src/HOL/Hyperreal/Lim.thy
author paulson
Wed, 01 Sep 2004 15:04:01 +0200
changeset 15169 2b5da07a0b89
parent 15140 322485b816ac
child 15195 197e00ce3f20
permissions -rw-r--r--
new "respects" syntax for quotienting
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
     1
(*  Title       : Lim.thy
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
     2
    ID          : $Id$
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
     3
    Author      : Jacques D. Fleuriot
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
     4
    Copyright   : 1998  University of Cambridge
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
     5
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
     6
*)
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
     7
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
     8
header{*Limits, Continuity and Differentiation*}
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
     9
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
    10
theory Lim
15140
322485b816ac import -> imports
nipkow
parents: 15131
diff changeset
    11
imports SEQ RealDef
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
    12
begin
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    13
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    14
text{*Standard and Nonstandard Definitions*}
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    15
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    16
constdefs
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    17
  LIM :: "[real=>real,real,real] => bool"
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    18
				("((_)/ -- (_)/ --> (_))" [60, 0, 60] 60)
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    19
  "f -- a --> L ==
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    20
     \<forall>r. 0 < r -->
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    21
	     (\<exists>s. 0 < s & (\<forall>x. (x \<noteq> a & (\<bar>x + -a\<bar> < s)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    22
			  --> \<bar>f x + -L\<bar> < r)))"
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    23
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    24
  NSLIM :: "[real=>real,real,real] => bool"
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    25
			      ("((_)/ -- (_)/ --NS> (_))" [60, 0, 60] 60)
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    26
  "f -- a --NS> L == (\<forall>x. (x \<noteq> hypreal_of_real a &
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    27
		      x @= hypreal_of_real a -->
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    28
		      ( *f* f) x @= hypreal_of_real L))"
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    29
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    30
  isCont :: "[real=>real,real] => bool"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    31
  "isCont f a == (f -- a --> (f a))"
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    32
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    33
  (* NS definition dispenses with limit notions *)
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    34
  isNSCont :: "[real=>real,real] => bool"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    35
  "isNSCont f a == (\<forall>y. y @= hypreal_of_real a -->
13810
c3fbfd472365 (*f -> ( *f because of new comments
nipkow
parents: 12018
diff changeset
    36
			   ( *f* f) y @= hypreal_of_real (f a))"
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    37
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    38
  (* differentiation: D is derivative of function f at x *)
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    39
  deriv:: "[real=>real,real,real] => bool"
15080
7912ace86f31 fixed precedences
paulson
parents: 15079
diff changeset
    40
			    ("(DERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    41
  "DERIV f x :> D == ((%h. (f(x + h) + -f x)/h) -- 0 --> D)"
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    42
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    43
  nsderiv :: "[real=>real,real,real] => bool"
15080
7912ace86f31 fixed precedences
paulson
parents: 15079
diff changeset
    44
			    ("(NSDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    45
  "NSDERIV f x :> D == (\<forall>h \<in> Infinitesimal - {0}.
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    46
			(( *f* f)(hypreal_of_real x + h) +
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    47
			 - hypreal_of_real (f x))/h @= hypreal_of_real D)"
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    48
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    49
  differentiable :: "[real=>real,real] => bool"   (infixl "differentiable" 60)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    50
  "f differentiable x == (\<exists>D. DERIV f x :> D)"
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    51
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    52
  NSdifferentiable :: "[real=>real,real] => bool"   
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    53
                       (infixl "NSdifferentiable" 60)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    54
  "f NSdifferentiable x == (\<exists>D. NSDERIV f x :> D)"
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    55
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    56
  increment :: "[real=>real,real,hypreal] => hypreal"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    57
  "increment f x h == (@inc. f NSdifferentiable x &
13810
c3fbfd472365 (*f -> ( *f because of new comments
nipkow
parents: 12018
diff changeset
    58
		       inc = ( *f* f)(hypreal_of_real x + h) + -hypreal_of_real (f x))"
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    59
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    60
  isUCont :: "(real=>real) => bool"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    61
  "isUCont f ==  (\<forall>r. 0 < r -->
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    62
		      (\<exists>s. 0 < s & (\<forall>x y. \<bar>x + -y\<bar> < s
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    63
			    --> \<bar>f x + -f y\<bar> < r)))"
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    64
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    65
  isNSUCont :: "(real=>real) => bool"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    66
  "isNSUCont f == (\<forall>x y. x @= y --> ( *f* f) x @= ( *f* f) y)"
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    67
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    68
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    69
(*Used in the proof of the Bolzano theorem*)
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    70
consts
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    71
  Bolzano_bisect :: "[real*real=>bool, real, real, nat] => (real*real)"
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    72
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    73
primrec
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    74
  "Bolzano_bisect P a b 0 = (a,b)"
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    75
  "Bolzano_bisect P a b (Suc n) =
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
    76
      (let (x,y) = Bolzano_bisect P a b n
11704
3c50a2cd6f00 * sane numerals (stage 2): plain "num" syntax (removed "#");
wenzelm
parents: 11701
diff changeset
    77
       in if P(x, (x+y)/2) then ((x+y)/2, y)
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    78
                            else (x, (x+y)/2))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    79
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    80
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    81
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    82
section{*Some Purely Standard Proofs*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    83
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    84
lemma LIM_eq:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    85
     "f -- a --> L =
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    86
     (\<forall>r. 0<r --> (\<exists>s. 0 < s & (\<forall>x. x \<noteq> a & \<bar>x-a\<bar> < s --> \<bar>f x - L\<bar> < r)))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    87
by (simp add: LIM_def diff_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    88
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    89
lemma LIM_D:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    90
     "[| f -- a --> L; 0<r |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    91
      ==> \<exists>s. 0 < s & (\<forall>x. x \<noteq> a & \<bar>x-a\<bar> < s --> \<bar>f x - L\<bar> < r)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    92
by (simp add: LIM_eq)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    93
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    94
lemma LIM_const: "(%x. k) -- x --> k"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    95
by (simp add: LIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    96
declare LIM_const [simp]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    97
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    98
lemma LIM_add:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
    99
  assumes f: "f -- a --> L" and g: "g -- a --> M"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   100
  shows "(%x. f x + g(x)) -- a --> (L + M)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   101
proof (simp add: LIM_eq, clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   102
  fix r :: real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   103
  assume r: "0<r"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   104
  from LIM_D [OF f half_gt_zero [OF r]]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   105
  obtain fs
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   106
    where fs:    "0 < fs"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   107
      and fs_lt: "\<forall>x. x \<noteq> a & \<bar>x-a\<bar> < fs --> \<bar>f x - L\<bar> < r/2"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   108
  by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   109
  from LIM_D [OF g half_gt_zero [OF r]]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   110
  obtain gs
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   111
    where gs:    "0 < gs"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   112
      and gs_lt: "\<forall>x. x \<noteq> a & \<bar>x-a\<bar> < gs --> \<bar>g x - M\<bar> < r/2"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   113
  by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   114
  show "\<exists>s. 0 < s \<and>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   115
            (\<forall>x. x \<noteq> a \<and> \<bar>x-a\<bar> < s \<longrightarrow> \<bar>f x + g x - (L + M)\<bar> < r)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   116
  proof (intro exI conjI strip)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   117
    show "0 < min fs gs"  by (simp add: fs gs)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   118
    fix x :: real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   119
    assume "x \<noteq> a \<and> \<bar>x-a\<bar> < min fs gs"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   120
    with fs_lt gs_lt
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   121
    have "\<bar>f x - L\<bar> < r/2" and "\<bar>g x - M\<bar> < r/2" by (auto simp add: fs_lt)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   122
    hence "\<bar>f x - L\<bar> + \<bar>g x - M\<bar> < r" by arith
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   123
    thus "\<bar>f x + g x - (L + M)\<bar> < r"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   124
      by (blast intro: abs_diff_triangle_ineq order_le_less_trans)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   125
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   126
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   127
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   128
lemma LIM_minus: "f -- a --> L ==> (%x. -f(x)) -- a --> -L"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   129
apply (simp add: LIM_eq)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   130
apply (subgoal_tac "\<forall>x. \<bar>- f x + L\<bar> = \<bar>f x - L\<bar>")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   131
apply (simp_all add: abs_if)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   132
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   133
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   134
lemma LIM_add_minus:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   135
    "[| f -- x --> l; g -- x --> m |] ==> (%x. f(x) + -g(x)) -- x --> (l + -m)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   136
by (blast dest: LIM_add LIM_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   137
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   138
lemma LIM_diff:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   139
    "[| f -- x --> l; g -- x --> m |] ==> (%x. f(x) - g(x)) -- x --> l-m"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   140
by (simp add: diff_minus LIM_add_minus) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   141
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   142
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   143
lemma LIM_const_not_eq: "k \<noteq> L ==> ~ ((%x. k) -- a --> L)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   144
proof (simp add: linorder_neq_iff LIM_eq, elim disjE)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   145
  assume k: "k < L"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   146
  show "\<exists>r. 0 < r \<and>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   147
        (\<forall>s. 0 < s \<longrightarrow> (\<exists>x. (x < a \<or> a < x) \<and> \<bar>x-a\<bar> < s) \<and> \<not> \<bar>k-L\<bar> < r)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   148
  proof (intro exI conjI strip)
15086
e6a2a98d5ef5 removal of more iff-rules from RealDef.thy
paulson
parents: 15080
diff changeset
   149
    show "0 < L-k" by (simp add: k compare_rls)
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   150
    fix s :: real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   151
    assume s: "0<s"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   152
    { from s show "s/2 + a < a \<or> a < s/2 + a" by arith
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   153
     next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   154
      from s show "\<bar>s / 2 + a - a\<bar> < s" by (simp add: abs_if) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   155
     next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   156
      from s show "~ \<bar>k-L\<bar> < L-k" by (simp add: abs_if) }
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   157
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   158
next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   159
  assume k: "L < k"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   160
  show "\<exists>r. 0 < r \<and>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   161
        (\<forall>s. 0 < s \<longrightarrow> (\<exists>x. (x < a \<or> a < x) \<and> \<bar>x-a\<bar> < s) \<and> \<not> \<bar>k-L\<bar> < r)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   162
  proof (intro exI conjI strip)
15086
e6a2a98d5ef5 removal of more iff-rules from RealDef.thy
paulson
parents: 15080
diff changeset
   163
    show "0 < k-L" by (simp add: k compare_rls)
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   164
    fix s :: real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   165
    assume s: "0<s"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   166
    { from s show "s/2 + a < a \<or> a < s/2 + a" by arith
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   167
     next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   168
      from s show "\<bar>s / 2 + a - a\<bar> < s" by (simp add: abs_if) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   169
     next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   170
      from s show "~ \<bar>k-L\<bar> < k-L" by (simp add: abs_if) }
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   171
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   172
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   173
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   174
lemma LIM_const_eq: "(%x. k) -- x --> L ==> k = L"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   175
apply (rule ccontr)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   176
apply (blast dest: LIM_const_not_eq) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   177
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   178
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   179
lemma LIM_unique: "[| f -- a --> L; f -- a --> M |] ==> L = M"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   180
apply (drule LIM_diff, assumption) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   181
apply (auto dest!: LIM_const_eq)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   182
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   183
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   184
lemma LIM_mult_zero:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   185
  assumes f: "f -- a --> 0" and g: "g -- a --> 0"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   186
  shows "(%x. f(x) * g(x)) -- a --> 0"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   187
proof (simp add: LIM_eq, clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   188
  fix r :: real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   189
  assume r: "0<r"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   190
  from LIM_D [OF f zero_less_one]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   191
  obtain fs
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   192
    where fs:    "0 < fs"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   193
      and fs_lt: "\<forall>x. x \<noteq> a & \<bar>x-a\<bar> < fs --> \<bar>f x\<bar> < 1"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   194
  by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   195
  from LIM_D [OF g r]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   196
  obtain gs
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   197
    where gs:    "0 < gs"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   198
      and gs_lt: "\<forall>x. x \<noteq> a & \<bar>x-a\<bar> < gs --> \<bar>g x\<bar> < r"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   199
  by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   200
  show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> a \<and> \<bar>x-a\<bar> < s \<longrightarrow> \<bar>f x\<bar> * \<bar>g x\<bar> < r)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   201
  proof (intro exI conjI strip)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   202
    show "0 < min fs gs"  by (simp add: fs gs)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   203
    fix x :: real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   204
    assume "x \<noteq> a \<and> \<bar>x-a\<bar> < min fs gs"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   205
    with fs_lt gs_lt
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   206
    have "\<bar>f x\<bar> < 1" and "\<bar>g x\<bar> < r" by (auto simp add: fs_lt)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   207
    hence "\<bar>f x\<bar> * \<bar>g x\<bar> < 1*r" by (rule abs_mult_less) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   208
    thus "\<bar>f x\<bar> * \<bar>g x\<bar> < r" by simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   209
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   210
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   211
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   212
lemma LIM_self: "(%x. x) -- a --> a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   213
by (auto simp add: LIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   214
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   215
text{*Limits are equal for functions equal except at limit point*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   216
lemma LIM_equal:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   217
     "[| \<forall>x. x \<noteq> a --> (f x = g x) |] ==> (f -- a --> l) = (g -- a --> l)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   218
by (simp add: LIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   219
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   220
text{*Two uses in Hyperreal/Transcendental.ML*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   221
lemma LIM_trans:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   222
     "[| (%x. f(x) + -g(x)) -- a --> 0;  g -- a --> l |] ==> f -- a --> l"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   223
apply (drule LIM_add, assumption)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   224
apply (auto simp add: add_assoc)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   225
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   226
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   227
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   228
subsection{*Relationships Between Standard and Nonstandard Concepts*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   229
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   230
text{*Standard and NS definitions of Limit*} (*NEEDS STRUCTURING*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   231
lemma LIM_NSLIM:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   232
      "f -- x --> L ==> f -- x --NS> L"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   233
apply (simp add: LIM_def NSLIM_def approx_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   234
apply (simp add: Infinitesimal_FreeUltrafilterNat_iff, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   235
apply (rule_tac z = xa in eq_Abs_hypreal)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   236
apply (auto simp add: real_add_minus_iff starfun hypreal_minus hypreal_of_real_def hypreal_add)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   237
apply (rule bexI, rule_tac [2] lemma_hyprel_refl, clarify) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   238
apply (drule_tac x = u in spec, clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   239
apply (drule_tac x = s in spec, clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   240
apply (subgoal_tac "\<forall>n::nat. (xa n) \<noteq> x & abs ((xa n) + - x) < s --> abs (f (xa n) + - L) < u")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   241
prefer 2 apply blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   242
apply (drule FreeUltrafilterNat_all, ultra)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   243
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   244
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   245
(*---------------------------------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   246
    Limit: NS definition ==> standard definition
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   247
 ---------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   248
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   249
lemma lemma_LIM: "\<forall>s. 0 < s --> (\<exists>xa.  xa \<noteq> x &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   250
         \<bar>xa + - x\<bar> < s  & r \<le> \<bar>f xa + -L\<bar>)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   251
      ==> \<forall>n::nat. \<exists>xa.  xa \<noteq> x &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   252
              \<bar>xa + -x\<bar> < inverse(real(Suc n)) & r \<le> \<bar>f xa + -L\<bar>"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   253
apply clarify
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   254
apply (cut_tac n1 = n in real_of_nat_Suc_gt_zero [THEN positive_imp_inverse_positive], auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   255
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   256
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   257
lemma lemma_skolemize_LIM2:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   258
     "\<forall>s. 0 < s --> (\<exists>xa.  xa \<noteq> x &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   259
         \<bar>xa + - x\<bar> < s  & r \<le> \<bar>f xa + -L\<bar>)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   260
      ==> \<exists>X. \<forall>n::nat. X n \<noteq> x &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   261
                \<bar>X n + -x\<bar> < inverse(real(Suc n)) & r \<le> abs(f (X n) + -L)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   262
apply (drule lemma_LIM)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   263
apply (drule choice, blast)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   264
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   265
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   266
lemma lemma_simp: "\<forall>n. X n \<noteq> x &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   267
          \<bar>X n + - x\<bar> < inverse (real(Suc n)) &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   268
          r \<le> abs (f (X n) + - L) ==>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   269
          \<forall>n. \<bar>X n + - x\<bar> < inverse (real(Suc n))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   270
by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   271
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   272
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   273
(*-------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   274
    NSLIM => LIM
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   275
 -------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   276
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   277
lemma NSLIM_LIM: "f -- x --NS> L ==> f -- x --> L"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   278
apply (simp add: LIM_def NSLIM_def approx_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   279
apply (simp add: Infinitesimal_FreeUltrafilterNat_iff, clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   280
apply (rule ccontr, simp)  
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   281
apply (simp add: linorder_not_less)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   282
apply (drule lemma_skolemize_LIM2, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   283
apply (drule_tac x = "Abs_hypreal (hyprel``{X}) " in spec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   284
apply (auto simp add: starfun hypreal_minus hypreal_of_real_def hypreal_add)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   285
apply (drule lemma_simp [THEN real_seq_to_hypreal_Infinitesimal])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   286
apply (simp add: Infinitesimal_FreeUltrafilterNat_iff hypreal_of_real_def hypreal_minus hypreal_add, blast)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   287
apply (drule spec, drule mp, assumption)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   288
apply (drule FreeUltrafilterNat_all, ultra)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   289
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   290
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   291
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   292
(**** Key result ****)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   293
lemma LIM_NSLIM_iff: "(f -- x --> L) = (f -- x --NS> L)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   294
by (blast intro: LIM_NSLIM NSLIM_LIM)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   295
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   296
(*-------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   297
(*   Proving properties of limits using nonstandard definition and   *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   298
(*   hence, the properties hold for standard limits as well          *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   299
(*-------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   300
(*------------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   301
      NSLIM_mult and hence (trivially) LIM_mult
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   302
 ------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   303
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   304
lemma NSLIM_mult:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   305
     "[| f -- x --NS> l; g -- x --NS> m |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   306
      ==> (%x. f(x) * g(x)) -- x --NS> (l * m)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   307
apply (simp add: NSLIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   308
apply (auto intro!: approx_mult_HFinite)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   309
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   310
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   311
lemma LIM_mult2: "[| f -- x --> l; g -- x --> m |] ==> (%x. f(x) * g(x)) -- x --> (l * m)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   312
by (simp add: LIM_NSLIM_iff NSLIM_mult)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   313
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   314
(*----------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   315
      NSLIM_add and hence (trivially) LIM_add
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   316
      Note the much shorter proof
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   317
 ----------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   318
lemma NSLIM_add:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   319
     "[| f -- x --NS> l; g -- x --NS> m |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   320
      ==> (%x. f(x) + g(x)) -- x --NS> (l + m)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   321
apply (simp add: NSLIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   322
apply (auto intro!: approx_add)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   323
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   324
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   325
lemma LIM_add2: "[| f -- x --> l; g -- x --> m |] ==> (%x. f(x) + g(x)) -- x --> (l + m)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   326
by (simp add: LIM_NSLIM_iff NSLIM_add)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   327
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   328
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   329
lemma NSLIM_const: "(%x. k) -- x --NS> k"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   330
by (simp add: NSLIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   331
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   332
declare NSLIM_const [simp]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   333
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   334
lemma LIM_const2: "(%x. k) -- x --> k"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   335
by (simp add: LIM_NSLIM_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   336
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   337
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   338
lemma NSLIM_minus: "f -- a --NS> L ==> (%x. -f(x)) -- a --NS> -L"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   339
by (simp add: NSLIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   340
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   341
lemma LIM_minus2: "f -- a --> L ==> (%x. -f(x)) -- a --> -L"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   342
by (simp add: LIM_NSLIM_iff NSLIM_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   343
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   344
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   345
lemma NSLIM_add_minus: "[| f -- x --NS> l; g -- x --NS> m |] ==> (%x. f(x) + -g(x)) -- x --NS> (l + -m)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   346
by (blast dest: NSLIM_add NSLIM_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   347
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   348
lemma LIM_add_minus2: "[| f -- x --> l; g -- x --> m |] ==> (%x. f(x) + -g(x)) -- x --> (l + -m)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   349
by (simp add: LIM_NSLIM_iff NSLIM_add_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   350
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   351
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   352
lemma NSLIM_inverse:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   353
     "[| f -- a --NS> L;  L \<noteq> 0 |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   354
      ==> (%x. inverse(f(x))) -- a --NS> (inverse L)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   355
apply (simp add: NSLIM_def, clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   356
apply (drule spec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   357
apply (auto simp add: hypreal_of_real_approx_inverse)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   358
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   359
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   360
lemma LIM_inverse: "[| f -- a --> L; L \<noteq> 0 |] ==> (%x. inverse(f(x))) -- a --> (inverse L)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   361
by (simp add: LIM_NSLIM_iff NSLIM_inverse)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   362
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   363
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   364
lemma NSLIM_zero:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   365
  assumes f: "f -- a --NS> l" shows "(%x. f(x) + -l) -- a --NS> 0"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   366
proof -;
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   367
  have "(\<lambda>x. f x + - l) -- a --NS> l + -l"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   368
    by (rule NSLIM_add_minus [OF f NSLIM_const]) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   369
  thus ?thesis by simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   370
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   371
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   372
lemma LIM_zero2: "f -- a --> l ==> (%x. f(x) + -l) -- a --> 0"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   373
by (simp add: LIM_NSLIM_iff NSLIM_zero)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   374
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   375
lemma NSLIM_zero_cancel: "(%x. f(x) - l) -- x --NS> 0 ==> f -- x --NS> l"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   376
apply (drule_tac g = "%x. l" and m = l in NSLIM_add)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   377
apply (auto simp add: diff_minus add_assoc)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   378
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   379
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   380
lemma LIM_zero_cancel: "(%x. f(x) - l) -- x --> 0 ==> f -- x --> l"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   381
apply (drule_tac g = "%x. l" and M = l in LIM_add)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   382
apply (auto simp add: diff_minus add_assoc)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   383
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   384
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   385
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   386
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   387
lemma NSLIM_not_zero: "k \<noteq> 0 ==> ~ ((%x. k) -- x --NS> 0)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   388
apply (simp add: NSLIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   389
apply (rule_tac x = "hypreal_of_real x + epsilon" in exI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   390
apply (auto intro: Infinitesimal_add_approx_self [THEN approx_sym]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   391
            simp add: hypreal_epsilon_not_zero)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   392
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   393
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   394
lemma NSLIM_const_not_eq: "k \<noteq> L ==> ~ ((%x. k) -- x --NS> L)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   395
apply (simp add: NSLIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   396
apply (rule_tac x = "hypreal_of_real x + epsilon" in exI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   397
apply (auto intro: Infinitesimal_add_approx_self [THEN approx_sym]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   398
            simp add: hypreal_epsilon_not_zero)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   399
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   400
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   401
lemma NSLIM_const_eq: "(%x. k) -- x --NS> L ==> k = L"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   402
apply (rule ccontr)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   403
apply (blast dest: NSLIM_const_not_eq) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   404
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   405
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   406
(* can actually be proved more easily by unfolding def! *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   407
lemma NSLIM_unique: "[| f -- x --NS> L; f -- x --NS> M |] ==> L = M"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   408
apply (drule NSLIM_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   409
apply (drule NSLIM_add, assumption)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   410
apply (auto dest!: NSLIM_const_eq [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   411
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   412
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   413
lemma LIM_unique2: "[| f -- x --> L; f -- x --> M |] ==> L = M"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   414
by (simp add: LIM_NSLIM_iff NSLIM_unique)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   415
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   416
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   417
lemma NSLIM_mult_zero: "[| f -- x --NS> 0; g -- x --NS> 0 |] ==> (%x. f(x)*g(x)) -- x --NS> 0"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   418
by (drule NSLIM_mult, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   419
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   420
(* we can use the corresponding thm LIM_mult2 *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   421
(* for standard definition of limit           *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   422
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   423
lemma LIM_mult_zero2: "[| f -- x --> 0; g -- x --> 0 |] ==> (%x. f(x)*g(x)) -- x --> 0"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   424
by (drule LIM_mult2, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   425
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   426
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   427
lemma NSLIM_self: "(%x. x) -- a --NS> a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   428
by (simp add: NSLIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   429
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   430
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   431
(*-----------------------------------------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   432
   Derivatives and Continuity - NS and Standard properties
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   433
 -----------------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   434
text{*Continuity*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   435
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   436
lemma isNSContD: "[| isNSCont f a; y \<approx> hypreal_of_real a |] ==> ( *f* f) y \<approx> hypreal_of_real (f a)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   437
by (simp add: isNSCont_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   438
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   439
lemma isNSCont_NSLIM: "isNSCont f a ==> f -- a --NS> (f a) "
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   440
by (simp add: isNSCont_def NSLIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   441
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   442
lemma NSLIM_isNSCont: "f -- a --NS> (f a) ==> isNSCont f a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   443
apply (simp add: isNSCont_def NSLIM_def, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   444
apply (rule_tac Q = "y = hypreal_of_real a" in excluded_middle [THEN disjE], auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   445
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   446
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   447
(*-----------------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   448
    NS continuity can be defined using NS Limit in
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   449
    similar fashion to standard def of continuity
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   450
 -----------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   451
lemma isNSCont_NSLIM_iff: "(isNSCont f a) = (f -- a --NS> (f a))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   452
by (blast intro: isNSCont_NSLIM NSLIM_isNSCont)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   453
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   454
(*----------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   455
  Hence, NS continuity can be given
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   456
  in terms of standard limit
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   457
 ---------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   458
lemma isNSCont_LIM_iff: "(isNSCont f a) = (f -- a --> (f a))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   459
by (simp add: LIM_NSLIM_iff isNSCont_NSLIM_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   460
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   461
(*-----------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   462
  Moreover, it's trivial now that NS continuity
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   463
  is equivalent to standard continuity
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   464
 -----------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   465
lemma isNSCont_isCont_iff: "(isNSCont f a) = (isCont f a)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   466
apply (simp add: isCont_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   467
apply (rule isNSCont_LIM_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   468
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   469
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   470
(*----------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   471
  Standard continuity ==> NS continuity
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   472
 ----------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   473
lemma isCont_isNSCont: "isCont f a ==> isNSCont f a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   474
by (erule isNSCont_isCont_iff [THEN iffD2])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   475
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   476
(*----------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   477
  NS continuity ==> Standard continuity
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   478
 ----------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   479
lemma isNSCont_isCont: "isNSCont f a ==> isCont f a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   480
by (erule isNSCont_isCont_iff [THEN iffD1])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   481
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   482
text{*Alternative definition of continuity*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   483
(* Prove equivalence between NS limits - *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   484
(* seems easier than using standard def  *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   485
lemma NSLIM_h_iff: "(f -- a --NS> L) = ((%h. f(a + h)) -- 0 --NS> L)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   486
apply (simp add: NSLIM_def, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   487
apply (drule_tac x = "hypreal_of_real a + x" in spec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   488
apply (drule_tac [2] x = "-hypreal_of_real a + x" in spec, safe, simp)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   489
apply (rule mem_infmal_iff [THEN iffD2, THEN Infinitesimal_add_approx_self [THEN approx_sym]])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   490
apply (rule_tac [4] approx_minus_iff2 [THEN iffD1])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   491
 prefer 3 apply (simp add: add_commute) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   492
apply (rule_tac [2] z = x in eq_Abs_hypreal)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   493
apply (rule_tac [4] z = x in eq_Abs_hypreal)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   494
apply (auto simp add: starfun hypreal_of_real_def hypreal_minus hypreal_add add_assoc approx_refl hypreal_zero_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   495
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   496
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   497
lemma NSLIM_isCont_iff: "(f -- a --NS> f a) = ((%h. f(a + h)) -- 0 --NS> f a)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   498
by (rule NSLIM_h_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   499
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   500
lemma LIM_isCont_iff: "(f -- a --> f a) = ((%h. f(a + h)) -- 0 --> f(a))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   501
by (simp add: LIM_NSLIM_iff NSLIM_isCont_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   502
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   503
lemma isCont_iff: "(isCont f x) = ((%h. f(x + h)) -- 0 --> f(x))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   504
by (simp add: isCont_def LIM_isCont_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   505
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   506
(*--------------------------------------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   507
   Immediate application of nonstandard criterion for continuity can offer
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   508
   very simple proofs of some standard property of continuous functions
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   509
 --------------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   510
text{*sum continuous*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   511
lemma isCont_add: "[| isCont f a; isCont g a |] ==> isCont (%x. f(x) + g(x)) a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   512
by (auto intro: approx_add simp add: isNSCont_isCont_iff [symmetric] isNSCont_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   513
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   514
text{*mult continuous*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   515
lemma isCont_mult: "[| isCont f a; isCont g a |] ==> isCont (%x. f(x) * g(x)) a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   516
by (auto intro!: starfun_mult_HFinite_approx 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   517
            simp del: starfun_mult [symmetric] 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   518
            simp add: isNSCont_isCont_iff [symmetric] isNSCont_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   519
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   520
(*-------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   521
     composition of continuous functions
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   522
     Note very short straightforard proof!
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   523
 ------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   524
lemma isCont_o: "[| isCont f a; isCont g (f a) |] ==> isCont (g o f) a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   525
by (auto simp add: isNSCont_isCont_iff [symmetric] isNSCont_def starfun_o [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   526
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   527
lemma isCont_o2: "[| isCont f a; isCont g (f a) |] ==> isCont (%x. g (f x)) a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   528
by (auto dest: isCont_o simp add: o_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   529
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   530
lemma isNSCont_minus: "isNSCont f a ==> isNSCont (%x. - f x) a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   531
by (simp add: isNSCont_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   532
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   533
lemma isCont_minus: "isCont f a ==> isCont (%x. - f x) a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   534
by (auto simp add: isNSCont_isCont_iff [symmetric] isNSCont_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   535
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   536
lemma isCont_inverse:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   537
      "[| isCont f x; f x \<noteq> 0 |] ==> isCont (%x. inverse (f x)) x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   538
apply (simp add: isCont_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   539
apply (blast intro: LIM_inverse)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   540
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   541
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   542
lemma isNSCont_inverse: "[| isNSCont f x; f x \<noteq> 0 |] ==> isNSCont (%x. inverse (f x)) x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   543
by (auto intro: isCont_inverse simp add: isNSCont_isCont_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   544
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   545
lemma isCont_diff:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   546
      "[| isCont f a; isCont g a |] ==> isCont (%x. f(x) - g(x)) a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   547
apply (simp add: diff_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   548
apply (auto intro: isCont_add isCont_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   549
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   550
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   551
lemma isCont_const: "isCont (%x. k) a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   552
by (simp add: isCont_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   553
declare isCont_const [simp]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   554
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   555
lemma isNSCont_const: "isNSCont (%x. k) a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   556
by (simp add: isNSCont_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   557
declare isNSCont_const [simp]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   558
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   559
lemma isNSCont_rabs: "isNSCont abs a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   560
apply (simp add: isNSCont_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   561
apply (auto intro: approx_hrabs simp add: hypreal_of_real_hrabs [symmetric] starfun_rabs_hrabs)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   562
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   563
declare isNSCont_rabs [simp]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   564
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   565
lemma isCont_rabs: "isCont abs a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   566
by (auto simp add: isNSCont_isCont_iff [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   567
declare isCont_rabs [simp]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   568
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   569
(****************************************************************
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   570
(%* Leave as commented until I add topology theory or remove? *%)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   571
(%*------------------------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   572
  Elementary topology proof for a characterisation of
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   573
  continuity now: a function f is continuous if and only
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   574
  if the inverse image, {x. f(x) \<in> A}, of any open set A
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   575
  is always an open set
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   576
 ------------------------------------------------------------*%)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   577
Goal "[| isNSopen A; \<forall>x. isNSCont f x |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   578
               ==> isNSopen {x. f x \<in> A}"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   579
by (auto_tac (claset(),simpset() addsimps [isNSopen_iff1]));
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   580
by (dtac (mem_monad_approx RS approx_sym);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   581
by (dres_inst_tac [("x","a")] spec 1);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   582
by (dtac isNSContD 1 THEN assume_tac 1)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   583
by (dtac bspec 1 THEN assume_tac 1)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   584
by (dres_inst_tac [("x","( *f* f) x")] approx_mem_monad2 1);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   585
by (blast_tac (claset() addIs [starfun_mem_starset]);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   586
qed "isNSCont_isNSopen";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   587
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   588
Goalw [isNSCont_def]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   589
          "\<forall>A. isNSopen A --> isNSopen {x. f x \<in> A} \
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   590
\              ==> isNSCont f x";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   591
by (auto_tac (claset() addSIs [(mem_infmal_iff RS iffD1) RS
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   592
     (approx_minus_iff RS iffD2)],simpset() addsimps
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   593
      [Infinitesimal_def,SReal_iff]));
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   594
by (dres_inst_tac [("x","{z. abs(z + -f(x)) < ya}")] spec 1);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   595
by (etac (isNSopen_open_interval RSN (2,impE));
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   596
by (auto_tac (claset(),simpset() addsimps [isNSopen_def,isNSnbhd_def]));
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   597
by (dres_inst_tac [("x","x")] spec 1);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   598
by (auto_tac (claset() addDs [approx_sym RS approx_mem_monad],
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   599
    simpset() addsimps [hypreal_of_real_zero RS sym,STAR_starfun_rabs_add_minus]));
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   600
qed "isNSopen_isNSCont";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   601
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   602
Goal "(\<forall>x. isNSCont f x) = \
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   603
\     (\<forall>A. isNSopen A --> isNSopen {x. f(x) \<in> A})";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   604
by (blast_tac (claset() addIs [isNSCont_isNSopen,
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   605
    isNSopen_isNSCont]);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   606
qed "isNSCont_isNSopen_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   607
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   608
(%*------- Standard version of same theorem --------*%)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   609
Goal "(\<forall>x. isCont f x) = \
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   610
\         (\<forall>A. isopen A --> isopen {x. f(x) \<in> A})";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   611
by (auto_tac (claset() addSIs [isNSCont_isNSopen_iff],
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   612
              simpset() addsimps [isNSopen_isopen_iff RS sym,
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   613
              isNSCont_isCont_iff RS sym]));
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   614
qed "isCont_isopen_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   615
*******************************************************************)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   616
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   617
text{*Uniform continuity*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   618
lemma isNSUContD: "[| isNSUCont f; x \<approx> y|] ==> ( *f* f) x \<approx> ( *f* f) y"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   619
by (simp add: isNSUCont_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   620
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   621
lemma isUCont_isCont: "isUCont f ==> isCont f x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   622
by (simp add: isUCont_def isCont_def LIM_def, meson)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   623
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   624
lemma isUCont_isNSUCont: "isUCont f ==> isNSUCont f"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   625
apply (simp add: isNSUCont_def isUCont_def approx_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   626
apply (simp add: Infinitesimal_FreeUltrafilterNat_iff, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   627
apply (rule_tac z = x in eq_Abs_hypreal)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   628
apply (rule_tac z = y in eq_Abs_hypreal)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   629
apply (auto simp add: starfun hypreal_minus hypreal_add)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   630
apply (rule bexI, rule_tac [2] lemma_hyprel_refl, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   631
apply (drule_tac x = u in spec, clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   632
apply (drule_tac x = s in spec, clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   633
apply (subgoal_tac "\<forall>n::nat. abs ((xa n) + - (xb n)) < s --> abs (f (xa n) + - f (xb n)) < u")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   634
prefer 2 apply blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   635
apply (erule_tac V = "\<forall>x y. \<bar>x + - y\<bar> < s --> \<bar>f x + - f y\<bar> < u" in thin_rl)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   636
apply (drule FreeUltrafilterNat_all, ultra)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   637
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   638
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   639
lemma lemma_LIMu: "\<forall>s. 0 < s --> (\<exists>z y. \<bar>z + - y\<bar> < s & r \<le> \<bar>f z + -f y\<bar>)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   640
      ==> \<forall>n::nat. \<exists>z y.
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   641
               \<bar>z + -y\<bar> < inverse(real(Suc n)) &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   642
               r \<le> \<bar>f z + -f y\<bar>"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   643
apply clarify
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   644
apply (cut_tac n1 = n in real_of_nat_Suc_gt_zero [THEN positive_imp_inverse_positive], auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   645
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   646
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   647
lemma lemma_skolemize_LIM2u: "\<forall>s. 0 < s --> (\<exists>z y. \<bar>z + - y\<bar> < s  & r \<le> \<bar>f z + -f y\<bar>)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   648
      ==> \<exists>X Y. \<forall>n::nat.
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   649
               abs(X n + -(Y n)) < inverse(real(Suc n)) &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   650
               r \<le> abs(f (X n) + -f (Y n))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   651
apply (drule lemma_LIMu)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   652
apply (drule choice, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   653
apply (drule choice, blast)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   654
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   655
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   656
lemma lemma_simpu: "\<forall>n. \<bar>X n + -Y n\<bar> < inverse (real(Suc n)) &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   657
          r \<le> abs (f (X n) + - f(Y n)) ==>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   658
          \<forall>n. \<bar>X n + - Y n\<bar> < inverse (real(Suc n))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   659
apply auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   660
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   661
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   662
lemma isNSUCont_isUCont:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   663
     "isNSUCont f ==> isUCont f"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   664
apply (simp add: isNSUCont_def isUCont_def approx_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   665
apply (simp add: Infinitesimal_FreeUltrafilterNat_iff, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   666
apply (rule ccontr, simp) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   667
apply (simp add: linorder_not_less)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   668
apply (drule lemma_skolemize_LIM2u, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   669
apply (drule_tac x = "Abs_hypreal (hyprel``{X}) " in spec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   670
apply (drule_tac x = "Abs_hypreal (hyprel``{Y}) " in spec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   671
apply (simp add: starfun hypreal_minus hypreal_add, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   672
apply (drule lemma_simpu [THEN real_seq_to_hypreal_Infinitesimal2])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   673
apply (simp add: Infinitesimal_FreeUltrafilterNat_iff hypreal_minus hypreal_add, blast)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   674
apply (rotate_tac 2)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   675
apply (drule_tac x = r in spec, clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   676
apply (drule FreeUltrafilterNat_all, ultra)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   677
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   678
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   679
text{*Derivatives*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   680
lemma DERIV_iff: "(DERIV f x :> D) = ((%h. (f(x + h) + - f(x))/h) -- 0 --> D)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   681
by (simp add: deriv_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   682
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   683
lemma DERIV_NS_iff:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   684
      "(DERIV f x :> D) = ((%h. (f(x + h) + - f(x))/h) -- 0 --NS> D)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   685
by (simp add: deriv_def LIM_NSLIM_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   686
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   687
lemma DERIV_D: "DERIV f x :> D ==> (%h. (f(x + h) + - f(x))/h) -- 0 --> D"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   688
by (simp add: deriv_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   689
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   690
lemma NS_DERIV_D: "DERIV f x :> D ==>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   691
           (%h. (f(x + h) + - f(x))/h) -- 0 --NS> D"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   692
by (simp add: deriv_def LIM_NSLIM_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   693
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   694
subsubsection{*Uniqueness*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   695
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   696
lemma DERIV_unique:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   697
      "[| DERIV f x :> D; DERIV f x :> E |] ==> D = E"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   698
apply (simp add: deriv_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   699
apply (blast intro: LIM_unique)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   700
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   701
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   702
lemma NSDeriv_unique:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   703
     "[| NSDERIV f x :> D; NSDERIV f x :> E |] ==> D = E"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   704
apply (simp add: nsderiv_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   705
apply (cut_tac Infinitesimal_epsilon hypreal_epsilon_not_zero)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   706
apply (auto dest!: bspec [where x=epsilon] 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   707
            intro!: inj_hypreal_of_real [THEN injD] 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   708
            dest: approx_trans3)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   709
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   710
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   711
subsubsection{*Differentiable*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   712
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   713
lemma differentiableD: "f differentiable x ==> \<exists>D. DERIV f x :> D"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   714
by (simp add: differentiable_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   715
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   716
lemma differentiableI: "DERIV f x :> D ==> f differentiable x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   717
by (force simp add: differentiable_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   718
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   719
lemma NSdifferentiableD: "f NSdifferentiable x ==> \<exists>D. NSDERIV f x :> D"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   720
by (simp add: NSdifferentiable_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   721
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   722
lemma NSdifferentiableI: "NSDERIV f x :> D ==> f NSdifferentiable x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   723
by (force simp add: NSdifferentiable_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   724
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   725
subsubsection{*Alternative definition for differentiability*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   726
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   727
lemma LIM_I:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   728
     "(!!r. 0<r ==> (\<exists>s. 0 < s & (\<forall>x. x \<noteq> a & \<bar>x-a\<bar> < s --> \<bar>f x - L\<bar> < r)))
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   729
      ==> f -- a --> L"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   730
by (simp add: LIM_eq)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   731
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   732
lemma DERIV_LIM_iff:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   733
     "((%h. (f(a + h) - f(a)) / h) -- 0 --> D) =
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   734
      ((%x. (f(x)-f(a)) / (x-a)) -- a --> D)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   735
proof (intro iffI LIM_I)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   736
  fix r::real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   737
  assume r: "0<r"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   738
  assume "(\<lambda>h. (f (a + h) - f a) / h) -- 0 --> D"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   739
  from LIM_D [OF this r]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   740
  obtain s
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   741
    where s:    "0 < s"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   742
      and s_lt: "\<forall>x. x \<noteq> 0 & \<bar>x\<bar> < s --> \<bar>(f (a + x) - f a) / x - D\<bar> < r"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   743
  by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   744
  show "\<exists>s. 0 < s \<and>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   745
            (\<forall>x. x \<noteq> a \<and> \<bar>x-a\<bar> < s \<longrightarrow> \<bar>(f x - f a) / (x-a) - D\<bar> < r)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   746
  proof (intro exI conjI strip)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   747
    show "0 < s"  by (rule s)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   748
  next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   749
    fix x::real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   750
    assume "x \<noteq> a \<and> \<bar>x-a\<bar> < s"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   751
    with s_lt [THEN spec [where x="x-a"]]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   752
    show "\<bar>(f x - f a) / (x-a) - D\<bar> < r" by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   753
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   754
next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   755
  fix r::real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   756
  assume r: "0<r"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   757
  assume "(\<lambda>x. (f x - f a) / (x-a)) -- a --> D"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   758
  from LIM_D [OF this r]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   759
  obtain s
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   760
    where s:    "0 < s"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   761
      and s_lt: "\<forall>x. x \<noteq> a & \<bar>x-a\<bar> < s --> \<bar>(f x - f a)/(x-a) - D\<bar> < r"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   762
  by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   763
  show "\<exists>s. 0 < s \<and>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   764
            (\<forall>x. x \<noteq> 0 & \<bar>x - 0\<bar> < s --> \<bar>(f (a + x) - f a) / x - D\<bar> < r)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   765
  proof (intro exI conjI strip)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   766
    show "0 < s"  by (rule s)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   767
  next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   768
    fix x::real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   769
    assume "x \<noteq> 0 \<and> \<bar>x - 0\<bar> < s"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   770
    with s_lt [THEN spec [where x="x+a"]]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   771
    show "\<bar>(f (a + x) - f a) / x - D\<bar> < r" by (auto simp add: add_ac)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   772
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   773
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   774
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   775
lemma DERIV_iff2: "(DERIV f x :> D) = ((%z. (f(z) - f(x)) / (z-x)) -- x --> D)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   776
by (simp add: deriv_def diff_minus [symmetric] DERIV_LIM_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   777
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   778
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   779
subsection{*Equivalence of NS and standard definitions of differentiation*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   780
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   781
text{*First NSDERIV in terms of NSLIM*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   782
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   783
(*--- first equivalence ---*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   784
lemma NSDERIV_NSLIM_iff:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   785
      "(NSDERIV f x :> D) = ((%h. (f(x + h) + - f(x))/h) -- 0 --NS> D)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   786
apply (simp add: nsderiv_def NSLIM_def, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   787
apply (drule_tac x = xa in bspec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   788
apply (rule_tac [3] ccontr)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   789
apply (drule_tac [3] x = h in spec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   790
apply (auto simp add: mem_infmal_iff starfun_lambda_cancel)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   791
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   792
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   793
(*--- second equivalence ---*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   794
lemma NSDERIV_NSLIM_iff2:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   795
     "(NSDERIV f x :> D) = ((%z. (f(z) - f(x)) / (z-x)) -- x --NS> D)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   796
by (simp add: NSDERIV_NSLIM_iff DERIV_LIM_iff  diff_minus [symmetric] 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   797
              LIM_NSLIM_iff [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   798
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   799
(* while we're at it! *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   800
lemma NSDERIV_iff2:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   801
     "(NSDERIV f x :> D) =
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   802
      (\<forall>w.
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   803
        w \<noteq> hypreal_of_real x & w \<approx> hypreal_of_real x -->
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   804
        ( *f* (%z. (f z - f x) / (z-x))) w \<approx> hypreal_of_real D)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   805
by (simp add: NSDERIV_NSLIM_iff2 NSLIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   806
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   807
(*FIXME DELETE*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   808
lemma hypreal_not_eq_minus_iff: "(x \<noteq> a) = (x + -a \<noteq> (0::hypreal))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   809
by (auto dest: hypreal_eq_minus_iff [THEN iffD2])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   810
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   811
lemma NSDERIVD5:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   812
  "(NSDERIV f x :> D) ==>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   813
   (\<forall>u. u \<approx> hypreal_of_real x -->
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   814
     ( *f* (%z. f z - f x)) u \<approx> hypreal_of_real D * (u - hypreal_of_real x))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   815
apply (auto simp add: NSDERIV_iff2)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   816
apply (case_tac "u = hypreal_of_real x", auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   817
apply (drule_tac x = u in spec, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   818
apply (drule_tac c = "u - hypreal_of_real x" and b = "hypreal_of_real D" in approx_mult1)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   819
apply (drule_tac [!] hypreal_not_eq_minus_iff [THEN iffD1])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   820
apply (subgoal_tac [2] "( *f* (%z. z-x)) u \<noteq> (0::hypreal) ")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   821
apply (auto simp add: diff_minus
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   822
	       approx_minus_iff [THEN iffD1, THEN mem_infmal_iff [THEN iffD2]]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   823
		     Infinitesimal_subset_HFinite [THEN subsetD])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   824
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   825
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   826
lemma NSDERIVD4:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   827
     "(NSDERIV f x :> D) ==>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   828
      (\<forall>h \<in> Infinitesimal.
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   829
               (( *f* f)(hypreal_of_real x + h) -
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   830
                 hypreal_of_real (f x))\<approx> (hypreal_of_real D) * h)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   831
apply (auto simp add: nsderiv_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   832
apply (case_tac "h = (0::hypreal) ")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   833
apply (auto simp add: diff_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   834
apply (drule_tac x = h in bspec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   835
apply (drule_tac [2] c = h in approx_mult1)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   836
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   837
            simp add: diff_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   838
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   839
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   840
lemma NSDERIVD3:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   841
     "(NSDERIV f x :> D) ==>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   842
      (\<forall>h \<in> Infinitesimal - {0}.
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   843
               (( *f* f)(hypreal_of_real x + h) -
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   844
                 hypreal_of_real (f x))\<approx> (hypreal_of_real D) * h)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   845
apply (auto simp add: nsderiv_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   846
apply (rule ccontr, drule_tac x = h in bspec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   847
apply (drule_tac [2] c = h in approx_mult1)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   848
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   849
            simp add: mult_assoc diff_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   850
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   851
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   852
text{*Now equivalence between NSDERIV and DERIV*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   853
lemma NSDERIV_DERIV_iff: "(NSDERIV f x :> D) = (DERIV f x :> D)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   854
by (simp add: deriv_def NSDERIV_NSLIM_iff LIM_NSLIM_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   855
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   856
(*---------------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   857
         Differentiability implies continuity
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   858
         nice and simple "algebraic" proof
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   859
 --------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   860
lemma NSDERIV_isNSCont: "NSDERIV f x :> D ==> isNSCont f x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   861
apply (auto simp add: nsderiv_def isNSCont_NSLIM_iff NSLIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   862
apply (drule approx_minus_iff [THEN iffD1])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   863
apply (drule hypreal_not_eq_minus_iff [THEN iffD1])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   864
apply (drule_tac x = "-hypreal_of_real x + xa" in bspec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   865
 prefer 2 apply (simp add: add_assoc [symmetric]) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   866
apply (auto simp add: mem_infmal_iff [symmetric] hypreal_add_commute)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   867
apply (drule_tac c = "xa + -hypreal_of_real x" in approx_mult1)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   868
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   869
            simp add: mult_assoc)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   870
apply (drule_tac x3=D in
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   871
           HFinite_hypreal_of_real [THEN [2] Infinitesimal_HFinite_mult,
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   872
             THEN mem_infmal_iff [THEN iffD1]])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   873
apply (auto simp add: mult_commute 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   874
            intro: approx_trans approx_minus_iff [THEN iffD2])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   875
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   876
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   877
text{*Now Sandard proof*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   878
lemma DERIV_isCont: "DERIV f x :> D ==> isCont f x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   879
by (simp add: NSDERIV_DERIV_iff [symmetric] isNSCont_isCont_iff [symmetric] 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   880
              NSDERIV_isNSCont)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   881
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   882
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   883
(*----------------------------------------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   884
      Differentiation rules for combinations of functions
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   885
      follow from clear, straightforard, algebraic
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   886
      manipulations
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   887
 ----------------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   888
text{*Constant function*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   889
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   890
(* use simple constant nslimit theorem *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   891
lemma NSDERIV_const: "(NSDERIV (%x. k) x :> 0)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   892
by (simp add: NSDERIV_NSLIM_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   893
declare NSDERIV_const [simp]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   894
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   895
lemma DERIV_const: "(DERIV (%x. k) x :> 0)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   896
by (simp add: NSDERIV_DERIV_iff [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   897
declare DERIV_const [simp]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   898
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   899
(*-----------------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   900
    Sum of functions- proved easily
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   901
 ----------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   902
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   903
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   904
lemma NSDERIV_add: "[| NSDERIV f x :> Da;  NSDERIV g x :> Db |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   905
      ==> NSDERIV (%x. f x + g x) x :> Da + Db"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   906
apply (auto simp add: NSDERIV_NSLIM_iff NSLIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   907
apply (auto simp add: add_divide_distrib dest!: spec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   908
apply (drule_tac b = "hypreal_of_real Da" and d = "hypreal_of_real Db" in approx_add)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   909
apply (auto simp add: add_ac)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   910
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   911
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   912
(* Standard theorem *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   913
lemma DERIV_add: "[| DERIV f x :> Da; DERIV g x :> Db |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   914
      ==> DERIV (%x. f x + g x) x :> Da + Db"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   915
apply (simp add: NSDERIV_add NSDERIV_DERIV_iff [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   916
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   917
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   918
(*-----------------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   919
  Product of functions - Proof is trivial but tedious
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   920
  and long due to rearrangement of terms
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   921
 ----------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   922
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   923
lemma lemma_nsderiv1: "((a::hypreal)*b) + -(c*d) = (b*(a + -c)) + (c*(b + -d))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   924
by (simp add: right_distrib)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   925
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   926
lemma lemma_nsderiv2: "[| (x + y) / z = hypreal_of_real D + yb; z \<noteq> 0;
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   927
         z \<in> Infinitesimal; yb \<in> Infinitesimal |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   928
      ==> x + y \<approx> 0"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   929
apply (frule_tac c1 = z in hypreal_mult_right_cancel [THEN iffD2], assumption)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   930
apply (erule_tac V = " (x + y) / z = hypreal_of_real D + yb" in thin_rl)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   931
apply (auto intro!: Infinitesimal_HFinite_mult2 HFinite_add
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   932
            simp add: hypreal_mult_assoc mem_infmal_iff [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   933
apply (erule Infinitesimal_subset_HFinite [THEN subsetD])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   934
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   935
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   936
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   937
lemma NSDERIV_mult: "[| NSDERIV f x :> Da; NSDERIV g x :> Db |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   938
      ==> NSDERIV (%x. f x * g x) x :> (Da * g(x)) + (Db * f(x))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   939
apply (auto simp add: NSDERIV_NSLIM_iff NSLIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   940
apply (auto dest!: spec
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   941
	    simp add: starfun_lambda_cancel lemma_nsderiv1)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   942
apply (simp (no_asm) add: add_divide_distrib)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   943
apply (drule bex_Infinitesimal_iff2 [THEN iffD2])+
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   944
apply (auto simp del: times_divide_eq_right simp add: times_divide_eq_right [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   945
apply (drule_tac D = Db in lemma_nsderiv2)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   946
apply (drule_tac [4]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   947
     approx_minus_iff [THEN iffD2, THEN bex_Infinitesimal_iff2 [THEN iffD2]]) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   948
apply (auto intro!: approx_add_mono1 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   949
            simp add: left_distrib right_distrib mult_commute add_assoc)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   950
apply (rule_tac b1 = "hypreal_of_real Db * hypreal_of_real (f x)" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   951
         in add_commute [THEN subst])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   952
apply (auto intro!: Infinitesimal_add_approx_self2 [THEN approx_sym] 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   953
                    Infinitesimal_add Infinitesimal_mult 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   954
                    Infinitesimal_hypreal_of_real_mult 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   955
                    Infinitesimal_hypreal_of_real_mult2
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   956
          simp add: add_assoc [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   957
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   958
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   959
lemma DERIV_mult:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   960
     "[| DERIV f x :> Da; DERIV g x :> Db |] 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   961
      ==> DERIV (%x. f x * g x) x :> (Da * g(x)) + (Db * f(x))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   962
by (simp add: NSDERIV_mult NSDERIV_DERIV_iff [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   963
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   964
text{*Multiplying by a constant*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   965
lemma NSDERIV_cmult: "NSDERIV f x :> D
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   966
      ==> NSDERIV (%x. c * f x) x :> c*D"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   967
apply (simp only: times_divide_eq_right [symmetric] NSDERIV_NSLIM_iff 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   968
                  minus_mult_right right_distrib [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   969
apply (erule NSLIM_const [THEN NSLIM_mult])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   970
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   971
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   972
(* let's do the standard proof though theorem *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   973
(* LIM_mult2 follows from a NS proof          *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   974
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   975
lemma DERIV_cmult:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   976
      "DERIV f x :> D ==> DERIV (%x. c * f x) x :> c*D"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   977
apply (simp only: deriv_def times_divide_eq_right [symmetric] 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   978
                  NSDERIV_NSLIM_iff minus_mult_right right_distrib [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   979
apply (erule LIM_const [THEN LIM_mult2])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   980
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   981
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   982
text{*Negation of function*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   983
lemma NSDERIV_minus: "NSDERIV f x :> D ==> NSDERIV (%x. -(f x)) x :> -D"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   984
proof (simp add: NSDERIV_NSLIM_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   985
  assume "(\<lambda>h. (f (x + h) + - f x) / h) -- 0 --NS> D"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   986
  hence deriv: "(\<lambda>h. - ((f(x+h) + - f x) / h)) -- 0 --NS> - D" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   987
    by (rule NSLIM_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   988
  have "\<forall>h. - ((f (x + h) + - f x) / h) = (- f (x + h) + f x) / h"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   989
    by (simp add: minus_divide_left) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   990
  with deriv
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   991
  show "(\<lambda>h. (- f (x + h) + f x) / h) -- 0 --NS> - D" by simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   992
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   993
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   994
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   995
lemma DERIV_minus: "DERIV f x :> D ==> DERIV (%x. -(f x)) x :> -D"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   996
by (simp add: NSDERIV_minus NSDERIV_DERIV_iff [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   997
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   998
text{*Subtraction*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
   999
lemma NSDERIV_add_minus: "[| NSDERIV f x :> Da; NSDERIV g x :> Db |] ==> NSDERIV (%x. f x + -g x) x :> Da + -Db"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1000
by (blast dest: NSDERIV_add NSDERIV_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1001
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1002
lemma DERIV_add_minus: "[| DERIV f x :> Da; DERIV g x :> Db |] ==> DERIV (%x. f x + -g x) x :> Da + -Db"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1003
by (blast dest: DERIV_add DERIV_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1004
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1005
lemma NSDERIV_diff:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1006
     "[| NSDERIV f x :> Da; NSDERIV g x :> Db |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1007
      ==> NSDERIV (%x. f x - g x) x :> Da-Db"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1008
apply (simp add: diff_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1009
apply (blast intro: NSDERIV_add_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1010
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1011
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1012
lemma DERIV_diff:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1013
     "[| DERIV f x :> Da; DERIV g x :> Db |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1014
       ==> DERIV (%x. f x - g x) x :> Da-Db"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1015
apply (simp add: diff_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1016
apply (blast intro: DERIV_add_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1017
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1018
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1019
(*---------------------------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1020
                     (NS) Increment
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1021
 ---------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1022
lemma incrementI:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1023
      "f NSdifferentiable x ==>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1024
      increment f x h = ( *f* f) (hypreal_of_real(x) + h) +
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1025
      -hypreal_of_real (f x)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1026
by (simp add: increment_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1027
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1028
lemma incrementI2: "NSDERIV f x :> D ==>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1029
     increment f x h = ( *f* f) (hypreal_of_real(x) + h) +
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1030
     -hypreal_of_real (f x)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1031
apply (erule NSdifferentiableI [THEN incrementI])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1032
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1033
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1034
(* The Increment theorem -- Keisler p. 65 *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1035
lemma increment_thm: "[| NSDERIV f x :> D; h \<in> Infinitesimal; h \<noteq> 0 |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1036
      ==> \<exists>e \<in> Infinitesimal. increment f x h = hypreal_of_real(D)*h + e*h"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1037
apply (frule_tac h = h in incrementI2, simp add: nsderiv_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1038
apply (drule bspec, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1039
apply (drule bex_Infinitesimal_iff2 [THEN iffD2], clarify) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1040
apply (frule_tac b1 = "hypreal_of_real (D) + y" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1041
        in hypreal_mult_right_cancel [THEN iffD2])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1042
apply (erule_tac [2] V = "(( *f* f) (hypreal_of_real (x) + h) + - hypreal_of_real (f x)) / h = hypreal_of_real (D) + y" in thin_rl)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1043
apply assumption
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1044
apply (simp add: times_divide_eq_right [symmetric] del: times_divide_eq_right)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1045
apply (auto simp add: left_distrib)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1046
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1047
 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1048
lemma increment_thm2:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1049
     "[| NSDERIV f x :> D; h \<approx> 0; h \<noteq> 0 |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1050
      ==> \<exists>e \<in> Infinitesimal. increment f x h =
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1051
              hypreal_of_real(D)*h + e*h"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1052
by (blast dest!: mem_infmal_iff [THEN iffD2] intro!: increment_thm)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1053
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1054
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1055
lemma increment_approx_zero: "[| NSDERIV f x :> D; h \<approx> 0; h \<noteq> 0 |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1056
      ==> increment f x h \<approx> 0"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1057
apply (drule increment_thm2, 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1058
       auto intro!: Infinitesimal_HFinite_mult2 HFinite_add simp add: left_distrib [symmetric] mem_infmal_iff [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1059
apply (erule Infinitesimal_subset_HFinite [THEN subsetD])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1060
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1061
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1062
text{*  Similarly to the above, the chain rule admits an entirely
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1063
   straightforward derivation. Compare this with Harrison's
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1064
   HOL proof of the chain rule, which proved to be trickier and
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1065
   required an alternative characterisation of differentiability-
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1066
   the so-called Carathedory derivative. Our main problem is
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1067
   manipulation of terms.*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1068
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1069
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1070
(* lemmas *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1071
lemma NSDERIV_zero:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1072
      "[| NSDERIV g x :> D;
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1073
               ( *f* g) (hypreal_of_real(x) + xa) = hypreal_of_real(g x);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1074
               xa \<in> Infinitesimal;
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1075
               xa \<noteq> 0
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1076
            |] ==> D = 0"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1077
apply (simp add: nsderiv_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1078
apply (drule bspec, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1079
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1080
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1081
(* can be proved differently using NSLIM_isCont_iff *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1082
lemma NSDERIV_approx:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1083
     "[| NSDERIV f x :> D;  h \<in> Infinitesimal;  h \<noteq> 0 |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1084
      ==> ( *f* f) (hypreal_of_real(x) + h) + -hypreal_of_real(f x) \<approx> 0"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1085
apply (simp add: nsderiv_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1086
apply (simp add: mem_infmal_iff [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1087
apply (rule Infinitesimal_ratio)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1088
apply (rule_tac [3] approx_hypreal_of_real_HFinite, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1089
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1090
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1091
(*---------------------------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1092
   from one version of differentiability
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1093
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1094
                f(x) - f(a)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1095
              --------------- \<approx> Db
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1096
                  x - a
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1097
 ---------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1098
lemma NSDERIVD1: "[| NSDERIV f (g x) :> Da;
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1099
         ( *f* g) (hypreal_of_real(x) + xa) \<noteq> hypreal_of_real (g x);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1100
         ( *f* g) (hypreal_of_real(x) + xa) \<approx> hypreal_of_real (g x)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1101
      |] ==> (( *f* f) (( *f* g) (hypreal_of_real(x) + xa))
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1102
                   + - hypreal_of_real (f (g x)))
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1103
              / (( *f* g) (hypreal_of_real(x) + xa) + - hypreal_of_real (g x))
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1104
             \<approx> hypreal_of_real(Da)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1105
by (auto simp add: NSDERIV_NSLIM_iff2 NSLIM_def diff_minus [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1106
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1107
(*--------------------------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1108
   from other version of differentiability
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1109
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1110
                f(x + h) - f(x)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1111
               ----------------- \<approx> Db
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1112
                       h
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1113
 --------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1114
lemma NSDERIVD2: "[| NSDERIV g x :> Db; xa \<in> Infinitesimal; xa \<noteq> 0 |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1115
      ==> (( *f* g) (hypreal_of_real(x) + xa) + - hypreal_of_real(g x)) / xa
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1116
          \<approx> hypreal_of_real(Db)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1117
by (auto simp add: NSDERIV_NSLIM_iff NSLIM_def mem_infmal_iff starfun_lambda_cancel)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1118
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1119
lemma lemma_chain: "(z::hypreal) \<noteq> 0 ==> x*y = (x*inverse(z))*(z*y)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1120
by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1121
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1122
(*------------------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1123
  This proof uses both definitions of differentiability.
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1124
 ------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1125
lemma NSDERIV_chain: "[| NSDERIV f (g x) :> Da; NSDERIV g x :> Db |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1126
      ==> NSDERIV (f o g) x :> Da * Db"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1127
apply (simp (no_asm_simp) add: NSDERIV_NSLIM_iff NSLIM_def
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1128
                mem_infmal_iff [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1129
apply clarify
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1130
apply (frule_tac f = g in NSDERIV_approx)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1131
apply (auto simp add: starfun_lambda_cancel2 starfun_o [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1132
apply (case_tac "( *f* g) (hypreal_of_real (x) + xa) = hypreal_of_real (g x) ")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1133
apply (drule_tac g = g in NSDERIV_zero)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1134
apply (auto simp add: divide_inverse)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1135
apply (rule_tac z1 = "( *f* g) (hypreal_of_real (x) + xa) + -hypreal_of_real (g x) " and y1 = "inverse xa" in lemma_chain [THEN ssubst])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1136
apply (erule hypreal_not_eq_minus_iff [THEN iffD1])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1137
apply (rule approx_mult_hypreal_of_real)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1138
apply (simp_all add: divide_inverse [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1139
apply (blast intro: NSDERIVD1 approx_minus_iff [THEN iffD2])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1140
apply (blast intro: NSDERIVD2)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1141
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1142
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1143
(* standard version *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1144
lemma DERIV_chain: "[| DERIV f (g x) :> Da; DERIV g x :> Db |] ==> DERIV (f o g) x :> Da * Db"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1145
by (simp add: NSDERIV_DERIV_iff [symmetric] NSDERIV_chain)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1146
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1147
lemma DERIV_chain2: "[| DERIV f (g x) :> Da; DERIV g x :> Db |] ==> DERIV (%x. f (g x)) x :> Da * Db"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1148
by (auto dest: DERIV_chain simp add: o_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1149
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1150
text{*Differentiation of natural number powers*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1151
lemma NSDERIV_Id: "NSDERIV (%x. x) x :> 1"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1152
by (auto simp add: NSDERIV_NSLIM_iff NSLIM_def starfun_Id)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1153
declare NSDERIV_Id [simp]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1154
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1155
(*derivative of the identity function*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1156
lemma DERIV_Id: "DERIV (%x. x) x :> 1"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1157
by (simp add: NSDERIV_DERIV_iff [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1158
declare DERIV_Id [simp]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1159
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1160
lemmas isCont_Id = DERIV_Id [THEN DERIV_isCont, standard]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1161
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1162
(*derivative of linear multiplication*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1163
lemma DERIV_cmult_Id: "DERIV (op * c) x :> c"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1164
by (cut_tac c = c and x = x in DERIV_Id [THEN DERIV_cmult], simp)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1165
declare DERIV_cmult_Id [simp]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1166
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1167
lemma NSDERIV_cmult_Id: "NSDERIV (op * c) x :> c"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1168
by (simp add: NSDERIV_DERIV_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1169
declare NSDERIV_cmult_Id [simp]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1170
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1171
lemma DERIV_pow: "DERIV (%x. x ^ n) x :> real n * (x ^ (n - Suc 0))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1172
apply (induct_tac "n")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1173
apply (drule_tac [2] DERIV_Id [THEN DERIV_mult])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1174
apply (auto simp add: real_of_nat_Suc left_distrib)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1175
apply (case_tac "0 < n")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1176
apply (drule_tac x = x in realpow_minus_mult)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1177
apply (auto simp add: real_mult_assoc real_add_commute)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1178
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1179
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1180
(* NS version *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1181
lemma NSDERIV_pow: "NSDERIV (%x. x ^ n) x :> real n * (x ^ (n - Suc 0))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1182
by (simp add: NSDERIV_DERIV_iff DERIV_pow)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1183
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1184
(*---------------------------------------------------------------
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1185
                    Power of -1
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1186
 ---------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1187
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1188
(*Can't get rid of x \<noteq> 0 because it isn't continuous at zero*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1189
lemma NSDERIV_inverse:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1190
     "x \<noteq> 0 ==> NSDERIV (%x. inverse(x)) x :> (- (inverse x ^ Suc (Suc 0)))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1191
apply (simp add: nsderiv_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1192
apply (rule ballI, simp, clarify) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1193
apply (frule Infinitesimal_add_not_zero)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1194
prefer 2 apply (simp add: add_commute) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1195
apply (auto simp add: starfun_inverse_inverse realpow_two 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1196
        simp del: minus_mult_left [symmetric] minus_mult_right [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1197
apply (simp add: inverse_add inverse_mult_distrib [symmetric]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1198
              inverse_minus_eq [symmetric] add_ac mult_ac
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1199
            del: inverse_mult_distrib inverse_minus_eq 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1200
                 minus_mult_left [symmetric] minus_mult_right [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1201
apply (simp (no_asm_simp) add: mult_assoc [symmetric] right_distrib
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1202
            del: minus_mult_left [symmetric] minus_mult_right [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1203
apply (rule_tac y = " inverse (- hypreal_of_real x * hypreal_of_real x) " in approx_trans)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1204
apply (rule inverse_add_Infinitesimal_approx2)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1205
apply (auto dest!: hypreal_of_real_HFinite_diff_Infinitesimal 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1206
            simp add: inverse_minus_eq [symmetric] HFinite_minus_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1207
apply (rule Infinitesimal_HFinite_mult2, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1208
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1209
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1210
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1211
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1212
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1213
lemma DERIV_inverse: "x \<noteq> 0 ==> DERIV (%x. inverse(x)) x :> (-(inverse x ^ Suc (Suc 0)))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1214
by (simp add: NSDERIV_inverse NSDERIV_DERIV_iff [symmetric] del: realpow_Suc)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1215
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1216
text{*Derivative of inverse*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1217
lemma DERIV_inverse_fun: "[| DERIV f x :> d; f(x) \<noteq> 0 |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1218
      ==> DERIV (%x. inverse(f x)) x :> (- (d * inverse(f(x) ^ Suc (Suc 0))))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1219
apply (simp only: mult_commute [of d] minus_mult_left power_inverse)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1220
apply (fold o_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1221
apply (blast intro!: DERIV_chain DERIV_inverse)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1222
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1223
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1224
lemma NSDERIV_inverse_fun: "[| NSDERIV f x :> d; f(x) \<noteq> 0 |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1225
      ==> NSDERIV (%x. inverse(f x)) x :> (- (d * inverse(f(x) ^ Suc (Suc 0))))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1226
by (simp add: NSDERIV_DERIV_iff DERIV_inverse_fun del: realpow_Suc)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1227
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1228
text{*Derivative of quotient*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1229
lemma DERIV_quotient: "[| DERIV f x :> d; DERIV g x :> e; g(x) \<noteq> 0 |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1230
       ==> DERIV (%y. f(y) / (g y)) x :> (d*g(x) + -(e*f(x))) / (g(x) ^ Suc (Suc 0))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1231
apply (drule_tac f = g in DERIV_inverse_fun)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1232
apply (drule_tac [2] DERIV_mult)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1233
apply (assumption+)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1234
apply (simp add: divide_inverse right_distrib power_inverse minus_mult_left
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1235
                 mult_ac 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1236
     del: realpow_Suc minus_mult_right [symmetric] minus_mult_left [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1237
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1238
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1239
lemma NSDERIV_quotient: "[| NSDERIV f x :> d; DERIV g x :> e; g(x) \<noteq> 0 |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1240
       ==> NSDERIV (%y. f(y) / (g y)) x :> (d*g(x)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1241
                            + -(e*f(x))) / (g(x) ^ Suc (Suc 0))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1242
by (simp add: NSDERIV_DERIV_iff DERIV_quotient del: realpow_Suc)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1243
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1244
(* ------------------------------------------------------------------------ *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1245
(* Caratheodory formulation of derivative at a point: standard proof        *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1246
(* ------------------------------------------------------------------------ *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1247
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1248
lemma CARAT_DERIV:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1249
     "(DERIV f x :> l) =
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1250
      (\<exists>g. (\<forall>z. f z - f x = g z * (z-x)) & isCont g x & g x = l)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1251
      (is "?lhs = ?rhs")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1252
proof
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1253
  assume der: "DERIV f x :> l"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1254
  show "\<exists>g. (\<forall>z. f z - f x = g z * (z-x)) \<and> isCont g x \<and> g x = l"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1255
  proof (intro exI conjI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1256
    let ?g = "(%z. if z = x then l else (f z - f x) / (z-x))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1257
    show "\<forall>z. f z - f x = ?g z * (z-x)" by simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1258
    show "isCont ?g x" using der 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1259
      by (simp add: isCont_iff DERIV_iff diff_minus 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1260
               cong: LIM_equal [rule_format])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1261
    show "?g x = l" by simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1262
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1263
next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1264
  assume "?rhs"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1265
  then obtain g where 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1266
    "(\<forall>z. f z - f x = g z * (z-x))" and "isCont g x" and "g x = l" by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1267
  thus "(DERIV f x :> l)" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1268
     by (auto simp add: isCont_iff DERIV_iff diff_minus 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1269
               cong: LIM_equal [rule_format])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1270
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1271
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1272
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1273
lemma CARAT_NSDERIV: "NSDERIV f x :> l ==>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1274
      \<exists>g. (\<forall>z. f z - f x = g z * (z-x)) & isNSCont g x & g x = l"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1275
by (auto simp add: NSDERIV_DERIV_iff isNSCont_isCont_iff CARAT_DERIV)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1276
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1277
lemma hypreal_eq_minus_iff3: "(x = y + z) = (x + -z = (y::hypreal))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1278
by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1279
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1280
lemma CARAT_DERIVD:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1281
  assumes all: "\<forall>z. f z - f x = g z * (z-x)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1282
      and nsc: "isNSCont g x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1283
  shows "NSDERIV f x :> g x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1284
proof -
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1285
  from nsc
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1286
  have "\<forall>w. w \<noteq> hypreal_of_real x \<and> w \<approx> hypreal_of_real x \<longrightarrow>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1287
         ( *f* g) w * (w - hypreal_of_real x) / (w - hypreal_of_real x) \<approx>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1288
         hypreal_of_real (g x)" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1289
    by (simp add: diff_minus isNSCont_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1290
  thus ?thesis using all
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1291
    by (simp add: NSDERIV_iff2 starfun_if_eq cong: if_cong) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1292
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1293
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1294
(*--------------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1295
(* Lemmas about nested intervals and proof by bisection (cf.Harrison)       *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1296
(* All considerably tidied by lcp                                           *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1297
(*--------------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1298
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1299
lemma lemma_f_mono_add [rule_format (no_asm)]: "(\<forall>n. (f::nat=>real) n \<le> f (Suc n)) --> f m \<le> f(m + no)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1300
apply (induct_tac "no")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1301
apply (auto intro: order_trans)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1302
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1303
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1304
lemma f_inc_g_dec_Beq_f: "[| \<forall>n. f(n) \<le> f(Suc n);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1305
         \<forall>n. g(Suc n) \<le> g(n);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1306
         \<forall>n. f(n) \<le> g(n) |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1307
      ==> Bseq f"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1308
apply (rule_tac k = "f 0" and K = "g 0" in BseqI2, rule allI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1309
apply (induct_tac "n")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1310
apply (auto intro: order_trans)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1311
apply (rule_tac y = "g (Suc na) " in order_trans)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1312
apply (induct_tac [2] "na")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1313
apply (auto intro: order_trans)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1314
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1315
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1316
lemma f_inc_g_dec_Beq_g: "[| \<forall>n. f(n) \<le> f(Suc n);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1317
         \<forall>n. g(Suc n) \<le> g(n);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1318
         \<forall>n. f(n) \<le> g(n) |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1319
      ==> Bseq g"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1320
apply (subst Bseq_minus_iff [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1321
apply (rule_tac g = "%x. - (f x) " in f_inc_g_dec_Beq_f)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1322
apply auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1323
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1324
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1325
lemma f_inc_imp_le_lim: "[| \<forall>n. f n \<le> f (Suc n);  convergent f |] ==> f n \<le> lim f"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1326
apply (rule linorder_not_less [THEN iffD1])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1327
apply (auto simp add: convergent_LIMSEQ_iff LIMSEQ_iff monoseq_Suc)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1328
apply (drule real_less_sum_gt_zero)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1329
apply (drule_tac x = "f n + - lim f" in spec, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1330
apply (drule_tac P = "%na. no\<le>na --> ?Q na" and x = "no + n" in spec, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1331
apply (subgoal_tac "lim f \<le> f (no + n) ")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1332
apply (induct_tac [2] "no")
15003
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1333
apply (auto intro: order_trans simp add: diff_minus abs_if)
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1334
apply (drule_tac no=no and m=n in lemma_f_mono_add)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1335
apply (auto simp add: add_commute)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1336
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1337
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1338
lemma lim_uminus: "convergent g ==> lim (%x. - g x) = - (lim g)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1339
apply (rule LIMSEQ_minus [THEN limI])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1340
apply (simp add: convergent_LIMSEQ_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1341
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1342
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1343
lemma g_dec_imp_lim_le: "[| \<forall>n. g(Suc n) \<le> g(n);  convergent g |] ==> lim g \<le> g n"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1344
apply (subgoal_tac "- (g n) \<le> - (lim g) ")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1345
apply (cut_tac [2] f = "%x. - (g x) " in f_inc_imp_le_lim)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1346
apply (auto simp add: lim_uminus convergent_minus_iff [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1347
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1348
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1349
lemma lemma_nest: "[| \<forall>n. f(n) \<le> f(Suc n);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1350
         \<forall>n. g(Suc n) \<le> g(n);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1351
         \<forall>n. f(n) \<le> g(n) |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1352
      ==> \<exists>l m. l \<le> m &  ((\<forall>n. f(n) \<le> l) & f ----> l) &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1353
                            ((\<forall>n. m \<le> g(n)) & g ----> m)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1354
apply (subgoal_tac "monoseq f & monoseq g")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1355
prefer 2 apply (force simp add: LIMSEQ_iff monoseq_Suc)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1356
apply (subgoal_tac "Bseq f & Bseq g")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1357
prefer 2 apply (blast intro: f_inc_g_dec_Beq_f f_inc_g_dec_Beq_g)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1358
apply (auto dest!: Bseq_monoseq_convergent simp add: convergent_LIMSEQ_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1359
apply (rule_tac x = "lim f" in exI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1360
apply (rule_tac x = "lim g" in exI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1361
apply (auto intro: LIMSEQ_le)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1362
apply (auto simp add: f_inc_imp_le_lim g_dec_imp_lim_le convergent_LIMSEQ_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1363
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1364
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1365
lemma lemma_nest_unique: "[| \<forall>n. f(n) \<le> f(Suc n);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1366
         \<forall>n. g(Suc n) \<le> g(n);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1367
         \<forall>n. f(n) \<le> g(n);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1368
         (%n. f(n) - g(n)) ----> 0 |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1369
      ==> \<exists>l. ((\<forall>n. f(n) \<le> l) & f ----> l) &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1370
                ((\<forall>n. l \<le> g(n)) & g ----> l)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1371
apply (drule lemma_nest, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1372
apply (subgoal_tac "l = m")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1373
apply (drule_tac [2] X = f in LIMSEQ_diff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1374
apply (auto intro: LIMSEQ_unique)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1375
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1376
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1377
text{*The universal quantifiers below are required for the declaration
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1378
  of @{text Bolzano_nest_unique} below.*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1379
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1380
lemma Bolzano_bisect_le:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1381
 "a \<le> b ==> \<forall>n. fst (Bolzano_bisect P a b n) \<le> snd (Bolzano_bisect P a b n)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1382
apply (rule allI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1383
apply (induct_tac "n")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1384
apply (auto simp add: Let_def split_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1385
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1386
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1387
lemma Bolzano_bisect_fst_le_Suc: "a \<le> b ==>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1388
   \<forall>n. fst(Bolzano_bisect P a b n) \<le> fst (Bolzano_bisect P a b (Suc n))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1389
apply (rule allI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1390
apply (induct_tac "n")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1391
apply (auto simp add: Bolzano_bisect_le Let_def split_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1392
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1393
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1394
lemma Bolzano_bisect_Suc_le_snd: "a \<le> b ==>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1395
   \<forall>n. snd(Bolzano_bisect P a b (Suc n)) \<le> snd (Bolzano_bisect P a b n)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1396
apply (rule allI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1397
apply (induct_tac "n")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1398
apply (auto simp add: Bolzano_bisect_le Let_def split_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1399
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1400
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1401
lemma eq_divide_2_times_iff: "((x::real) = y / (2 * z)) = (2 * x = y/z)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1402
apply auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1403
apply (drule_tac f = "%u. (1/2) *u" in arg_cong)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1404
apply auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1405
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1406
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1407
lemma Bolzano_bisect_diff:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1408
     "a \<le> b ==>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1409
      snd(Bolzano_bisect P a b n) - fst(Bolzano_bisect P a b n) =
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1410
      (b-a) / (2 ^ n)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1411
apply (induct_tac "n")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1412
apply (auto simp add: eq_divide_2_times_iff add_divide_distrib Let_def split_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1413
apply (auto simp add: add_ac Bolzano_bisect_le diff_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1414
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1415
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1416
lemmas Bolzano_nest_unique =
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1417
    lemma_nest_unique
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1418
    [OF Bolzano_bisect_fst_le_Suc Bolzano_bisect_Suc_le_snd Bolzano_bisect_le]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1419
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1420
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1421
lemma not_P_Bolzano_bisect:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1422
  assumes P:    "!!a b c. [| P(a,b); P(b,c); a \<le> b; b \<le> c|] ==> P(a,c)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1423
      and notP: "~ P(a,b)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1424
      and le:   "a \<le> b"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1425
  shows "~ P(fst(Bolzano_bisect P a b n), snd(Bolzano_bisect P a b n))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1426
proof (induct n)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1427
  case 0 thus ?case by simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1428
 next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1429
  case (Suc n)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1430
  thus ?case
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1431
 by (auto simp del: surjective_pairing [symmetric] 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1432
             simp add: Let_def split_def Bolzano_bisect_le [OF le] 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1433
     P [of "fst (Bolzano_bisect P a b n)" _ "snd (Bolzano_bisect P a b n)"]) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1434
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1435
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1436
(*Now we re-package P_prem as a formula*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1437
lemma not_P_Bolzano_bisect':
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1438
     "[| \<forall>a b c. P(a,b) & P(b,c) & a \<le> b & b \<le> c --> P(a,c);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1439
         ~ P(a,b);  a \<le> b |] ==>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1440
      \<forall>n. ~ P(fst(Bolzano_bisect P a b n), snd(Bolzano_bisect P a b n))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1441
by (blast elim!: not_P_Bolzano_bisect [THEN [2] rev_notE])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1442
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1443
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1444
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1445
lemma lemma_BOLZANO:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1446
     "[| \<forall>a b c. P(a,b) & P(b,c) & a \<le> b & b \<le> c --> P(a,c);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1447
         \<forall>x. \<exists>d::real. 0 < d &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1448
                (\<forall>a b. a \<le> x & x \<le> b & (b-a) < d --> P(a,b));
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1449
         a \<le> b |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1450
      ==> P(a,b)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1451
apply (rule Bolzano_nest_unique [where P1=P, THEN exE], assumption+)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1452
apply (rule LIMSEQ_minus_cancel)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1453
apply (simp (no_asm_simp) add: Bolzano_bisect_diff LIMSEQ_divide_realpow_zero)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1454
apply (rule ccontr)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1455
apply (drule not_P_Bolzano_bisect', assumption+)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1456
apply (rename_tac "l")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1457
apply (drule_tac x = l in spec, clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1458
apply (simp add: LIMSEQ_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1459
apply (drule_tac P = "%r. 0<r --> ?Q r" and x = "d/2" in spec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1460
apply (drule_tac P = "%r. 0<r --> ?Q r" and x = "d/2" in spec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1461
apply (drule real_less_half_sum, auto) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1462
apply (drule_tac x = "fst (Bolzano_bisect P a b (no + noa))" in spec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1463
apply (drule_tac x = "snd (Bolzano_bisect P a b (no + noa))" in spec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1464
apply safe
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1465
apply (simp_all (no_asm_simp))
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1466
apply (rule_tac y = "abs (fst (Bolzano_bisect P a b (no + noa)) - l) + abs (snd (Bolzano_bisect P a b (no + noa)) - l) " in order_le_less_trans)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1467
apply (simp (no_asm_simp) add: abs_if)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1468
apply (rule real_sum_of_halves [THEN subst])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1469
apply (rule add_strict_mono)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1470
apply (simp_all add: diff_minus [symmetric])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1471
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1472
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1473
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1474
lemma lemma_BOLZANO2: "((\<forall>a b c. (a \<le> b & b \<le> c & P(a,b) & P(b,c)) --> P(a,c)) &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1475
       (\<forall>x. \<exists>d::real. 0 < d &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1476
                (\<forall>a b. a \<le> x & x \<le> b & (b-a) < d --> P(a,b))))
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1477
      --> (\<forall>a b. a \<le> b --> P(a,b))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1478
apply clarify
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1479
apply (blast intro: lemma_BOLZANO)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1480
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1481
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1482
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1483
subsection{*Intermediate Value Theorem: Prove Contrapositive by Bisection*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1484
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1485
lemma IVT: "[| f(a) \<le> y; y \<le> f(b);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1486
         a \<le> b;
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1487
         (\<forall>x. a \<le> x & x \<le> b --> isCont f x) |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1488
      ==> \<exists>x. a \<le> x & x \<le> b & f(x) = y"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1489
apply (rule contrapos_pp, assumption)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1490
apply (cut_tac P = "% (u,v) . a \<le> u & u \<le> v & v \<le> b --> ~ (f (u) \<le> y & y \<le> f (v))" in lemma_BOLZANO2)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1491
apply safe
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1492
apply simp_all
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1493
apply (simp add: isCont_iff LIM_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1494
apply (rule ccontr)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1495
apply (subgoal_tac "a \<le> x & x \<le> b")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1496
 prefer 2
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1497
 apply simp 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1498
 apply (drule_tac P = "%d. 0<d --> ?P d" and x = 1 in spec, arith)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1499
apply (drule_tac x = x in spec)+
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1500
apply simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1501
apply (drule_tac P = "%r. ?P r --> (\<exists>s. 0<s & ?Q r s) " and x = "\<bar>y - f x\<bar> " in spec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1502
apply safe
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1503
apply simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1504
apply (drule_tac x = s in spec, clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1505
apply (cut_tac x = "f x" and y = y in linorder_less_linear, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1506
apply (drule_tac x = "ba-x" in spec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1507
apply (simp_all add: abs_if)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1508
apply (drule_tac x = "aa-x" in spec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1509
apply (case_tac "x \<le> aa", simp_all)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1510
apply (drule_tac x = x and y = aa in order_antisym)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1511
apply (assumption, simp)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1512
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1513
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1514
lemma IVT2: "[| f(b) \<le> y; y \<le> f(a);
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1515
         a \<le> b;
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1516
         (\<forall>x. a \<le> x & x \<le> b --> isCont f x)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1517
      |] ==> \<exists>x. a \<le> x & x \<le> b & f(x) = y"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1518
apply (subgoal_tac "- f a \<le> -y & -y \<le> - f b", clarify) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1519
apply (drule IVT [where f = "%x. - f x"], assumption)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1520
apply (auto intro: isCont_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1521
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1522
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1523
(*HOL style here: object-level formulations*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1524
lemma IVT_objl: "(f(a) \<le> y & y \<le> f(b) & a \<le> b &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1525
      (\<forall>x. a \<le> x & x \<le> b --> isCont f x))
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1526
      --> (\<exists>x. a \<le> x & x \<le> b & f(x) = y)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1527
apply (blast intro: IVT)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1528
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1529
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1530
lemma IVT2_objl: "(f(b) \<le> y & y \<le> f(a) & a \<le> b &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1531
      (\<forall>x. a \<le> x & x \<le> b --> isCont f x))
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1532
      --> (\<exists>x. a \<le> x & x \<le> b & f(x) = y)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1533
apply (blast intro: IVT2)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1534
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1535
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1536
(*---------------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1537
(* By bisection, function continuous on closed interval is bounded above     *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1538
(*---------------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1539
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1540
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1541
lemma isCont_bounded:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1542
     "[| a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1543
      ==> \<exists>M. \<forall>x. a \<le> x & x \<le> b --> f(x) \<le> M"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1544
apply (cut_tac P = "% (u,v) . a \<le> u & u \<le> v & v \<le> b --> (\<exists>M. \<forall>x. u \<le> x & x \<le> v --> f x \<le> M) " in lemma_BOLZANO2)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1545
apply safe
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1546
apply simp_all
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1547
apply (rename_tac x xa ya M Ma)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1548
apply (cut_tac x = M and y = Ma in linorder_linear, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1549
apply (rule_tac x = Ma in exI, clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1550
apply (cut_tac x = xb and y = xa in linorder_linear, force)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1551
apply (rule_tac x = M in exI, clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1552
apply (cut_tac x = xb and y = xa in linorder_linear, force)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1553
apply (case_tac "a \<le> x & x \<le> b")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1554
apply (rule_tac [2] x = 1 in exI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1555
prefer 2 apply force
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1556
apply (simp add: LIM_def isCont_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1557
apply (drule_tac x = x in spec, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1558
apply (erule_tac V = "\<forall>M. \<exists>x. a \<le> x & x \<le> b & ~ f x \<le> M" in thin_rl)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1559
apply (drule_tac x = 1 in spec, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1560
apply (rule_tac x = s in exI, clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1561
apply (rule_tac x = "\<bar>f x\<bar> + 1" in exI, clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1562
apply (drule_tac x = "xa-x" in spec)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1563
apply (auto simp add: abs_ge_self, arith+)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1564
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1565
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1566
(*----------------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1567
(* Refine the above to existence of least upper bound                         *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1568
(*----------------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1569
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1570
lemma lemma_reals_complete: "((\<exists>x. x \<in> S) & (\<exists>y. isUb UNIV S (y::real))) -->
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1571
      (\<exists>t. isLub UNIV S t)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1572
apply (blast intro: reals_complete)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1573
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1574
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1575
lemma isCont_has_Ub: "[| a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1576
         ==> \<exists>M. (\<forall>x. a \<le> x & x \<le> b --> f(x) \<le> M) &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1577
                   (\<forall>N. N < M --> (\<exists>x. a \<le> x & x \<le> b & N < f(x)))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1578
apply (cut_tac S = "Collect (%y. \<exists>x. a \<le> x & x \<le> b & y = f x) " in lemma_reals_complete)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1579
apply auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1580
apply (drule isCont_bounded, assumption)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1581
apply (auto simp add: isUb_def leastP_def isLub_def setge_def setle_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1582
apply (rule exI, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1583
apply (auto dest!: spec simp add: linorder_not_less) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1584
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1585
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1586
(*----------------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1587
(* Now show that it attains its upper bound                                   *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1588
(*----------------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1589
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1590
lemma isCont_eq_Ub:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1591
  assumes le: "a \<le> b"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1592
      and con: "\<forall>x. a \<le> x & x \<le> b --> isCont f x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1593
  shows "\<exists>M. (\<forall>x. a \<le> x & x \<le> b --> f(x) \<le> M) &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1594
             (\<exists>x. a \<le> x & x \<le> b & f(x) = M)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1595
proof -
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1596
  from isCont_has_Ub [OF le con]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1597
  obtain M where M1: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1598
             and M2: "!!N. N<M ==> \<exists>x. a \<le> x \<and> x \<le> b \<and> N < f x"  by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1599
  show ?thesis
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1600
  proof (intro exI, intro conjI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1601
    show " \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M" by (rule M1)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1602
    show "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1603
    proof (rule ccontr)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1604
      assume "\<not> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1605
      with M1 have M3: "\<forall>x. a \<le> x & x \<le> b --> f x < M"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1606
        by (auto simp add: linorder_not_le [symmetric] intro: order_antisym)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1607
      hence "\<forall>x. a \<le> x & x \<le> b --> isCont (%x. inverse (M - f x)) x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1608
        by (auto simp add: isCont_inverse isCont_diff con)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1609
      from isCont_bounded [OF le this]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1610
      obtain k where k: "!!x. a \<le> x & x \<le> b --> inverse (M - f x) \<le> k" by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1611
      have Minv: "!!x. a \<le> x & x \<le> b --> 0 < inverse (M - f (x))"
15086
e6a2a98d5ef5 removal of more iff-rules from RealDef.thy
paulson
parents: 15080
diff changeset
  1612
        by (simp add: M3 compare_rls) 
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1613
      have "!!x. a \<le> x & x \<le> b --> inverse (M - f x) < k+1" using k 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1614
        by (auto intro: order_le_less_trans [of _ k]) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1615
      with Minv 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1616
      have "!!x. a \<le> x & x \<le> b --> inverse(k+1) < inverse(inverse(M - f x))" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1617
        by (intro strip less_imp_inverse_less, simp_all)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1618
      hence invlt: "!!x. a \<le> x & x \<le> b --> inverse(k+1) < M - f x" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1619
        by simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1620
      have "M - inverse (k+1) < M" using k [of a] Minv [of a] le 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1621
        by (simp, arith)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1622
      from M2 [OF this]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1623
      obtain x where ax: "a \<le> x & x \<le> b & M - inverse(k+1) < f x" ..
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1624
      thus False using invlt [of x] by force
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1625
    qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1626
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1627
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1628
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1629
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1630
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1631
(*----------------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1632
(* Same theorem for lower bound                                               *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1633
(*----------------------------------------------------------------------------*)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1634
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1635
lemma isCont_eq_Lb: "[| a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1636
         ==> \<exists>M. (\<forall>x. a \<le> x & x \<le> b --> M \<le> f(x)) &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1637
                   (\<exists>x. a \<le> x & x \<le> b & f(x) = M)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1638
apply (subgoal_tac "\<forall>x. a \<le> x & x \<le> b --> isCont (%x. - (f x)) x")
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1639
prefer 2 apply (blast intro: isCont_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1640
apply (drule_tac f = " (%x. - (f x))" in isCont_eq_Ub)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1641
apply safe
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1642
apply auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1643
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1644
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1645
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1646
(* ------------------------------------------------------------------------- *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1647
(* Another version.                                                          *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1648
(* ------------------------------------------------------------------------- *)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1649
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1650
lemma isCont_Lb_Ub: "[|a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1651
      ==> \<exists>L M. (\<forall>x. a \<le> x & x \<le> b --> L \<le> f(x) & f(x) \<le> M) &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1652
          (\<forall>y. L \<le> y & y \<le> M --> (\<exists>x. a \<le> x & x \<le> b & (f(x) = y)))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1653
apply (frule isCont_eq_Lb)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1654
apply (frule_tac [2] isCont_eq_Ub)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1655
apply (assumption+, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1656
apply (rule_tac x = "f x" in exI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1657
apply (rule_tac x = "f xa" in exI, simp, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1658
apply (cut_tac x = x and y = xa in linorder_linear, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1659
apply (cut_tac f = f and a = x and b = xa and y = y in IVT_objl)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1660
apply (cut_tac [2] f = f and a = xa and b = x and y = y in IVT2_objl, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1661
apply (rule_tac [2] x = xb in exI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1662
apply (rule_tac [4] x = xb in exI, simp_all)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1663
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1664
15003
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1665
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1666
subsection{*If @{term "0 < f'(x)"} then @{term x} is Locally Strictly Increasing At The Right*}
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1667
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1668
lemma DERIV_left_inc:
15003
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1669
  assumes der: "DERIV f x :> l"
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1670
      and l:   "0 < l"
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1671
  shows "\<exists>d. 0 < d & (\<forall>h. 0 < h & h < d --> f(x) < f(x + h))"
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1672
proof -
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1673
  from l der [THEN DERIV_D, THEN LIM_D [where r = "l"]]
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1674
  have "\<exists>s. 0 < s \<and>
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1675
              (\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < l)"
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1676
    by (simp add: diff_minus)
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1677
  then obtain s
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1678
        where s:   "0 < s" 
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1679
          and all: "!!z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < l"
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1680
    by auto
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1681
  thus ?thesis
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1682
  proof (intro exI conjI strip)
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1683
    show "0<s" .
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1684
    fix h::real
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1685
    assume "0 < h \<and> h < s"
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1686
    with all [of h] show "f x < f (x+h)" 
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1687
    proof (simp add: abs_if pos_less_divide_eq diff_minus [symmetric] 
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1688
		split add: split_if_asm)
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1689
      assume "~ (f (x+h) - f x) / h < l" and h: "0 < h" 
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1690
      with l 
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1691
      have "0 < (f (x+h) - f x) / h" by arith
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1692
      thus "f x < f (x+h)"
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1693
	by (simp add: pos_less_divide_eq h)
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1694
    qed
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1695
  qed
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1696
qed
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1697
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1698
lemma DERIV_left_dec:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1699
  assumes der: "DERIV f x :> l"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1700
      and l:   "l < 0"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1701
  shows "\<exists>d. 0 < d & (\<forall>h. 0 < h & h < d --> f(x) < f(x-h))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1702
proof -
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1703
  from l der [THEN DERIV_D, THEN LIM_D [where r = "-l"]]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1704
  have "\<exists>s. 0 < s \<and>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1705
              (\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < -l)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1706
    by (simp add: diff_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1707
  then obtain s
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1708
        where s:   "0 < s" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1709
          and all: "!!z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < -l"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1710
    by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1711
  thus ?thesis
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1712
  proof (intro exI conjI strip)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1713
    show "0<s" .
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1714
    fix h::real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1715
    assume "0 < h \<and> h < s"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1716
    with all [of "-h"] show "f x < f (x-h)" 
15003
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1717
    proof (simp add: abs_if pos_less_divide_eq diff_minus [symmetric] 
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1718
		split add: split_if_asm)
15003
6145dd7538d7 replaced monomorphic abs definitions by abs_if
paulson
parents: 14477
diff changeset
  1719
      assume " - ((f (x-h) - f x) / h) < l" and h: "0 < h" 
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1720
      with l 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1721
      have "0 < (f (x-h) - f x) / h" by arith
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1722
      thus "f x < f (x-h)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1723
	by (simp add: pos_less_divide_eq h)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1724
    qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1725
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1726
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1727
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1728
lemma DERIV_local_max: 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1729
  assumes der: "DERIV f x :> l"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1730
      and d:   "0 < d"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1731
      and le:  "\<forall>y. \<bar>x-y\<bar> < d --> f(y) \<le> f(x)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1732
  shows "l = 0"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1733
proof (cases rule: linorder_cases [of l 0])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1734
  case equal show ?thesis .
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1735
next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1736
  case less
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1737
  from DERIV_left_dec [OF der less]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1738
  obtain d' where d': "0 < d'"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1739
             and lt: "\<forall>h. 0 < h \<and> h < d' \<longrightarrow> f x < f (x-h)" by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1740
  from real_lbound_gt_zero [OF d d']
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1741
  obtain e where "0 < e \<and> e < d \<and> e < d'" ..
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1742
  with lt le [THEN spec [where x="x-e"]] 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1743
  show ?thesis by (auto simp add: abs_if)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1744
next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1745
  case greater
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1746
  from DERIV_left_inc [OF der greater]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1747
  obtain d' where d': "0 < d'"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1748
             and lt: "\<forall>h. 0 < h \<and> h < d' \<longrightarrow> f x < f (x + h)" by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1749
  from real_lbound_gt_zero [OF d d']
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1750
  obtain e where "0 < e \<and> e < d \<and> e < d'" ..
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1751
  with lt le [THEN spec [where x="x+e"]]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1752
  show ?thesis by (auto simp add: abs_if)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1753
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1754
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1755
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1756
text{*Similar theorem for a local minimum*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1757
lemma DERIV_local_min:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1758
     "[| DERIV f x :> l; 0 < d; \<forall>y. \<bar>x-y\<bar> < d --> f(x) \<le> f(y) |] ==> l = 0"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1759
by (drule DERIV_minus [THEN DERIV_local_max], auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1760
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1761
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1762
text{*In particular, if a function is locally flat*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1763
lemma DERIV_local_const:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1764
     "[| DERIV f x :> l; 0 < d; \<forall>y. \<bar>x-y\<bar> < d --> f(x) = f(y) |] ==> l = 0"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1765
by (auto dest!: DERIV_local_max)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1766
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1767
text{*Lemma about introducing open ball in open interval*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1768
lemma lemma_interval_lt:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1769
     "[| a < x;  x < b |] 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1770
      ==> \<exists>d::real. 0 < d & (\<forall>y. \<bar>x-y\<bar> < d --> a < y & y < b)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1771
apply (simp add: abs_interval_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1772
apply (insert linorder_linear [of "x-a" "b-x"], safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1773
apply (rule_tac x = "x-a" in exI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1774
apply (rule_tac [2] x = "b-x" in exI, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1775
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1776
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1777
lemma lemma_interval: "[| a < x;  x < b |] ==>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1778
        \<exists>d::real. 0 < d &  (\<forall>y. \<bar>x-y\<bar> < d --> a \<le> y & y \<le> b)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1779
apply (drule lemma_interval_lt, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1780
apply (auto intro!: exI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1781
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1782
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1783
text{*Rolle's Theorem.
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1784
   If @{term f} is defined and continuous on the closed interval 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1785
   @{text "[a,b]"} and differentiable on the open interval @{text "(a,b)"}, 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1786
   and @{term "f(a) = f(b)"},
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1787
   then there exists @{text "x0 \<in> (a,b)"} such that @{term "f'(x0) = 0"}*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1788
theorem Rolle: 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1789
  assumes lt: "a < b"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1790
      and eq: "f(a) = f(b)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1791
      and con: "\<forall>x. a \<le> x & x \<le> b --> isCont f x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1792
      and dif [rule_format]: "\<forall>x. a < x & x < b --> f differentiable x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1793
  shows "\<exists>z. a < z & z < b & DERIV f z :> 0"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1794
proof -
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1795
  have le: "a \<le> b" using lt by simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1796
  from isCont_eq_Ub [OF le con]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1797
  obtain x where x_max: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f z \<le> f x" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1798
             and alex: "a \<le> x" and xleb: "x \<le> b" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1799
    by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1800
  from isCont_eq_Lb [OF le con]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1801
  obtain x' where x'_min: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f x' \<le> f z" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1802
              and alex': "a \<le> x'" and x'leb: "x' \<le> b" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1803
    by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1804
  show ?thesis
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1805
  proof cases
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1806
    assume axb: "a < x & x < b"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1807
        --{*@{term f} attains its maximum within the interval*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1808
    hence ax: "a<x" and xb: "x<b" by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1809
    from lemma_interval [OF ax xb]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1810
    obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1811
      by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1812
    hence bound': "\<forall>y. \<bar>x-y\<bar> < d \<longrightarrow> f y \<le> f x" using x_max
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1813
      by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1814
    from differentiableD [OF dif [OF axb]]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1815
    obtain l where der: "DERIV f x :> l" ..
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1816
    have "l=0" by (rule DERIV_local_max [OF der d bound']) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1817
        --{*the derivative at a local maximum is zero*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1818
    thus ?thesis using ax xb der by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1819
  next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1820
    assume notaxb: "~ (a < x & x < b)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1821
    hence xeqab: "x=a | x=b" using alex xleb by arith
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1822
    hence fb_eq_fx: "f b = f x" by (auto simp add: eq) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1823
    show ?thesis
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1824
    proof cases
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1825
      assume ax'b: "a < x' & x' < b"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1826
        --{*@{term f} attains its minimum within the interval*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1827
      hence ax': "a<x'" and x'b: "x'<b" by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1828
      from lemma_interval [OF ax' x'b]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1829
      obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1830
	by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1831
      hence bound': "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> f x' \<le> f y" using x'_min
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1832
	by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1833
      from differentiableD [OF dif [OF ax'b]]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1834
      obtain l where der: "DERIV f x' :> l" ..
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1835
      have "l=0" by (rule DERIV_local_min [OF der d bound']) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1836
        --{*the derivative at a local minimum is zero*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1837
      thus ?thesis using ax' x'b der by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1838
    next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1839
      assume notax'b: "~ (a < x' & x' < b)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1840
        --{*@{term f} is constant througout the interval*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1841
      hence x'eqab: "x'=a | x'=b" using alex' x'leb by arith
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1842
      hence fb_eq_fx': "f b = f x'" by (auto simp add: eq) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1843
      from dense [OF lt]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1844
      obtain r where ar: "a < r" and rb: "r < b" by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1845
      from lemma_interval [OF ar rb]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1846
      obtain d where d: "0<d" and bound: "\<forall>y. \<bar>r-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1847
	by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1848
      have eq_fb: "\<forall>z. a \<le> z --> z \<le> b --> f z = f b" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1849
      proof (clarify) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1850
        fix z::real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1851
        assume az: "a \<le> z" and zb: "z \<le> b"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1852
        show "f z = f b"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1853
        proof (rule order_antisym)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1854
          show "f z \<le> f b" by (simp add: fb_eq_fx x_max az zb) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1855
          show "f b \<le> f z" by (simp add: fb_eq_fx' x'_min az zb) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1856
        qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1857
      qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1858
      have bound': "\<forall>y. \<bar>r-y\<bar> < d \<longrightarrow> f r = f y"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1859
      proof (intro strip)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1860
        fix y::real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1861
        assume lt: "\<bar>r-y\<bar> < d"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1862
        hence "f y = f b" by (simp add: eq_fb bound) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1863
        thus "f r = f y" by (simp add: eq_fb ar rb order_less_imp_le)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1864
      qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1865
      from differentiableD [OF dif [OF conjI [OF ar rb]]]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1866
      obtain l where der: "DERIV f r :> l" ..
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1867
      have "l=0" by (rule DERIV_local_const [OF der d bound']) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1868
        --{*the derivative of a constant function is zero*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1869
      thus ?thesis using ar rb der by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1870
    qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1871
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1872
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1873
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1874
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1875
subsection{*Mean Value Theorem*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1876
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1877
lemma lemma_MVT:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1878
     "f a - (f b - f a)/(b-a) * a = f b - (f b - f a)/(b-a) * (b::real)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1879
proof cases
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1880
  assume "a=b" thus ?thesis by simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1881
next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1882
  assume "a\<noteq>b" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1883
  hence ba: "b-a \<noteq> 0" by arith
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1884
  show ?thesis
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1885
    by (rule real_mult_left_cancel [OF ba, THEN iffD1],
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1886
        simp add: right_diff_distrib, simp add: left_diff_distrib)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1887
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1888
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1889
theorem MVT: 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1890
  assumes lt:  "a < b"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1891
      and con: "\<forall>x. a \<le> x & x \<le> b --> isCont f x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1892
      and dif [rule_format]: "\<forall>x. a < x & x < b --> f differentiable x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1893
  shows "\<exists>l z. a < z & z < b & DERIV f z :> l &
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1894
                   (f(b) - f(a) = (b-a) * l)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1895
proof -
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1896
  let ?F = "%x. f x - ((f b - f a) / (b-a)) * x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1897
  have contF: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont ?F x" using con
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1898
    by (fast intro: isCont_diff isCont_const isCont_mult isCont_Id) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1899
  have difF: "\<forall>x. a < x \<and> x < b \<longrightarrow> ?F differentiable x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1900
  proof (clarify)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1901
    fix x::real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1902
    assume ax: "a < x" and xb: "x < b"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1903
    from differentiableD [OF dif [OF conjI [OF ax xb]]]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1904
    obtain l where der: "DERIV f x :> l" ..
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1905
    show "?F differentiable x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1906
      by (rule differentiableI [where D = "l - (f b - f a)/(b-a)"],
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1907
          blast intro: DERIV_diff DERIV_cmult_Id der) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1908
  qed  
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1909
  from Rolle [where f = ?F, OF lt lemma_MVT contF difF]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1910
  obtain z where az: "a < z" and zb: "z < b" and der: "DERIV ?F z :> 0" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1911
    by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1912
  have "DERIV (%x. ((f b - f a)/(b-a)) * x) z :> (f b - f a)/(b-a)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1913
    by (rule DERIV_cmult_Id)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1914
  hence derF: "DERIV (\<lambda>x. ?F x + (f b - f a) / (b - a) * x) z 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1915
                   :> 0 + (f b - f a) / (b - a)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1916
    by (rule DERIV_add [OF der])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1917
  show ?thesis  
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1918
  proof (intro exI conjI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1919
    show "a < z" .
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1920
    show "z < b" .
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1921
    show "f b - f a = (b - a) * ((f b - f a)/(b-a))" by simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1922
    show "DERIV f z :> ((f b - f a)/(b-a))"  using derF by simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1923
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1924
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1925
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1926
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1927
text{*A function is constant if its derivative is 0 over an interval.*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1928
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1929
lemma DERIV_isconst_end: "[| a < b;
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1930
         \<forall>x. a \<le> x & x \<le> b --> isCont f x;
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1931
         \<forall>x. a < x & x < b --> DERIV f x :> 0 |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1932
        ==> (f b = f a)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1933
apply (drule MVT, assumption)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1934
apply (blast intro: differentiableI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1935
apply (auto dest!: DERIV_unique simp add: diff_eq_eq)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1936
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1937
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1938
lemma DERIV_isconst1: "[| a < b;
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1939
         \<forall>x. a \<le> x & x \<le> b --> isCont f x;
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1940
         \<forall>x. a < x & x < b --> DERIV f x :> 0 |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1941
        ==> \<forall>x. a \<le> x & x \<le> b --> f x = f a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1942
apply safe
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1943
apply (drule_tac x = a in order_le_imp_less_or_eq, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1944
apply (drule_tac b = x in DERIV_isconst_end, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1945
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1946
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1947
lemma DERIV_isconst2: "[| a < b;
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1948
         \<forall>x. a \<le> x & x \<le> b --> isCont f x;
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1949
         \<forall>x. a < x & x < b --> DERIV f x :> 0;
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1950
         a \<le> x; x \<le> b |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1951
        ==> f x = f a"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1952
apply (blast dest: DERIV_isconst1)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1953
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1954
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1955
lemma DERIV_isconst_all: "\<forall>x. DERIV f x :> 0 ==> f(x) = f(y)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1956
apply (rule linorder_cases [of x y])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1957
apply (blast intro: sym DERIV_isCont DERIV_isconst_end)+
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1958
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1959
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1960
lemma DERIV_const_ratio_const:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1961
     "[|a \<noteq> b; \<forall>x. DERIV f x :> k |] ==> (f(b) - f(a)) = (b-a) * k"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1962
apply (rule linorder_cases [of a b], auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1963
apply (drule_tac [!] f = f in MVT)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1964
apply (auto dest: DERIV_isCont DERIV_unique simp add: differentiable_def)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1965
apply (auto dest: DERIV_unique simp add: left_distrib diff_minus)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1966
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1967
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1968
lemma DERIV_const_ratio_const2:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1969
     "[|a \<noteq> b; \<forall>x. DERIV f x :> k |] ==> (f(b) - f(a))/(b-a) = k"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1970
apply (rule_tac c1 = "b-a" in real_mult_right_cancel [THEN iffD1])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1971
apply (auto dest!: DERIV_const_ratio_const simp add: real_mult_assoc)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1972
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1973
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1974
lemma real_average_minus_first: "((a + b) /2 - a) = (b-a)/(2::real)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1975
by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1976
declare real_average_minus_first [simp]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1977
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1978
lemma real_average_minus_second: "((b + a)/2 - a) = (b-a)/(2::real)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1979
by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1980
declare real_average_minus_second [simp]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1981
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1982
text{*Gallileo's "trick": average velocity = av. of end velocities*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1983
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1984
lemma DERIV_const_average:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1985
  assumes neq: "a \<noteq> (b::real)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1986
      and der: "\<forall>x. DERIV v x :> k"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1987
  shows "v ((a + b)/2) = (v a + v b)/2"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1988
proof (cases rule: linorder_cases [of a b])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1989
  case equal with neq show ?thesis by simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1990
next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1991
  case less
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1992
  have "(v b - v a) / (b - a) = k"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1993
    by (rule DERIV_const_ratio_const2 [OF neq der])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1994
  hence "(b-a) * ((v b - v a) / (b-a)) = (b-a) * k" by simp 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1995
  moreover have "(v ((a + b) / 2) - v a) / ((a + b) / 2 - a) = k"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1996
    by (rule DERIV_const_ratio_const2 [OF _ der], simp add: neq)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1997
  ultimately show ?thesis using neq by force
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1998
next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  1999
  case greater
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2000
  have "(v b - v a) / (b - a) = k"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2001
    by (rule DERIV_const_ratio_const2 [OF neq der])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2002
  hence "(b-a) * ((v b - v a) / (b-a)) = (b-a) * k" by simp 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2003
  moreover have " (v ((b + a) / 2) - v a) / ((b + a) / 2 - a) = k"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2004
    by (rule DERIV_const_ratio_const2 [OF _ der], simp add: neq)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2005
  ultimately show ?thesis using neq by (force simp add: add_commute) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2006
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2007
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2008
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2009
text{*Dull lemma: an continuous injection on an interval must have a
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2010
strict maximum at an end point, not in the middle.*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2011
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2012
lemma lemma_isCont_inj:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2013
  assumes d: "0 < d"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2014
      and inj [rule_format]: "\<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2015
      and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2016
  shows "\<exists>z. \<bar>z-x\<bar> \<le> d & f x < f z"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2017
proof (rule ccontr)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2018
  assume  "~ (\<exists>z. \<bar>z-x\<bar> \<le> d & f x < f z)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2019
  hence all [rule_format]: "\<forall>z. \<bar>z - x\<bar> \<le> d --> f z \<le> f x" by auto 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2020
  show False
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2021
  proof (cases rule: linorder_le_cases [of "f(x-d)" "f(x+d)"])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2022
    case le
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2023
    from d cont all [of "x+d"]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2024
    have flef: "f(x+d) \<le> f x" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2025
     and xlex: "x - d \<le> x" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2026
     and cont': "\<forall>z. x - d \<le> z \<and> z \<le> x \<longrightarrow> isCont f z" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2027
       by (auto simp add: abs_if)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2028
    from IVT [OF le flef xlex cont']
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2029
    obtain x' where "x-d \<le> x'" "x' \<le> x" "f x' = f(x+d)" by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2030
    moreover
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2031
    hence "g(f x') = g (f(x+d))" by simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2032
    ultimately show False using d inj [of x'] inj [of "x+d"]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2033
      by (simp add: abs_le_interval_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2034
  next
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2035
    case ge
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2036
    from d cont all [of "x-d"]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2037
    have flef: "f(x-d) \<le> f x" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2038
     and xlex: "x \<le> x+d" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2039
     and cont': "\<forall>z. x \<le> z \<and> z \<le> x+d \<longrightarrow> isCont f z" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2040
       by (auto simp add: abs_if)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2041
    from IVT2 [OF ge flef xlex cont']
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2042
    obtain x' where "x \<le> x'" "x' \<le> x+d" "f x' = f(x-d)" by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2043
    moreover
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2044
    hence "g(f x') = g (f(x-d))" by simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2045
    ultimately show False using d inj [of x'] inj [of "x-d"]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2046
      by (simp add: abs_le_interval_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2047
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2048
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2049
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2050
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2051
text{*Similar version for lower bound.*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2052
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2053
lemma lemma_isCont_inj2:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2054
     "[|0 < d; \<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z;
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2055
        \<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z |]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2056
      ==> \<exists>z. \<bar>z-x\<bar> \<le> d & f z < f x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2057
apply (insert lemma_isCont_inj
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2058
          [where f = "%x. - f x" and g = "%y. g(-y)" and x = x and d = d])
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2059
apply (simp add: isCont_minus linorder_not_le) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2060
done
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2061
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2062
text{*Show there's an interval surrounding @{term "f(x)"} in 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2063
@{text "f[[x - d, x + d]]"} .*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2064
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2065
lemma isCont_inj_range: 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2066
  assumes d: "0 < d"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2067
      and inj: "\<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2068
      and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2069
  shows "\<exists>e. 0<e & (\<forall>y. \<bar>y - f x\<bar> \<le> e --> (\<exists>z. \<bar>z-x\<bar> \<le> d & f z = y))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2070
proof -
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2071
  have "x-d \<le> x+d" "\<forall>z. x-d \<le> z \<and> z \<le> x+d \<longrightarrow> isCont f z" using cont d
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2072
    by (auto simp add: abs_le_interval_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2073
  from isCont_Lb_Ub [OF this]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2074
  obtain L M 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2075
  where all1 [rule_format]: "\<forall>z. x-d \<le> z \<and> z \<le> x+d \<longrightarrow> L \<le> f z \<and> f z \<le> M"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2076
    and all2 [rule_format]:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2077
           "\<forall>y. L \<le> y \<and> y \<le> M \<longrightarrow> (\<exists>z. x-d \<le> z \<and> z \<le> x+d \<and> f z = y)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2078
    by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2079
  with d have "L \<le> f x & f x \<le> M" by simp
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2080
  moreover have "L \<noteq> f x"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2081
  proof -
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2082
    from lemma_isCont_inj2 [OF d inj cont]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2083
    obtain u where "\<bar>u - x\<bar> \<le> d" "f u < f x"  by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2084
    thus ?thesis using all1 [of u] by arith
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2085
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2086
  moreover have "f x \<noteq> M"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2087
  proof -
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2088
    from lemma_isCont_inj [OF d inj cont]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2089
    obtain u where "\<bar>u - x\<bar> \<le> d" "f x < f u"  by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2090
    thus ?thesis using all1 [of u] by arith
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2091
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2092
  ultimately have "L < f x & f x < M" by arith
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2093
  hence "0 < f x - L" "0 < M - f x" by arith+
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2094
  from real_lbound_gt_zero [OF this]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2095
  obtain e where e: "0 < e" "e < f x - L" "e < M - f x" by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2096
  thus ?thesis
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2097
  proof (intro exI conjI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2098
    show "0<e" .
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2099
    show "\<forall>y. \<bar>y - f x\<bar> \<le> e \<longrightarrow> (\<exists>z. \<bar>z - x\<bar> \<le> d \<and> f z = y)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2100
    proof (intro strip)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2101
      fix y::real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2102
      assume "\<bar>y - f x\<bar> \<le> e"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2103
      with e have "L \<le> y \<and> y \<le> M" by arith
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2104
      from all2 [OF this]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2105
      obtain z where "x - d \<le> z" "z \<le> x + d" "f z = y" by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2106
      thus "\<exists>z. \<bar>z - x\<bar> \<le> d \<and> f z = y" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2107
        by (force simp add: abs_le_interval_iff)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2108
    qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2109
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2110
qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2111
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2112
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2113
text{*Continuity of inverse function*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2114
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2115
lemma isCont_inverse_function:
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2116
  assumes d: "0 < d"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2117
      and inj: "\<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2118
      and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2119
  shows "isCont g (f x)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2120
proof (simp add: isCont_iff LIM_eq)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2121
  show "\<forall>r. 0 < r \<longrightarrow>
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2122
         (\<exists>s. 0<s \<and> (\<forall>z. z\<noteq>0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>g(f x + z) - g(f x)\<bar> < r))"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2123
  proof (intro strip)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2124
    fix r::real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2125
    assume r: "0<r"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2126
    from real_lbound_gt_zero [OF r d]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2127
    obtain e where e: "0 < e" and e_lt: "e < r \<and> e < d" by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2128
    with inj cont
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2129
    have e_simps: "\<forall>z. \<bar>z-x\<bar> \<le> e --> g (f z) = z" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2130
                  "\<forall>z. \<bar>z-x\<bar> \<le> e --> isCont f z"   by auto
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2131
    from isCont_inj_range [OF e this]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2132
    obtain e' where e': "0 < e'" 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2133
        and all: "\<forall>y. \<bar>y - f x\<bar> \<le> e' \<longrightarrow> (\<exists>z. \<bar>z - x\<bar> \<le> e \<and> f z = y)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2134
          by blast
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2135
    show "\<exists>s. 0<s \<and> (\<forall>z. z\<noteq>0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>g(f x + z) - g(f x)\<bar> < r)"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2136
    proof (intro exI conjI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2137
      show "0<e'" .
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2138
      show "\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < e' \<longrightarrow> \<bar>g (f x + z) - g (f x)\<bar> < r"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2139
      proof (intro strip)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2140
        fix z::real
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2141
        assume z: "z \<noteq> 0 \<and> \<bar>z\<bar> < e'"
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2142
        with e e_lt e_simps all [rule_format, of "f x + z"]
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2143
        show "\<bar>g (f x + z) - g (f x)\<bar> < r" by force
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2144
      qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2145
    qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2146
  qed
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2147
qed  
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2148
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2149
ML
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2150
{*
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2151
val LIM_def = thm"LIM_def";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2152
val NSLIM_def = thm"NSLIM_def";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2153
val isCont_def = thm"isCont_def";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2154
val isNSCont_def = thm"isNSCont_def";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2155
val deriv_def = thm"deriv_def";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2156
val nsderiv_def = thm"nsderiv_def";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2157
val differentiable_def = thm"differentiable_def";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2158
val NSdifferentiable_def = thm"NSdifferentiable_def";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2159
val increment_def = thm"increment_def";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2160
val isUCont_def = thm"isUCont_def";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2161
val isNSUCont_def = thm"isNSUCont_def";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2162
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2163
val half_gt_zero_iff = thm "half_gt_zero_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2164
val half_gt_zero = thms "half_gt_zero";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2165
val abs_diff_triangle_ineq = thm "abs_diff_triangle_ineq";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2166
val LIM_eq = thm "LIM_eq";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2167
val LIM_D = thm "LIM_D";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2168
val LIM_const = thm "LIM_const";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2169
val LIM_add = thm "LIM_add";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2170
val LIM_minus = thm "LIM_minus";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2171
val LIM_add_minus = thm "LIM_add_minus";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2172
val LIM_diff = thm "LIM_diff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2173
val LIM_const_not_eq = thm "LIM_const_not_eq";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2174
val LIM_const_eq = thm "LIM_const_eq";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2175
val LIM_unique = thm "LIM_unique";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2176
val LIM_mult_zero = thm "LIM_mult_zero";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2177
val LIM_self = thm "LIM_self";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2178
val LIM_equal = thm "LIM_equal";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2179
val LIM_trans = thm "LIM_trans";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2180
val LIM_NSLIM = thm "LIM_NSLIM";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2181
val NSLIM_LIM = thm "NSLIM_LIM";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2182
val LIM_NSLIM_iff = thm "LIM_NSLIM_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2183
val NSLIM_mult = thm "NSLIM_mult";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2184
val LIM_mult2 = thm "LIM_mult2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2185
val NSLIM_add = thm "NSLIM_add";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2186
val LIM_add2 = thm "LIM_add2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2187
val NSLIM_const = thm "NSLIM_const";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2188
val LIM_const2 = thm "LIM_const2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2189
val NSLIM_minus = thm "NSLIM_minus";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2190
val LIM_minus2 = thm "LIM_minus2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2191
val NSLIM_add_minus = thm "NSLIM_add_minus";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2192
val LIM_add_minus2 = thm "LIM_add_minus2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2193
val NSLIM_inverse = thm "NSLIM_inverse";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2194
val LIM_inverse = thm "LIM_inverse";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2195
val NSLIM_zero = thm "NSLIM_zero";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2196
val LIM_zero2 = thm "LIM_zero2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2197
val NSLIM_zero_cancel = thm "NSLIM_zero_cancel";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2198
val LIM_zero_cancel = thm "LIM_zero_cancel";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2199
val NSLIM_not_zero = thm "NSLIM_not_zero";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2200
val NSLIM_const_not_eq = thm "NSLIM_const_not_eq";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2201
val NSLIM_const_eq = thm "NSLIM_const_eq";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2202
val NSLIM_unique = thm "NSLIM_unique";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2203
val LIM_unique2 = thm "LIM_unique2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2204
val NSLIM_mult_zero = thm "NSLIM_mult_zero";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2205
val LIM_mult_zero2 = thm "LIM_mult_zero2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2206
val NSLIM_self = thm "NSLIM_self";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2207
val isNSContD = thm "isNSContD";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2208
val isNSCont_NSLIM = thm "isNSCont_NSLIM";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2209
val NSLIM_isNSCont = thm "NSLIM_isNSCont";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2210
val isNSCont_NSLIM_iff = thm "isNSCont_NSLIM_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2211
val isNSCont_LIM_iff = thm "isNSCont_LIM_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2212
val isNSCont_isCont_iff = thm "isNSCont_isCont_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2213
val isCont_isNSCont = thm "isCont_isNSCont";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2214
val isNSCont_isCont = thm "isNSCont_isCont";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2215
val NSLIM_h_iff = thm "NSLIM_h_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2216
val NSLIM_isCont_iff = thm "NSLIM_isCont_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2217
val LIM_isCont_iff = thm "LIM_isCont_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2218
val isCont_iff = thm "isCont_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2219
val isCont_add = thm "isCont_add";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2220
val isCont_mult = thm "isCont_mult";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2221
val isCont_o = thm "isCont_o";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2222
val isCont_o2 = thm "isCont_o2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2223
val isNSCont_minus = thm "isNSCont_minus";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2224
val isCont_minus = thm "isCont_minus";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2225
val isCont_inverse = thm "isCont_inverse";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2226
val isNSCont_inverse = thm "isNSCont_inverse";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2227
val isCont_diff = thm "isCont_diff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2228
val isCont_const = thm "isCont_const";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2229
val isNSCont_const = thm "isNSCont_const";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2230
val isNSCont_rabs = thm "isNSCont_rabs";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2231
val isCont_rabs = thm "isCont_rabs";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2232
val isNSUContD = thm "isNSUContD";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2233
val isUCont_isCont = thm "isUCont_isCont";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2234
val isUCont_isNSUCont = thm "isUCont_isNSUCont";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2235
val isNSUCont_isUCont = thm "isNSUCont_isUCont";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2236
val DERIV_iff = thm "DERIV_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2237
val DERIV_NS_iff = thm "DERIV_NS_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2238
val DERIV_D = thm "DERIV_D";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2239
val NS_DERIV_D = thm "NS_DERIV_D";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2240
val DERIV_unique = thm "DERIV_unique";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2241
val NSDeriv_unique = thm "NSDeriv_unique";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2242
val differentiableD = thm "differentiableD";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2243
val differentiableI = thm "differentiableI";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2244
val NSdifferentiableD = thm "NSdifferentiableD";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2245
val NSdifferentiableI = thm "NSdifferentiableI";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2246
val LIM_I = thm "LIM_I";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2247
val DERIV_LIM_iff = thm "DERIV_LIM_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2248
val DERIV_iff2 = thm "DERIV_iff2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2249
val NSDERIV_NSLIM_iff = thm "NSDERIV_NSLIM_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2250
val NSDERIV_NSLIM_iff2 = thm "NSDERIV_NSLIM_iff2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2251
val NSDERIV_iff2 = thm "NSDERIV_iff2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2252
val hypreal_not_eq_minus_iff = thm "hypreal_not_eq_minus_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2253
val NSDERIVD5 = thm "NSDERIVD5";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2254
val NSDERIVD4 = thm "NSDERIVD4";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2255
val NSDERIVD3 = thm "NSDERIVD3";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2256
val NSDERIV_DERIV_iff = thm "NSDERIV_DERIV_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2257
val NSDERIV_isNSCont = thm "NSDERIV_isNSCont";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2258
val DERIV_isCont = thm "DERIV_isCont";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2259
val NSDERIV_const = thm "NSDERIV_const";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2260
val DERIV_const = thm "DERIV_const";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2261
val NSDERIV_add = thm "NSDERIV_add";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2262
val DERIV_add = thm "DERIV_add";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2263
val NSDERIV_mult = thm "NSDERIV_mult";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2264
val DERIV_mult = thm "DERIV_mult";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2265
val NSDERIV_cmult = thm "NSDERIV_cmult";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2266
val DERIV_cmult = thm "DERIV_cmult";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2267
val NSDERIV_minus = thm "NSDERIV_minus";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2268
val DERIV_minus = thm "DERIV_minus";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2269
val NSDERIV_add_minus = thm "NSDERIV_add_minus";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2270
val DERIV_add_minus = thm "DERIV_add_minus";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2271
val NSDERIV_diff = thm "NSDERIV_diff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2272
val DERIV_diff = thm "DERIV_diff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2273
val incrementI = thm "incrementI";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2274
val incrementI2 = thm "incrementI2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2275
val increment_thm = thm "increment_thm";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2276
val increment_thm2 = thm "increment_thm2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2277
val increment_approx_zero = thm "increment_approx_zero";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2278
val NSDERIV_zero = thm "NSDERIV_zero";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2279
val NSDERIV_approx = thm "NSDERIV_approx";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2280
val NSDERIVD1 = thm "NSDERIVD1";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2281
val NSDERIVD2 = thm "NSDERIVD2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2282
val NSDERIV_chain = thm "NSDERIV_chain";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2283
val DERIV_chain = thm "DERIV_chain";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2284
val DERIV_chain2 = thm "DERIV_chain2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2285
val NSDERIV_Id = thm "NSDERIV_Id";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2286
val DERIV_Id = thm "DERIV_Id";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2287
val isCont_Id = thms "isCont_Id";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2288
val DERIV_cmult_Id = thm "DERIV_cmult_Id";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2289
val NSDERIV_cmult_Id = thm "NSDERIV_cmult_Id";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2290
val DERIV_pow = thm "DERIV_pow";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2291
val NSDERIV_pow = thm "NSDERIV_pow";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2292
val NSDERIV_inverse = thm "NSDERIV_inverse";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2293
val DERIV_inverse = thm "DERIV_inverse";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2294
val DERIV_inverse_fun = thm "DERIV_inverse_fun";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2295
val NSDERIV_inverse_fun = thm "NSDERIV_inverse_fun";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2296
val DERIV_quotient = thm "DERIV_quotient";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2297
val NSDERIV_quotient = thm "NSDERIV_quotient";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2298
val CARAT_DERIV = thm "CARAT_DERIV";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2299
val CARAT_NSDERIV = thm "CARAT_NSDERIV";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2300
val hypreal_eq_minus_iff3 = thm "hypreal_eq_minus_iff3";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2301
val starfun_if_eq = thm "starfun_if_eq";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2302
val CARAT_DERIVD = thm "CARAT_DERIVD";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2303
val f_inc_g_dec_Beq_f = thm "f_inc_g_dec_Beq_f";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2304
val f_inc_g_dec_Beq_g = thm "f_inc_g_dec_Beq_g";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2305
val f_inc_imp_le_lim = thm "f_inc_imp_le_lim";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2306
val lim_uminus = thm "lim_uminus";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2307
val g_dec_imp_lim_le = thm "g_dec_imp_lim_le";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2308
val Bolzano_bisect_le = thm "Bolzano_bisect_le";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2309
val Bolzano_bisect_fst_le_Suc = thm "Bolzano_bisect_fst_le_Suc";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2310
val Bolzano_bisect_Suc_le_snd = thm "Bolzano_bisect_Suc_le_snd";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2311
val eq_divide_2_times_iff = thm "eq_divide_2_times_iff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2312
val Bolzano_bisect_diff = thm "Bolzano_bisect_diff";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2313
val Bolzano_nest_unique = thms "Bolzano_nest_unique";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2314
val not_P_Bolzano_bisect = thm "not_P_Bolzano_bisect";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2315
val not_P_Bolzano_bisect = thm "not_P_Bolzano_bisect";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2316
val lemma_BOLZANO2 = thm "lemma_BOLZANO2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2317
val IVT = thm "IVT";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2318
val IVT2 = thm "IVT2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2319
val IVT_objl = thm "IVT_objl";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2320
val IVT2_objl = thm "IVT2_objl";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2321
val isCont_bounded = thm "isCont_bounded";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2322
val isCont_has_Ub = thm "isCont_has_Ub";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2323
val isCont_eq_Ub = thm "isCont_eq_Ub";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2324
val isCont_eq_Lb = thm "isCont_eq_Lb";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2325
val isCont_Lb_Ub = thm "isCont_Lb_Ub";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2326
val DERIV_left_inc = thm "DERIV_left_inc";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2327
val DERIV_left_dec = thm "DERIV_left_dec";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2328
val DERIV_local_max = thm "DERIV_local_max";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2329
val DERIV_local_min = thm "DERIV_local_min";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2330
val DERIV_local_const = thm "DERIV_local_const";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2331
val Rolle = thm "Rolle";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2332
val MVT = thm "MVT";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2333
val DERIV_isconst_end = thm "DERIV_isconst_end";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2334
val DERIV_isconst1 = thm "DERIV_isconst1";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2335
val DERIV_isconst2 = thm "DERIV_isconst2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2336
val DERIV_isconst_all = thm "DERIV_isconst_all";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2337
val DERIV_const_ratio_const = thm "DERIV_const_ratio_const";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2338
val DERIV_const_ratio_const2 = thm "DERIV_const_ratio_const2";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2339
val real_average_minus_first = thm "real_average_minus_first";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2340
val real_average_minus_second = thm "real_average_minus_second";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2341
val DERIV_const_average = thm "DERIV_const_average";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2342
val isCont_inj_range = thm "isCont_inj_range";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2343
val isCont_inverse_function = thm "isCont_inverse_function";
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2344
*}
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14387
diff changeset
  2345
10751
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
  2346
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
  2347
end
a81ea5d3dd41 separation of HOL-Hyperreal from HOL-Real
paulson
parents:
diff changeset
  2348