| author | nipkow |
| Wed, 17 Apr 2013 21:23:35 +0200 | |
| changeset 51712 | 30624dab6054 |
| parent 51711 | df3426139651 |
| child 51722 | 3da99469cc1b |
| permissions | -rw-r--r-- |
| 47613 | 1 |
(* Author: Tobias Nipkow *) |
2 |
||
3 |
theory Abs_Int2 |
|
4 |
imports Abs_Int1 |
|
5 |
begin |
|
6 |
||
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
7 |
instantiation prod :: (order,order) order |
| 47613 | 8 |
begin |
9 |
||
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
10 |
definition "less_eq_prod p1 p2 = (fst p1 \<le> fst p2 \<and> snd p1 \<le> snd p2)" |
|
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
11 |
definition "less_prod p1 p2 = (p1 \<le> p2 \<and> \<not> p2 \<le> (p1::'a*'b))" |
| 47613 | 12 |
|
13 |
instance |
|
14 |
proof |
|
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
15 |
case goal1 show ?case by(rule less_prod_def) |
|
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
16 |
next |
|
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
17 |
case goal2 show ?case by(simp add: less_eq_prod_def) |
| 47613 | 18 |
next |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
19 |
case goal3 thus ?case unfolding less_eq_prod_def by(metis order_trans) |
|
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
20 |
next |
|
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
21 |
case goal4 thus ?case by(simp add: less_eq_prod_def)(metis eq_iff surjective_pairing) |
| 47613 | 22 |
qed |
23 |
||
24 |
end |
|
25 |
||
26 |
||
27 |
subsection "Backward Analysis of Expressions" |
|
28 |
||
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
29 |
subclass (in bounded_lattice) semilattice .. |
| 47613 | 30 |
|
31 |
locale Val_abs1_gamma = |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
32 |
Gamma where \<gamma> = \<gamma> for \<gamma> :: "'av::bounded_lattice \<Rightarrow> val set" + |
| 51390 | 33 |
assumes inter_gamma_subset_gamma_inf: |
| 47613 | 34 |
"\<gamma> a1 \<inter> \<gamma> a2 \<subseteq> \<gamma>(a1 \<sqinter> a2)" |
| 49396 | 35 |
and gamma_bot[simp]: "\<gamma> \<bottom> = {}"
|
| 47613 | 36 |
begin |
37 |
||
| 51390 | 38 |
lemma in_gamma_inf: "x : \<gamma> a1 \<Longrightarrow> x : \<gamma> a2 \<Longrightarrow> x : \<gamma>(a1 \<sqinter> a2)" |
39 |
by (metis IntI inter_gamma_subset_gamma_inf set_mp) |
|
| 47613 | 40 |
|
| 51390 | 41 |
lemma gamma_inf[simp]: "\<gamma>(a1 \<sqinter> a2) = \<gamma> a1 \<inter> \<gamma> a2" |
42 |
by(rule equalityI[OF _ inter_gamma_subset_gamma_inf]) |
|
| 51389 | 43 |
(metis inf_le1 inf_le2 le_inf_iff mono_gamma) |
| 47613 | 44 |
|
45 |
end |
|
46 |
||
47 |
||
48 |
locale Val_abs1 = |
|
49 |
Val_abs1_gamma where \<gamma> = \<gamma> |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
50 |
for \<gamma> :: "'av::bounded_lattice \<Rightarrow> val set" + |
| 47613 | 51 |
fixes test_num' :: "val \<Rightarrow> 'av \<Rightarrow> bool" |
52 |
and filter_plus' :: "'av \<Rightarrow> 'av \<Rightarrow> 'av \<Rightarrow> 'av * 'av" |
|
53 |
and filter_less' :: "bool \<Rightarrow> 'av \<Rightarrow> 'av \<Rightarrow> 'av * 'av" |
|
| 51036 | 54 |
assumes test_num': "test_num' n a = (n : \<gamma> a)" |
| 47613 | 55 |
and filter_plus': "filter_plus' a a1 a2 = (b1,b2) \<Longrightarrow> |
| 51036 | 56 |
n1 : \<gamma> a1 \<Longrightarrow> n2 : \<gamma> a2 \<Longrightarrow> n1+n2 : \<gamma> a \<Longrightarrow> n1 : \<gamma> b1 \<and> n2 : \<gamma> b2" |
57 |
and filter_less': "filter_less' (n1<n2) a1 a2 = (b1,b2) \<Longrightarrow> |
|
58 |
n1 : \<gamma> a1 \<Longrightarrow> n2 : \<gamma> a2 \<Longrightarrow> n1 : \<gamma> b1 \<and> n2 : \<gamma> b2" |
|
| 47613 | 59 |
|
60 |
||
61 |
locale Abs_Int1 = |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
62 |
Val_abs1 where \<gamma> = \<gamma> for \<gamma> :: "'av::bounded_lattice \<Rightarrow> val set" |
| 47613 | 63 |
begin |
64 |
||
| 51389 | 65 |
lemma in_gamma_sup_UpI: |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
66 |
"s : \<gamma>\<^isub>o S1 \<or> s : \<gamma>\<^isub>o S2 \<Longrightarrow> s : \<gamma>\<^isub>o(S1 \<squnion> S2)" |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
67 |
by (metis (hide_lams, no_types) sup_ge1 sup_ge2 mono_gamma_o subsetD) |
| 47613 | 68 |
|
69 |
fun aval'' :: "aexp \<Rightarrow> 'av st option \<Rightarrow> 'av" where |
|
70 |
"aval'' e None = \<bottom>" | |
|
71 |
"aval'' e (Some sa) = aval' e sa" |
|
72 |
||
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
73 |
lemma aval''_sound: "s : \<gamma>\<^isub>o S \<Longrightarrow> aval a s : \<gamma>(aval'' a S)" |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
74 |
by(cases S)(auto simp add: aval'_sound split: option.splits) |
| 47613 | 75 |
|
76 |
subsubsection "Backward analysis" |
|
77 |
||
78 |
fun afilter :: "aexp \<Rightarrow> 'av \<Rightarrow> 'av st option \<Rightarrow> 'av st option" where |
|
| 51036 | 79 |
"afilter (N n) a S = (if test_num' n a then S else None)" | |
| 47613 | 80 |
"afilter (V x) a S = (case S of None \<Rightarrow> None | Some S \<Rightarrow> |
81 |
let a' = fun S x \<sqinter> a in |
|
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
82 |
if a' = \<bottom> then None else Some(update S x a'))" | |
| 47613 | 83 |
"afilter (Plus e1 e2) a S = |
| 51036 | 84 |
(let (a1,a2) = filter_plus' a (aval'' e1 S) (aval'' e2 S) |
85 |
in afilter e1 a1 (afilter e2 a2 S))" |
|
| 47613 | 86 |
|
87 |
text{* The test for @{const bot} in the @{const V}-case is important: @{const
|
|
88 |
bot} indicates that a variable has no possible values, i.e.\ that the current |
|
89 |
program point is unreachable. But then the abstract state should collapse to |
|
90 |
@{const None}. Put differently, we maintain the invariant that in an abstract
|
|
91 |
state of the form @{term"Some s"}, all variables are mapped to non-@{const
|
|
| 51389 | 92 |
bot} values. Otherwise the (pointwise) sup of two abstract states, one of |
| 47613 | 93 |
which contains @{const bot} values, may produce too large a result, thus
|
94 |
making the analysis less precise. *} |
|
95 |
||
96 |
||
97 |
fun bfilter :: "bexp \<Rightarrow> bool \<Rightarrow> 'av st option \<Rightarrow> 'av st option" where |
|
98 |
"bfilter (Bc v) res S = (if v=res then S else None)" | |
|
99 |
"bfilter (Not b) res S = bfilter b (\<not> res) S" | |
|
100 |
"bfilter (And b1 b2) res S = |
|
101 |
(if res then bfilter b1 True (bfilter b2 True S) |
|
102 |
else bfilter b1 False S \<squnion> bfilter b2 False S)" | |
|
103 |
"bfilter (Less e1 e2) res S = |
|
| 51037 | 104 |
(let (a1,a2) = filter_less' res (aval'' e1 S) (aval'' e2 S) |
105 |
in afilter e1 a1 (afilter e2 a2 S))" |
|
| 47613 | 106 |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
107 |
lemma afilter_sound: "s : \<gamma>\<^isub>o S \<Longrightarrow> aval e s : \<gamma> a \<Longrightarrow> s : \<gamma>\<^isub>o (afilter e a S)" |
| 47613 | 108 |
proof(induction e arbitrary: a S) |
109 |
case N thus ?case by simp (metis test_num') |
|
110 |
next |
|
111 |
case (V x) |
|
| 49497 | 112 |
obtain S' where "S = Some S'" and "s : \<gamma>\<^isub>s S'" using `s : \<gamma>\<^isub>o S` |
| 47613 | 113 |
by(auto simp: in_gamma_option_iff) |
114 |
moreover hence "s x : \<gamma> (fun S' x)" |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
115 |
using V(1,2) by(simp add: \<gamma>_st_def) |
| 47613 | 116 |
moreover have "s x : \<gamma> a" using V by simp |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
117 |
ultimately show ?case |
| 47613 | 118 |
by(simp add: Let_def \<gamma>_st_def) |
| 51390 | 119 |
(metis mono_gamma emptyE in_gamma_inf gamma_bot subset_empty) |
| 47613 | 120 |
next |
121 |
case (Plus e1 e2) thus ?case |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
122 |
using filter_plus'[OF _ aval''_sound aval''_sound] |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
123 |
by (auto split: prod.split) |
| 47613 | 124 |
qed |
125 |
||
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
126 |
lemma bfilter_sound: "s : \<gamma>\<^isub>o S \<Longrightarrow> bv = bval b s \<Longrightarrow> s : \<gamma>\<^isub>o(bfilter b bv S)" |
| 47613 | 127 |
proof(induction b arbitrary: S bv) |
128 |
case Bc thus ?case by simp |
|
129 |
next |
|
130 |
case (Not b) thus ?case by simp |
|
131 |
next |
|
132 |
case (And b1 b2) thus ?case |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
133 |
by simp (metis And(1) And(2) in_gamma_sup_UpI) |
| 47613 | 134 |
next |
135 |
case (Less e1 e2) thus ?case |
|
136 |
by(auto split: prod.split) |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
137 |
(metis (lifting) afilter_sound aval''_sound filter_less') |
| 47613 | 138 |
qed |
139 |
||
| 51390 | 140 |
definition "step' = Step |
| 51389 | 141 |
(\<lambda>x e S. case S of None \<Rightarrow> None | Some S \<Rightarrow> Some(update S x (aval' e S))) |
142 |
(\<lambda>b S. bfilter b True S)" |
|
| 47613 | 143 |
|
144 |
definition AI :: "com \<Rightarrow> 'av st option acom option" where |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
145 |
"AI c = pfp (step' \<top>) (bot c)" |
| 47613 | 146 |
|
147 |
lemma strip_step'[simp]: "strip(step' S c) = strip c" |
|
| 51390 | 148 |
by(simp add: step'_def) |
| 47613 | 149 |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
150 |
lemma top_on_afilter: "\<lbrakk> top_on X S; vars e \<subseteq> -X \<rbrakk> \<Longrightarrow> top_on X (afilter e a S)" |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
151 |
by(induction e arbitrary: a S) (auto simp: Let_def split: option.splits prod.split) |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
152 |
|
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
153 |
lemma top_on_bfilter: "\<lbrakk>top_on X S; vars b \<subseteq> -X\<rbrakk> \<Longrightarrow> top_on X (bfilter b r S)" |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
154 |
by(induction b arbitrary: r S) (auto simp: top_on_afilter top_on_sup split: prod.split) |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
155 |
|
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
156 |
lemma top_on_step': "top_on (- vars C) C \<Longrightarrow> top_on (- vars C) (step' \<top> C)" |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
157 |
unfolding step'_def |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
158 |
by(rule top_on_Step) |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
159 |
(auto simp add: top_on_top top_on_bfilter split: option.split) |
| 47613 | 160 |
|
161 |
subsubsection "Soundness" |
|
162 |
||
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
163 |
lemma step_step': "step (\<gamma>\<^isub>o S) (\<gamma>\<^isub>c C) \<le> \<gamma>\<^isub>c (step' S C)" |
| 51390 | 164 |
unfolding step_def step'_def |
165 |
by(rule gamma_Step_subcomm) |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
166 |
(auto simp: intro!: aval'_sound bfilter_sound in_gamma_update split: option.splits) |
| 47613 | 167 |
|
| 50986 | 168 |
lemma AI_sound: "AI c = Some C \<Longrightarrow> CS c \<le> \<gamma>\<^isub>c C" |
| 47613 | 169 |
proof(simp add: CS_def AI_def) |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
170 |
assume 1: "pfp (step' \<top>) (bot c) = Some C" |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
171 |
have pfp': "step' \<top> C \<le> C" by(rule pfp_pfp[OF 1]) |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
172 |
have 2: "step (\<gamma>\<^isub>o \<top>) (\<gamma>\<^isub>c C) \<le> \<gamma>\<^isub>c C" --"transfer the pfp'" |
| 50986 | 173 |
proof(rule order_trans) |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
174 |
show "step (\<gamma>\<^isub>o \<top>) (\<gamma>\<^isub>c C) \<le> \<gamma>\<^isub>c (step' \<top> C)" by(rule step_step') |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
175 |
show "... \<le> \<gamma>\<^isub>c C" by (metis mono_gamma_c[OF pfp']) |
| 47613 | 176 |
qed |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
177 |
have 3: "strip (\<gamma>\<^isub>c C) = c" by(simp add: strip_pfp[OF _ 1] step'_def) |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
178 |
have "lfp c (step (\<gamma>\<^isub>o \<top>)) \<le> \<gamma>\<^isub>c C" |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
179 |
by(rule lfp_lowerbound[simplified,where f="step (\<gamma>\<^isub>o \<top>)", OF 3 2]) |
| 50986 | 180 |
thus "lfp c (step UNIV) \<le> \<gamma>\<^isub>c C" by simp |
| 47613 | 181 |
qed |
182 |
||
183 |
end |
|
184 |
||
185 |
||
186 |
subsubsection "Monotonicity" |
|
187 |
||
188 |
locale Abs_Int1_mono = Abs_Int1 + |
|
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
189 |
assumes mono_plus': "a1 \<le> b1 \<Longrightarrow> a2 \<le> b2 \<Longrightarrow> plus' a1 a2 \<le> plus' b1 b2" |
|
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
190 |
and mono_filter_plus': "a1 \<le> b1 \<Longrightarrow> a2 \<le> b2 \<Longrightarrow> r \<le> r' \<Longrightarrow> |
|
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
191 |
filter_plus' r a1 a2 \<le> filter_plus' r' b1 b2" |
|
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
192 |
and mono_filter_less': "a1 \<le> b1 \<Longrightarrow> a2 \<le> b2 \<Longrightarrow> |
|
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
193 |
filter_less' bv a1 a2 \<le> filter_less' bv b1 b2" |
| 47613 | 194 |
begin |
195 |
||
196 |
lemma mono_aval': |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
197 |
"S1 \<le> S2 \<Longrightarrow> aval' e S1 \<le> aval' e S2" |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
198 |
by(induction e) (auto simp: mono_plus' mono_fun) |
| 47613 | 199 |
|
200 |
lemma mono_aval'': |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
201 |
"S1 \<le> S2 \<Longrightarrow> aval'' e S1 \<le> aval'' e S2" |
| 47613 | 202 |
apply(cases S1) |
203 |
apply simp |
|
204 |
apply(cases S2) |
|
205 |
apply simp |
|
206 |
by (simp add: mono_aval') |
|
207 |
||
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
208 |
lemma mono_afilter: "r1 \<le> r2 \<Longrightarrow> S1 \<le> S2 \<Longrightarrow> afilter e r1 S1 \<le> afilter e r2 S2" |
| 47613 | 209 |
apply(induction e arbitrary: r1 r2 S1 S2) |
| 51390 | 210 |
apply(auto simp: test_num' Let_def inf_mono split: option.splits prod.splits) |
211 |
apply (metis mono_gamma subsetD) |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
212 |
apply (metis le_bot inf_mono le_st_iff) |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
213 |
apply (metis inf_mono mono_update le_st_iff) |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
214 |
apply(metis mono_aval'' mono_filter_plus'[simplified less_eq_prod_def] fst_conv snd_conv) |
| 47613 | 215 |
done |
216 |
||
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
217 |
lemma mono_bfilter: "S1 \<le> S2 \<Longrightarrow> bfilter b bv S1 \<le> bfilter b bv S2" |
| 47613 | 218 |
apply(induction b arbitrary: bv S1 S2) |
| 51390 | 219 |
apply(simp) |
220 |
apply(simp) |
|
221 |
apply simp |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
222 |
apply(metis order_trans[OF _ sup_ge1] order_trans[OF _ sup_ge2]) |
| 47613 | 223 |
apply (simp split: prod.splits) |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
224 |
apply(metis mono_aval'' mono_afilter mono_filter_less'[simplified less_eq_prod_def] fst_conv snd_conv) |
| 47613 | 225 |
done |
226 |
||
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
227 |
theorem mono_step': "S1 \<le> S2 \<Longrightarrow> C1 \<le> C2 \<Longrightarrow> step' S1 C1 \<le> step' S2 C2" |
| 51390 | 228 |
unfolding step'_def |
229 |
by(rule mono2_Step) (auto simp: mono_aval' mono_bfilter split: option.split) |
|
| 47613 | 230 |
|
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
231 |
lemma mono_step'_top: "C1 \<le> C2 \<Longrightarrow> step' \<top> C1 \<le> step' \<top> C2" |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
232 |
by (metis mono_step' order_refl) |
| 47613 | 233 |
|
234 |
end |
|
235 |
||
236 |
end |