src/HOL/Real/HahnBanach/ZornLemma.thy
author wenzelm
Sun Jun 04 19:39:29 2000 +0200 (2000-06-04)
changeset 9035 371f023d3dbd
parent 8280 259073d16f84
child 10687 c186279eecea
permissions -rw-r--r--
removed explicit terminator (";");
wenzelm@7917
     1
(*  Title:      HOL/Real/HahnBanach/ZornLemma.thy
wenzelm@7917
     2
    ID:         $Id$
wenzelm@7917
     3
    Author:     Gertrud Bauer, TU Munich
wenzelm@7917
     4
*)
wenzelm@7917
     5
wenzelm@9035
     6
header {* Zorn's Lemma *}
wenzelm@7917
     7
wenzelm@9035
     8
theory ZornLemma = Aux + Zorn:
wenzelm@7917
     9
wenzelm@8104
    10
text {* Zorn's Lemmas states: if every linear ordered subset of an
wenzelm@8104
    11
ordered set $S$ has an upper bound in $S$, then there exists a maximal
wenzelm@8104
    12
element in $S$.  In our application, $S$ is a set of sets ordered by
wenzelm@8104
    13
set inclusion. Since the union of a chain of sets is an upper bound
wenzelm@8104
    14
for all elements of the chain, the conditions of Zorn's lemma can be
wenzelm@8104
    15
modified: if $S$ is non-empty, it suffices to show that for every
wenzelm@9035
    16
non-empty chain $c$ in $S$ the union of $c$ also lies in $S$. *}
wenzelm@7917
    17
wenzelm@7917
    18
theorem Zorn's_Lemma: 
wenzelm@8104
    19
  "(!!c. c: chain S ==> EX x. x:c ==> Union c : S) ==> a:S
wenzelm@9035
    20
  ==>  EX y: S. ALL z: S. y <= z --> y = z"
wenzelm@9035
    21
proof (rule Zorn_Lemma2)
wenzelm@8104
    22
  txt_raw {* \footnote{See
wenzelm@9035
    23
  \url{http://isabelle.in.tum.de/library/HOL/HOL-Real/Zorn.html}} \isanewline *}
wenzelm@9035
    24
  assume r: "!!c. c: chain S ==> EX x. x:c ==> Union c : S"
wenzelm@9035
    25
  assume aS: "a:S"
wenzelm@9035
    26
  show "ALL c:chain S. EX y:S. ALL z:c. z <= y"
wenzelm@9035
    27
  proof
wenzelm@9035
    28
    fix c assume "c:chain S" 
wenzelm@9035
    29
    show "EX y:S. ALL z:c. z <= y"
wenzelm@9035
    30
    proof cases
wenzelm@7917
    31
 
wenzelm@7917
    32
      txt{* If $c$ is an empty chain, then every element
wenzelm@9035
    33
      in $S$ is an upper bound of $c$. *}
wenzelm@7917
    34
wenzelm@9035
    35
      assume "c={}" 
wenzelm@9035
    36
      with aS show ?thesis by fast
wenzelm@7917
    37
wenzelm@7927
    38
      txt{* If $c$ is non-empty, then $\Union c$ 
wenzelm@9035
    39
      is an upper bound of $c$, lying in $S$. *}
wenzelm@7917
    40
wenzelm@9035
    41
    next
wenzelm@9035
    42
      assume c: "c~={}"
wenzelm@9035
    43
      show ?thesis 
wenzelm@9035
    44
      proof 
wenzelm@9035
    45
        show "ALL z:c. z <= Union c" by fast
wenzelm@9035
    46
        show "Union c : S" 
wenzelm@9035
    47
        proof (rule r)
wenzelm@9035
    48
          from c show "EX x. x:c" by fast  
wenzelm@9035
    49
        qed
wenzelm@9035
    50
      qed
wenzelm@9035
    51
    qed
wenzelm@9035
    52
  qed
wenzelm@9035
    53
qed
wenzelm@7917
    54
wenzelm@9035
    55
end