|
14416 | 334 |
done |
335 |
||
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
336 |
text{*Sum of a geometric progression.*} |
14416 | 337 |
|
17149
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
ballarin
parents:
16819
diff
changeset
|
338 |
lemmas sumr_geometric = geometric_sum [where 'a = real] |
14416 | 339 |
|
20692 | 340 |
lemma geometric_sums: |
341 |
fixes x :: "'a::{real_normed_field,recpower,division_by_zero}" |
|
342 |
shows "norm x < 1 \<Longrightarrow> (\<lambda>n. x ^ n) sums (1 / (1 - x))" |
|
343 |
proof - |
|
344 |
assume less_1: "norm x < 1" |
|
345 |
hence neq_1: "x \<noteq> 1" by auto |
|
346 |
hence neq_0: "x - 1 \<noteq> 0" by simp |
|
347 |
from less_1 have lim_0: "(\<lambda>n. x ^ n) ----> 0" |
|
348 |
by (rule LIMSEQ_power_zero) |
|
349 |
hence "(\<lambda>n. x ^ n / (x - 1) - 1 / (x - 1)) ----> 0 / (x - 1) - 1 / (x |
|
350 |
- 1)" |
|
351 |
using neq_0 by (intro LIMSEQ_divide LIMSEQ_diff LIMSEQ_const) |
|
352 |
hence "(\<lambda>n. (x ^ n - 1) / (x - 1)) ----> 1 / (1 - x)" |
|
353 |
by (simp add: nonzero_minus_divide_right [OF neq_0] diff_divide_distrib) |
|
354 |
thus "(\<lambda>n. x ^ n) sums (1 / (1 - x))" |
|
355 |
by (simp add: sums_def geometric_sum neq_1) |
|
356 |
qed |
|
357 |
||
358 |
lemma summable_geometric: |
|
359 |
fixes x :: "'a::{real_normed_field,recpower,division_by_zero}" |
|
360 |
shows "norm x < 1 \<Longrightarrow> summable (\<lambda>n. x ^ n)" |
|
361 |
by (rule geometric_sums [THEN sums_summable]) |
|
14416 | 362 |
|
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
363 |
text{*Cauchy-type criterion for convergence of series (c.f. Harrison)*} |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
364 |
|
15539 | 365 |
lemma summable_convergent_sumr_iff: |
366 |
"summable f = convergent (%n. setsum f {0..<n})" |
|
14416 | 367 |
by (simp add: summable_def sums_def convergent_def) |
368 |
||
20689 | 369 |
lemma summable_LIMSEQ_zero: "summable f \<Longrightarrow> f ----> 0" |
370 |
apply (drule summable_convergent_sumr_iff [THEN iffD1]) |
|
20692 | 371 |
apply (drule convergent_Cauchy) |
20689 | 372 |
apply (simp only: Cauchy_def LIMSEQ_def, safe) |
373 |
apply (drule_tac x="r" in spec, safe) |
|
374 |
apply (rule_tac x="M" in exI, safe) |
|
375 |
apply (drule_tac x="Suc n" in spec, simp) |
|
376 |
apply (drule_tac x="n" in spec, simp) |
|
377 |
done |
|
378 |
||
14416 | 379 |
lemma summable_Cauchy: |
20848 | 380 |
"summable (f::nat \<Rightarrow> 'a::banach) = |
381 |
(\<forall>e > 0. \<exists>N. \<forall>m \<ge> N. \<forall>n. norm (setsum f {m..<n}) < e)" |
|
382 |
apply (simp only: summable_convergent_sumr_iff Cauchy_convergent_iff [symmetric] Cauchy_def, safe) |
|
20410 | 383 |
apply (drule spec, drule (1) mp) |
384 |
apply (erule exE, rule_tac x="M" in exI, clarify) |
|
385 |
apply (rule_tac x="m" and y="n" in linorder_le_cases) |
|
386 |
apply (frule (1) order_trans) |
|
387 |
apply (drule_tac x="n" in spec, drule (1) mp) |
|
388 |
apply (drule_tac x="m" in spec, drule (1) mp) |
|
389 |
apply (simp add: setsum_diff [symmetric]) |
|
390 |
apply simp |
|
391 |
apply (drule spec, drule (1) mp) |
|
392 |
apply (erule exE, rule_tac x="N" in exI, clarify) |
|
393 |
apply (rule_tac x="m" and y="n" in linorder_le_cases) |
|
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20432
diff
changeset
|
394 |
apply (subst norm_minus_commute) |
20410 | 395 |
apply (simp add: setsum_diff [symmetric]) |
396 |
apply (simp add: setsum_diff [symmetric]) |
|
14416 | 397 |
done |
398 |
||
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
399 |
text{*Comparison test*} |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
400 |
|
20692 | 401 |
lemma norm_setsum: |
402 |
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" |
|
403 |
shows "norm (setsum f A) \<le> (\<Sum>i\<in>A. norm (f i))" |
|
404 |
apply (case_tac "finite A") |
|
405 |
apply (erule finite_induct) |
|
406 |
apply simp |
|
407 |
apply simp |
|
408 |
apply (erule order_trans [OF norm_triangle_ineq add_left_mono]) |
|
409 |
apply simp |
|
410 |
done |
|
411 |
||
14416 | 412 |
lemma summable_comparison_test: |
20848 | 413 |
fixes f :: "nat \<Rightarrow> 'a::banach" |
414 |
shows "\<lbrakk>\<exists>N. \<forall>n\<ge>N. norm (f n) \<le> g n; summable g\<rbrakk> \<Longrightarrow> summable f" |
|
20692 | 415 |
apply (simp add: summable_Cauchy, safe) |
416 |
apply (drule_tac x="e" in spec, safe) |
|
417 |
apply (rule_tac x = "N + Na" in exI, safe) |
|
14416 | 418 |
apply (rotate_tac 2) |
419 |
apply (drule_tac x = m in spec) |
|
420 |
apply (auto, rotate_tac 2, drule_tac x = n in spec) |
|
20848 | 421 |
apply (rule_tac y = "\<Sum>k=m..<n. norm (f k)" in order_le_less_trans) |
422 |
apply (rule norm_setsum) |
|
15539 | 423 |
apply (rule_tac y = "setsum g {m..<n}" in order_le_less_trans) |
424 |
apply (auto intro: setsum_mono simp add: abs_interval_iff) |
|
14416 | 425 |
done |
426 |
||
20848 | 427 |
lemma summable_norm_comparison_test: |
428 |
fixes f :: "nat \<Rightarrow> 'a::banach" |
|
429 |
shows "\<lbrakk>\<exists>N. \<forall>n\<ge>N. norm (f n) \<le> g n; summable g\<rbrakk> |
|
430 |
\<Longrightarrow> summable (\<lambda>n. norm (f n))" |
|
431 |
apply (rule summable_comparison_test) |
|
432 |
apply (auto) |
|
433 |
done |
|
434 |
||
14416 | 435 |
lemma summable_rabs_comparison_test: |
20692 | 436 |
fixes f :: "nat \<Rightarrow> real" |
437 |
shows "\<lbrakk>\<exists>N. \<forall>n\<ge>N. \<bar>f n\<bar> \<le> g n; summable g\<rbrakk> \<Longrightarrow> summable (\<lambda>n. \<bar>f n\<bar>)" |
|
14416 | 438 |
apply (rule summable_comparison_test) |
15543 | 439 |
apply (auto) |
14416 | 440 |
done |
441 |
||
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
442 |
text{*Limit comparison property for series (c.f. jrh)*} |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
443 |
|
14416 | 444 |
lemma summable_le: |
20692 | 445 |
fixes f g :: "nat \<Rightarrow> real" |
446 |
shows "\<lbrakk>\<forall>n. f n \<le> g n; summable f; summable g\<rbrakk> \<Longrightarrow> suminf f \<le> suminf g" |
|
14416 | 447 |
apply (drule summable_sums)+ |
20692 | 448 |
apply (simp only: sums_def, erule (1) LIMSEQ_le) |
14416 | 449 |
apply (rule exI) |
15539 | 450 |
apply (auto intro!: setsum_mono) |
14416 | 451 |
done |
452 |
||
453 |
lemma summable_le2: |
|
20692 | 454 |
fixes f g :: "nat \<Rightarrow> real" |
455 |
shows "\<lbrakk>\<forall>n. \<bar>f n\<bar> \<le> g n; summable g\<rbrakk> \<Longrightarrow> summable f \<and> suminf f \<le> suminf g" |
|
20848 | 456 |
apply (subgoal_tac "summable f") |
457 |
apply (auto intro!: summable_le) |
|
14416 | 458 |
apply (simp add: abs_le_interval_iff) |
20848 | 459 |
apply (rule_tac g="g" in summable_comparison_test, simp_all) |
14416 | 460 |
done |
461 |
||
19106
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
462 |
(* specialisation for the common 0 case *) |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
463 |
lemma suminf_0_le: |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
464 |
fixes f::"nat\<Rightarrow>real" |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
465 |
assumes gt0: "\<forall>n. 0 \<le> f n" and sm: "summable f" |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
466 |
shows "0 \<le> suminf f" |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
467 |
proof - |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
468 |
let ?g = "(\<lambda>n. (0::real))" |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
469 |
from gt0 have "\<forall>n. ?g n \<le> f n" by simp |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
470 |
moreover have "summable ?g" by (rule summable_zero) |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
471 |
moreover from sm have "summable f" . |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
472 |
ultimately have "suminf ?g \<le> suminf f" by (rule summable_le) |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
473 |
then show "0 \<le> suminf f" by (simp add: suminf_zero) |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
474 |
qed |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
475 |
|
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
476 |
|
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
477 |
text{*Absolute convergence imples normal convergence*} |
20848 | 478 |
lemma summable_norm_cancel: |
479 |
fixes f :: "nat \<Rightarrow> 'a::banach" |
|
480 |
shows "summable (\<lambda>n. norm (f n)) \<Longrightarrow> summable f" |
|
20692 | 481 |
apply (simp only: summable_Cauchy, safe) |
482 |
apply (drule_tac x="e" in spec, safe) |
|
483 |
apply (rule_tac x="N" in exI, safe) |
|
484 |
apply (drule_tac x="m" in spec, safe) |
|
20848 | 485 |
apply (rule order_le_less_trans [OF norm_setsum]) |
486 |
apply (rule order_le_less_trans [OF abs_ge_self]) |
|
20692 | 487 |
apply simp |
14416 | 488 |
done |
489 |
||
20848 | 490 |
lemma summable_rabs_cancel: |
491 |
fixes f :: "nat \<Rightarrow> real" |
|
492 |
shows "summable (\<lambda>n. \<bar>f n\<bar>) \<Longrightarrow> summable f" |
|
493 |
by (rule summable_norm_cancel, simp) |
|
494 |
||
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
495 |
text{*Absolute convergence of series*} |
20848 | 496 |
lemma summable_norm: |
497 |
fixes f :: "nat \<Rightarrow> 'a::banach" |
|
498 |
shows "summable (\<lambda>n. norm (f n)) \<Longrightarrow> norm (suminf f) \<le> (\<Sum>n. norm (f n))" |
|
499 |
by (auto intro: LIMSEQ_le LIMSEQ_norm summable_norm_cancel |
|
500 |
summable_sumr_LIMSEQ_suminf norm_setsum) |
|
501 |
||
14416 | 502 |
lemma summable_rabs: |
20692 | 503 |
fixes f :: "nat \<Rightarrow> real" |
504 |
shows "summable (\<lambda>n. \<bar>f n\<bar>) \<Longrightarrow> \<bar>suminf f\<bar> \<le> (\<Sum>n. \<bar>f n\<bar>)" |
|
20848 | 505 |
by (fold real_norm_def, rule summable_norm) |
14416 | 506 |
|
507 |
subsection{* The Ratio Test*} |
|
508 |
||
20848 | 509 |
lemma norm_ratiotest_lemma: |
510 |
fixes x y :: "'a::normed" |
|
511 |
shows "\<lbrakk>c \<le> 0; norm x \<le> c * norm y\<rbrakk> \<Longrightarrow> x = 0" |
|
512 |
apply (subgoal_tac "norm x \<le> 0", simp) |
|
513 |
apply (erule order_trans) |
|
514 |
apply (simp add: mult_le_0_iff) |
|
515 |
done |
|
516 |
||
14416 | 517 |
lemma rabs_ratiotest_lemma: "[| c \<le> 0; abs x \<le> c * abs y |] ==> x = (0::real)" |
20848 | 518 |
by (erule norm_ratiotest_lemma, simp) |
14416 | 519 |
|
520 |
lemma le_Suc_ex: "(k::nat) \<le> l ==> (\<exists>n. l = k + n)" |
|
521 |
apply (drule le_imp_less_or_eq) |
|
522 |
apply (auto dest: less_imp_Suc_add) |
|
523 |
done |
|
524 |
||
525 |
lemma le_Suc_ex_iff: "((k::nat) \<le> l) = (\<exists>n. l = k + n)" |
|
526 |
by (auto simp add: le_Suc_ex) |
|
527 |
||
528 |
(*All this trouble just to get 0<c *) |
|
529 |
lemma ratio_test_lemma2: |
|
20848 | 530 |
fixes f :: "nat \<Rightarrow> 'a::banach" |
531 |
shows "\<lbrakk>\<forall>n\<ge>N. norm (f (Suc n)) \<le> c * norm (f n)\<rbrakk> \<Longrightarrow> 0 < c \<or> summable f" |
|
14416 | 532 |
apply (simp (no_asm) add: linorder_not_le [symmetric]) |
533 |
apply (simp add: summable_Cauchy) |
|
15543 | 534 |
apply (safe, subgoal_tac "\<forall>n. N < n --> f (n) = 0") |
535 |
prefer 2 |
|
536 |
apply clarify |
|
537 |
apply(erule_tac x = "n - 1" in allE) |
|
538 |
apply (simp add:diff_Suc split:nat.splits) |
|
20848 | 539 |
apply (blast intro: norm_ratiotest_lemma) |
14416 | 540 |
apply (rule_tac x = "Suc N" in exI, clarify) |
15543 | 541 |
apply(simp cong:setsum_ivl_cong) |
14416 | 542 |
done |
543 |
||
544 |
lemma ratio_test: |
|
20848 | 545 |
fixes f :: "nat \<Rightarrow> 'a::banach" |
546 |
shows "\<lbrakk>c < 1; \<forall>n\<ge>N. norm (f (Suc n)) \<le> c * norm (f n)\<rbrakk> \<Longrightarrow> summable f" |
|
14416 | 547 |
apply (frule ratio_test_lemma2, auto) |
20848 | 548 |
apply (rule_tac g = "%n. (norm (f N) / (c ^ N))*c ^ n" |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
549 |
in summable_comparison_test) |
14416 | 550 |
apply (rule_tac x = N in exI, safe) |
551 |
apply (drule le_Suc_ex_iff [THEN iffD1]) |
|
552 |
apply (auto simp add: power_add realpow_not_zero) |
|
15539 | 553 |
apply (induct_tac "na", auto) |
20848 | 554 |
apply (rule_tac y = "c * norm (f (N + n))" in order_trans) |
14416 | 555 |
apply (auto intro: mult_right_mono simp add: summable_def) |
556 |
apply (simp add: mult_ac) |
|
20848 | 557 |
apply (rule_tac x = "norm (f N) * (1/ (1 - c)) / (c ^ N)" in exI) |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
558 |
apply (rule sums_divide) |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
559 |
apply (rule sums_mult) |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
560 |
apply (auto intro!: geometric_sums) |
14416 | 561 |
done |
562 |
||
563 |
||
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
564 |
text{*Differentiation of finite sum*} |
14416 | 565 |
|
566 |
lemma DERIV_sumr [rule_format (no_asm)]: |
|
567 |
"(\<forall>r. m \<le> r & r < (m + n) --> DERIV (%x. f r x) x :> (f' r x)) |
|
20792 | 568 |
--> DERIV (%x. \<Sum>n=m..<n::nat. f n x :: real) x :> (\<Sum>r=m..<n. f' r x)" |
15251 | 569 |
apply (induct "n") |
14416 | 570 |
apply (auto intro: DERIV_add) |
571 |
done |
|
572 |
||
573 |
end |