10687
|
1 |
|
9375
|
2 |
\documentclass[10pt,a4paper,twoside]{article}
|
11851
|
3 |
\usepackage{graphicx}
|
7917
|
4 |
\usepackage{latexsym,theorem}
|
10687
|
5 |
\usepackage{isabelle,isabellesym}
|
7984
|
6 |
\usepackage{pdfsetup} %last one!
|
10687
|
7 |
|
|
8 |
\isabellestyle{it}
|
9659
|
9 |
\urlstyle{rm}
|
7747
|
10 |
|
10687
|
11 |
\newcommand{\isasymsup}{\isamath{\sup\,}}
|
|
12 |
\newcommand{\skp}{\smallskip}
|
|
13 |
|
7808
|
14 |
|
7747
|
15 |
\begin{document}
|
|
16 |
|
7917
|
17 |
\pagestyle{headings}
|
|
18 |
\pagenumbering{arabic}
|
|
19 |
|
11851
|
20 |
\title{The Hahn-Banach Theorem \\ for Real Vector Spaces}
|
7978
|
21 |
\author{Gertrud Bauer \\ \url{http://www.in.tum.de/~bauerg/}}
|
|
22 |
\maketitle
|
7747
|
23 |
|
7808
|
24 |
\begin{abstract}
|
7978
|
25 |
The Hahn-Banach Theorem is one of the most fundamental results in functional
|
7927
|
26 |
analysis. We present a fully formal proof of two versions of the theorem,
|
|
27 |
one for general linear spaces and another for normed spaces. This
|
|
28 |
development is based on simply-typed classical set-theory, as provided by
|
|
29 |
Isabelle/HOL.
|
7808
|
30 |
\end{abstract}
|
|
31 |
|
7927
|
32 |
|
7808
|
33 |
\tableofcontents
|
7927
|
34 |
\parindent 0pt \parskip 0.5ex
|
|
35 |
|
|
36 |
\clearpage
|
|
37 |
\section{Preface}
|
7808
|
38 |
|
7978
|
39 |
This is a fully formal proof of the Hahn-Banach Theorem. It closely follows
|
9375
|
40 |
the informal presentation given in the textbook \cite[{\S} 36]{Heuser:1986}.
|
7927
|
41 |
Another formal proof of the same theorem has been done in Mizar
|
|
42 |
\cite{Nowak:1993}. A general overview of the relevance and history of the
|
7978
|
43 |
Hahn-Banach Theorem is given in \cite{Narici:1996}.
|
7927
|
44 |
|
|
45 |
\medskip The document is structured as follows. The first part contains
|
|
46 |
definitions of basic notions of linear algebra: vector spaces, subspaces,
|
11851
|
47 |
normed spaces, continuous linear-forms, norm of functions and an order on
|
7927
|
48 |
functions by domain extension. The second part contains some lemmas about the
|
|
49 |
supremum (w.r.t.\ the function order) and extension of non-maximal functions.
|
|
50 |
With these preliminaries, the main proof of the theorem (in its two versions)
|
11851
|
51 |
is conducted in the third part. The dependencies of individual theories are
|
|
52 |
as follows.
|
7927
|
53 |
|
11851
|
54 |
\begin{center}
|
13548
|
55 |
\includegraphics[scale=0.5]{session_graph}
|
11851
|
56 |
\end{center}
|
7927
|
57 |
|
|
58 |
\clearpage
|
|
59 |
\part {Basic Notions}
|
7917
|
60 |
|
10687
|
61 |
\input{Bounds}
|
|
62 |
\input{Aux}
|
|
63 |
\input{VectorSpace}
|
|
64 |
\input{Subspace}
|
|
65 |
\input{NormedSpace}
|
|
66 |
\input{Linearform}
|
|
67 |
\input{FunctionOrder}
|
|
68 |
\input{FunctionNorm}
|
|
69 |
\input{ZornLemma}
|
7917
|
70 |
|
7927
|
71 |
\clearpage
|
|
72 |
\part {Lemmas for the Proof}
|
7917
|
73 |
|
10687
|
74 |
\input{HahnBanachSupLemmas}
|
|
75 |
\input{HahnBanachExtLemmas}
|
|
76 |
\input{HahnBanachLemmas}
|
7917
|
77 |
|
7927
|
78 |
\clearpage
|
|
79 |
\part {The Main Proof}
|
7917
|
80 |
|
10687
|
81 |
\input{HahnBanach}
|
7917
|
82 |
\bibliographystyle{abbrv}
|
7927
|
83 |
\bibliography{root}
|
7747
|
84 |
|
|
85 |
\end{document}
|