author | paulson <lp15@cam.ac.uk> |
Wed, 09 Oct 2019 14:39:10 +0100 | |
changeset 70803 | 2d658afa1fc0 |
parent 70723 | 4e39d87c9737 |
child 70804 | 4eef7c6ef7bf |
permissions | -rw-r--r-- |
52265 | 1 |
(* Title: HOL/Limits.thy |
51526 | 2 |
Author: Brian Huffman |
3 |
Author: Jacques D. Fleuriot, University of Cambridge |
|
4 |
Author: Lawrence C Paulson |
|
5 |
Author: Jeremy Avigad |
|
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
6 |
*) |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
7 |
|
60758 | 8 |
section \<open>Limits on Real Vector Spaces\<close> |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
9 |
|
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
10 |
theory Limits |
63546 | 11 |
imports Real_Vector_Spaces |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
12 |
begin |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
13 |
|
60758 | 14 |
subsection \<open>Filter going to infinity norm\<close> |
51526 | 15 |
|
63546 | 16 |
definition at_infinity :: "'a::real_normed_vector filter" |
17 |
where "at_infinity = (INF r. principal {x. r \<le> norm x})" |
|
50324
0a1242d5e7d4
add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents:
50323
diff
changeset
|
18 |
|
57276 | 19 |
lemma eventually_at_infinity: "eventually P at_infinity \<longleftrightarrow> (\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> P x)" |
20 |
unfolding at_infinity_def |
|
21 |
by (subst eventually_INF_base) |
|
22 |
(auto simp: subset_eq eventually_principal intro!: exI[of _ "max a b" for a b]) |
|
31392 | 23 |
|
62379
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents:
62369
diff
changeset
|
24 |
corollary eventually_at_infinity_pos: |
63546 | 25 |
"eventually p at_infinity \<longleftrightarrow> (\<exists>b. 0 < b \<and> (\<forall>x. norm x \<ge> b \<longrightarrow> p x))" |
68614 | 26 |
unfolding eventually_at_infinity |
27 |
by (meson le_less_trans norm_ge_zero not_le zero_less_one) |
|
63546 | 28 |
|
29 |
lemma at_infinity_eq_at_top_bot: "(at_infinity :: real filter) = sup at_top at_bot" |
|
68614 | 30 |
proof - |
31 |
have 1: "\<lbrakk>\<forall>n\<ge>u. A n; \<forall>n\<le>v. A n\<rbrakk> |
|
32 |
\<Longrightarrow> \<exists>b. \<forall>x. b \<le> \<bar>x\<bar> \<longrightarrow> A x" for A and u v::real |
|
33 |
by (rule_tac x="max (- v) u" in exI) (auto simp: abs_real_def) |
|
34 |
have 2: "\<forall>x. u \<le> \<bar>x\<bar> \<longrightarrow> A x \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. A n" for A and u::real |
|
35 |
by (meson abs_less_iff le_cases less_le_not_le) |
|
36 |
have 3: "\<forall>x. u \<le> \<bar>x\<bar> \<longrightarrow> A x \<Longrightarrow> \<exists>N. \<forall>n\<le>N. A n" for A and u::real |
|
37 |
by (metis (full_types) abs_ge_self abs_minus_cancel le_minus_iff order_trans) |
|
38 |
show ?thesis |
|
68615 | 39 |
by (auto simp: filter_eq_iff eventually_sup eventually_at_infinity |
68614 | 40 |
eventually_at_top_linorder eventually_at_bot_linorder intro: 1 2 3) |
41 |
qed |
|
50325 | 42 |
|
57276 | 43 |
lemma at_top_le_at_infinity: "at_top \<le> (at_infinity :: real filter)" |
50325 | 44 |
unfolding at_infinity_eq_at_top_bot by simp |
45 |
||
57276 | 46 |
lemma at_bot_le_at_infinity: "at_bot \<le> (at_infinity :: real filter)" |
50325 | 47 |
unfolding at_infinity_eq_at_top_bot by simp |
48 |
||
63546 | 49 |
lemma filterlim_at_top_imp_at_infinity: "filterlim f at_top F \<Longrightarrow> filterlim f at_infinity F" |
50 |
for f :: "_ \<Rightarrow> real" |
|
57275
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents:
56541
diff
changeset
|
51 |
by (rule filterlim_mono[OF _ at_top_le_at_infinity order_refl]) |
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents:
56541
diff
changeset
|
52 |
|
67685
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents:
67673
diff
changeset
|
53 |
lemma filterlim_real_at_infinity_sequentially: "filterlim real at_infinity sequentially" |
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents:
67673
diff
changeset
|
54 |
by (simp add: filterlim_at_top_imp_at_infinity filterlim_real_sequentially) |
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents:
67673
diff
changeset
|
55 |
|
63546 | 56 |
lemma lim_infinity_imp_sequentially: "(f \<longlongrightarrow> l) at_infinity \<Longrightarrow> ((\<lambda>n. f(n)) \<longlongrightarrow> l) sequentially" |
57 |
by (simp add: filterlim_at_top_imp_at_infinity filterlim_compose filterlim_real_sequentially) |
|
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
58 |
|
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
59 |
|
60758 | 60 |
subsubsection \<open>Boundedness\<close> |
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
61 |
|
63546 | 62 |
definition Bfun :: "('a \<Rightarrow> 'b::metric_space) \<Rightarrow> 'a filter \<Rightarrow> bool" |
63 |
where Bfun_metric_def: "Bfun f F = (\<exists>y. \<exists>K>0. eventually (\<lambda>x. dist (f x) y \<le> K) F)" |
|
64 |
||
65 |
abbreviation Bseq :: "(nat \<Rightarrow> 'a::metric_space) \<Rightarrow> bool" |
|
66 |
where "Bseq X \<equiv> Bfun X sequentially" |
|
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
67 |
|
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
68 |
lemma Bseq_conv_Bfun: "Bseq X \<longleftrightarrow> Bfun X sequentially" .. |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
69 |
|
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
70 |
lemma Bseq_ignore_initial_segment: "Bseq X \<Longrightarrow> Bseq (\<lambda>n. X (n + k))" |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
71 |
unfolding Bfun_metric_def by (subst eventually_sequentially_seg) |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
72 |
|
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
73 |
lemma Bseq_offset: "Bseq (\<lambda>n. X (n + k)) \<Longrightarrow> Bseq X" |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
74 |
unfolding Bfun_metric_def by (subst (asm) eventually_sequentially_seg) |
31355 | 75 |
|
63546 | 76 |
lemma Bfun_def: "Bfun f F \<longleftrightarrow> (\<exists>K>0. eventually (\<lambda>x. norm (f x) \<le> K) F)" |
51474
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents:
51472
diff
changeset
|
77 |
unfolding Bfun_metric_def norm_conv_dist |
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents:
51472
diff
changeset
|
78 |
proof safe |
63546 | 79 |
fix y K |
80 |
assume K: "0 < K" and *: "eventually (\<lambda>x. dist (f x) y \<le> K) F" |
|
51474
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents:
51472
diff
changeset
|
81 |
moreover have "eventually (\<lambda>x. dist (f x) 0 \<le> dist (f x) y + dist 0 y) F" |
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents:
51472
diff
changeset
|
82 |
by (intro always_eventually) (metis dist_commute dist_triangle) |
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents:
51472
diff
changeset
|
83 |
with * have "eventually (\<lambda>x. dist (f x) 0 \<le> K + dist 0 y) F" |
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents:
51472
diff
changeset
|
84 |
by eventually_elim auto |
60758 | 85 |
with \<open>0 < K\<close> show "\<exists>K>0. eventually (\<lambda>x. dist (f x) 0 \<le> K) F" |
51474
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents:
51472
diff
changeset
|
86 |
by (intro exI[of _ "K + dist 0 y"] add_pos_nonneg conjI zero_le_dist) auto |
62379
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents:
62369
diff
changeset
|
87 |
qed (force simp del: norm_conv_dist [symmetric]) |
31355 | 88 |
|
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
89 |
lemma BfunI: |
63546 | 90 |
assumes K: "eventually (\<lambda>x. norm (f x) \<le> K) F" |
91 |
shows "Bfun f F" |
|
92 |
unfolding Bfun_def |
|
31355 | 93 |
proof (intro exI conjI allI) |
94 |
show "0 < max K 1" by simp |
|
44195 | 95 |
show "eventually (\<lambda>x. norm (f x) \<le> max K 1) F" |
63546 | 96 |
using K by (rule eventually_mono) simp |
31355 | 97 |
qed |
98 |
||
99 |
lemma BfunE: |
|
44195 | 100 |
assumes "Bfun f F" |
101 |
obtains B where "0 < B" and "eventually (\<lambda>x. norm (f x) \<le> B) F" |
|
63546 | 102 |
using assms unfolding Bfun_def by blast |
31355 | 103 |
|
68614 | 104 |
lemma Cauchy_Bseq: |
105 |
assumes "Cauchy X" shows "Bseq X" |
|
106 |
proof - |
|
107 |
have "\<exists>y K. 0 < K \<and> (\<exists>N. \<forall>n\<ge>N. dist (X n) y \<le> K)" |
|
108 |
if "\<And>m n. \<lbrakk>m \<ge> M; n \<ge> M\<rbrakk> \<Longrightarrow> dist (X m) (X n) < 1" for M |
|
109 |
by (meson order.order_iff_strict that zero_less_one) |
|
110 |
with assms show ?thesis |
|
111 |
by (force simp: Cauchy_def Bfun_metric_def eventually_sequentially) |
|
112 |
qed |
|
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
113 |
|
60758 | 114 |
subsubsection \<open>Bounded Sequences\<close> |
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
115 |
|
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
116 |
lemma BseqI': "(\<And>n. norm (X n) \<le> K) \<Longrightarrow> Bseq X" |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
117 |
by (intro BfunI) (auto simp: eventually_sequentially) |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
118 |
|
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
119 |
lemma BseqI2': "\<forall>n\<ge>N. norm (X n) \<le> K \<Longrightarrow> Bseq X" |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
120 |
by (intro BfunI) (auto simp: eventually_sequentially) |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
121 |
|
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
122 |
lemma Bseq_def: "Bseq X \<longleftrightarrow> (\<exists>K>0. \<forall>n. norm (X n) \<le> K)" |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
123 |
unfolding Bfun_def eventually_sequentially |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
124 |
proof safe |
63546 | 125 |
fix N K |
126 |
assume "0 < K" "\<forall>n\<ge>N. norm (X n) \<le> K" |
|
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
127 |
then show "\<exists>K>0. \<forall>n. norm (X n) \<le> K" |
54863
82acc20ded73
prefer more canonical names for lemmas on min/max
haftmann
parents:
54263
diff
changeset
|
128 |
by (intro exI[of _ "max (Max (norm ` X ` {..N})) K"] max.strict_coboundedI2) |
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
129 |
(auto intro!: imageI not_less[where 'a=nat, THEN iffD1] Max_ge simp: le_max_iff_disj) |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
130 |
qed auto |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
131 |
|
63546 | 132 |
lemma BseqE: "Bseq X \<Longrightarrow> (\<And>K. 0 < K \<Longrightarrow> \<forall>n. norm (X n) \<le> K \<Longrightarrow> Q) \<Longrightarrow> Q" |
133 |
unfolding Bseq_def by auto |
|
134 |
||
135 |
lemma BseqD: "Bseq X \<Longrightarrow> \<exists>K. 0 < K \<and> (\<forall>n. norm (X n) \<le> K)" |
|
136 |
by (simp add: Bseq_def) |
|
137 |
||
138 |
lemma BseqI: "0 < K \<Longrightarrow> \<forall>n. norm (X n) \<le> K \<Longrightarrow> Bseq X" |
|
68615 | 139 |
by (auto simp: Bseq_def) |
63546 | 140 |
|
141 |
lemma Bseq_bdd_above: "Bseq X \<Longrightarrow> bdd_above (range X)" |
|
142 |
for X :: "nat \<Rightarrow> real" |
|
54263
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents:
54230
diff
changeset
|
143 |
proof (elim BseqE, intro bdd_aboveI2) |
63546 | 144 |
fix K n |
145 |
assume "0 < K" "\<forall>n. norm (X n) \<le> K" |
|
146 |
then show "X n \<le> K" |
|
54263
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents:
54230
diff
changeset
|
147 |
by (auto elim!: allE[of _ n]) |
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents:
54230
diff
changeset
|
148 |
qed |
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents:
54230
diff
changeset
|
149 |
|
63546 | 150 |
lemma Bseq_bdd_above': "Bseq X \<Longrightarrow> bdd_above (range (\<lambda>n. norm (X n)))" |
151 |
for X :: "nat \<Rightarrow> 'a :: real_normed_vector" |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
152 |
proof (elim BseqE, intro bdd_aboveI2) |
63546 | 153 |
fix K n |
154 |
assume "0 < K" "\<forall>n. norm (X n) \<le> K" |
|
155 |
then show "norm (X n) \<le> K" |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
156 |
by (auto elim!: allE[of _ n]) |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
157 |
qed |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
158 |
|
63546 | 159 |
lemma Bseq_bdd_below: "Bseq X \<Longrightarrow> bdd_below (range X)" |
160 |
for X :: "nat \<Rightarrow> real" |
|
54263
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents:
54230
diff
changeset
|
161 |
proof (elim BseqE, intro bdd_belowI2) |
63546 | 162 |
fix K n |
163 |
assume "0 < K" "\<forall>n. norm (X n) \<le> K" |
|
164 |
then show "- K \<le> X n" |
|
54263
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents:
54230
diff
changeset
|
165 |
by (auto elim!: allE[of _ n]) |
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents:
54230
diff
changeset
|
166 |
qed |
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents:
54230
diff
changeset
|
167 |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
168 |
lemma Bseq_eventually_mono: |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
169 |
assumes "eventually (\<lambda>n. norm (f n) \<le> norm (g n)) sequentially" "Bseq g" |
63546 | 170 |
shows "Bseq f" |
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
171 |
proof - |
67958
732c0b059463
tuned proofs and generalized some lemmas about limits
huffman
parents:
67950
diff
changeset
|
172 |
from assms(2) obtain K where "0 < K" and "eventually (\<lambda>n. norm (g n) \<le> K) sequentially" |
732c0b059463
tuned proofs and generalized some lemmas about limits
huffman
parents:
67950
diff
changeset
|
173 |
unfolding Bfun_def by fast |
732c0b059463
tuned proofs and generalized some lemmas about limits
huffman
parents:
67950
diff
changeset
|
174 |
with assms(1) have "eventually (\<lambda>n. norm (f n) \<le> K) sequentially" |
732c0b059463
tuned proofs and generalized some lemmas about limits
huffman
parents:
67950
diff
changeset
|
175 |
by (fast elim: eventually_elim2 order_trans) |
69272 | 176 |
with \<open>0 < K\<close> show "Bseq f" |
67958
732c0b059463
tuned proofs and generalized some lemmas about limits
huffman
parents:
67950
diff
changeset
|
177 |
unfolding Bfun_def by fast |
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
178 |
qed |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
179 |
|
63546 | 180 |
lemma lemma_NBseq_def: "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))" |
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
181 |
proof safe |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
182 |
fix K :: real |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
183 |
from reals_Archimedean2 obtain n :: nat where "K < real n" .. |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
184 |
then have "K \<le> real (Suc n)" by auto |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
185 |
moreover assume "\<forall>m. norm (X m) \<le> K" |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
186 |
ultimately have "\<forall>m. norm (X m) \<le> real (Suc n)" |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
187 |
by (blast intro: order_trans) |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
188 |
then show "\<exists>N. \<forall>n. norm (X n) \<le> real (Suc N)" .. |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
189 |
next |
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
190 |
show "\<And>N. \<forall>n. norm (X n) \<le> real (Suc N) \<Longrightarrow> \<exists>K>0. \<forall>n. norm (X n) \<le> K" |
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
191 |
using of_nat_0_less_iff by blast |
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
192 |
qed |
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
193 |
|
63546 | 194 |
text \<open>Alternative definition for \<open>Bseq\<close>.\<close> |
195 |
lemma Bseq_iff: "Bseq X \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))" |
|
196 |
by (simp add: Bseq_def) (simp add: lemma_NBseq_def) |
|
197 |
||
198 |
lemma lemma_NBseq_def2: "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))" |
|
68614 | 199 |
proof - |
200 |
have *: "\<And>N. \<forall>n. norm (X n) \<le> 1 + real N \<Longrightarrow> |
|
201 |
\<exists>N. \<forall>n. norm (X n) < 1 + real N" |
|
202 |
by (metis add.commute le_less_trans less_add_one of_nat_Suc) |
|
203 |
then show ?thesis |
|
204 |
unfolding lemma_NBseq_def |
|
205 |
by (metis less_le_not_le not_less_iff_gr_or_eq of_nat_Suc) |
|
206 |
qed |
|
63546 | 207 |
|
208 |
text \<open>Yet another definition for Bseq.\<close> |
|
209 |
lemma Bseq_iff1a: "Bseq X \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) < real (Suc N))" |
|
210 |
by (simp add: Bseq_def lemma_NBseq_def2) |
|
211 |
||
212 |
subsubsection \<open>A Few More Equivalence Theorems for Boundedness\<close> |
|
213 |
||
214 |
text \<open>Alternative formulation for boundedness.\<close> |
|
215 |
lemma Bseq_iff2: "Bseq X \<longleftrightarrow> (\<exists>k > 0. \<exists>x. \<forall>n. norm (X n + - x) \<le> k)" |
|
68614 | 216 |
by (metis BseqE BseqI' add.commute add_cancel_right_left add_uminus_conv_diff norm_add_leD |
217 |
norm_minus_cancel norm_minus_commute) |
|
63546 | 218 |
|
219 |
text \<open>Alternative formulation for boundedness.\<close> |
|
220 |
lemma Bseq_iff3: "Bseq X \<longleftrightarrow> (\<exists>k>0. \<exists>N. \<forall>n. norm (X n + - X N) \<le> k)" |
|
221 |
(is "?P \<longleftrightarrow> ?Q") |
|
53602 | 222 |
proof |
223 |
assume ?P |
|
63546 | 224 |
then obtain K where *: "0 < K" and **: "\<And>n. norm (X n) \<le> K" |
68615 | 225 |
by (auto simp: Bseq_def) |
53602 | 226 |
from * have "0 < K + norm (X 0)" by (rule order_less_le_trans) simp |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53602
diff
changeset
|
227 |
from ** have "\<forall>n. norm (X n - X 0) \<le> K + norm (X 0)" |
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53602
diff
changeset
|
228 |
by (auto intro: order_trans norm_triangle_ineq4) |
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53602
diff
changeset
|
229 |
then have "\<forall>n. norm (X n + - X 0) \<le> K + norm (X 0)" |
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53602
diff
changeset
|
230 |
by simp |
60758 | 231 |
with \<open>0 < K + norm (X 0)\<close> show ?Q by blast |
53602 | 232 |
next |
63546 | 233 |
assume ?Q |
68615 | 234 |
then show ?P by (auto simp: Bseq_iff2) |
53602 | 235 |
qed |
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
236 |
|
63546 | 237 |
|
238 |
subsubsection \<open>Upper Bounds and Lubs of Bounded Sequences\<close> |
|
239 |
||
240 |
lemma Bseq_minus_iff: "Bseq (\<lambda>n. - (X n) :: 'a::real_normed_vector) \<longleftrightarrow> Bseq X" |
|
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
241 |
by (simp add: Bseq_def) |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
242 |
|
62087
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
paulson
parents:
61976
diff
changeset
|
243 |
lemma Bseq_add: |
63546 | 244 |
fixes f :: "nat \<Rightarrow> 'a::real_normed_vector" |
245 |
assumes "Bseq f" |
|
246 |
shows "Bseq (\<lambda>x. f x + c)" |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
247 |
proof - |
63546 | 248 |
from assms obtain K where K: "\<And>x. norm (f x) \<le> K" |
249 |
unfolding Bseq_def by blast |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
250 |
{ |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
251 |
fix x :: nat |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
252 |
have "norm (f x + c) \<le> norm (f x) + norm c" by (rule norm_triangle_ineq) |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
253 |
also have "norm (f x) \<le> K" by (rule K) |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
254 |
finally have "norm (f x + c) \<le> K + norm c" by simp |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
255 |
} |
63546 | 256 |
then show ?thesis by (rule BseqI') |
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
257 |
qed |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
258 |
|
63546 | 259 |
lemma Bseq_add_iff: "Bseq (\<lambda>x. f x + c) \<longleftrightarrow> Bseq f" |
260 |
for f :: "nat \<Rightarrow> 'a::real_normed_vector" |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
261 |
using Bseq_add[of f c] Bseq_add[of "\<lambda>x. f x + c" "-c"] by auto |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
262 |
|
62087
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
paulson
parents:
61976
diff
changeset
|
263 |
lemma Bseq_mult: |
63546 | 264 |
fixes f g :: "nat \<Rightarrow> 'a::real_normed_field" |
265 |
assumes "Bseq f" and "Bseq g" |
|
266 |
shows "Bseq (\<lambda>x. f x * g x)" |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
267 |
proof - |
63546 | 268 |
from assms obtain K1 K2 where K: "norm (f x) \<le> K1" "K1 > 0" "norm (g x) \<le> K2" "K2 > 0" |
269 |
for x |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
270 |
unfolding Bseq_def by blast |
63546 | 271 |
then have "norm (f x * g x) \<le> K1 * K2" for x |
272 |
by (auto simp: norm_mult intro!: mult_mono) |
|
273 |
then show ?thesis by (rule BseqI') |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
274 |
qed |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
275 |
|
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
276 |
lemma Bfun_const [simp]: "Bfun (\<lambda>_. c) F" |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
277 |
unfolding Bfun_metric_def by (auto intro!: exI[of _ c] exI[of _ "1::real"]) |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
278 |
|
63546 | 279 |
lemma Bseq_cmult_iff: |
280 |
fixes c :: "'a::real_normed_field" |
|
281 |
assumes "c \<noteq> 0" |
|
282 |
shows "Bseq (\<lambda>x. c * f x) \<longleftrightarrow> Bseq f" |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
283 |
proof |
63546 | 284 |
assume "Bseq (\<lambda>x. c * f x)" |
285 |
with Bfun_const have "Bseq (\<lambda>x. inverse c * (c * f x))" |
|
286 |
by (rule Bseq_mult) |
|
287 |
with \<open>c \<noteq> 0\<close> show "Bseq f" |
|
288 |
by (simp add: divide_simps) |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
289 |
qed (intro Bseq_mult Bfun_const) |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
290 |
|
63546 | 291 |
lemma Bseq_subseq: "Bseq f \<Longrightarrow> Bseq (\<lambda>x. f (g x))" |
292 |
for f :: "nat \<Rightarrow> 'a::real_normed_vector" |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
293 |
unfolding Bseq_def by auto |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
294 |
|
63546 | 295 |
lemma Bseq_Suc_iff: "Bseq (\<lambda>n. f (Suc n)) \<longleftrightarrow> Bseq f" |
296 |
for f :: "nat \<Rightarrow> 'a::real_normed_vector" |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
297 |
using Bseq_offset[of f 1] by (auto intro: Bseq_subseq) |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
298 |
|
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
299 |
lemma increasing_Bseq_subseq_iff: |
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65680
diff
changeset
|
300 |
assumes "\<And>x y. x \<le> y \<Longrightarrow> norm (f x :: 'a::real_normed_vector) \<le> norm (f y)" "strict_mono g" |
63546 | 301 |
shows "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f" |
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
302 |
proof |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
303 |
assume "Bseq (\<lambda>x. f (g x))" |
63546 | 304 |
then obtain K where K: "\<And>x. norm (f (g x)) \<le> K" |
305 |
unfolding Bseq_def by auto |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
306 |
{ |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
307 |
fix x :: nat |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
308 |
from filterlim_subseq[OF assms(2)] obtain y where "g y \<ge> x" |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
309 |
by (auto simp: filterlim_at_top eventually_at_top_linorder) |
63546 | 310 |
then have "norm (f x) \<le> norm (f (g y))" |
311 |
using assms(1) by blast |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
312 |
also have "norm (f (g y)) \<le> K" by (rule K) |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
313 |
finally have "norm (f x) \<le> K" . |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
314 |
} |
63546 | 315 |
then show "Bseq f" by (rule BseqI') |
316 |
qed (use Bseq_subseq[of f g] in simp_all) |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
317 |
|
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
318 |
lemma nonneg_incseq_Bseq_subseq_iff: |
63546 | 319 |
fixes f :: "nat \<Rightarrow> real" |
320 |
and g :: "nat \<Rightarrow> nat" |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65680
diff
changeset
|
321 |
assumes "\<And>x. f x \<ge> 0" "incseq f" "strict_mono g" |
63546 | 322 |
shows "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f" |
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
323 |
using assms by (intro increasing_Bseq_subseq_iff) (auto simp: incseq_def) |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
324 |
|
63546 | 325 |
lemma Bseq_eq_bounded: "range f \<subseteq> {a..b} \<Longrightarrow> Bseq f" |
326 |
for a b :: real |
|
68614 | 327 |
proof (rule BseqI'[where K="max (norm a) (norm b)"]) |
328 |
fix n assume "range f \<subseteq> {a..b}" |
|
329 |
then have "f n \<in> {a..b}" |
|
330 |
by blast |
|
331 |
then show "norm (f n) \<le> max (norm a) (norm b)" |
|
332 |
by auto |
|
333 |
qed |
|
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
334 |
|
63546 | 335 |
lemma incseq_bounded: "incseq X \<Longrightarrow> \<forall>i. X i \<le> B \<Longrightarrow> Bseq X" |
336 |
for B :: real |
|
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
337 |
by (intro Bseq_eq_bounded[of X "X 0" B]) (auto simp: incseq_def) |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
338 |
|
63546 | 339 |
lemma decseq_bounded: "decseq X \<Longrightarrow> \<forall>i. B \<le> X i \<Longrightarrow> Bseq X" |
340 |
for B :: real |
|
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
341 |
by (intro Bseq_eq_bounded[of X B "X 0"]) (auto simp: decseq_def) |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
342 |
|
63546 | 343 |
|
60758 | 344 |
subsection \<open>Convergence to Zero\<close> |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
345 |
|
44081
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents:
44079
diff
changeset
|
346 |
definition Zfun :: "('a \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool" |
44195 | 347 |
where "Zfun f F = (\<forall>r>0. eventually (\<lambda>x. norm (f x) < r) F)" |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
348 |
|
63546 | 349 |
lemma ZfunI: "(\<And>r. 0 < r \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F) \<Longrightarrow> Zfun f F" |
350 |
by (simp add: Zfun_def) |
|
351 |
||
352 |
lemma ZfunD: "Zfun f F \<Longrightarrow> 0 < r \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F" |
|
353 |
by (simp add: Zfun_def) |
|
354 |
||
355 |
lemma Zfun_ssubst: "eventually (\<lambda>x. f x = g x) F \<Longrightarrow> Zfun g F \<Longrightarrow> Zfun f F" |
|
44081
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents:
44079
diff
changeset
|
356 |
unfolding Zfun_def by (auto elim!: eventually_rev_mp) |
31355 | 357 |
|
44195 | 358 |
lemma Zfun_zero: "Zfun (\<lambda>x. 0) F" |
44081
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents:
44079
diff
changeset
|
359 |
unfolding Zfun_def by simp |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
360 |
|
44195 | 361 |
lemma Zfun_norm_iff: "Zfun (\<lambda>x. norm (f x)) F = Zfun (\<lambda>x. f x) F" |
44081
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents:
44079
diff
changeset
|
362 |
unfolding Zfun_def by simp |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
363 |
|
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
364 |
lemma Zfun_imp_Zfun: |
44195 | 365 |
assumes f: "Zfun f F" |
63546 | 366 |
and g: "eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F" |
44195 | 367 |
shows "Zfun (\<lambda>x. g x) F" |
63546 | 368 |
proof (cases "0 < K") |
369 |
case K: True |
|
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
370 |
show ?thesis |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
371 |
proof (rule ZfunI) |
63546 | 372 |
fix r :: real |
373 |
assume "0 < r" |
|
374 |
then have "0 < r / K" using K by simp |
|
44195 | 375 |
then have "eventually (\<lambda>x. norm (f x) < r / K) F" |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
376 |
using ZfunD [OF f] by blast |
44195 | 377 |
with g show "eventually (\<lambda>x. norm (g x) < r) F" |
46887 | 378 |
proof eventually_elim |
379 |
case (elim x) |
|
63546 | 380 |
then have "norm (f x) * K < r" |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
381 |
by (simp add: pos_less_divide_eq K) |
63546 | 382 |
then show ?case |
46887 | 383 |
by (simp add: order_le_less_trans [OF elim(1)]) |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
384 |
qed |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
385 |
qed |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
386 |
next |
63546 | 387 |
case False |
388 |
then have K: "K \<le> 0" by (simp only: not_less) |
|
31355 | 389 |
show ?thesis |
390 |
proof (rule ZfunI) |
|
391 |
fix r :: real |
|
392 |
assume "0 < r" |
|
44195 | 393 |
from g show "eventually (\<lambda>x. norm (g x) < r) F" |
46887 | 394 |
proof eventually_elim |
395 |
case (elim x) |
|
396 |
also have "norm (f x) * K \<le> norm (f x) * 0" |
|
31355 | 397 |
using K norm_ge_zero by (rule mult_left_mono) |
46887 | 398 |
finally show ?case |
60758 | 399 |
using \<open>0 < r\<close> by simp |
31355 | 400 |
qed |
401 |
qed |
|
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
402 |
qed |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
403 |
|
63546 | 404 |
lemma Zfun_le: "Zfun g F \<Longrightarrow> \<forall>x. norm (f x) \<le> norm (g x) \<Longrightarrow> Zfun f F" |
405 |
by (erule Zfun_imp_Zfun [where K = 1]) simp |
|
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
406 |
|
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
407 |
lemma Zfun_add: |
63546 | 408 |
assumes f: "Zfun f F" |
409 |
and g: "Zfun g F" |
|
44195 | 410 |
shows "Zfun (\<lambda>x. f x + g x) F" |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
411 |
proof (rule ZfunI) |
63546 | 412 |
fix r :: real |
413 |
assume "0 < r" |
|
414 |
then have r: "0 < r / 2" by simp |
|
44195 | 415 |
have "eventually (\<lambda>x. norm (f x) < r/2) F" |
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
416 |
using f r by (rule ZfunD) |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
417 |
moreover |
44195 | 418 |
have "eventually (\<lambda>x. norm (g x) < r/2) F" |
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
419 |
using g r by (rule ZfunD) |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
420 |
ultimately |
44195 | 421 |
show "eventually (\<lambda>x. norm (f x + g x) < r) F" |
46887 | 422 |
proof eventually_elim |
423 |
case (elim x) |
|
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
424 |
have "norm (f x + g x) \<le> norm (f x) + norm (g x)" |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
425 |
by (rule norm_triangle_ineq) |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
426 |
also have "\<dots> < r/2 + r/2" |
46887 | 427 |
using elim by (rule add_strict_mono) |
428 |
finally show ?case |
|
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
429 |
by simp |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
430 |
qed |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
431 |
qed |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
432 |
|
44195 | 433 |
lemma Zfun_minus: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. - f x) F" |
44081
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents:
44079
diff
changeset
|
434 |
unfolding Zfun_def by simp |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
435 |
|
63546 | 436 |
lemma Zfun_diff: "Zfun f F \<Longrightarrow> Zfun g F \<Longrightarrow> Zfun (\<lambda>x. f x - g x) F" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53602
diff
changeset
|
437 |
using Zfun_add [of f F "\<lambda>x. - g x"] by (simp add: Zfun_minus) |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
438 |
|
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
439 |
lemma (in bounded_linear) Zfun: |
44195 | 440 |
assumes g: "Zfun g F" |
441 |
shows "Zfun (\<lambda>x. f (g x)) F" |
|
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
442 |
proof - |
63546 | 443 |
obtain K where "norm (f x) \<le> norm x * K" for x |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
444 |
using bounded by blast |
44195 | 445 |
then have "eventually (\<lambda>x. norm (f (g x)) \<le> norm (g x) * K) F" |
31355 | 446 |
by simp |
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
447 |
with g show ?thesis |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
448 |
by (rule Zfun_imp_Zfun) |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
449 |
qed |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
450 |
|
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
451 |
lemma (in bounded_bilinear) Zfun: |
44195 | 452 |
assumes f: "Zfun f F" |
63546 | 453 |
and g: "Zfun g F" |
44195 | 454 |
shows "Zfun (\<lambda>x. f x ** g x) F" |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
455 |
proof (rule ZfunI) |
63546 | 456 |
fix r :: real |
457 |
assume r: "0 < r" |
|
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
458 |
obtain K where K: "0 < K" |
63546 | 459 |
and norm_le: "norm (x ** y) \<le> norm x * norm y * K" for x y |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
460 |
using pos_bounded by blast |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
461 |
from K have K': "0 < inverse K" |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
462 |
by (rule positive_imp_inverse_positive) |
44195 | 463 |
have "eventually (\<lambda>x. norm (f x) < r) F" |
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
464 |
using f r by (rule ZfunD) |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
465 |
moreover |
44195 | 466 |
have "eventually (\<lambda>x. norm (g x) < inverse K) F" |
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
467 |
using g K' by (rule ZfunD) |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
468 |
ultimately |
44195 | 469 |
show "eventually (\<lambda>x. norm (f x ** g x) < r) F" |
46887 | 470 |
proof eventually_elim |
471 |
case (elim x) |
|
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
472 |
have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K" |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
473 |
by (rule norm_le) |
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
474 |
also have "norm (f x) * norm (g x) * K < r * inverse K * K" |
46887 | 475 |
by (intro mult_strict_right_mono mult_strict_mono' norm_ge_zero elim K) |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
476 |
also from K have "r * inverse K * K = r" |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
477 |
by simp |
46887 | 478 |
finally show ?case . |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
479 |
qed |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
480 |
qed |
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
481 |
|
63546 | 482 |
lemma (in bounded_bilinear) Zfun_left: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. f x ** a) F" |
44081
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents:
44079
diff
changeset
|
483 |
by (rule bounded_linear_left [THEN bounded_linear.Zfun]) |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
484 |
|
63546 | 485 |
lemma (in bounded_bilinear) Zfun_right: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. a ** f x) F" |
44081
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents:
44079
diff
changeset
|
486 |
by (rule bounded_linear_right [THEN bounded_linear.Zfun]) |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
487 |
|
44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
44253
diff
changeset
|
488 |
lemmas Zfun_mult = bounded_bilinear.Zfun [OF bounded_bilinear_mult] |
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
44253
diff
changeset
|
489 |
lemmas Zfun_mult_right = bounded_bilinear.Zfun_right [OF bounded_bilinear_mult] |
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
44253
diff
changeset
|
490 |
lemmas Zfun_mult_left = bounded_bilinear.Zfun_left [OF bounded_bilinear_mult] |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
491 |
|
61973 | 492 |
lemma tendsto_Zfun_iff: "(f \<longlongrightarrow> a) F = Zfun (\<lambda>x. f x - a) F" |
44081
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents:
44079
diff
changeset
|
493 |
by (simp only: tendsto_iff Zfun_def dist_norm) |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
494 |
|
63546 | 495 |
lemma tendsto_0_le: |
496 |
"(f \<longlongrightarrow> 0) F \<Longrightarrow> eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F \<Longrightarrow> (g \<longlongrightarrow> 0) F" |
|
56366 | 497 |
by (simp add: Zfun_imp_Zfun tendsto_Zfun_iff) |
498 |
||
63546 | 499 |
|
60758 | 500 |
subsubsection \<open>Distance and norms\<close> |
36662
621122eeb138
generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents:
36656
diff
changeset
|
501 |
|
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
502 |
lemma tendsto_dist [tendsto_intros]: |
63546 | 503 |
fixes l m :: "'a::metric_space" |
504 |
assumes f: "(f \<longlongrightarrow> l) F" |
|
505 |
and g: "(g \<longlongrightarrow> m) F" |
|
61973 | 506 |
shows "((\<lambda>x. dist (f x) (g x)) \<longlongrightarrow> dist l m) F" |
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
507 |
proof (rule tendstoI) |
63546 | 508 |
fix e :: real |
509 |
assume "0 < e" |
|
510 |
then have e2: "0 < e/2" by simp |
|
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
511 |
from tendstoD [OF f e2] tendstoD [OF g e2] |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
512 |
show "eventually (\<lambda>x. dist (dist (f x) (g x)) (dist l m) < e) F" |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
513 |
proof (eventually_elim) |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
514 |
case (elim x) |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
515 |
then show "dist (dist (f x) (g x)) (dist l m) < e" |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
516 |
unfolding dist_real_def |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
517 |
using dist_triangle2 [of "f x" "g x" "l"] |
63546 | 518 |
and dist_triangle2 [of "g x" "l" "m"] |
519 |
and dist_triangle3 [of "l" "m" "f x"] |
|
520 |
and dist_triangle [of "f x" "m" "g x"] |
|
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
521 |
by arith |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
522 |
qed |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
523 |
qed |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
524 |
|
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
525 |
lemma continuous_dist[continuous_intros]: |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
526 |
fixes f g :: "_ \<Rightarrow> 'a :: metric_space" |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
527 |
shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. dist (f x) (g x))" |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
528 |
unfolding continuous_def by (rule tendsto_dist) |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
529 |
|
56371
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents:
56366
diff
changeset
|
530 |
lemma continuous_on_dist[continuous_intros]: |
51531
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
531 |
fixes f g :: "_ \<Rightarrow> 'a :: metric_space" |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
532 |
shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. dist (f x) (g x))" |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
533 |
unfolding continuous_on_def by (auto intro: tendsto_dist) |
f415febf4234
remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents:
51529
diff
changeset
|
534 |
|
69918
eddcc7c726f3
new material;' strengthened material; moved proofs out of Function_Topology in order to lessen its dependencies
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
535 |
lemma continuous_at_dist: "isCont (dist a) b" |
eddcc7c726f3
new material;' strengthened material; moved proofs out of Function_Topology in order to lessen its dependencies
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
536 |
using continuous_on_dist [OF continuous_on_const continuous_on_id] continuous_on_eq_continuous_within by blast |
eddcc7c726f3
new material;' strengthened material; moved proofs out of Function_Topology in order to lessen its dependencies
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
537 |
|
63546 | 538 |
lemma tendsto_norm [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> norm a) F" |
44081
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents:
44079
diff
changeset
|
539 |
unfolding norm_conv_dist by (intro tendsto_intros) |
36662
621122eeb138
generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents:
36656
diff
changeset
|
540 |
|
63546 | 541 |
lemma continuous_norm [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. norm (f x))" |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
542 |
unfolding continuous_def by (rule tendsto_norm) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
543 |
|
56371
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents:
56366
diff
changeset
|
544 |
lemma continuous_on_norm [continuous_intros]: |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
545 |
"continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. norm (f x))" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
546 |
unfolding continuous_on_def by (auto intro: tendsto_norm) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
547 |
|
63546 | 548 |
lemma tendsto_norm_zero: "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F" |
549 |
by (drule tendsto_norm) simp |
|
550 |
||
551 |
lemma tendsto_norm_zero_cancel: "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> 0) F" |
|
44081
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents:
44079
diff
changeset
|
552 |
unfolding tendsto_iff dist_norm by simp |
36662
621122eeb138
generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents:
36656
diff
changeset
|
553 |
|
63546 | 554 |
lemma tendsto_norm_zero_iff: "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F" |
44081
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents:
44079
diff
changeset
|
555 |
unfolding tendsto_iff dist_norm by simp |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
556 |
|
63546 | 557 |
lemma tendsto_rabs [tendsto_intros]: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> \<bar>l\<bar>) F" |
558 |
for l :: real |
|
559 |
by (fold real_norm_def) (rule tendsto_norm) |
|
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
560 |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
561 |
lemma continuous_rabs [continuous_intros]: |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
562 |
"continuous F f \<Longrightarrow> continuous F (\<lambda>x. \<bar>f x :: real\<bar>)" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
563 |
unfolding real_norm_def[symmetric] by (rule continuous_norm) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
564 |
|
56371
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents:
56366
diff
changeset
|
565 |
lemma continuous_on_rabs [continuous_intros]: |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
566 |
"continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. \<bar>f x :: real\<bar>)" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
567 |
unfolding real_norm_def[symmetric] by (rule continuous_on_norm) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
568 |
|
63546 | 569 |
lemma tendsto_rabs_zero: "(f \<longlongrightarrow> (0::real)) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> 0) F" |
570 |
by (fold real_norm_def) (rule tendsto_norm_zero) |
|
571 |
||
572 |
lemma tendsto_rabs_zero_cancel: "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<Longrightarrow> (f \<longlongrightarrow> 0) F" |
|
573 |
by (fold real_norm_def) (rule tendsto_norm_zero_cancel) |
|
574 |
||
575 |
lemma tendsto_rabs_zero_iff: "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F" |
|
576 |
by (fold real_norm_def) (rule tendsto_norm_zero_iff) |
|
577 |
||
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
578 |
|
62368 | 579 |
subsection \<open>Topological Monoid\<close> |
580 |
||
581 |
class topological_monoid_add = topological_space + monoid_add + |
|
582 |
assumes tendsto_add_Pair: "LIM x (nhds a \<times>\<^sub>F nhds b). fst x + snd x :> nhds (a + b)" |
|
583 |
||
584 |
class topological_comm_monoid_add = topological_monoid_add + comm_monoid_add |
|
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
585 |
|
31565 | 586 |
lemma tendsto_add [tendsto_intros]: |
62368 | 587 |
fixes a b :: "'a::topological_monoid_add" |
588 |
shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> a + b) F" |
|
589 |
using filterlim_compose[OF tendsto_add_Pair, of "\<lambda>x. (f x, g x)" a b F] |
|
590 |
by (simp add: nhds_prod[symmetric] tendsto_Pair) |
|
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
591 |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
592 |
lemma continuous_add [continuous_intros]: |
62368 | 593 |
fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add" |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
594 |
shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x + g x)" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
595 |
unfolding continuous_def by (rule tendsto_add) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
596 |
|
56371
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents:
56366
diff
changeset
|
597 |
lemma continuous_on_add [continuous_intros]: |
62368 | 598 |
fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add" |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
599 |
shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x + g x)" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
600 |
unfolding continuous_on_def by (auto intro: tendsto_add) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
601 |
|
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
602 |
lemma tendsto_add_zero: |
62368 | 603 |
fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add" |
63546 | 604 |
shows "(f \<longlongrightarrow> 0) F \<Longrightarrow> (g \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> 0) F" |
605 |
by (drule (1) tendsto_add) simp |
|
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
606 |
|
64267 | 607 |
lemma tendsto_sum [tendsto_intros]: |
62368 | 608 |
fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_add" |
63915 | 609 |
shows "(\<And>i. i \<in> I \<Longrightarrow> (f i \<longlongrightarrow> a i) F) \<Longrightarrow> ((\<lambda>x. \<Sum>i\<in>I. f i x) \<longlongrightarrow> (\<Sum>i\<in>I. a i)) F" |
610 |
by (induct I rule: infinite_finite_induct) (simp_all add: tendsto_add) |
|
62368 | 611 |
|
67673
c8caefb20564
lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
612 |
lemma tendsto_null_sum: |
c8caefb20564
lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
613 |
fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_add" |
c8caefb20564
lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
614 |
assumes "\<And>i. i \<in> I \<Longrightarrow> ((\<lambda>x. f x i) \<longlongrightarrow> 0) F" |
c8caefb20564
lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
615 |
shows "((\<lambda>i. sum (f i) I) \<longlongrightarrow> 0) F" |
c8caefb20564
lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
616 |
using tendsto_sum [of I "\<lambda>x y. f y x" "\<lambda>x. 0"] assms by simp |
c8caefb20564
lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
617 |
|
64267 | 618 |
lemma continuous_sum [continuous_intros]: |
62368 | 619 |
fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_add" |
63301 | 620 |
shows "(\<And>i. i \<in> I \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Sum>i\<in>I. f i x)" |
64267 | 621 |
unfolding continuous_def by (rule tendsto_sum) |
622 |
||
623 |
lemma continuous_on_sum [continuous_intros]: |
|
62368 | 624 |
fixes f :: "'a \<Rightarrow> 'b::topological_space \<Rightarrow> 'c::topological_comm_monoid_add" |
63301 | 625 |
shows "(\<And>i. i \<in> I \<Longrightarrow> continuous_on S (f i)) \<Longrightarrow> continuous_on S (\<lambda>x. \<Sum>i\<in>I. f i x)" |
64267 | 626 |
unfolding continuous_on_def by (auto intro: tendsto_sum) |
62368 | 627 |
|
62369 | 628 |
instance nat :: topological_comm_monoid_add |
63546 | 629 |
by standard |
630 |
(simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal) |
|
62369 | 631 |
|
632 |
instance int :: topological_comm_monoid_add |
|
63546 | 633 |
by standard |
634 |
(simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal) |
|
635 |
||
62369 | 636 |
|
63081
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
637 |
subsubsection \<open>Topological group\<close> |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
638 |
|
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
639 |
class topological_group_add = topological_monoid_add + group_add + |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
640 |
assumes tendsto_uminus_nhds: "(uminus \<longlongrightarrow> - a) (nhds a)" |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
641 |
begin |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
642 |
|
63546 | 643 |
lemma tendsto_minus [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> - a) F" |
63081
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
644 |
by (rule filterlim_compose[OF tendsto_uminus_nhds]) |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
645 |
|
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
646 |
end |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
647 |
|
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
648 |
class topological_ab_group_add = topological_group_add + ab_group_add |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
649 |
|
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
650 |
instance topological_ab_group_add < topological_comm_monoid_add .. |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
651 |
|
63546 | 652 |
lemma continuous_minus [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. - f x)" |
653 |
for f :: "'a::t2_space \<Rightarrow> 'b::topological_group_add" |
|
63081
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
654 |
unfolding continuous_def by (rule tendsto_minus) |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
655 |
|
63546 | 656 |
lemma continuous_on_minus [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. - f x)" |
657 |
for f :: "_ \<Rightarrow> 'b::topological_group_add" |
|
63081
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
658 |
unfolding continuous_on_def by (auto intro: tendsto_minus) |
62368 | 659 |
|
63546 | 660 |
lemma tendsto_minus_cancel: "((\<lambda>x. - f x) \<longlongrightarrow> - a) F \<Longrightarrow> (f \<longlongrightarrow> a) F" |
661 |
for a :: "'a::topological_group_add" |
|
662 |
by (drule tendsto_minus) simp |
|
63081
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
663 |
|
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
664 |
lemma tendsto_minus_cancel_left: |
63546 | 665 |
"(f \<longlongrightarrow> - (y::_::topological_group_add)) F \<longleftrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> y) F" |
63081
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
666 |
using tendsto_minus_cancel[of f "- y" F] tendsto_minus[of f "- y" F] |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
667 |
by auto |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
668 |
|
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
669 |
lemma tendsto_diff [tendsto_intros]: |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
670 |
fixes a b :: "'a::topological_group_add" |
63546 | 671 |
shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> a - b) F" |
63081
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
672 |
using tendsto_add [of f a F "\<lambda>x. - g x" "- b"] by (simp add: tendsto_minus) |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
673 |
|
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
674 |
lemma continuous_diff [continuous_intros]: |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
675 |
fixes f g :: "'a::t2_space \<Rightarrow> 'b::topological_group_add" |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
676 |
shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x - g x)" |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
677 |
unfolding continuous_def by (rule tendsto_diff) |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
678 |
|
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
679 |
lemma continuous_on_diff [continuous_intros]: |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
680 |
fixes f g :: "_ \<Rightarrow> 'b::topological_group_add" |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
681 |
shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x - g x)" |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
682 |
unfolding continuous_on_def by (auto intro: tendsto_diff) |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
683 |
|
67399 | 684 |
lemma continuous_on_op_minus: "continuous_on (s::'a::topological_group_add set) ((-) x)" |
63081
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
685 |
by (rule continuous_intros | simp)+ |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
686 |
|
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
687 |
instance real_normed_vector < topological_ab_group_add |
62368 | 688 |
proof |
63546 | 689 |
fix a b :: 'a |
690 |
show "((\<lambda>x. fst x + snd x) \<longlongrightarrow> a + b) (nhds a \<times>\<^sub>F nhds b)" |
|
62368 | 691 |
unfolding tendsto_Zfun_iff add_diff_add |
692 |
using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"] |
|
693 |
by (intro Zfun_add) |
|
68615 | 694 |
(auto simp: tendsto_Zfun_iff[symmetric] nhds_prod[symmetric] intro!: tendsto_fst) |
63081
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
695 |
show "(uminus \<longlongrightarrow> - a) (nhds a)" |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
696 |
unfolding tendsto_Zfun_iff minus_diff_minus |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
697 |
using filterlim_ident[of "nhds a"] |
5a5beb3dbe7e
introduced class topological_group between topological_monoid and real_normed_vector
immler
parents:
63040
diff
changeset
|
698 |
by (intro Zfun_minus) (simp add: tendsto_Zfun_iff) |
62368 | 699 |
qed |
700 |
||
65204
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents:
65036
diff
changeset
|
701 |
lemmas real_tendsto_sandwich = tendsto_sandwich[where 'a=real] |
50999 | 702 |
|
63546 | 703 |
|
60758 | 704 |
subsubsection \<open>Linear operators and multiplication\<close> |
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
705 |
|
63546 | 706 |
lemma linear_times: "linear (\<lambda>x. c * x)" |
707 |
for c :: "'a::real_algebra" |
|
61806
d2e62ae01cd8
Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents:
61799
diff
changeset
|
708 |
by (auto simp: linearI distrib_left) |
d2e62ae01cd8
Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents:
61799
diff
changeset
|
709 |
|
63546 | 710 |
lemma (in bounded_linear) tendsto: "(g \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> f a) F" |
44081
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents:
44079
diff
changeset
|
711 |
by (simp only: tendsto_Zfun_iff diff [symmetric] Zfun) |
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
712 |
|
63546 | 713 |
lemma (in bounded_linear) continuous: "continuous F g \<Longrightarrow> continuous F (\<lambda>x. f (g x))" |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
714 |
using tendsto[of g _ F] by (auto simp: continuous_def) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
715 |
|
63546 | 716 |
lemma (in bounded_linear) continuous_on: "continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f (g x))" |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
717 |
using tendsto[of g] by (auto simp: continuous_on_def) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
718 |
|
63546 | 719 |
lemma (in bounded_linear) tendsto_zero: "(g \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> 0) F" |
720 |
by (drule tendsto) (simp only: zero) |
|
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
721 |
|
44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
44253
diff
changeset
|
722 |
lemma (in bounded_bilinear) tendsto: |
63546 | 723 |
"(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x ** g x) \<longlongrightarrow> a ** b) F" |
724 |
by (simp only: tendsto_Zfun_iff prod_diff_prod Zfun_add Zfun Zfun_left Zfun_right) |
|
31349
2261c8781f73
new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff
changeset
|
725 |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
726 |
lemma (in bounded_bilinear) continuous: |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
727 |
"continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x ** g x)" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
728 |
using tendsto[of f _ F g] by (auto simp: continuous_def) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
729 |
|
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
730 |
lemma (in bounded_bilinear) continuous_on: |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
731 |
"continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x ** g x)" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
732 |
using tendsto[of f _ _ g] by (auto simp: continuous_on_def) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
733 |
|
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
734 |
lemma (in bounded_bilinear) tendsto_zero: |
61973 | 735 |
assumes f: "(f \<longlongrightarrow> 0) F" |
63546 | 736 |
and g: "(g \<longlongrightarrow> 0) F" |
61973 | 737 |
shows "((\<lambda>x. f x ** g x) \<longlongrightarrow> 0) F" |
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
738 |
using tendsto [OF f g] by (simp add: zero_left) |
31355 | 739 |
|
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
740 |
lemma (in bounded_bilinear) tendsto_left_zero: |
61973 | 741 |
"(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x ** c) \<longlongrightarrow> 0) F" |
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
742 |
by (rule bounded_linear.tendsto_zero [OF bounded_linear_left]) |
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
743 |
|
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
744 |
lemma (in bounded_bilinear) tendsto_right_zero: |
61973 | 745 |
"(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. c ** f x) \<longlongrightarrow> 0) F" |
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
746 |
by (rule bounded_linear.tendsto_zero [OF bounded_linear_right]) |
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
747 |
|
44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
44253
diff
changeset
|
748 |
lemmas tendsto_of_real [tendsto_intros] = |
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
44253
diff
changeset
|
749 |
bounded_linear.tendsto [OF bounded_linear_of_real] |
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
44253
diff
changeset
|
750 |
|
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
44253
diff
changeset
|
751 |
lemmas tendsto_scaleR [tendsto_intros] = |
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
44253
diff
changeset
|
752 |
bounded_bilinear.tendsto [OF bounded_bilinear_scaleR] |
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
44253
diff
changeset
|
753 |
|
68064
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
754 |
|
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
755 |
text\<open>Analogous type class for multiplication\<close> |
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
756 |
class topological_semigroup_mult = topological_space + semigroup_mult + |
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
757 |
assumes tendsto_mult_Pair: "LIM x (nhds a \<times>\<^sub>F nhds b). fst x * snd x :> nhds (a * b)" |
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
758 |
|
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
759 |
instance real_normed_algebra < topological_semigroup_mult |
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
760 |
proof |
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
761 |
fix a b :: 'a |
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
762 |
show "((\<lambda>x. fst x * snd x) \<longlongrightarrow> a * b) (nhds a \<times>\<^sub>F nhds b)" |
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
763 |
unfolding nhds_prod[symmetric] |
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
764 |
using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"] |
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
765 |
by (simp add: bounded_bilinear.tendsto [OF bounded_bilinear_mult]) |
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
766 |
qed |
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
767 |
|
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
768 |
lemma tendsto_mult [tendsto_intros]: |
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
769 |
fixes a b :: "'a::topological_semigroup_mult" |
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
770 |
shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x * g x) \<longlongrightarrow> a * b) F" |
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
771 |
using filterlim_compose[OF tendsto_mult_Pair, of "\<lambda>x. (f x, g x)" a b F] |
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
772 |
by (simp add: nhds_prod[symmetric] tendsto_Pair) |
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
773 |
|
63546 | 774 |
lemma tendsto_mult_left: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. c * (f x)) \<longlongrightarrow> c * l) F" |
68064
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
775 |
for c :: "'a::topological_semigroup_mult" |
63546 | 776 |
by (rule tendsto_mult [OF tendsto_const]) |
777 |
||
778 |
lemma tendsto_mult_right: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. (f x) * c) \<longlongrightarrow> l * c) F" |
|
68064
b249fab48c76
type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents:
67958
diff
changeset
|
779 |
for c :: "'a::topological_semigroup_mult" |
63546 | 780 |
by (rule tendsto_mult [OF _ tendsto_const]) |
61806
d2e62ae01cd8
Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents:
61799
diff
changeset
|
781 |
|
70803
2d658afa1fc0
Generalised two results concerning limits from the real numbers to type classes
paulson <lp15@cam.ac.uk>
parents:
70723
diff
changeset
|
782 |
lemma tendsto_mult_left_iff: |
2d658afa1fc0
Generalised two results concerning limits from the real numbers to type classes
paulson <lp15@cam.ac.uk>
parents:
70723
diff
changeset
|
783 |
"c \<noteq> 0 \<Longrightarrow> tendsto(\<lambda>x. c * f x) (c * l) F \<longleftrightarrow> tendsto f l F" for c :: "'a::{topological_semigroup_mult,field}" |
70688
3d894e1cfc75
new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents:
70532
diff
changeset
|
784 |
by (auto simp: tendsto_mult_left dest: tendsto_mult_left [where c = "1/c"]) |
3d894e1cfc75
new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents:
70532
diff
changeset
|
785 |
|
70803
2d658afa1fc0
Generalised two results concerning limits from the real numbers to type classes
paulson <lp15@cam.ac.uk>
parents:
70723
diff
changeset
|
786 |
lemma tendsto_mult_right_iff: |
2d658afa1fc0
Generalised two results concerning limits from the real numbers to type classes
paulson <lp15@cam.ac.uk>
parents:
70723
diff
changeset
|
787 |
"c \<noteq> 0 \<Longrightarrow> tendsto(\<lambda>x. f x * c) (l * c) F \<longleftrightarrow> tendsto f l F" for c :: "'a::{topological_semigroup_mult,field}" |
2d658afa1fc0
Generalised two results concerning limits from the real numbers to type classes
paulson <lp15@cam.ac.uk>
parents:
70723
diff
changeset
|
788 |
by (auto simp: tendsto_mult_right dest: tendsto_mult_left [where c = "1/c"]) |
70688
3d894e1cfc75
new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents:
70532
diff
changeset
|
789 |
|
70365
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
69918
diff
changeset
|
790 |
lemma lim_const_over_n [tendsto_intros]: |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
69918
diff
changeset
|
791 |
fixes a :: "'a::real_normed_field" |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
69918
diff
changeset
|
792 |
shows "(\<lambda>n. a / of_nat n) \<longlonglongrightarrow> 0" |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
69918
diff
changeset
|
793 |
using tendsto_mult [OF tendsto_const [of a] lim_1_over_n] by simp |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
69918
diff
changeset
|
794 |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
795 |
lemmas continuous_of_real [continuous_intros] = |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
796 |
bounded_linear.continuous [OF bounded_linear_of_real] |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
797 |
|
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
798 |
lemmas continuous_scaleR [continuous_intros] = |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
799 |
bounded_bilinear.continuous [OF bounded_bilinear_scaleR] |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
800 |
|
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
801 |
lemmas continuous_mult [continuous_intros] = |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
802 |
bounded_bilinear.continuous [OF bounded_bilinear_mult] |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
803 |
|
56371
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents:
56366
diff
changeset
|
804 |
lemmas continuous_on_of_real [continuous_intros] = |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
805 |
bounded_linear.continuous_on [OF bounded_linear_of_real] |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
806 |
|
56371
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents:
56366
diff
changeset
|
807 |
lemmas continuous_on_scaleR [continuous_intros] = |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
808 |
bounded_bilinear.continuous_on [OF bounded_bilinear_scaleR] |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
809 |
|
56371
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents:
56366
diff
changeset
|
810 |
lemmas continuous_on_mult [continuous_intros] = |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
811 |
bounded_bilinear.continuous_on [OF bounded_bilinear_mult] |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
812 |
|
44568
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44342
diff
changeset
|
813 |
lemmas tendsto_mult_zero = |
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44342
diff
changeset
|
814 |
bounded_bilinear.tendsto_zero [OF bounded_bilinear_mult] |
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44342
diff
changeset
|
815 |
|
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44342
diff
changeset
|
816 |
lemmas tendsto_mult_left_zero = |
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44342
diff
changeset
|
817 |
bounded_bilinear.tendsto_left_zero [OF bounded_bilinear_mult] |
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44342
diff
changeset
|
818 |
|
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44342
diff
changeset
|
819 |
lemmas tendsto_mult_right_zero = |
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44342
diff
changeset
|
820 |
bounded_bilinear.tendsto_right_zero [OF bounded_bilinear_mult] |
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44342
diff
changeset
|
821 |
|
68296
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
822 |
|
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
823 |
lemma continuous_mult_left: |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
824 |
fixes c::"'a::real_normed_algebra" |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
825 |
shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. c * f x)" |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
826 |
by (rule continuous_mult [OF continuous_const]) |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
827 |
|
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
828 |
lemma continuous_mult_right: |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
829 |
fixes c::"'a::real_normed_algebra" |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
830 |
shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x * c)" |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
831 |
by (rule continuous_mult [OF _ continuous_const]) |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
832 |
|
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
833 |
lemma continuous_on_mult_left: |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
834 |
fixes c::"'a::real_normed_algebra" |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
835 |
shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. c * f x)" |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
836 |
by (rule continuous_on_mult [OF continuous_on_const]) |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
837 |
|
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
838 |
lemma continuous_on_mult_right: |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
839 |
fixes c::"'a::real_normed_algebra" |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
840 |
shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x * c)" |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
841 |
by (rule continuous_on_mult [OF _ continuous_on_const]) |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
842 |
|
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
843 |
lemma continuous_on_mult_const [simp]: |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
844 |
fixes c::"'a::real_normed_algebra" |
69064
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents:
68860
diff
changeset
|
845 |
shows "continuous_on s ((*) c)" |
68296
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
846 |
by (intro continuous_on_mult_left continuous_on_id) |
69d680e94961
tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents:
68064
diff
changeset
|
847 |
|
66793
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66456
diff
changeset
|
848 |
lemma tendsto_divide_zero: |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66456
diff
changeset
|
849 |
fixes c :: "'a::real_normed_field" |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66456
diff
changeset
|
850 |
shows "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x / c) \<longlongrightarrow> 0) F" |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66456
diff
changeset
|
851 |
by (cases "c=0") (simp_all add: divide_inverse tendsto_mult_left_zero) |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66456
diff
changeset
|
852 |
|
63546 | 853 |
lemma tendsto_power [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x ^ n) \<longlongrightarrow> a ^ n) F" |
854 |
for f :: "'a \<Rightarrow> 'b::{power,real_normed_algebra}" |
|
58729
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents:
57512
diff
changeset
|
855 |
by (induct n) (simp_all add: tendsto_mult) |
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
856 |
|
65680
378a2f11bec9
Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents:
65578
diff
changeset
|
857 |
lemma tendsto_null_power: "\<lbrakk>(f \<longlongrightarrow> 0) F; 0 < n\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x ^ n) \<longlongrightarrow> 0) F" |
378a2f11bec9
Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents:
65578
diff
changeset
|
858 |
for f :: "'a \<Rightarrow> 'b::{power,real_normed_algebra_1}" |
378a2f11bec9
Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents:
65578
diff
changeset
|
859 |
using tendsto_power [of f 0 F n] by (simp add: power_0_left) |
378a2f11bec9
Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents:
65578
diff
changeset
|
860 |
|
63546 | 861 |
lemma continuous_power [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. (f x)^n)" |
862 |
for f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}" |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
863 |
unfolding continuous_def by (rule tendsto_power) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
864 |
|
56371
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents:
56366
diff
changeset
|
865 |
lemma continuous_on_power [continuous_intros]: |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
866 |
fixes f :: "_ \<Rightarrow> 'b::{power,real_normed_algebra}" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
867 |
shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. (f x)^n)" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
868 |
unfolding continuous_on_def by (auto intro: tendsto_power) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
869 |
|
64272 | 870 |
lemma tendsto_prod [tendsto_intros]: |
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
871 |
fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}" |
63915 | 872 |
shows "(\<And>i. i \<in> S \<Longrightarrow> (f i \<longlongrightarrow> L i) F) \<Longrightarrow> ((\<lambda>x. \<Prod>i\<in>S. f i x) \<longlongrightarrow> (\<Prod>i\<in>S. L i)) F" |
873 |
by (induct S rule: infinite_finite_induct) (simp_all add: tendsto_mult) |
|
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
874 |
|
64272 | 875 |
lemma continuous_prod [continuous_intros]: |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
876 |
fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
877 |
shows "(\<And>i. i \<in> S \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Prod>i\<in>S. f i x)" |
64272 | 878 |
unfolding continuous_def by (rule tendsto_prod) |
879 |
||
880 |
lemma continuous_on_prod [continuous_intros]: |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
881 |
fixes f :: "'a \<Rightarrow> _ \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
882 |
shows "(\<And>i. i \<in> S \<Longrightarrow> continuous_on s (f i)) \<Longrightarrow> continuous_on s (\<lambda>x. \<Prod>i\<in>S. f i x)" |
64272 | 883 |
unfolding continuous_on_def by (auto intro: tendsto_prod) |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
884 |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
885 |
lemma tendsto_of_real_iff: |
63546 | 886 |
"((\<lambda>x. of_real (f x) :: 'a::real_normed_div_algebra) \<longlongrightarrow> of_real c) F \<longleftrightarrow> (f \<longlongrightarrow> c) F" |
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
887 |
unfolding tendsto_iff by simp |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
888 |
|
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
889 |
lemma tendsto_add_const_iff: |
63546 | 890 |
"((\<lambda>x. c + f x :: 'a::real_normed_vector) \<longlongrightarrow> c + d) F \<longleftrightarrow> (f \<longlongrightarrow> d) F" |
62087
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
paulson
parents:
61976
diff
changeset
|
891 |
using tendsto_add[OF tendsto_const[of c], of f d] |
63546 | 892 |
and tendsto_add[OF tendsto_const[of "-c"], of "\<lambda>x. c + f x" "c + d"] by auto |
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
893 |
|
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61524
diff
changeset
|
894 |
|
68860
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
895 |
class topological_monoid_mult = topological_semigroup_mult + monoid_mult |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
896 |
class topological_comm_monoid_mult = topological_monoid_mult + comm_monoid_mult |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
897 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
898 |
lemma tendsto_power_strong [tendsto_intros]: |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
899 |
fixes f :: "_ \<Rightarrow> 'b :: topological_monoid_mult" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
900 |
assumes "(f \<longlongrightarrow> a) F" "(g \<longlongrightarrow> b) F" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
901 |
shows "((\<lambda>x. f x ^ g x) \<longlongrightarrow> a ^ b) F" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
902 |
proof - |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
903 |
have "((\<lambda>x. f x ^ b) \<longlongrightarrow> a ^ b) F" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
904 |
by (induction b) (auto intro: tendsto_intros assms) |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
905 |
also from assms(2) have "eventually (\<lambda>x. g x = b) F" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
906 |
by (simp add: nhds_discrete filterlim_principal) |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
907 |
hence "eventually (\<lambda>x. f x ^ b = f x ^ g x) F" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
908 |
by eventually_elim simp |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
909 |
hence "((\<lambda>x. f x ^ b) \<longlongrightarrow> a ^ b) F \<longleftrightarrow> ((\<lambda>x. f x ^ g x) \<longlongrightarrow> a ^ b) F" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
910 |
by (intro filterlim_cong refl) |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
911 |
finally show ?thesis . |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
912 |
qed |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
913 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
914 |
lemma continuous_mult' [continuous_intros]: |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
915 |
fixes f g :: "_ \<Rightarrow> 'b::topological_semigroup_mult" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
916 |
shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x * g x)" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
917 |
unfolding continuous_def by (rule tendsto_mult) |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
918 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
919 |
lemma continuous_power' [continuous_intros]: |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
920 |
fixes f :: "_ \<Rightarrow> 'b::topological_monoid_mult" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
921 |
shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x ^ g x)" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
922 |
unfolding continuous_def by (rule tendsto_power_strong) auto |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
923 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
924 |
lemma continuous_on_mult' [continuous_intros]: |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
925 |
fixes f g :: "_ \<Rightarrow> 'b::topological_semigroup_mult" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
926 |
shows "continuous_on A f \<Longrightarrow> continuous_on A g \<Longrightarrow> continuous_on A (\<lambda>x. f x * g x)" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
927 |
unfolding continuous_on_def by (auto intro: tendsto_mult) |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
928 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
929 |
lemma continuous_on_power' [continuous_intros]: |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
930 |
fixes f :: "_ \<Rightarrow> 'b::topological_monoid_mult" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
931 |
shows "continuous_on A f \<Longrightarrow> continuous_on A g \<Longrightarrow> continuous_on A (\<lambda>x. f x ^ g x)" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
932 |
unfolding continuous_on_def by (auto intro: tendsto_power_strong) |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
933 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
934 |
lemma tendsto_mult_one: |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
935 |
fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_mult" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
936 |
shows "(f \<longlongrightarrow> 1) F \<Longrightarrow> (g \<longlongrightarrow> 1) F \<Longrightarrow> ((\<lambda>x. f x * g x) \<longlongrightarrow> 1) F" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
937 |
by (drule (1) tendsto_mult) simp |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
938 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
939 |
lemma tendsto_prod' [tendsto_intros]: |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
940 |
fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_mult" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
941 |
shows "(\<And>i. i \<in> I \<Longrightarrow> (f i \<longlongrightarrow> a i) F) \<Longrightarrow> ((\<lambda>x. \<Prod>i\<in>I. f i x) \<longlongrightarrow> (\<Prod>i\<in>I. a i)) F" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
942 |
by (induct I rule: infinite_finite_induct) (simp_all add: tendsto_mult) |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
943 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
944 |
lemma tendsto_one_prod': |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
945 |
fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_mult" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
946 |
assumes "\<And>i. i \<in> I \<Longrightarrow> ((\<lambda>x. f x i) \<longlongrightarrow> 1) F" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
947 |
shows "((\<lambda>i. prod (f i) I) \<longlongrightarrow> 1) F" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
948 |
using tendsto_prod' [of I "\<lambda>x y. f y x" "\<lambda>x. 1"] assms by simp |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
949 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
950 |
lemma continuous_prod' [continuous_intros]: |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
951 |
fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_mult" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
952 |
shows "(\<And>i. i \<in> I \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Prod>i\<in>I. f i x)" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
953 |
unfolding continuous_def by (rule tendsto_prod') |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
954 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
955 |
lemma continuous_on_prod' [continuous_intros]: |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
956 |
fixes f :: "'a \<Rightarrow> 'b::topological_space \<Rightarrow> 'c::topological_comm_monoid_mult" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
957 |
shows "(\<And>i. i \<in> I \<Longrightarrow> continuous_on S (f i)) \<Longrightarrow> continuous_on S (\<lambda>x. \<Prod>i\<in>I. f i x)" |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
958 |
unfolding continuous_on_def by (auto intro: tendsto_prod') |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
959 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
960 |
instance nat :: topological_comm_monoid_mult |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
961 |
by standard |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
962 |
(simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal) |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
963 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
964 |
instance int :: topological_comm_monoid_mult |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
965 |
by standard |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
966 |
(simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal) |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
967 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
968 |
class comm_real_normed_algebra_1 = real_normed_algebra_1 + comm_monoid_mult |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
969 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
970 |
context real_normed_field |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
971 |
begin |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
972 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
973 |
subclass comm_real_normed_algebra_1 |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
974 |
proof |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
975 |
from norm_mult[of "1 :: 'a" 1] show "norm 1 = 1" by simp |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
976 |
qed (simp_all add: norm_mult) |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
977 |
|
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
978 |
end |
f443ec10447d
Some basic materials on filters and topology
Manuel Eberl <eberlm@in.tum.de>
parents:
68721
diff
changeset
|
979 |
|
60758 | 980 |
subsubsection \<open>Inverse and division\<close> |
31355 | 981 |
|
982 |
lemma (in bounded_bilinear) Zfun_prod_Bfun: |
|
44195 | 983 |
assumes f: "Zfun f F" |
63546 | 984 |
and g: "Bfun g F" |
44195 | 985 |
shows "Zfun (\<lambda>x. f x ** g x) F" |
31355 | 986 |
proof - |
987 |
obtain K where K: "0 \<le> K" |
|
988 |
and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K" |
|
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
989 |
using nonneg_bounded by blast |
31355 | 990 |
obtain B where B: "0 < B" |
44195 | 991 |
and norm_g: "eventually (\<lambda>x. norm (g x) \<le> B) F" |
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
992 |
using g by (rule BfunE) |
44195 | 993 |
have "eventually (\<lambda>x. norm (f x ** g x) \<le> norm (f x) * (B * K)) F" |
46887 | 994 |
using norm_g proof eventually_elim |
995 |
case (elim x) |
|
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
996 |
have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K" |
31355 | 997 |
by (rule norm_le) |
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
998 |
also have "\<dots> \<le> norm (f x) * B * K" |
63546 | 999 |
by (intro mult_mono' order_refl norm_g norm_ge_zero mult_nonneg_nonneg K elim) |
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
1000 |
also have "\<dots> = norm (f x) * (B * K)" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57447
diff
changeset
|
1001 |
by (rule mult.assoc) |
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
1002 |
finally show "norm (f x ** g x) \<le> norm (f x) * (B * K)" . |
31355 | 1003 |
qed |
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
1004 |
with f show ?thesis |
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
1005 |
by (rule Zfun_imp_Zfun) |
31355 | 1006 |
qed |
1007 |
||
1008 |
lemma (in bounded_bilinear) Bfun_prod_Zfun: |
|
44195 | 1009 |
assumes f: "Bfun f F" |
63546 | 1010 |
and g: "Zfun g F" |
44195 | 1011 |
shows "Zfun (\<lambda>x. f x ** g x) F" |
44081
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents:
44079
diff
changeset
|
1012 |
using flip g f by (rule bounded_bilinear.Zfun_prod_Bfun) |
31355 | 1013 |
|
1014 |
lemma Bfun_inverse: |
|
1015 |
fixes a :: "'a::real_normed_div_algebra" |
|
61973 | 1016 |
assumes f: "(f \<longlongrightarrow> a) F" |
31355 | 1017 |
assumes a: "a \<noteq> 0" |
44195 | 1018 |
shows "Bfun (\<lambda>x. inverse (f x)) F" |
31355 | 1019 |
proof - |
1020 |
from a have "0 < norm a" by simp |
|
63546 | 1021 |
then have "\<exists>r>0. r < norm a" by (rule dense) |
1022 |
then obtain r where r1: "0 < r" and r2: "r < norm a" |
|
1023 |
by blast |
|
44195 | 1024 |
have "eventually (\<lambda>x. dist (f x) a < r) F" |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1025 |
using tendstoD [OF f r1] by blast |
63546 | 1026 |
then have "eventually (\<lambda>x. norm (inverse (f x)) \<le> inverse (norm a - r)) F" |
46887 | 1027 |
proof eventually_elim |
1028 |
case (elim x) |
|
63546 | 1029 |
then have 1: "norm (f x - a) < r" |
31355 | 1030 |
by (simp add: dist_norm) |
63546 | 1031 |
then have 2: "f x \<noteq> 0" using r2 by auto |
1032 |
then have "norm (inverse (f x)) = inverse (norm (f x))" |
|
31355 | 1033 |
by (rule nonzero_norm_inverse) |
1034 |
also have "\<dots> \<le> inverse (norm a - r)" |
|
1035 |
proof (rule le_imp_inverse_le) |
|
63546 | 1036 |
show "0 < norm a - r" |
1037 |
using r2 by simp |
|
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
1038 |
have "norm a - norm (f x) \<le> norm (a - f x)" |
31355 | 1039 |
by (rule norm_triangle_ineq2) |
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
1040 |
also have "\<dots> = norm (f x - a)" |
31355 | 1041 |
by (rule norm_minus_commute) |
1042 |
also have "\<dots> < r" using 1 . |
|
63546 | 1043 |
finally show "norm a - r \<le> norm (f x)" |
1044 |
by simp |
|
31355 | 1045 |
qed |
31487
93938cafc0e6
put syntax for tendsto in Limits.thy; rename variables
huffman
parents:
31447
diff
changeset
|
1046 |
finally show "norm (inverse (f x)) \<le> inverse (norm a - r)" . |
31355 | 1047 |
qed |
63546 | 1048 |
then show ?thesis by (rule BfunI) |
31355 | 1049 |
qed |
1050 |
||
31565 | 1051 |
lemma tendsto_inverse [tendsto_intros]: |
31355 | 1052 |
fixes a :: "'a::real_normed_div_algebra" |
61973 | 1053 |
assumes f: "(f \<longlongrightarrow> a) F" |
63546 | 1054 |
and a: "a \<noteq> 0" |
61973 | 1055 |
shows "((\<lambda>x. inverse (f x)) \<longlongrightarrow> inverse a) F" |
31355 | 1056 |
proof - |
1057 |
from a have "0 < norm a" by simp |
|
44195 | 1058 |
with f have "eventually (\<lambda>x. dist (f x) a < norm a) F" |
31355 | 1059 |
by (rule tendstoD) |
44195 | 1060 |
then have "eventually (\<lambda>x. f x \<noteq> 0) F" |
61810 | 1061 |
unfolding dist_norm by (auto elim!: eventually_mono) |
44627 | 1062 |
with a have "eventually (\<lambda>x. inverse (f x) - inverse a = |
1063 |
- (inverse (f x) * (f x - a) * inverse a)) F" |
|
61810 | 1064 |
by (auto elim!: eventually_mono simp: inverse_diff_inverse) |
44627 | 1065 |
moreover have "Zfun (\<lambda>x. - (inverse (f x) * (f x - a) * inverse a)) F" |
1066 |
by (intro Zfun_minus Zfun_mult_left |
|
1067 |
bounded_bilinear.Bfun_prod_Zfun [OF bounded_bilinear_mult] |
|
1068 |
Bfun_inverse [OF f a] f [unfolded tendsto_Zfun_iff]) |
|
1069 |
ultimately show ?thesis |
|
1070 |
unfolding tendsto_Zfun_iff by (rule Zfun_ssubst) |
|
31355 | 1071 |
qed |
1072 |
||
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1073 |
lemma continuous_inverse: |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1074 |
fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra" |
63546 | 1075 |
assumes "continuous F f" |
1076 |
and "f (Lim F (\<lambda>x. x)) \<noteq> 0" |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1077 |
shows "continuous F (\<lambda>x. inverse (f x))" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1078 |
using assms unfolding continuous_def by (rule tendsto_inverse) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1079 |
|
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1080 |
lemma continuous_at_within_inverse[continuous_intros]: |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1081 |
fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra" |
63546 | 1082 |
assumes "continuous (at a within s) f" |
1083 |
and "f a \<noteq> 0" |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1084 |
shows "continuous (at a within s) (\<lambda>x. inverse (f x))" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1085 |
using assms unfolding continuous_within by (rule tendsto_inverse) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1086 |
|
56371
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents:
56366
diff
changeset
|
1087 |
lemma continuous_on_inverse[continuous_intros]: |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1088 |
fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_div_algebra" |
63546 | 1089 |
assumes "continuous_on s f" |
1090 |
and "\<forall>x\<in>s. f x \<noteq> 0" |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1091 |
shows "continuous_on s (\<lambda>x. inverse (f x))" |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1092 |
using assms unfolding continuous_on_def by (blast intro: tendsto_inverse) |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1093 |
|
31565 | 1094 |
lemma tendsto_divide [tendsto_intros]: |
31355 | 1095 |
fixes a b :: "'a::real_normed_field" |
63546 | 1096 |
shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> ((\<lambda>x. f x / g x) \<longlongrightarrow> a / b) F" |
44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
44253
diff
changeset
|
1097 |
by (simp add: tendsto_mult tendsto_inverse divide_inverse) |
31355 | 1098 |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1099 |
lemma continuous_divide: |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1100 |
fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field" |
63546 | 1101 |
assumes "continuous F f" |
1102 |
and "continuous F g" |
|
1103 |
and "g (Lim F (\<lambda>x. x)) \<noteq> 0" |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1104 |
shows "continuous F (\<lambda>x. (f x) / (g x))" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1105 |
using assms unfolding continuous_def by (rule tendsto_divide) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1106 |
|
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1107 |
lemma continuous_at_within_divide[continuous_intros]: |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1108 |
fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field" |
63546 | 1109 |
assumes "continuous (at a within s) f" "continuous (at a within s) g" |
1110 |
and "g a \<noteq> 0" |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1111 |
shows "continuous (at a within s) (\<lambda>x. (f x) / (g x))" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1112 |
using assms unfolding continuous_within by (rule tendsto_divide) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1113 |
|
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1114 |
lemma isCont_divide[continuous_intros, simp]: |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1115 |
fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1116 |
assumes "isCont f a" "isCont g a" "g a \<noteq> 0" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1117 |
shows "isCont (\<lambda>x. (f x) / g x) a" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1118 |
using assms unfolding continuous_at by (rule tendsto_divide) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1119 |
|
56371
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents:
56366
diff
changeset
|
1120 |
lemma continuous_on_divide[continuous_intros]: |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1121 |
fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_field" |
63546 | 1122 |
assumes "continuous_on s f" "continuous_on s g" |
1123 |
and "\<forall>x\<in>s. g x \<noteq> 0" |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1124 |
shows "continuous_on s (\<lambda>x. (f x) / (g x))" |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1125 |
using assms unfolding continuous_on_def by (blast intro: tendsto_divide) |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1126 |
|
63546 | 1127 |
lemma tendsto_sgn [tendsto_intros]: "(f \<longlongrightarrow> l) F \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> ((\<lambda>x. sgn (f x)) \<longlongrightarrow> sgn l) F" |
1128 |
for l :: "'a::real_normed_vector" |
|
44194
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
1129 |
unfolding sgn_div_norm by (simp add: tendsto_intros) |
0639898074ae
generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents:
44081
diff
changeset
|
1130 |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1131 |
lemma continuous_sgn: |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1132 |
fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector" |
63546 | 1133 |
assumes "continuous F f" |
1134 |
and "f (Lim F (\<lambda>x. x)) \<noteq> 0" |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1135 |
shows "continuous F (\<lambda>x. sgn (f x))" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1136 |
using assms unfolding continuous_def by (rule tendsto_sgn) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1137 |
|
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1138 |
lemma continuous_at_within_sgn[continuous_intros]: |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1139 |
fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector" |
63546 | 1140 |
assumes "continuous (at a within s) f" |
1141 |
and "f a \<noteq> 0" |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1142 |
shows "continuous (at a within s) (\<lambda>x. sgn (f x))" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1143 |
using assms unfolding continuous_within by (rule tendsto_sgn) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1144 |
|
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1145 |
lemma isCont_sgn[continuous_intros]: |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1146 |
fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector" |
63546 | 1147 |
assumes "isCont f a" |
1148 |
and "f a \<noteq> 0" |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1149 |
shows "isCont (\<lambda>x. sgn (f x)) a" |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1150 |
using assms unfolding continuous_at by (rule tendsto_sgn) |
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1151 |
|
56371
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents:
56366
diff
changeset
|
1152 |
lemma continuous_on_sgn[continuous_intros]: |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1153 |
fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector" |
63546 | 1154 |
assumes "continuous_on s f" |
1155 |
and "\<forall>x\<in>s. f x \<noteq> 0" |
|
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1156 |
shows "continuous_on s (\<lambda>x. sgn (f x))" |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1157 |
using assms unfolding continuous_on_def by (blast intro: tendsto_sgn) |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51474
diff
changeset
|
1158 |
|
50325 | 1159 |
lemma filterlim_at_infinity: |
61076 | 1160 |
fixes f :: "_ \<Rightarrow> 'a::real_normed_vector" |
50325 | 1161 |
assumes "0 \<le> c" |
1162 |
shows "(LIM x F. f x :> at_infinity) \<longleftrightarrow> (\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F)" |
|
1163 |
unfolding filterlim_iff eventually_at_infinity |
|
1164 |
proof safe |
|
63546 | 1165 |
fix P :: "'a \<Rightarrow> bool" |
1166 |
fix b |
|
50325 | 1167 |
assume *: "\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F" |
63546 | 1168 |
assume P: "\<forall>x. b \<le> norm x \<longrightarrow> P x" |
50325 | 1169 |
have "max b (c + 1) > c" by auto |
1170 |
with * have "eventually (\<lambda>x. max b (c + 1) \<le> norm (f x)) F" |
|
1171 |
by auto |
|
1172 |
then show "eventually (\<lambda>x. P (f x)) F" |
|
1173 |
proof eventually_elim |
|
63546 | 1174 |
case (elim x) |
50325 | 1175 |
with P show "P (f x)" by auto |
1176 |
qed |
|
1177 |
qed force |
|
1178 |
||
67371
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1179 |
lemma filterlim_at_infinity_imp_norm_at_top: |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1180 |
fixes F |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1181 |
assumes "filterlim f at_infinity F" |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1182 |
shows "filterlim (\<lambda>x. norm (f x)) at_top F" |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1183 |
proof - |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1184 |
{ |
68611 | 1185 |
fix r :: real |
1186 |
have "\<forall>\<^sub>F x in F. r \<le> norm (f x)" using filterlim_at_infinity[of 0 f F] assms |
|
1187 |
by (cases "r > 0") |
|
67371
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1188 |
(auto simp: not_less intro: always_eventually order.trans[OF _ norm_ge_zero]) |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1189 |
} |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1190 |
thus ?thesis by (auto simp: filterlim_at_top) |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1191 |
qed |
68611 | 1192 |
|
67371
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1193 |
lemma filterlim_norm_at_top_imp_at_infinity: |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1194 |
fixes F |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1195 |
assumes "filterlim (\<lambda>x. norm (f x)) at_top F" |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1196 |
shows "filterlim f at_infinity F" |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1197 |
using filterlim_at_infinity[of 0 f F] assms by (auto simp: filterlim_at_top) |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1198 |
|
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1199 |
lemma filterlim_norm_at_top: "filterlim norm at_top at_infinity" |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1200 |
by (rule filterlim_at_infinity_imp_norm_at_top) (rule filterlim_ident) |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1201 |
|
67950
99eaa5cedbb7
Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents:
67707
diff
changeset
|
1202 |
lemma filterlim_at_infinity_conv_norm_at_top: |
99eaa5cedbb7
Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents:
67707
diff
changeset
|
1203 |
"filterlim f at_infinity G \<longleftrightarrow> filterlim (\<lambda>x. norm (f x)) at_top G" |
99eaa5cedbb7
Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents:
67707
diff
changeset
|
1204 |
by (auto simp: filterlim_at_infinity[OF order.refl] filterlim_at_top_gt[of _ _ 0]) |
99eaa5cedbb7
Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents:
67707
diff
changeset
|
1205 |
|
67371
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1206 |
lemma eventually_not_equal_at_infinity: |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1207 |
"eventually (\<lambda>x. x \<noteq> (a :: 'a :: {real_normed_vector})) at_infinity" |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1208 |
proof - |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1209 |
from filterlim_norm_at_top[where 'a = 'a] |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1210 |
have "\<forall>\<^sub>F x in at_infinity. norm a < norm (x::'a)" by (auto simp: filterlim_at_top_dense) |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1211 |
thus ?thesis by eventually_elim auto |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1212 |
qed |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1213 |
|
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1214 |
lemma filterlim_int_of_nat_at_topD: |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1215 |
fixes F |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1216 |
assumes "filterlim (\<lambda>x. f (int x)) F at_top" |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1217 |
shows "filterlim f F at_top" |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1218 |
proof - |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1219 |
have "filterlim (\<lambda>x. f (int (nat x))) F at_top" |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1220 |
by (rule filterlim_compose[OF assms filterlim_nat_sequentially]) |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1221 |
also have "?this \<longleftrightarrow> filterlim f F at_top" |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1222 |
by (intro filterlim_cong refl eventually_mono [OF eventually_ge_at_top[of "0::int"]]) auto |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1223 |
finally show ?thesis . |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1224 |
qed |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1225 |
|
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1226 |
lemma filterlim_int_sequentially [tendsto_intros]: |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1227 |
"filterlim int at_top sequentially" |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1228 |
unfolding filterlim_at_top |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1229 |
proof |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1230 |
fix C :: int |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1231 |
show "eventually (\<lambda>n. int n \<ge> C) at_top" |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1232 |
using eventually_ge_at_top[of "nat \<lceil>C\<rceil>"] by eventually_elim linarith |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1233 |
qed |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1234 |
|
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1235 |
lemma filterlim_real_of_int_at_top [tendsto_intros]: |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67091
diff
changeset
|
1236 |
"filterlim real_of_int at_top at_top" |