src/HOL/Nat.thy
author nipkow
Mon, 27 Aug 2007 14:19:38 +0200
changeset 24438 2d8058804a76
parent 24286 7619080e49f0
child 24523 cd723b2209ea
permissions -rw-r--r--
Added infinite_descent
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     1
(*  Title:      HOL/Nat.thy
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     2
    ID:         $Id$
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
     3
    Author:     Tobias Nipkow and Lawrence C Paulson and Markus Wenzel
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     4
9436
62bb04ab4b01 rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents: 7702
diff changeset
     5
Type "nat" is a linear order, and a datatype; arithmetic operators + -
62bb04ab4b01 rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents: 7702
diff changeset
     6
and * (for div, mod and dvd, see theory Divides).
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     7
*)
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     8
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
     9
header {* Natural numbers *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    10
15131
c69542757a4d New theory header syntax.
nipkow
parents: 14740
diff changeset
    11
theory Nat
15140
322485b816ac import -> imports
nipkow
parents: 15131
diff changeset
    12
imports Wellfounded_Recursion Ring_and_Field
23263
0c227412b285 tuned boostrap
haftmann
parents: 23001
diff changeset
    13
uses
0c227412b285 tuned boostrap
haftmann
parents: 23001
diff changeset
    14
  "~~/src/Tools/rat.ML"
0c227412b285 tuned boostrap
haftmann
parents: 23001
diff changeset
    15
  "~~/src/Provers/Arith/cancel_sums.ML"
0c227412b285 tuned boostrap
haftmann
parents: 23001
diff changeset
    16
  ("arith_data.ML")
24091
109f19a13872 added Tools/lin_arith.ML;
wenzelm
parents: 24075
diff changeset
    17
  "~~/src/Provers/Arith/fast_lin_arith.ML"
109f19a13872 added Tools/lin_arith.ML;
wenzelm
parents: 24075
diff changeset
    18
  ("Tools/lin_arith.ML")
15131
c69542757a4d New theory header syntax.
nipkow
parents: 14740
diff changeset
    19
begin
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    20
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    21
subsection {* Type @{text ind} *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    22
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    23
typedecl ind
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    24
19573
340c466c9605 axiomatization;
wenzelm
parents: 18702
diff changeset
    25
axiomatization
340c466c9605 axiomatization;
wenzelm
parents: 18702
diff changeset
    26
  Zero_Rep :: ind and
340c466c9605 axiomatization;
wenzelm
parents: 18702
diff changeset
    27
  Suc_Rep :: "ind => ind"
340c466c9605 axiomatization;
wenzelm
parents: 18702
diff changeset
    28
where
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    29
  -- {* the axiom of infinity in 2 parts *}
19573
340c466c9605 axiomatization;
wenzelm
parents: 18702
diff changeset
    30
  inj_Suc_Rep:          "inj Suc_Rep" and
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
    31
  Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep"
19573
340c466c9605 axiomatization;
wenzelm
parents: 18702
diff changeset
    32
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    33
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    34
subsection {* Type nat *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    35
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    36
text {* Type definition *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    37
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23476
diff changeset
    38
inductive_set Nat :: "ind set"
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22191
diff changeset
    39
where
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23476
diff changeset
    40
    Zero_RepI: "Zero_Rep : Nat"
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23476
diff changeset
    41
  | Suc_RepI: "i : Nat ==> Suc_Rep i : Nat"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    42
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    43
global
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    44
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    45
typedef (open Nat)
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23476
diff changeset
    46
  nat = Nat
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
    47
proof
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23476
diff changeset
    48
  show "Zero_Rep : Nat" by (rule Nat.Zero_RepI)
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
    49
qed
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    50
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    51
text {* Abstract constants and syntax *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    52
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    53
consts
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    54
  Suc :: "nat => nat"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    55
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    56
local
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    57
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    58
defs
18648
22f96cd085d5 tidied, and giving theorems names
paulson
parents: 17702
diff changeset
    59
  Suc_def:      "Suc == (%n. Abs_Nat (Suc_Rep (Rep_Nat n)))"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
    60
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
    61
definition
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
    62
  pred_nat :: "(nat * nat) set" where
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
    63
  "pred_nat = {(m, n). n = Suc m}"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    64
21456
1c2b9df41e98 cleanup
haftmann
parents: 21411
diff changeset
    65
instance nat :: "{ord, zero, one}"
1c2b9df41e98 cleanup
haftmann
parents: 21411
diff changeset
    66
  Zero_nat_def: "0 == Abs_Nat Zero_Rep"
1c2b9df41e98 cleanup
haftmann
parents: 21411
diff changeset
    67
  One_nat_def [simp]: "1 == Suc 0"
22262
96ba62dff413 Adapted to new inductive definition package.
berghofe
parents: 22191
diff changeset
    68
  less_def: "m < n == (m, n) : pred_nat^+"
22744
5cbe966d67a2 Isar definitions are now added explicitly to code theorem table
haftmann
parents: 22718
diff changeset
    69
  le_def:   "m \<le> (n::nat) == ~ (n < m)" ..
5cbe966d67a2 Isar definitions are now added explicitly to code theorem table
haftmann
parents: 22718
diff changeset
    70
24162
8dfd5dd65d82 split off theory Option for benefit of code generator
haftmann
parents: 24091
diff changeset
    71
lemmas [code func del] = Zero_nat_def One_nat_def less_def le_def
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    72
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    73
text {* Induction *}
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    74
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    75
theorem nat_induct: "P 0 ==> (!!n. P n ==> P (Suc n)) ==> P n"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    76
  apply (unfold Zero_nat_def Suc_def)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    77
  apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *}
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23476
diff changeset
    78
  apply (erule Rep_Nat [THEN Nat.induct])
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23476
diff changeset
    79
  apply (iprover elim: Abs_Nat_inverse [THEN subst])
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    80
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    81
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    82
text {* Distinctness of constructors *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    83
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
    84
lemma Suc_not_Zero [iff]: "Suc m \<noteq> 0"
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23476
diff changeset
    85
  by (simp add: Zero_nat_def Suc_def Abs_Nat_inject Rep_Nat Suc_RepI Zero_RepI
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
    86
                Suc_Rep_not_Zero_Rep)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    87
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
    88
lemma Zero_not_Suc [iff]: "0 \<noteq> Suc m"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    89
  by (rule not_sym, rule Suc_not_Zero not_sym)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    90
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    91
lemma Suc_neq_Zero: "Suc m = 0 ==> R"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    92
  by (rule notE, rule Suc_not_Zero)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    93
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    94
lemma Zero_neq_Suc: "0 = Suc m ==> R"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    95
  by (rule Suc_neq_Zero, erule sym)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    96
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    97
text {* Injectiveness of @{term Suc} *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
    98
16733
236dfafbeb63 linear arithmetic now takes "&" in assumptions apart.
nipkow
parents: 16635
diff changeset
    99
lemma inj_Suc[simp]: "inj_on Suc N"
23740
d7f18c837ce7 Adapted to new package for inductive sets.
berghofe
parents: 23476
diff changeset
   100
  by (simp add: Suc_def inj_on_def Abs_Nat_inject Rep_Nat Suc_RepI
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   101
                inj_Suc_Rep [THEN inj_eq] Rep_Nat_inject)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   102
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   103
lemma Suc_inject: "Suc x = Suc y ==> x = y"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   104
  by (rule inj_Suc [THEN injD])
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   105
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   106
lemma Suc_Suc_eq [iff]: "(Suc m = Suc n) = (m = n)"
15413
901d1bfedf09 removal of archaic Abs/Rep proofs
paulson
parents: 15341
diff changeset
   107
  by (rule inj_Suc [THEN inj_eq])
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   108
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   109
lemma nat_not_singleton: "(\<forall>x. x = (0::nat)) = False"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   110
  by auto
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   111
21411
a9671d4f7c03 power is now a class
haftmann
parents: 21252
diff changeset
   112
text {* size of a datatype value *}
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
   113
22473
753123c89d72 explizit "type" superclass
haftmann
parents: 22348
diff changeset
   114
class size = type +
21411
a9671d4f7c03 power is now a class
haftmann
parents: 21252
diff changeset
   115
  fixes size :: "'a \<Rightarrow> nat"
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
   116
5188
633ec5f6c155 Declaration of type 'nat' as a datatype (this allows usage of
berghofe
parents: 4640
diff changeset
   117
rep_datatype nat
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   118
  distinct  Suc_not_Zero Zero_not_Suc
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   119
  inject    Suc_Suc_eq
21411
a9671d4f7c03 power is now a class
haftmann
parents: 21252
diff changeset
   120
  induction nat_induct
a9671d4f7c03 power is now a class
haftmann
parents: 21252
diff changeset
   121
a9671d4f7c03 power is now a class
haftmann
parents: 21252
diff changeset
   122
declare nat.induct [case_names 0 Suc, induct type: nat]
a9671d4f7c03 power is now a class
haftmann
parents: 21252
diff changeset
   123
declare nat.exhaust [case_names 0 Suc, cases type: nat]
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   124
21672
29c346b165d4 added aliases for nat_recs/cases;
wenzelm
parents: 21456
diff changeset
   125
lemmas nat_rec_0 = nat.recs(1)
29c346b165d4 added aliases for nat_recs/cases;
wenzelm
parents: 21456
diff changeset
   126
  and nat_rec_Suc = nat.recs(2)
29c346b165d4 added aliases for nat_recs/cases;
wenzelm
parents: 21456
diff changeset
   127
29c346b165d4 added aliases for nat_recs/cases;
wenzelm
parents: 21456
diff changeset
   128
lemmas nat_case_0 = nat.cases(1)
29c346b165d4 added aliases for nat_recs/cases;
wenzelm
parents: 21456
diff changeset
   129
  and nat_case_Suc = nat.cases(2)
29c346b165d4 added aliases for nat_recs/cases;
wenzelm
parents: 21456
diff changeset
   130
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   131
lemma n_not_Suc_n: "n \<noteq> Suc n"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   132
  by (induct n) simp_all
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   133
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   134
lemma Suc_n_not_n: "Suc t \<noteq> t"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   135
  by (rule not_sym, rule n_not_Suc_n)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   136
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   137
text {* A special form of induction for reasoning
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   138
  about @{term "m < n"} and @{term "m - n"} *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   139
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   140
theorem diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   141
    (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
   142
  apply (rule_tac x = m in spec)
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
   143
  apply (induct n)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   144
  prefer 2
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   145
  apply (rule allI)
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16796
diff changeset
   146
  apply (induct_tac x, iprover+)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   147
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   148
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   149
subsection {* Basic properties of "less than" *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   150
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   151
lemma wf_pred_nat: "wf pred_nat"
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
   152
  apply (unfold wf_def pred_nat_def, clarify)
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
   153
  apply (induct_tac x, blast+)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   154
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   155
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   156
lemma wf_less: "wf {(x, y::nat). x < y}"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   157
  apply (unfold less_def)
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
   158
  apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_subset], blast)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   159
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   160
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   161
lemma less_eq: "((m, n) : pred_nat^+) = (m < n)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   162
  apply (unfold less_def)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   163
  apply (rule refl)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   164
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   165
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   166
subsubsection {* Introduction properties *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   167
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   168
lemma less_trans: "i < j ==> j < k ==> i < (k::nat)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   169
  apply (unfold less_def)
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
   170
  apply (rule trans_trancl [THEN transD], assumption+)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   171
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   172
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   173
lemma lessI [iff]: "n < Suc n"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   174
  apply (unfold less_def pred_nat_def)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   175
  apply (simp add: r_into_trancl)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   176
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   177
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   178
lemma less_SucI: "i < j ==> i < Suc j"
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
   179
  apply (rule less_trans, assumption)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   180
  apply (rule lessI)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   181
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   182
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   183
lemma zero_less_Suc [iff]: "0 < Suc n"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   184
  apply (induct n)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   185
  apply (rule lessI)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   186
  apply (erule less_trans)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   187
  apply (rule lessI)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   188
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   189
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   190
subsubsection {* Elimination properties *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   191
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   192
lemma less_not_sym: "n < m ==> ~ m < (n::nat)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   193
  apply (unfold less_def)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   194
  apply (blast intro: wf_pred_nat wf_trancl [THEN wf_asym])
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   195
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   196
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   197
lemma less_asym:
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   198
  assumes h1: "(n::nat) < m" and h2: "~ P ==> m < n" shows P
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   199
  apply (rule contrapos_np)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   200
  apply (rule less_not_sym)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   201
  apply (rule h1)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   202
  apply (erule h2)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   203
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   204
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   205
lemma less_not_refl: "~ n < (n::nat)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   206
  apply (unfold less_def)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   207
  apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_not_refl])
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   208
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   209
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   210
lemma less_irrefl [elim!]: "(n::nat) < n ==> R"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   211
  by (rule notE, rule less_not_refl)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   212
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   213
lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)" by blast
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   214
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   215
lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   216
  by (rule not_sym, rule less_not_refl2)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   217
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   218
lemma lessE:
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   219
  assumes major: "i < k"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   220
  and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   221
  shows P
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
   222
  apply (rule major [unfolded less_def pred_nat_def, THEN tranclE], simp_all)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   223
  apply (erule p1)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   224
  apply (rule p2)
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
   225
  apply (simp add: less_def pred_nat_def, assumption)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   226
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   227
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   228
lemma not_less0 [iff]: "~ n < (0::nat)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   229
  by (blast elim: lessE)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   230
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   231
lemma less_zeroE: "(n::nat) < 0 ==> R"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   232
  by (rule notE, rule not_less0)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   233
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   234
lemma less_SucE: assumes major: "m < Suc n"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   235
  and less: "m < n ==> P" and eq: "m = n ==> P" shows P
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   236
  apply (rule major [THEN lessE])
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
   237
  apply (rule eq, blast)
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
   238
  apply (rule less, blast)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   239
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   240
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   241
lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   242
  by (blast elim!: less_SucE intro: less_trans)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   243
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 24196
diff changeset
   244
lemma less_one [iff,noatp]: "(n < (1::nat)) = (n = 0)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   245
  by (simp add: less_Suc_eq)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   246
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   247
lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   248
  by (simp add: less_Suc_eq)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   249
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   250
lemma Suc_mono: "m < n ==> Suc m < Suc n"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   251
  by (induct n) (fast elim: less_trans lessE)+
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   252
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   253
text {* "Less than" is a linear ordering *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   254
lemma less_linear: "m < n | m = n | n < (m::nat)"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
   255
  apply (induct m)
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
   256
  apply (induct n)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   257
  apply (rule refl [THEN disjI1, THEN disjI2])
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   258
  apply (rule zero_less_Suc [THEN disjI1])
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   259
  apply (blast intro: Suc_mono less_SucI elim: lessE)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   260
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   261
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14267
diff changeset
   262
text {* "Less than" is antisymmetric, sort of *}
6c24235e8d5d *** empty log message ***
nipkow
parents: 14267
diff changeset
   263
lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   264
  apply(simp only:less_Suc_eq)
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   265
  apply blast
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   266
  done
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14267
diff changeset
   267
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   268
lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   269
  using less_linear by blast
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   270
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   271
lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   272
  and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   273
  shows "P n m"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   274
  apply (rule less_linear [THEN disjE])
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   275
  apply (erule_tac [2] disjE)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   276
  apply (erule lessCase)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   277
  apply (erule sym [THEN eqCase])
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   278
  apply (erule major)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   279
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   280
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   281
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   282
subsubsection {* Inductive (?) properties *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   283
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   284
lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   285
  apply (simp add: nat_neq_iff)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   286
  apply (blast elim!: less_irrefl less_SucE elim: less_asym)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   287
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   288
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   289
lemma Suc_lessD: "Suc m < n ==> m < n"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   290
  apply (induct n)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   291
  apply (fast intro!: lessI [THEN less_SucI] elim: less_trans lessE)+
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   292
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   293
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   294
lemma Suc_lessE: assumes major: "Suc i < k"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   295
  and minor: "!!j. i < j ==> k = Suc j ==> P" shows P
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   296
  apply (rule major [THEN lessE])
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   297
  apply (erule lessI [THEN minor])
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
   298
  apply (erule Suc_lessD [THEN minor], assumption)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   299
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   300
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   301
lemma Suc_less_SucD: "Suc m < Suc n ==> m < n"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   302
  by (blast elim: lessE dest: Suc_lessD)
4104
84433b1ab826 nat datatype_info moved to Nat.thy;
wenzelm
parents: 3370
diff changeset
   303
16635
bf7de5723c60 Moved some code lemmas from Main to Nat.
berghofe
parents: 15921
diff changeset
   304
lemma Suc_less_eq [iff, code]: "(Suc m < Suc n) = (m < n)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   305
  apply (rule iffI)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   306
  apply (erule Suc_less_SucD)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   307
  apply (erule Suc_mono)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   308
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   309
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   310
lemma less_trans_Suc:
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   311
  assumes le: "i < j" shows "j < k ==> Suc i < k"
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
   312
  apply (induct k, simp_all)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   313
  apply (insert le)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   314
  apply (simp add: less_Suc_eq)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   315
  apply (blast dest: Suc_lessD)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   316
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   317
16635
bf7de5723c60 Moved some code lemmas from Main to Nat.
berghofe
parents: 15921
diff changeset
   318
lemma [code]: "((n::nat) < 0) = False" by simp
bf7de5723c60 Moved some code lemmas from Main to Nat.
berghofe
parents: 15921
diff changeset
   319
lemma [code]: "(0 < Suc n) = True" by simp
bf7de5723c60 Moved some code lemmas from Main to Nat.
berghofe
parents: 15921
diff changeset
   320
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   321
text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   322
lemma not_less_eq: "(~ m < n) = (n < Suc m)"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   323
  by (induct m n rule: diff_induct) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   324
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   325
text {* Complete induction, aka course-of-values induction *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   326
lemma nat_less_induct:
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   327
  assumes prem: "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   328
  apply (induct n rule: wf_induct [OF wf_pred_nat [THEN wf_trancl]])
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   329
  apply (rule prem)
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
   330
  apply (unfold less_def, assumption)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   331
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   332
14131
a4fc8b1af5e7 declarations moved from PreList.thy
paulson
parents: 13596
diff changeset
   333
lemmas less_induct = nat_less_induct [rule_format, case_names less]
a4fc8b1af5e7 declarations moved from PreList.thy
paulson
parents: 13596
diff changeset
   334
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
   335
14131
a4fc8b1af5e7 declarations moved from PreList.thy
paulson
parents: 13596
diff changeset
   336
subsection {* Properties of "less than or equal" *}
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   337
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   338
text {* Was @{text le_eq_less_Suc}, but this orientation is more useful *}
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   339
lemma less_Suc_eq_le: "(m < Suc n) = (m \<le> n)"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   340
  unfolding le_def by (rule not_less_eq [symmetric])
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   341
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   342
lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   343
  by (rule less_Suc_eq_le [THEN iffD2])
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   344
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   345
lemma le0 [iff]: "(0::nat) \<le> n"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   346
  unfolding le_def by (rule not_less0)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   347
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   348
lemma Suc_n_not_le_n: "~ Suc n \<le> n"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   349
  by (simp add: le_def)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   350
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   351
lemma le_0_eq [iff]: "((i::nat) \<le> 0) = (i = 0)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   352
  by (induct i) (simp_all add: le_def)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   353
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   354
lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   355
  by (simp del: less_Suc_eq_le add: less_Suc_eq_le [symmetric] less_Suc_eq)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   356
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   357
lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16796
diff changeset
   358
  by (drule le_Suc_eq [THEN iffD1], iprover+)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   359
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   360
lemma Suc_leI: "m < n ==> Suc(m) \<le> n"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   361
  apply (simp add: le_def less_Suc_eq)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   362
  apply (blast elim!: less_irrefl less_asym)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   363
  done -- {* formerly called lessD *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   364
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   365
lemma Suc_leD: "Suc(m) \<le> n ==> m \<le> n"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   366
  by (simp add: le_def less_Suc_eq)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   367
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   368
text {* Stronger version of @{text Suc_leD} *}
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   369
lemma Suc_le_lessD: "Suc m \<le> n ==> m < n"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   370
  apply (simp add: le_def less_Suc_eq)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   371
  using less_linear
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   372
  apply blast
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   373
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   374
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   375
lemma Suc_le_eq: "(Suc m \<le> n) = (m < n)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   376
  by (blast intro: Suc_leI Suc_le_lessD)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   377
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   378
lemma le_SucI: "m \<le> n ==> m \<le> Suc n"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   379
  by (unfold le_def) (blast dest: Suc_lessD)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   380
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   381
lemma less_imp_le: "m < n ==> m \<le> (n::nat)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   382
  by (unfold le_def) (blast elim: less_asym)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   383
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   384
text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *}
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   385
lemmas le_simps = less_imp_le less_Suc_eq_le Suc_le_eq
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   386
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   387
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   388
text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *}
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   389
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   390
lemma le_imp_less_or_eq: "m \<le> n ==> m < n | m = (n::nat)"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   391
  unfolding le_def
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   392
  using less_linear
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   393
  by (blast elim: less_irrefl less_asym)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   394
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   395
lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   396
  unfolding le_def
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   397
  using less_linear
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   398
  by (blast elim!: less_irrefl elim: less_asym)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   399
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   400
lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16796
diff changeset
   401
  by (iprover intro: less_or_eq_imp_le le_imp_less_or_eq)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   402
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   403
text {* Useful with @{text blast}. *}
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   404
lemma eq_imp_le: "(m::nat) = n ==> m \<le> n"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   405
  by (rule less_or_eq_imp_le) (rule disjI2)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   406
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   407
lemma le_refl: "n \<le> (n::nat)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   408
  by (simp add: le_eq_less_or_eq)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   409
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   410
lemma le_less_trans: "[| i \<le> j; j < k |] ==> i < (k::nat)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   411
  by (blast dest!: le_imp_less_or_eq intro: less_trans)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   412
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   413
lemma less_le_trans: "[| i < j; j \<le> k |] ==> i < (k::nat)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   414
  by (blast dest!: le_imp_less_or_eq intro: less_trans)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   415
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   416
lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   417
  by (blast dest!: le_imp_less_or_eq intro: less_or_eq_imp_le less_trans)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   418
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   419
lemma le_anti_sym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   420
  by (blast dest!: le_imp_less_or_eq elim!: less_irrefl elim: less_asym)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   421
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   422
lemma Suc_le_mono [iff]: "(Suc n \<le> Suc m) = (n \<le> m)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   423
  by (simp add: le_simps)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   424
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   425
text {* Axiom @{text order_less_le} of class @{text order}: *}
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   426
lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   427
  by (simp add: le_def nat_neq_iff) (blast elim!: less_asym)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   428
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   429
lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   430
  by (rule iffD2, rule nat_less_le, rule conjI)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   431
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   432
text {* Axiom @{text linorder_linear} of class @{text linorder}: *}
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   433
lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   434
  apply (simp add: le_eq_less_or_eq)
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   435
  using less_linear by blast
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   436
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   437
text {* Type {@typ nat} is a wellfounded linear order *}
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   438
22318
6efe70ab7add simpliefied instance statement
haftmann
parents: 22262
diff changeset
   439
instance nat :: wellorder
14691
e1eedc8cad37 tuned instance statements;
wenzelm
parents: 14348
diff changeset
   440
  by intro_classes
e1eedc8cad37 tuned instance statements;
wenzelm
parents: 14348
diff changeset
   441
    (assumption |
e1eedc8cad37 tuned instance statements;
wenzelm
parents: 14348
diff changeset
   442
      rule le_refl le_trans le_anti_sym nat_less_le nat_le_linear wf_less)+
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   443
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   444
lemmas linorder_neqE_nat = linorder_neqE [where 'a = nat]
15921
b6e345548913 Fixing a problem with lin.arith.
nipkow
parents: 15539
diff changeset
   445
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   446
lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   447
  by (blast elim!: less_SucE)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   448
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   449
text {*
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   450
  Rewrite @{term "n < Suc m"} to @{term "n = m"}
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   451
  if @{term "~ n < m"} or @{term "m \<le> n"} hold.
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   452
  Not suitable as default simprules because they often lead to looping
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   453
*}
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   454
lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   455
  by (rule not_less_less_Suc_eq, rule leD)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   456
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   457
lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   458
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   459
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   460
text {*
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   461
  Re-orientation of the equations @{text "0 = x"} and @{text "1 = x"}.
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   462
  No longer added as simprules (they loop)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   463
  but via @{text reorient_simproc} in Bin
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   464
*}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   465
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   466
text {* Polymorphic, not just for @{typ nat} *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   467
lemma zero_reorient: "(0 = x) = (x = 0)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   468
  by auto
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   469
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   470
lemma one_reorient: "(1 = x) = (x = 1)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   471
  by auto
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   472
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
   473
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   474
subsection {* Arithmetic operators *}
1660
8cb42cd97579 *** empty log message ***
oheimb
parents: 1625
diff changeset
   475
22473
753123c89d72 explizit "type" superclass
haftmann
parents: 22348
diff changeset
   476
class power = type +
21411
a9671d4f7c03 power is now a class
haftmann
parents: 21252
diff changeset
   477
  fixes power :: "'a \<Rightarrow> nat \<Rightarrow> 'a"            (infixr "\<^loc>^" 80)
9436
62bb04ab4b01 rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents: 7702
diff changeset
   478
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   479
text {* arithmetic operators @{text "+ -"} and @{text "*"} *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   480
21456
1c2b9df41e98 cleanup
haftmann
parents: 21411
diff changeset
   481
instance nat :: "{plus, minus, times}" ..
9436
62bb04ab4b01 rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents: 7702
diff changeset
   482
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   483
primrec
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   484
  add_0:    "0 + n = n"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   485
  add_Suc:  "Suc m + n = Suc (m + n)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   486
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   487
primrec
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   488
  diff_0:   "m - 0 = m"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   489
  diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"
9436
62bb04ab4b01 rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents: 7702
diff changeset
   490
62bb04ab4b01 rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents: 7702
diff changeset
   491
primrec
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   492
  mult_0:   "0 * n = 0"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   493
  mult_Suc: "Suc m * n = n + (m * n)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   494
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   495
text {* These two rules ease the use of primitive recursion.
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   496
NOTE USE OF @{text "=="} *}
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   497
lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   498
  by simp
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   499
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   500
lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   501
  by simp
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   502
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   503
lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   504
  by (cases n) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   505
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   506
lemma gr_implies_not0: fixes n :: nat shows "m<n ==> n \<noteq> 0"
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   507
  by (cases n) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   508
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   509
lemma neq0_conv [iff]: fixes n :: nat shows "(n \<noteq> 0) = (0 < n)"
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   510
  by (cases n) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   511
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   512
text {* This theorem is useful with @{text blast} *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   513
lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16796
diff changeset
   514
  by (rule iffD1, rule neq0_conv, iprover)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   515
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   516
lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   517
  by (fast intro: not0_implies_Suc)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   518
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 24196
diff changeset
   519
lemma not_gr0 [iff,noatp]: "!!n::nat. (~ (0 < n)) = (n = 0)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   520
  apply (rule iffI)
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   521
  apply (rule ccontr)
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   522
  apply simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   523
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   524
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   525
lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   526
  by (induct m') simp_all
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   527
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   528
text {* Useful in certain inductive arguments *}
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   529
lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   530
  by (cases m) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   531
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   532
lemma nat_induct2: "[|P 0; P (Suc 0); !!k. P k ==> P (Suc (Suc k))|] ==> P n"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   533
  apply (rule nat_less_induct)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   534
  apply (case_tac n)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   535
  apply (case_tac [2] nat)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   536
  apply (blast intro: less_trans)+
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   537
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   538
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
   539
15341
254f6f00b60e converted to Isar script, simplifying some results
paulson
parents: 15281
diff changeset
   540
subsection {* @{text LEAST} theorems for type @{typ nat}*}
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   541
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   542
lemma Least_Suc:
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   543
     "[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))"
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
   544
  apply (case_tac "n", auto)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   545
  apply (frule LeastI)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   546
  apply (drule_tac P = "%x. P (Suc x) " in LeastI)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   547
  apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))")
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   548
  apply (erule_tac [2] Least_le)
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
   549
  apply (case_tac "LEAST x. P x", auto)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   550
  apply (drule_tac P = "%x. P (Suc x) " in Least_le)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   551
  apply (blast intro: order_antisym)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   552
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   553
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   554
lemma Least_Suc2:
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   555
     "[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   556
  by (erule (1) Least_Suc [THEN ssubst], simp)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   557
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   558
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   559
subsection {* @{term min} and @{term max} *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   560
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   561
lemma min_0L [simp]: "min 0 n = (0::nat)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   562
  by (rule min_leastL) simp
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   563
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   564
lemma min_0R [simp]: "min n 0 = (0::nat)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   565
  by (rule min_leastR) simp
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   566
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   567
lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   568
  by (simp add: min_of_mono)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   569
22191
9c07aab3a653 min/max lemmas (actually unused!)
paulson
parents: 22157
diff changeset
   570
lemma min_Suc1:
9c07aab3a653 min/max lemmas (actually unused!)
paulson
parents: 22157
diff changeset
   571
   "min (Suc n) m = (case m of 0 => 0 | Suc m' => Suc(min n m'))"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   572
  by (simp split: nat.split)
22191
9c07aab3a653 min/max lemmas (actually unused!)
paulson
parents: 22157
diff changeset
   573
9c07aab3a653 min/max lemmas (actually unused!)
paulson
parents: 22157
diff changeset
   574
lemma min_Suc2:
9c07aab3a653 min/max lemmas (actually unused!)
paulson
parents: 22157
diff changeset
   575
   "min m (Suc n) = (case m of 0 => 0 | Suc m' => Suc(min m' n))"
9c07aab3a653 min/max lemmas (actually unused!)
paulson
parents: 22157
diff changeset
   576
  by (simp split: nat.split)
9c07aab3a653 min/max lemmas (actually unused!)
paulson
parents: 22157
diff changeset
   577
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   578
lemma max_0L [simp]: "max 0 n = (n::nat)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   579
  by (rule max_leastL) simp
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   580
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   581
lemma max_0R [simp]: "max n 0 = (n::nat)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   582
  by (rule max_leastR) simp
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   583
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   584
lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   585
  by (simp add: max_of_mono)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   586
22191
9c07aab3a653 min/max lemmas (actually unused!)
paulson
parents: 22157
diff changeset
   587
lemma max_Suc1:
9c07aab3a653 min/max lemmas (actually unused!)
paulson
parents: 22157
diff changeset
   588
   "max (Suc n) m = (case m of 0 => Suc n | Suc m' => Suc(max n m'))"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   589
  by (simp split: nat.split)
22191
9c07aab3a653 min/max lemmas (actually unused!)
paulson
parents: 22157
diff changeset
   590
9c07aab3a653 min/max lemmas (actually unused!)
paulson
parents: 22157
diff changeset
   591
lemma max_Suc2:
9c07aab3a653 min/max lemmas (actually unused!)
paulson
parents: 22157
diff changeset
   592
   "max m (Suc n) = (case m of 0 => Suc n | Suc m' => Suc(max m' n))"
9c07aab3a653 min/max lemmas (actually unused!)
paulson
parents: 22157
diff changeset
   593
  by (simp split: nat.split)
9c07aab3a653 min/max lemmas (actually unused!)
paulson
parents: 22157
diff changeset
   594
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   595
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   596
subsection {* Basic rewrite rules for the arithmetic operators *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   597
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   598
text {* Difference *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   599
14193
30e41f63712e Improved efficiency of code generated for + and -
berghofe
parents: 14131
diff changeset
   600
lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
   601
  by (induct n) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   602
14193
30e41f63712e Improved efficiency of code generated for + and -
berghofe
parents: 14131
diff changeset
   603
lemma diff_Suc_Suc [simp, code]: "Suc(m) - Suc(n) = m - n"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
   604
  by (induct n) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   605
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   606
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   607
text {*
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   608
  Could be (and is, below) generalized in various ways
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   609
  However, none of the generalizations are currently in the simpset,
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   610
  and I dread to think what happens if I put them in
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   611
*}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   612
lemma Suc_pred [simp]: "0 < n ==> Suc (n - Suc 0) = n"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   613
  by (simp split add: nat.split)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   614
14193
30e41f63712e Improved efficiency of code generated for + and -
berghofe
parents: 14131
diff changeset
   615
declare diff_Suc [simp del, code del]
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   616
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   617
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   618
subsection {* Addition *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   619
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   620
lemma add_0_right [simp]: "m + 0 = (m::nat)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   621
  by (induct m) simp_all
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   622
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   623
lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   624
  by (induct m) simp_all
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   625
19890
1aad48bcc674 slight adaption for code generator
haftmann
parents: 19870
diff changeset
   626
lemma add_Suc_shift [code]: "Suc m + n = m + Suc n"
1aad48bcc674 slight adaption for code generator
haftmann
parents: 19870
diff changeset
   627
  by simp
14193
30e41f63712e Improved efficiency of code generated for + and -
berghofe
parents: 14131
diff changeset
   628
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   629
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   630
text {* Associative law for addition *}
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   631
lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   632
  by (induct m) simp_all
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   633
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   634
text {* Commutative law for addition *}
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   635
lemma nat_add_commute: "m + n = n + (m::nat)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   636
  by (induct m) simp_all
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   637
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   638
lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   639
  apply (rule mk_left_commute [of "op +"])
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   640
  apply (rule nat_add_assoc)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   641
  apply (rule nat_add_commute)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   642
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   643
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14302
diff changeset
   644
lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   645
  by (induct k) simp_all
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   646
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14302
diff changeset
   647
lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   648
  by (induct k) simp_all
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   649
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14302
diff changeset
   650
lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   651
  by (induct k) simp_all
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   652
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14302
diff changeset
   653
lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   654
  by (induct k) simp_all
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   655
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   656
text {* Reasoning about @{text "m + 0 = 0"}, etc. *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   657
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   658
lemma add_is_0 [iff]: fixes m :: nat shows "(m + n = 0) = (m = 0 & n = 0)"
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   659
  by (cases m) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   660
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   661
lemma add_is_1: "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   662
  by (cases m) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   663
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   664
lemma one_is_add: "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   665
  by (rule trans, rule eq_commute, rule add_is_1)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   666
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   667
lemma add_gr_0 [iff]: "!!m::nat. (0 < m + n) = (0 < m | 0 < n)"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   668
  by (simp del: neq0_conv add: neq0_conv [symmetric])
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   669
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   670
lemma add_eq_self_zero: "!!m::nat. m + n = m ==> n = 0"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   671
  apply (drule add_0_right [THEN ssubst])
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   672
  apply (simp add: nat_add_assoc del: add_0_right)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   673
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   674
16733
236dfafbeb63 linear arithmetic now takes "&" in assumptions apart.
nipkow
parents: 16635
diff changeset
   675
lemma inj_on_add_nat[simp]: "inj_on (%n::nat. n+k) N"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   676
  apply (induct k)
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   677
   apply simp
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   678
  apply(drule comp_inj_on[OF _ inj_Suc])
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   679
  apply (simp add:o_def)
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   680
  done
16733
236dfafbeb63 linear arithmetic now takes "&" in assumptions apart.
nipkow
parents: 16635
diff changeset
   681
236dfafbeb63 linear arithmetic now takes "&" in assumptions apart.
nipkow
parents: 16635
diff changeset
   682
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   683
subsection {* Multiplication *}
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   684
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   685
text {* right annihilation in product *}
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   686
lemma mult_0_right [simp]: "(m::nat) * 0 = 0"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   687
  by (induct m) simp_all
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   688
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   689
text {* right successor law for multiplication *}
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   690
lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   691
  by (induct m) (simp_all add: nat_add_left_commute)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   692
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   693
text {* Commutative law for multiplication *}
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   694
lemma nat_mult_commute: "m * n = n * (m::nat)"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   695
  by (induct m) simp_all
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   696
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   697
text {* addition distributes over multiplication *}
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   698
lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   699
  by (induct m) (simp_all add: nat_add_assoc nat_add_left_commute)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   700
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   701
lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   702
  by (induct m) (simp_all add: nat_add_assoc)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   703
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   704
text {* Associative law for multiplication *}
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   705
lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   706
  by (induct m) (simp_all add: add_mult_distrib)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   707
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   708
14740
c8e1937110c2 fixed latex problems
nipkow
parents: 14738
diff changeset
   709
text{*The naturals form a @{text comm_semiring_1_cancel}*}
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14691
diff changeset
   710
instance nat :: comm_semiring_1_cancel
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   711
proof
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   712
  fix i j k :: nat
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   713
  show "(i + j) + k = i + (j + k)" by (rule nat_add_assoc)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   714
  show "i + j = j + i" by (rule nat_add_commute)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   715
  show "0 + i = i" by simp
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   716
  show "(i * j) * k = i * (j * k)" by (rule nat_mult_assoc)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   717
  show "i * j = j * i" by (rule nat_mult_commute)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   718
  show "1 * i = i" by simp
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   719
  show "(i + j) * k = i * k + j * k" by (simp add: add_mult_distrib)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   720
  show "0 \<noteq> (1::nat)" by simp
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   721
  assume "k+i = k+j" thus "i=j" by simp
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   722
qed
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   723
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   724
lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
   725
  apply (induct m)
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   726
   apply (induct_tac [2] n)
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   727
    apply simp_all
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   728
  done
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   729
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
   730
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   731
subsection {* Monotonicity of Addition *}
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   732
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   733
text {* strict, in 1st argument *}
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   734
lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)"
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   735
  by (induct k) simp_all
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   736
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   737
text {* strict, in both arguments *}
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   738
lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)"
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   739
  apply (rule add_less_mono1 [THEN less_trans], assumption+)
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
   740
  apply (induct j, simp_all)
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   741
  done
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   742
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   743
text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *}
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   744
lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))"
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   745
  apply (induct n)
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   746
  apply (simp_all add: order_le_less)
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   747
  apply (blast elim!: less_SucE
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   748
               intro!: add_0_right [symmetric] add_Suc_right [symmetric])
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   749
  done
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   750
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   751
text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *}
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   752
lemma mult_less_mono2: "(i::nat) < j ==> 0 < k ==> k * i < k * j"
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   753
  apply (erule_tac m1 = 0 in less_imp_Suc_add [THEN exE], simp)
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   754
  apply (induct_tac x)
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   755
  apply (simp_all add: add_less_mono)
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   756
  done
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   757
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   758
14740
c8e1937110c2 fixed latex problems
nipkow
parents: 14738
diff changeset
   759
text{*The naturals form an ordered @{text comm_semiring_1_cancel}*}
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14691
diff changeset
   760
instance nat :: ordered_semidom
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   761
proof
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
   762
  fix i j k :: nat
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   763
  show "0 < (1::nat)" by simp
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   764
  show "i \<le> j ==> k + i \<le> k + j" by simp
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   765
  show "i < j ==> 0 < k ==> k * i < k * j" by (simp add: mult_less_mono2)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   766
qed
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   767
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   768
lemma nat_mult_1: "(1::nat) * n = n"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   769
  by simp
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   770
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   771
lemma nat_mult_1_right: "n * (1::nat) = n"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   772
  by simp
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   773
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   774
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   775
subsection {* Additional theorems about "less than" *}
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   776
19870
ef037d1b32d1 new results
paulson
parents: 19573
diff changeset
   777
text{*An induction rule for estabilishing binary relations*}
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   778
lemma less_Suc_induct:
19870
ef037d1b32d1 new results
paulson
parents: 19573
diff changeset
   779
  assumes less:  "i < j"
ef037d1b32d1 new results
paulson
parents: 19573
diff changeset
   780
     and  step:  "!!i. P i (Suc i)"
ef037d1b32d1 new results
paulson
parents: 19573
diff changeset
   781
     and  trans: "!!i j k. P i j ==> P j k ==> P i k"
ef037d1b32d1 new results
paulson
parents: 19573
diff changeset
   782
  shows "P i j"
ef037d1b32d1 new results
paulson
parents: 19573
diff changeset
   783
proof -
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   784
  from less obtain k where j: "j = Suc(i+k)" by (auto dest: less_imp_Suc_add)
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   785
  have "P i (Suc (i + k))"
19870
ef037d1b32d1 new results
paulson
parents: 19573
diff changeset
   786
  proof (induct k)
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   787
    case 0
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   788
    show ?case by (simp add: step)
19870
ef037d1b32d1 new results
paulson
parents: 19573
diff changeset
   789
  next
ef037d1b32d1 new results
paulson
parents: 19573
diff changeset
   790
    case (Suc k)
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   791
    thus ?case by (auto intro: assms)
19870
ef037d1b32d1 new results
paulson
parents: 19573
diff changeset
   792
  qed
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   793
  thus "P i j" by (simp add: j)
19870
ef037d1b32d1 new results
paulson
parents: 19573
diff changeset
   794
qed
ef037d1b32d1 new results
paulson
parents: 19573
diff changeset
   795
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   796
text {* The method of infinite descent, frequently used in number theory.
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   797
Provided by Roelof Oosterhuis.
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   798
$P(n)$ is true for all $n\in\mathbb{N}$ if
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   799
\begin{itemize}
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   800
  \item case ``0'': given $n=0$ prove $P(n)$,
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   801
  \item case ``smaller'': given $n>0$ and $\neg P(n)$ prove there exists
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   802
        a smaller integer $m$ such that $\neg P(m)$.
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   803
\end{itemize} *}
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   804
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   805
lemma infinite_descent[case_names 0 smaller]: 
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   806
  "\<lbrakk> P 0; !!n. n>0 \<Longrightarrow> \<not> P n \<Longrightarrow> (\<exists>m::nat. m < n \<and> \<not>P m) \<rbrakk> \<Longrightarrow> P n"
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   807
by (induct n rule: less_induct, case_tac "n>0", auto)
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   808
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   809
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   810
text {* Infinite descent using a mapping to $\mathbb{N}$:
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   811
$P(x)$ is true for all $x\in D$ if there exists a $V: D \to \mathbb{N}$ and
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   812
\begin{itemize}
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   813
\item case ``0'': given $V(x)=0$ prove $P(x)$,
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   814
\item case ``smaller'': given $V(x)>0$ and $\neg P(x)$ prove there exists a $y \in D$ such that $V(y)<V(x)$ and $~\neg P(y)$.
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   815
\end{itemize}
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   816
NB: the proof also shows how to use the previous lemma. *}
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   817
corollary infinite_descent_measure[case_names 0 smaller]:
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   818
fixes V :: "'a \<Rightarrow> nat" 
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   819
assumes 0: "!!x. V x = 0 \<Longrightarrow> P x" 
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   820
and 1: "!!x. V x > 0 \<Longrightarrow> \<not>P x \<Longrightarrow> (\<exists>y. V y < V x \<and> \<not>P y)"
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   821
shows "P x"
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   822
proof -
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   823
  obtain n where "n = V x" by auto
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   824
  moreover have "!!x. V x = (n::nat) \<Longrightarrow> P x"
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   825
  proof (induct n rule: infinite_descent)
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   826
    case 0 -- "i.e. $V(x) = 0$"
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   827
    with 0 show "P x" by auto
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   828
  next -- "now $n>0$ and $P(x)$ does not hold for some $x$ with $V(x)=n$"
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   829
    case (smaller n)
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   830
    then obtain x where vxn: "V x = n " and "V x > 0 \<and> \<not> P x" by auto
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   831
    with 1 obtain y where "V y < V x \<and> \<not> P y" by auto
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   832
    with vxn obtain m where "m = V y \<and> m<n \<and> \<not> P y" by auto
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   833
    thus ?case by auto
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   834
  qed
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   835
  ultimately show "P x" by auto
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   836
qed
19870
ef037d1b32d1 new results
paulson
parents: 19573
diff changeset
   837
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   838
text {* A [clumsy] way of lifting @{text "<"}
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   839
  monotonicity to @{text "\<le>"} monotonicity *}
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   840
lemma less_mono_imp_le_mono:
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   841
  "\<lbrakk> !!i j::nat. i < j \<Longrightarrow> f i < f j; i \<le> j \<rbrakk> \<Longrightarrow> f i \<le> ((f j)::nat)"
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   842
by (simp add: order_le_less) (blast)
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   843
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   844
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   845
text {* non-strict, in 1st argument *}
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   846
lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   847
by (rule add_right_mono)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   848
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   849
text {* non-strict, in both arguments *}
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   850
lemma add_le_mono: "[| i \<le> j;  k \<le> l |] ==> i + k \<le> j + (l::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   851
by (rule add_mono)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   852
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   853
lemma le_add2: "n \<le> ((m + n)::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   854
by (insert add_right_mono [of 0 m n], simp)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   855
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   856
lemma le_add1: "n \<le> ((n + m)::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   857
by (simp add: add_commute, rule le_add2)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   858
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   859
lemma less_add_Suc1: "i < Suc (i + m)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   860
by (rule le_less_trans, rule le_add1, rule lessI)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   861
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   862
lemma less_add_Suc2: "i < Suc (m + i)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   863
by (rule le_less_trans, rule le_add2, rule lessI)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   864
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   865
lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   866
by (iprover intro!: less_add_Suc1 less_imp_Suc_add)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   867
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   868
lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   869
by (rule le_trans, assumption, rule le_add1)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   870
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   871
lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   872
by (rule le_trans, assumption, rule le_add2)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   873
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   874
lemma trans_less_add1: "(i::nat) < j ==> i < j + m"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   875
by (rule less_le_trans, assumption, rule le_add1)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   876
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   877
lemma trans_less_add2: "(i::nat) < j ==> i < m + j"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   878
by (rule less_le_trans, assumption, rule le_add2)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   879
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   880
lemma add_lessD1: "i + j < (k::nat) ==> i < k"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   881
apply (rule le_less_trans [of _ "i+j"])
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   882
apply (simp_all add: le_add1)
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   883
done
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   884
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   885
lemma not_add_less1 [iff]: "~ (i + j < (i::nat))"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   886
apply (rule notI)
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   887
apply (erule add_lessD1 [THEN less_irrefl])
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   888
done
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   889
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   890
lemma not_add_less2 [iff]: "~ (j + i < (i::nat))"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   891
by (simp add: add_commute not_add_less1)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   892
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   893
lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   894
apply (rule order_trans [of _ "m+k"])
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   895
apply (simp_all add: le_add1)
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   896
done
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   897
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   898
lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   899
apply (simp add: add_commute)
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   900
apply (erule add_leD1)
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   901
done
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   902
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   903
lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   904
by (blast dest: add_leD1 add_leD2)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   905
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   906
text {* needs @{text "!!k"} for @{text add_ac} to work *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   907
lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   908
by (force simp del: add_Suc_right
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   909
    simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   910
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   911
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   912
subsection {* Difference *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   913
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   914
lemma diff_self_eq_0 [simp]: "(m::nat) - m = 0"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   915
by (induct m) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   916
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   917
text {* Addition is the inverse of subtraction:
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   918
  if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *}
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   919
lemma add_diff_inverse: "~  m < n ==> n + (m - n) = (m::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   920
by (induct m n rule: diff_induct) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   921
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   922
lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m - n) = (m::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   923
by (simp add: add_diff_inverse linorder_not_less)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   924
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   925
lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m - n) + n = (m::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   926
by (simp add: le_add_diff_inverse add_commute)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   927
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   928
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   929
subsection {* More results about difference *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   930
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   931
lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   932
by (induct m n rule: diff_induct) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   933
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   934
lemma diff_less_Suc: "m - n < Suc m"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   935
apply (induct m n rule: diff_induct)
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   936
apply (erule_tac [3] less_SucE)
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   937
apply (simp_all add: less_Suc_eq)
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   938
done
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   939
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   940
lemma diff_le_self [simp]: "m - n \<le> (m::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   941
by (induct m n rule: diff_induct) (simp_all add: le_SucI)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   942
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   943
lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   944
by (rule le_less_trans, rule diff_le_self)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   945
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   946
lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   947
by (induct i j rule: diff_induct) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   948
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   949
lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   950
by (simp add: diff_diff_left)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   951
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   952
lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   953
by (cases n) (auto simp add: le_simps)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   954
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   955
text {* This and the next few suggested by Florian Kammueller *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   956
lemma diff_commute: "(i::nat) - j - k = i - k - j"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   957
by (simp add: diff_diff_left add_commute)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   958
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   959
lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   960
by (induct j k rule: diff_induct) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   961
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   962
lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   963
by (simp add: add_commute diff_add_assoc)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   964
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   965
lemma diff_add_inverse: "(n + m) - n = (m::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   966
by (induct n) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   967
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   968
lemma diff_add_inverse2: "(m + n) - n = (m::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   969
by (simp add: diff_add_assoc)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   970
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   971
lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   972
by (auto simp add: diff_add_inverse2)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   973
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   974
lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   975
by (induct m n rule: diff_induct) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   976
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   977
lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   978
by (rule iffD2, rule diff_is_0_eq)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   979
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   980
lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   981
by (induct m n rule: diff_induct) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   982
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   983
lemma less_imp_add_positive:
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   984
  assumes "i < j"
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   985
  shows "\<exists>k::nat. 0 < k & i + k = j"
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   986
proof
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   987
  from assms show "0 < j - i & i + (j - i) = j"
23476
839db6346cc8 fix looping simp rule
huffman
parents: 23438
diff changeset
   988
    by (simp add: order_less_imp_le)
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
   989
qed
9436
62bb04ab4b01 rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents: 7702
diff changeset
   990
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   991
lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   992
by (induct k) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   993
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   994
lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   995
by (simp add: diff_cancel add_commute)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   996
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   997
lemma diff_add_0: "n - (n + m) = (0::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
   998
by (induct n) simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
   999
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1000
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1001
text {* Difference distributes over multiplication *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1002
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1003
lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1004
by (induct m n rule: diff_induct) (simp_all add: diff_cancel)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1005
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1006
lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1007
by (simp add: diff_mult_distrib mult_commute [of k])
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1008
  -- {* NOT added as rewrites, since sometimes they are used from right-to-left *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1009
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1010
lemmas nat_distrib =
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1011
  add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1012
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1013
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1014
subsection {* Monotonicity of Multiplication *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1015
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
  1016
lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1017
by (simp add: mult_right_mono)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1018
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
  1019
lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1020
by (simp add: mult_left_mono)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1021
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
  1022
text {* @{text "\<le>"} monotonicity, BOTH arguments *}
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
  1023
lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1024
by (simp add: mult_mono)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1025
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1026
lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1027
by (simp add: mult_strict_right_mono)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1028
14266
08b34c902618 conversion of integers to use Ring_and_Field;
paulson
parents: 14265
diff changeset
  1029
text{*Differs from the standard @{text zero_less_mult_iff} in that
08b34c902618 conversion of integers to use Ring_and_Field;
paulson
parents: 14265
diff changeset
  1030
      there are no negative numbers.*}
08b34c902618 conversion of integers to use Ring_and_Field;
paulson
parents: 14265
diff changeset
  1031
lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1032
  apply (induct m)
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1033
   apply simp
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1034
  apply (case_tac n)
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1035
   apply simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1036
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1037
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
  1038
lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (1 \<le> m & 1 \<le> n)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1039
  apply (induct m)
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1040
   apply simp
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1041
  apply (case_tac n)
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1042
   apply simp_all
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1043
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1044
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1045
lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = 1 & n = 1)"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1046
  apply (induct m)
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1047
   apply simp
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1048
  apply (induct n)
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1049
   apply auto
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1050
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1051
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 24196
diff changeset
  1052
lemma one_eq_mult_iff [simp,noatp]: "(Suc 0 = m * n) = (m = 1 & n = 1)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1053
  apply (rule trans)
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
  1054
  apply (rule_tac [2] mult_eq_1_iff, fastsimp)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1055
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1056
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
  1057
lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)"
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1058
  apply (safe intro!: mult_less_mono1)
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
  1059
  apply (case_tac k, auto)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1060
  apply (simp del: le_0_eq add: linorder_not_le [symmetric])
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1061
  apply (blast intro: mult_le_mono1)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1062
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1063
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1064
lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1065
by (simp add: mult_commute [of k])
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1066
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
  1067
lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1068
by (simp add: linorder_not_less [symmetric], auto)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1069
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
  1070
lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1071
by (simp add: linorder_not_less [symmetric], auto)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1072
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14331
diff changeset
  1073
lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))"
14208
144f45277d5a misc tidying
paulson
parents: 14193
diff changeset
  1074
  apply (cut_tac less_linear, safe, auto)
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1075
  apply (drule mult_less_mono1, assumption, simp)+
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1076
  done
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1077
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1078
lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1079
by (simp add: mult_commute [of k])
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1080
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1081
lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1082
by (subst mult_less_cancel1) simp
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1083
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
  1084
lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1085
by (subst mult_le_cancel1) simp
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1086
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1087
lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1088
by (subst mult_cancel1) simp
13449
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1089
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1090
text {* Lemma for @{text gcd} *}
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1091
lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0"
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1092
  apply (drule sym)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1093
  apply (rule disjCI)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1094
  apply (rule nat_less_cases, erule_tac [2] _)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1095
  apply (fastsimp elim!: less_SucE)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1096
  apply (fastsimp dest: mult_less_mono2)
43c9ec498291 - Converted to new theory format
berghofe
parents: 12338
diff changeset
  1097
  done
9436
62bb04ab4b01 rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents: 7702
diff changeset
  1098
20588
c847c56edf0c added operational equality
haftmann
parents: 20380
diff changeset
  1099
18702
7dc7dcd63224 substantial improvements in code generator
haftmann
parents: 18648
diff changeset
  1100
subsection {* Code generator setup *}
7dc7dcd63224 substantial improvements in code generator
haftmann
parents: 18648
diff changeset
  1101
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1102
lemma one_is_Suc_zero [code inline]: "1 = Suc 0"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1103
by simp
20355
50aaae6ae4db cleanup code generation for Numerals
haftmann
parents: 19890
diff changeset
  1104
20588
c847c56edf0c added operational equality
haftmann
parents: 20380
diff changeset
  1105
instance nat :: eq ..
c847c56edf0c added operational equality
haftmann
parents: 20380
diff changeset
  1106
c847c56edf0c added operational equality
haftmann
parents: 20380
diff changeset
  1107
lemma [code func]:
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1108
    "(0\<Colon>nat) = 0 \<longleftrightarrow> True"
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1109
    "Suc n = Suc m \<longleftrightarrow> n = m"
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1110
    "Suc n = 0 \<longleftrightarrow> False"
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1111
    "0 = Suc m \<longleftrightarrow> False"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1112
by auto
20588
c847c56edf0c added operational equality
haftmann
parents: 20380
diff changeset
  1113
c847c56edf0c added operational equality
haftmann
parents: 20380
diff changeset
  1114
lemma [code func]:
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1115
    "(0\<Colon>nat) \<le> m \<longleftrightarrow> True"
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1116
    "Suc (n\<Colon>nat) \<le> m \<longleftrightarrow> n < m"
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1117
    "(n\<Colon>nat) < 0 \<longleftrightarrow> False"
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1118
    "(n\<Colon>nat) < Suc m \<longleftrightarrow> n \<le> m"
22348
ab505d281015 adjusted code lemmas
haftmann
parents: 22318
diff changeset
  1119
  using Suc_le_eq less_Suc_eq_le by simp_all
20588
c847c56edf0c added operational equality
haftmann
parents: 20380
diff changeset
  1120
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1121
24196
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1122
subsection{*Embedding of the Naturals into any
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1123
  @{text semiring_1}: @{term of_nat}*}
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1124
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1125
context semiring_1
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1126
begin
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1127
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1128
definition
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1129
  of_nat_def: "of_nat = nat_rec \<^loc>0 (\<lambda>_. (op \<^loc>+) \<^loc>1)"
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1130
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1131
end
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1132
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1133
subsection {* Further Arithmetic Facts Concerning the Natural Numbers *}
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1134
22845
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
  1135
lemma subst_equals:
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
  1136
  assumes 1: "t = s" and 2: "u = t"
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
  1137
  shows "u = s"
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
  1138
  using 2 1 by (rule trans)
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
  1139
24196
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1140
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1141
use "arith_data.ML"
24091
109f19a13872 added Tools/lin_arith.ML;
wenzelm
parents: 24075
diff changeset
  1142
declaration {* K arith_data_setup *}
109f19a13872 added Tools/lin_arith.ML;
wenzelm
parents: 24075
diff changeset
  1143
109f19a13872 added Tools/lin_arith.ML;
wenzelm
parents: 24075
diff changeset
  1144
use "Tools/lin_arith.ML"
109f19a13872 added Tools/lin_arith.ML;
wenzelm
parents: 24075
diff changeset
  1145
declaration {* K LinArith.setup *}
109f19a13872 added Tools/lin_arith.ML;
wenzelm
parents: 24075
diff changeset
  1146
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1147
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1148
text{*The following proofs may rely on the arithmetic proof procedures.*}
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1149
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1150
lemma le_iff_add: "(m::nat) \<le> n = (\<exists>k. n = m + k)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1151
by (auto simp: le_eq_less_or_eq dest: less_imp_Suc_add)
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1152
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1153
lemma pred_nat_trancl_eq_le: "((m, n) : pred_nat^*) = (m \<le> n)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1154
by (simp add: less_eq reflcl_trancl [symmetric] del: reflcl_trancl, arith)
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1155
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1156
lemma nat_diff_split:
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1157
  "P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1158
    -- {* elimination of @{text -} on @{text nat} *}
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1159
by (cases "a<b" rule: case_split) (auto simp add: diff_is_0_eq [THEN iffD2])
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1160
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1161
lemma nat_diff_split_asm:
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1162
    "P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))"
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1163
    -- {* elimination of @{text -} on @{text nat} in assumptions *}
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1164
by (simp split: nat_diff_split)
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1165
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1166
lemmas [arith_split] = nat_diff_split split_min split_max
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1167
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1168
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1169
lemma le_square: "m \<le> m * (m::nat)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1170
by (induct m) auto
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1171
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1172
lemma le_cube: "(m::nat) \<le> m * (m * m)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1173
by (induct m) auto
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1174
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1175
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1176
text{*Subtraction laws, mostly by Clemens Ballarin*}
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1177
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1178
lemma diff_less_mono: "[| a < (b::nat); c \<le> a |] ==> a-c < b-c"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1179
by arith
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1180
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1181
lemma less_diff_conv: "(i < j-k) = (i+k < (j::nat))"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1182
by arith
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1183
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1184
lemma le_diff_conv: "(j-k \<le> (i::nat)) = (j \<le> i+k)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1185
by arith
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1186
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1187
lemma le_diff_conv2: "k \<le> j ==> (i \<le> j-k) = (i+k \<le> (j::nat))"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1188
by arith
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1189
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1190
lemma diff_diff_cancel [simp]: "i \<le> (n::nat) ==> n - (n - i) = i"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1191
by arith
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1192
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1193
lemma le_add_diff: "k \<le> (n::nat) ==> m \<le> n + m - k"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1194
by arith
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1195
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1196
(*Replaces the previous diff_less and le_diff_less, which had the stronger
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1197
  second premise n\<le>m*)
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1198
lemma diff_less[simp]: "!!m::nat. [| 0<n; 0<m |] ==> m - n < m"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1199
by arith
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1200
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1201
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1202
(** Simplification of relational expressions involving subtraction **)
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1203
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1204
lemma diff_diff_eq: "[| k \<le> m;  k \<le> (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1205
by (simp split add: nat_diff_split)
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1206
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1207
lemma eq_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k = n-k) = (m=n)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1208
by (auto split add: nat_diff_split)
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1209
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1210
lemma less_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k < n-k) = (m<n)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1211
by (auto split add: nat_diff_split)
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1212
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1213
lemma le_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k \<le> n-k) = (m\<le>n)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1214
by (auto split add: nat_diff_split)
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1215
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1216
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1217
text{*(Anti)Monotonicity of subtraction -- by Stephan Merz*}
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1218
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1219
(* Monotonicity of subtraction in first argument *)
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1220
lemma diff_le_mono: "m \<le> (n::nat) ==> (m-l) \<le> (n-l)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1221
by (simp split add: nat_diff_split)
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1222
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1223
lemma diff_le_mono2: "m \<le> (n::nat) ==> (l-n) \<le> (l-m)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1224
by (simp split add: nat_diff_split)
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1225
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1226
lemma diff_less_mono2: "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1227
by (simp split add: nat_diff_split)
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1228
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1229
lemma diffs0_imp_equal: "!!m::nat. [| m-n = 0; n-m = 0 |] ==>  m=n"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1230
by (simp split add: nat_diff_split)
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1231
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1232
text{*Lemmas for ex/Factorization*}
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1233
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1234
lemma one_less_mult: "[| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1235
by (cases m) auto
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1236
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1237
lemma n_less_m_mult_n: "[| Suc 0 < n; Suc 0 < m |] ==> n<m*n"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1238
by (cases m) auto
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1239
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1240
lemma n_less_n_mult_m: "[| Suc 0 < n; Suc 0 < m |] ==> n<n*m"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1241
by (cases m) auto
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1242
23001
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1243
text {* Specialized induction principles that work "backwards": *}
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1244
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1245
lemma inc_induct[consumes 1, case_names base step]:
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1246
  assumes less: "i <= j"
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1247
  assumes base: "P j"
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1248
  assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i"
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1249
  shows "P i"
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1250
  using less
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1251
proof (induct d=="j - i" arbitrary: i)
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1252
  case (0 i)
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1253
  hence "i = j" by simp
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1254
  with base show ?case by simp
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1255
next
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1256
  case (Suc d i)
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1257
  hence "i < j" "P (Suc i)"
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1258
    by simp_all
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1259
  thus "P i" by (rule step)
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1260
qed
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1261
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1262
lemma strict_inc_induct[consumes 1, case_names base step]:
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1263
  assumes less: "i < j"
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1264
  assumes base: "!!i. j = Suc i ==> P i"
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1265
  assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i"
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1266
  shows "P i"
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1267
  using less
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1268
proof (induct d=="j - i - 1" arbitrary: i)
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1269
  case (0 i)
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1270
  with `i < j` have "j = Suc i" by simp
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1271
  with base show ?case by simp
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1272
next
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1273
  case (Suc d i)
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1274
  hence "i < j" "P (Suc i)"
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1275
    by simp_all
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1276
  thus "P i" by (rule step)
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1277
qed
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1278
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1279
lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)"
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1280
  using inc_induct[of "k - i" k P, simplified] by blast
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1281
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1282
lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0"
3608f0362a91 added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents: 22920
diff changeset
  1283
  using inc_induct[of 0 k P] by blast
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1284
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1285
text{*Rewriting to pull differences out*}
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1286
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1287
lemma diff_diff_right [simp]: "k\<le>j --> i - (j - k) = i + (k::nat) - j"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1288
by arith
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1289
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1290
lemma diff_Suc_diff_eq1 [simp]: "k \<le> j ==> m - Suc (j - k) = m + k - Suc j"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1291
by arith
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1292
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1293
lemma diff_Suc_diff_eq2 [simp]: "k \<le> j ==> Suc (j - k) - m = Suc j - (k + m)"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1294
by arith
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1295
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1296
(*The others are
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1297
      i - j - k = i - (j + k),
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1298
      k \<le> j ==> j - k + i = j + i - k,
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1299
      k \<le> j ==> i + (j - k) = i + j - k *)
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1300
lemmas add_diff_assoc = diff_add_assoc [symmetric]
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1301
lemmas add_diff_assoc2 = diff_add_assoc2[symmetric]
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1302
declare diff_diff_left [simp]  add_diff_assoc [simp]  add_diff_assoc2[simp]
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1303
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1304
text{*At present we prove no analogue of @{text not_less_Least} or @{text
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1305
Least_Suc}, since there appears to be no need.*}
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1306
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1307
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1308
subsection{*Embedding of the Naturals into any
23276
a70934b63910 generalize of_nat and related constants to class semiring_1
huffman
parents: 23263
diff changeset
  1309
  @{text semiring_1}: @{term of_nat}*}
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1310
24196
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1311
context semiring_1
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1312
begin
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1313
24196
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1314
lemma of_nat_simps [simp, code]:
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1315
  shows of_nat_0:   "of_nat 0 = \<^loc>0"
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1316
    and of_nat_Suc: "of_nat (Suc m) = \<^loc>1 \<^loc>+ of_nat m"
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1317
  unfolding of_nat_def by simp_all
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1318
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1319
end
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1320
22920
0dbcb73bf9bf size [nat] is identity
haftmann
parents: 22845
diff changeset
  1321
lemma of_nat_id [simp]: "(of_nat n \<Colon> nat) = n"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1322
by (induct n) auto
22920
0dbcb73bf9bf size [nat] is identity
haftmann
parents: 22845
diff changeset
  1323
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1324
lemma of_nat_1 [simp]: "of_nat 1 = 1"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1325
by simp
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1326
24196
f1dbfd7e3223 localized of_nat
haftmann
parents: 24162
diff changeset
  1327
lemma of_nat_add [simp]: "of_nat (m + n) = of_nat m + of_nat n"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1328
by (induct m) (simp_all add: add_ac)
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1329
23431
25ca91279a9b change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
huffman
parents: 23347
diff changeset
  1330
lemma of_nat_mult: "of_nat (m*n) = of_nat m * of_nat n"
24438
2d8058804a76 Added infinite_descent
nipkow
parents: 24286
diff changeset
  1331
by (induct m) (simp_all add: add_ac left_distrib)
21243
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1332
afffe1f72143 removed theory NatArith (now part of Nat);
wenzelm
parents: 21191
diff changeset
  1333
lemma zero_le_imp_of_nat: "0 \<le> (of_nat m::'a::ordered_semidom)"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1334
  apply (induct m, simp_all)
936f7580937d tuned proofs;
wenzelm
parents: 22483
diff changeset
  1335
  apply (erule order_trans)
23431
25ca91279a9b change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
huffman
parents: 23347
diff changeset
  1336
  apply (rule ord_le_eq_trans [OF _ add_commute])