src/HOL/Word/Word.thy
author wenzelm
Fri, 06 Apr 2012 12:10:50 +0200
changeset 47381 376b91cdfea8
parent 47377 360d7ed4cc0f
child 47387 a0f257197741
permissions -rw-r--r--
merged
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
29628
d9294387ab0e entry point for Word library now named Word
haftmann
parents: 27137
diff changeset
     1
(*  Title:      HOL/Word/Word.thy
46124
3ee75fe01986 misc tuning;
wenzelm
parents: 46064
diff changeset
     2
    Author:     Jeremy Dawson and Gerwin Klein, NICTA
24333
e77ea0ea7f2c * HOL-Word:
kleing
parents:
diff changeset
     3
*)
e77ea0ea7f2c * HOL-Word:
kleing
parents:
diff changeset
     4
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
     5
header {* A type of finite bit strings *}
24350
4d74f37c6367 headers for document generation
huffman
parents: 24333
diff changeset
     6
29628
d9294387ab0e entry point for Word library now named Word
haftmann
parents: 27137
diff changeset
     7
theory Word
41413
64cd30d6b0b8 explicit file specifications -- avoid secondary load path;
wenzelm
parents: 41060
diff changeset
     8
imports
64cd30d6b0b8 explicit file specifications -- avoid secondary load path;
wenzelm
parents: 41060
diff changeset
     9
  Type_Length
64cd30d6b0b8 explicit file specifications -- avoid secondary load path;
wenzelm
parents: 41060
diff changeset
    10
  Misc_Typedef
64cd30d6b0b8 explicit file specifications -- avoid secondary load path;
wenzelm
parents: 41060
diff changeset
    11
  "~~/src/HOL/Library/Boolean_Algebra"
64cd30d6b0b8 explicit file specifications -- avoid secondary load path;
wenzelm
parents: 41060
diff changeset
    12
  Bool_List_Representation
41060
4199fdcfa3c0 moved smt_word.ML into the directory of the Word library
boehmes
parents: 40827
diff changeset
    13
uses ("~~/src/HOL/Word/Tools/smt_word.ML")
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    14
begin
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    15
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    16
text {* see @{text "Examples/WordExamples.thy"} for examples *}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    17
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    18
subsection {* Type definition *}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    19
45694
4a8743618257 prefer typedef without extra definition and alternative name;
wenzelm
parents: 45620
diff changeset
    20
typedef (open) 'a word = "{(0::int) ..< 2^len_of TYPE('a::len0)}"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    21
  morphisms uint Abs_word by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    22
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    23
lemma uint_nonnegative:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    24
  "0 \<le> uint w"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    25
  using word.uint [of w] by simp
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    26
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    27
lemma uint_bounded:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    28
  fixes w :: "'a::len0 word"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    29
  shows "uint w < 2 ^ len_of TYPE('a)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    30
  using word.uint [of w] by simp
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    31
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    32
lemma uint_idem:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    33
  fixes w :: "'a::len0 word"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    34
  shows "uint w mod 2 ^ len_of TYPE('a) = uint w"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    35
  using uint_nonnegative uint_bounded by (rule mod_pos_pos_trivial)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    36
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    37
definition word_of_int :: "int \<Rightarrow> 'a\<Colon>len0 word" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    38
  -- {* representation of words using unsigned or signed bins, 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    39
        only difference in these is the type class *}
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    40
  "word_of_int k = Abs_word (k mod 2 ^ len_of TYPE('a))" 
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    41
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    42
lemma uint_word_of_int:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    43
  "uint (word_of_int k :: 'a::len0 word) = k mod 2 ^ len_of TYPE('a)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    44
  by (auto simp add: word_of_int_def intro: Abs_word_inverse)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    45
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    46
lemma word_of_int_uint:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    47
  "word_of_int (uint w) = w"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    48
  by (simp add: word_of_int_def uint_idem uint_inverse)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    49
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    50
lemma word_uint_eq_iff:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    51
  "a = b \<longleftrightarrow> uint a = uint b"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    52
  by (simp add: uint_inject)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    53
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    54
lemma word_uint_eqI:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    55
  "uint a = uint b \<Longrightarrow> a = b"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    56
  by (simp add: word_uint_eq_iff)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    57
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    58
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    59
subsection {* Basic code generation setup *}
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    60
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    61
definition Word :: "int \<Rightarrow> 'a::len0 word"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    62
where
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    63
  [code_post]: "Word = word_of_int"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    64
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    65
lemma [code abstype]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    66
  "Word (uint w) = w"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    67
  by (simp add: Word_def word_of_int_uint)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    68
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    69
declare uint_word_of_int [code abstract]
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    70
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    71
instantiation word :: (len0) equal
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    72
begin
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    73
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    74
definition equal_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> bool" where
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    75
  "equal_word k l \<longleftrightarrow> HOL.equal (uint k) (uint l)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    76
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    77
instance proof
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    78
qed (simp add: equal equal_word_def word_uint_eq_iff)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    79
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    80
end
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
    81
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 37667
diff changeset
    82
notation fcomp (infixl "\<circ>>" 60)
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 37667
diff changeset
    83
notation scomp (infixl "\<circ>\<rightarrow>" 60)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    84
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    85
instantiation word :: ("{len0, typerep}") random
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    86
begin
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    87
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    88
definition
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
    89
  "random_word i = Random.range i \<circ>\<rightarrow> (\<lambda>k. Pair (
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    90
     let j = word_of_int (Code_Numeral.int_of k) :: 'a word
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    91
     in (j, \<lambda>_::unit. Code_Evaluation.term_of j)))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    92
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    93
instance ..
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    94
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    95
end
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    96
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 37667
diff changeset
    97
no_notation fcomp (infixl "\<circ>>" 60)
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 37667
diff changeset
    98
no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
    99
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   100
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   101
subsection {* Type conversions and casting *}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   102
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   103
definition sint :: "'a :: len word => int" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   104
  -- {* treats the most-significant-bit as a sign bit *}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   105
  sint_uint: "sint w = sbintrunc (len_of TYPE ('a) - 1) (uint w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   106
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   107
definition unat :: "'a :: len0 word => nat" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   108
  "unat w = nat (uint w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   109
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   110
definition uints :: "nat => int set" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   111
  -- "the sets of integers representing the words"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   112
  "uints n = range (bintrunc n)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   113
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   114
definition sints :: "nat => int set" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   115
  "sints n = range (sbintrunc (n - 1))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   116
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   117
definition unats :: "nat => nat set" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   118
  "unats n = {i. i < 2 ^ n}"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   119
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   120
definition norm_sint :: "nat => int => int" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   121
  "norm_sint n w = (w + 2 ^ (n - 1)) mod 2 ^ n - 2 ^ (n - 1)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   122
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   123
definition scast :: "'a :: len word => 'b :: len word" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   124
  -- "cast a word to a different length"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   125
  "scast w = word_of_int (sint w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   126
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   127
definition ucast :: "'a :: len0 word => 'b :: len0 word" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   128
  "ucast w = word_of_int (uint w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   129
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   130
instantiation word :: (len0) size
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   131
begin
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   132
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   133
definition
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   134
  word_size: "size (w :: 'a word) = len_of TYPE('a)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   135
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   136
instance ..
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   137
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   138
end
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   139
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   140
definition source_size :: "('a :: len0 word => 'b) => nat" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   141
  -- "whether a cast (or other) function is to a longer or shorter length"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   142
  "source_size c = (let arb = undefined ; x = c arb in size arb)"  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   143
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   144
definition target_size :: "('a => 'b :: len0 word) => nat" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   145
  "target_size c = size (c undefined)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   146
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   147
definition is_up :: "('a :: len0 word => 'b :: len0 word) => bool" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   148
  "is_up c \<longleftrightarrow> source_size c <= target_size c"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   149
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   150
definition is_down :: "('a :: len0 word => 'b :: len0 word) => bool" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   151
  "is_down c \<longleftrightarrow> target_size c <= source_size c"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   152
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   153
definition of_bl :: "bool list => 'a :: len0 word" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   154
  "of_bl bl = word_of_int (bl_to_bin bl)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   155
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   156
definition to_bl :: "'a :: len0 word => bool list" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   157
  "to_bl w = bin_to_bl (len_of TYPE ('a)) (uint w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   158
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   159
definition word_reverse :: "'a :: len0 word => 'a word" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   160
  "word_reverse w = of_bl (rev (to_bl w))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   161
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   162
definition word_int_case :: "(int => 'b) => ('a :: len0 word) => 'b" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   163
  "word_int_case f w = f (uint w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   164
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   165
translations
46136
a3d4cf5203f5 recovered case syntax for of_int, also with source positions (appears to be unused nonetheless);
wenzelm
parents: 46124
diff changeset
   166
  "case x of XCONST of_int y => b" == "CONST word_int_case (%y. b) x"
a3d4cf5203f5 recovered case syntax for of_int, also with source positions (appears to be unused nonetheless);
wenzelm
parents: 46124
diff changeset
   167
  "case x of (XCONST of_int :: 'a) y => b" => "CONST word_int_case (%y. b) x"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   168
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   169
subsection {* Type-definition locale instantiations *}
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   170
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   171
lemma word_size_gt_0 [iff]: "0 < size (w::'a::len word)"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   172
  by (fact xtr1 [OF word_size len_gt_0])
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   173
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   174
lemmas lens_gt_0 = word_size_gt_0 len_gt_0
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
   175
lemmas lens_not_0 [iff] = lens_gt_0 [THEN gr_implies_not0]
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   176
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   177
lemma uints_num: "uints n = {i. 0 \<le> i \<and> i < 2 ^ n}"
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   178
  by (simp add: uints_def range_bintrunc)
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   179
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   180
lemma sints_num: "sints n = {i. - (2 ^ (n - 1)) \<le> i \<and> i < 2 ^ (n - 1)}"
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   181
  by (simp add: sints_def range_sbintrunc)
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   182
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   183
lemma 
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   184
  uint_0:"0 <= uint x" and 
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   185
  uint_lt: "uint (x::'a::len0 word) < 2 ^ len_of TYPE('a)"
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
   186
  by (auto simp: uint [unfolded atLeastLessThan_iff])
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   187
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   188
lemma uint_mod_same:
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   189
  "uint x mod 2 ^ len_of TYPE('a) = uint (x::'a::len0 word)"
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   190
  by (simp add: int_mod_eq uint_lt uint_0)
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   191
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   192
lemma td_ext_uint: 
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   193
  "td_ext (uint :: 'a word => int) word_of_int (uints (len_of TYPE('a::len0))) 
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   194
    (%w::int. w mod 2 ^ len_of TYPE('a))"
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   195
  apply (unfold td_ext_def')
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   196
  apply (simp add: uints_num word_of_int_def bintrunc_mod2p)
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   197
  apply (simp add: uint_mod_same uint_0 uint_lt
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   198
                   word.uint_inverse word.Abs_word_inverse int_mod_lem)
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   199
  done
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   200
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   201
interpretation word_uint:
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   202
  td_ext "uint::'a::len0 word \<Rightarrow> int" 
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   203
         word_of_int 
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   204
         "uints (len_of TYPE('a::len0))"
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   205
         "\<lambda>w. w mod 2 ^ len_of TYPE('a::len0)"
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   206
  by (rule td_ext_uint)
46013
d2f179d26133 remove some duplicate lemmas
huffman
parents: 46012
diff changeset
   207
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   208
lemmas td_uint = word_uint.td_thm
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   209
46013
d2f179d26133 remove some duplicate lemmas
huffman
parents: 46012
diff changeset
   210
lemmas int_word_uint = word_uint.eq_norm
d2f179d26133 remove some duplicate lemmas
huffman
parents: 46012
diff changeset
   211
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   212
lemmas td_ext_ubin = td_ext_uint 
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
   213
  [unfolded len_gt_0 no_bintr_alt1 [symmetric]]
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   214
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   215
interpretation word_ubin:
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   216
  td_ext "uint::'a::len0 word \<Rightarrow> int" 
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   217
         word_of_int 
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   218
         "uints (len_of TYPE('a::len0))"
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   219
         "bintrunc (len_of TYPE('a::len0))"
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   220
  by (rule td_ext_ubin)
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   221
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   222
lemma split_word_all:
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   223
  "(\<And>x::'a::len0 word. PROP P x) \<equiv> (\<And>x. PROP P (word_of_int x))"
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   224
proof
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   225
  fix x :: "'a word"
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   226
  assume "\<And>x. PROP P (word_of_int x)"
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   227
  hence "PROP P (word_of_int (uint x))" .
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   228
  thus "PROP P x" by simp
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   229
qed
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   230
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   231
subsection {* Correspondence relation for theorem transfer *}
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   232
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   233
definition cr_word :: "int \<Rightarrow> 'a::len0 word \<Rightarrow> bool"
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   234
  where "cr_word \<equiv> (\<lambda>x y. word_of_int x = y)"
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   235
47374
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   236
lemma Quotient_word:
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   237
  "Quotient (\<lambda>x y. bintrunc (len_of TYPE('a)) x = bintrunc (len_of TYPE('a)) y)
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   238
    word_of_int uint (cr_word :: _ \<Rightarrow> 'a::len0 word \<Rightarrow> bool)"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   239
  unfolding Quotient_alt_def cr_word_def
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   240
  by (simp add: word_ubin.norm_eq_iff)
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   241
47377
360d7ed4cc0f use standard quotient lemmas to generate transfer rules
huffman
parents: 47374
diff changeset
   242
lemma reflp_word:
360d7ed4cc0f use standard quotient lemmas to generate transfer rules
huffman
parents: 47374
diff changeset
   243
  "reflp (\<lambda>x y. bintrunc (len_of TYPE('a::len0)) x = bintrunc (len_of TYPE('a)) y)"
360d7ed4cc0f use standard quotient lemmas to generate transfer rules
huffman
parents: 47374
diff changeset
   244
  by (simp add: reflp_def)
47374
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   245
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   246
local_setup {*
47377
360d7ed4cc0f use standard quotient lemmas to generate transfer rules
huffman
parents: 47374
diff changeset
   247
  Lifting_Setup.setup_lifting_infr @{thm Quotient_word} @{thm reflp_word}
47374
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   248
*}
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   249
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   250
text {* TODO: The next several lemmas could be generated automatically. *}
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   251
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   252
lemma bi_total_cr_word [transfer_rule]: "bi_total cr_word"
47377
360d7ed4cc0f use standard quotient lemmas to generate transfer rules
huffman
parents: 47374
diff changeset
   253
  using Quotient_word reflp_word by (rule Quotient_bi_total)
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   254
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   255
lemma right_unique_cr_word [transfer_rule]: "right_unique cr_word"
47377
360d7ed4cc0f use standard quotient lemmas to generate transfer rules
huffman
parents: 47374
diff changeset
   256
  using Quotient_word by (rule Quotient_right_unique)
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   257
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   258
lemma word_eq_transfer [transfer_rule]:
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   259
  "(fun_rel cr_word (fun_rel cr_word op =))
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   260
    (\<lambda>x y. bintrunc (len_of TYPE('a)) x = bintrunc (len_of TYPE('a)) y)
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   261
    (op = :: 'a::len0 word \<Rightarrow> 'a word \<Rightarrow> bool)"
47377
360d7ed4cc0f use standard quotient lemmas to generate transfer rules
huffman
parents: 47374
diff changeset
   262
  using Quotient_word by (rule Quotient_rel_eq_transfer)
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   263
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   264
lemma word_of_int_transfer [transfer_rule]:
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   265
  "(fun_rel op = cr_word) (\<lambda>x. x) word_of_int"
47377
360d7ed4cc0f use standard quotient lemmas to generate transfer rules
huffman
parents: 47374
diff changeset
   266
  using Quotient_word reflp_word by (rule Quotient_id_abs_transfer)
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   267
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   268
lemma uint_transfer [transfer_rule]:
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   269
  "(fun_rel cr_word op =) (bintrunc (len_of TYPE('a)))
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   270
    (uint :: 'a::len0 word \<Rightarrow> int)"
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   271
  unfolding fun_rel_def cr_word_def by (simp add: word_ubin.eq_norm)
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   272
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   273
subsection  "Arithmetic operations"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   274
47374
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   275
lift_definition word_succ :: "'a::len0 word \<Rightarrow> 'a word" is "\<lambda>x::int. x + 1"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   276
  by (metis bintr_ariths(6))
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   277
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   278
lift_definition word_pred :: "'a::len0 word \<Rightarrow> 'a word" is "\<lambda>x::int. x - 1"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   279
  by (metis bintr_ariths(7))
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   280
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   281
instantiation word :: (len0) "{neg_numeral, Divides.div, comm_monoid_mult, comm_ring}"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   282
begin
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   283
47374
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   284
lift_definition zero_word :: "'a word" is "0::int" .
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   285
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   286
lift_definition one_word :: "'a word" is "1::int" .
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   287
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   288
lift_definition plus_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   289
  is "op + :: int \<Rightarrow> int \<Rightarrow> int"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   290
  by (metis bintr_ariths(2))
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   291
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   292
lift_definition minus_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   293
  is "op - :: int \<Rightarrow> int \<Rightarrow> int"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   294
  by (metis bintr_ariths(3))
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   295
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   296
lift_definition uminus_word :: "'a word \<Rightarrow> 'a word"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   297
  is "uminus :: int \<Rightarrow> int"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   298
  by (metis bintr_ariths(5))
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   299
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   300
lift_definition times_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   301
  is "op * :: int \<Rightarrow> int \<Rightarrow> int"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   302
  by (metis bintr_ariths(4))
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   303
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   304
definition
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   305
  word_div_def: "a div b = word_of_int (uint a div uint b)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   306
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   307
definition
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   308
  word_mod_def: "a mod b = word_of_int (uint a mod uint b)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   309
47374
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   310
instance
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   311
  by default (transfer, simp add: algebra_simps)+
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   312
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   313
end
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   314
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   315
text {* Legacy theorems: *}
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   316
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   317
lemma word_arith_wis: shows
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   318
  word_add_def: "a + b = word_of_int (uint a + uint b)" and
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   319
  word_sub_wi: "a - b = word_of_int (uint a - uint b)" and
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   320
  word_mult_def: "a * b = word_of_int (uint a * uint b)" and
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   321
  word_minus_def: "- a = word_of_int (- uint a)" and
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   322
  word_succ_alt: "word_succ a = word_of_int (uint a + 1)" and
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   323
  word_pred_alt: "word_pred a = word_of_int (uint a - 1)" and
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   324
  word_0_wi: "0 = word_of_int 0" and
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   325
  word_1_wi: "1 = word_of_int 1"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   326
  unfolding plus_word_def minus_word_def times_word_def uminus_word_def
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   327
  unfolding word_succ_def word_pred_def zero_word_def one_word_def
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   328
  by simp_all
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   329
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   330
lemmas arths = 
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
   331
  bintr_ariths [THEN word_ubin.norm_eq_iff [THEN iffD1], folded word_ubin.eq_norm]
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   332
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   333
lemma wi_homs: 
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   334
  shows
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   335
  wi_hom_add: "word_of_int a + word_of_int b = word_of_int (a + b)" and
46013
d2f179d26133 remove some duplicate lemmas
huffman
parents: 46012
diff changeset
   336
  wi_hom_sub: "word_of_int a - word_of_int b = word_of_int (a - b)" and
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   337
  wi_hom_mult: "word_of_int a * word_of_int b = word_of_int (a * b)" and
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   338
  wi_hom_neg: "- word_of_int a = word_of_int (- a)" and
46000
871bdab23f5c remove some uses of Int.succ and Int.pred
huffman
parents: 45998
diff changeset
   339
  wi_hom_succ: "word_succ (word_of_int a) = word_of_int (a + 1)" and
871bdab23f5c remove some uses of Int.succ and Int.pred
huffman
parents: 45998
diff changeset
   340
  wi_hom_pred: "word_pred (word_of_int a) = word_of_int (a - 1)"
47374
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   341
  by (transfer, simp)+
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   342
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   343
lemmas wi_hom_syms = wi_homs [symmetric]
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   344
46013
d2f179d26133 remove some duplicate lemmas
huffman
parents: 46012
diff changeset
   345
lemmas word_of_int_homs = wi_homs word_0_wi word_1_wi
46009
5cb7ef5bfef2 remove duplicate lemma lists
huffman
parents: 46001
diff changeset
   346
5cb7ef5bfef2 remove duplicate lemma lists
huffman
parents: 46001
diff changeset
   347
lemmas word_of_int_hom_syms = word_of_int_homs [symmetric]
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   348
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   349
instance word :: (len) comm_ring_1
45810
024947a0e492 prove class instances without extra lemmas
huffman
parents: 45809
diff changeset
   350
proof
024947a0e492 prove class instances without extra lemmas
huffman
parents: 45809
diff changeset
   351
  have "0 < len_of TYPE('a)" by (rule len_gt_0)
024947a0e492 prove class instances without extra lemmas
huffman
parents: 45809
diff changeset
   352
  then show "(0::'a word) \<noteq> 1"
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   353
    by - (transfer, auto simp add: gr0_conv_Suc)
45810
024947a0e492 prove class instances without extra lemmas
huffman
parents: 45809
diff changeset
   354
qed
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   355
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   356
lemma word_of_nat: "of_nat n = word_of_int (int n)"
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   357
  by (induct n) (auto simp add : word_of_int_hom_syms)
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   358
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   359
lemma word_of_int: "of_int = word_of_int"
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   360
  apply (rule ext)
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   361
  apply (case_tac x rule: int_diff_cases)
46013
d2f179d26133 remove some duplicate lemmas
huffman
parents: 46012
diff changeset
   362
  apply (simp add: word_of_nat wi_hom_sub)
45545
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   363
  done
26aebb8ac9c1 Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents: 45544
diff changeset
   364
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   365
definition udvd :: "'a::len word => 'a::len word => bool" (infixl "udvd" 50) where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   366
  "a udvd b = (EX n>=0. uint b = n * uint a)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   367
45547
94c37f3df10f HOL-Word: removed more duplicate theorems
huffman
parents: 45546
diff changeset
   368
94c37f3df10f HOL-Word: removed more duplicate theorems
huffman
parents: 45546
diff changeset
   369
subsection "Ordering"
94c37f3df10f HOL-Word: removed more duplicate theorems
huffman
parents: 45546
diff changeset
   370
94c37f3df10f HOL-Word: removed more duplicate theorems
huffman
parents: 45546
diff changeset
   371
instantiation word :: (len0) linorder
94c37f3df10f HOL-Word: removed more duplicate theorems
huffman
parents: 45546
diff changeset
   372
begin
94c37f3df10f HOL-Word: removed more duplicate theorems
huffman
parents: 45546
diff changeset
   373
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   374
definition
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   375
  word_le_def: "a \<le> b \<longleftrightarrow> uint a \<le> uint b"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   376
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   377
definition
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   378
  word_less_def: "a < b \<longleftrightarrow> uint a < uint b"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   379
45547
94c37f3df10f HOL-Word: removed more duplicate theorems
huffman
parents: 45546
diff changeset
   380
instance
94c37f3df10f HOL-Word: removed more duplicate theorems
huffman
parents: 45546
diff changeset
   381
  by default (auto simp: word_less_def word_le_def)
94c37f3df10f HOL-Word: removed more duplicate theorems
huffman
parents: 45546
diff changeset
   382
94c37f3df10f HOL-Word: removed more duplicate theorems
huffman
parents: 45546
diff changeset
   383
end
94c37f3df10f HOL-Word: removed more duplicate theorems
huffman
parents: 45546
diff changeset
   384
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   385
definition word_sle :: "'a :: len word => 'a word => bool" ("(_/ <=s _)" [50, 51] 50) where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   386
  "a <=s b = (sint a <= sint b)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   387
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   388
definition word_sless :: "'a :: len word => 'a word => bool" ("(_/ <s _)" [50, 51] 50) where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   389
  "(x <s y) = (x <=s y & x ~= y)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   390
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   391
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   392
subsection "Bit-wise operations"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   393
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   394
instantiation word :: (len0) bits
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   395
begin
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   396
47374
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   397
lift_definition bitNOT_word :: "'a word \<Rightarrow> 'a word"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   398
  is "bitNOT :: int \<Rightarrow> int"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   399
  by (metis bin_trunc_not)
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   400
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   401
lift_definition bitAND_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   402
  is "bitAND :: int \<Rightarrow> int \<Rightarrow> int"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   403
  by (metis bin_trunc_and)
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   404
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   405
lift_definition bitOR_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   406
  is "bitOR :: int \<Rightarrow> int \<Rightarrow> int"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   407
  by (metis bin_trunc_or)
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   408
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   409
lift_definition bitXOR_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   410
  is "bitXOR :: int \<Rightarrow> int \<Rightarrow> int"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   411
  by (metis bin_trunc_xor)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   412
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   413
definition
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   414
  word_test_bit_def: "test_bit a = bin_nth (uint a)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   415
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   416
definition
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   417
  word_set_bit_def: "set_bit a n x =
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   418
   word_of_int (bin_sc n (If x 1 0) (uint a))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   419
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   420
definition
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   421
  word_set_bits_def: "(BITS n. f n) = of_bl (bl_of_nth (len_of TYPE ('a)) f)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   422
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   423
definition
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   424
  word_lsb_def: "lsb a \<longleftrightarrow> bin_last (uint a) = 1"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   425
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   426
definition shiftl1 :: "'a word \<Rightarrow> 'a word" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   427
  "shiftl1 w = word_of_int (uint w BIT 0)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   428
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   429
definition shiftr1 :: "'a word \<Rightarrow> 'a word" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   430
  -- "shift right as unsigned or as signed, ie logical or arithmetic"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   431
  "shiftr1 w = word_of_int (bin_rest (uint w))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   432
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   433
definition
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   434
  shiftl_def: "w << n = (shiftl1 ^^ n) w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   435
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   436
definition
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   437
  shiftr_def: "w >> n = (shiftr1 ^^ n) w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   438
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   439
instance ..
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   440
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   441
end
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   442
47374
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   443
lemma shows
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   444
  word_not_def: "NOT (a::'a::len0 word) = word_of_int (NOT (uint a))" and
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   445
  word_and_def: "(a::'a word) AND b = word_of_int (uint a AND uint b)" and
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   446
  word_or_def: "(a::'a word) OR b = word_of_int (uint a OR uint b)" and
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   447
  word_xor_def: "(a::'a word) XOR b = word_of_int (uint a XOR uint b)"
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   448
  unfolding bitNOT_word_def bitAND_word_def bitOR_word_def bitXOR_word_def
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   449
  by simp_all
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
   450
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   451
instantiation word :: (len) bitss
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   452
begin
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   453
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   454
definition
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   455
  word_msb_def: 
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
   456
  "msb a \<longleftrightarrow> bin_sign (sint a) = -1"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   457
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   458
instance ..
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   459
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   460
end
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   461
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   462
definition setBit :: "'a :: len0 word => nat => 'a word" where 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   463
  "setBit w n = set_bit w n True"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   464
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   465
definition clearBit :: "'a :: len0 word => nat => 'a word" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   466
  "clearBit w n = set_bit w n False"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   467
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   468
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   469
subsection "Shift operations"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   470
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   471
definition sshiftr1 :: "'a :: len word => 'a word" where 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   472
  "sshiftr1 w = word_of_int (bin_rest (sint w))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   473
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   474
definition bshiftr1 :: "bool => 'a :: len word => 'a word" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   475
  "bshiftr1 b w = of_bl (b # butlast (to_bl w))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   476
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   477
definition sshiftr :: "'a :: len word => nat => 'a word" (infixl ">>>" 55) where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   478
  "w >>> n = (sshiftr1 ^^ n) w"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   479
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   480
definition mask :: "nat => 'a::len word" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   481
  "mask n = (1 << n) - 1"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   482
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   483
definition revcast :: "'a :: len0 word => 'b :: len0 word" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   484
  "revcast w =  of_bl (takefill False (len_of TYPE('b)) (to_bl w))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   485
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   486
definition slice1 :: "nat => 'a :: len0 word => 'b :: len0 word" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   487
  "slice1 n w = of_bl (takefill False n (to_bl w))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   488
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   489
definition slice :: "nat => 'a :: len0 word => 'b :: len0 word" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   490
  "slice n w = slice1 (size w - n) w"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   491
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   492
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   493
subsection "Rotation"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   494
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   495
definition rotater1 :: "'a list => 'a list" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   496
  "rotater1 ys = 
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   497
    (case ys of [] => [] | x # xs => last ys # butlast ys)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   498
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   499
definition rotater :: "nat => 'a list => 'a list" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   500
  "rotater n = rotater1 ^^ n"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   501
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   502
definition word_rotr :: "nat => 'a :: len0 word => 'a :: len0 word" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   503
  "word_rotr n w = of_bl (rotater n (to_bl w))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   504
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   505
definition word_rotl :: "nat => 'a :: len0 word => 'a :: len0 word" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   506
  "word_rotl n w = of_bl (rotate n (to_bl w))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   507
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   508
definition word_roti :: "int => 'a :: len0 word => 'a :: len0 word" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   509
  "word_roti i w = (if i >= 0 then word_rotr (nat i) w
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   510
                    else word_rotl (nat (- i)) w)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   511
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   512
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   513
subsection "Split and cat operations"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   514
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   515
definition word_cat :: "'a :: len0 word => 'b :: len0 word => 'c :: len0 word" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   516
  "word_cat a b = word_of_int (bin_cat (uint a) (len_of TYPE ('b)) (uint b))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   517
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   518
definition word_split :: "'a :: len0 word => ('b :: len0 word) * ('c :: len0 word)" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   519
  "word_split a = 
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   520
   (case bin_split (len_of TYPE ('c)) (uint a) of 
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   521
     (u, v) => (word_of_int u, word_of_int v))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   522
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   523
definition word_rcat :: "'a :: len0 word list => 'b :: len0 word" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   524
  "word_rcat ws = 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   525
  word_of_int (bin_rcat (len_of TYPE ('a)) (map uint ws))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   526
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   527
definition word_rsplit :: "'a :: len0 word => 'b :: len word list" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   528
  "word_rsplit w = 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   529
  map word_of_int (bin_rsplit (len_of TYPE ('b)) (len_of TYPE ('a), uint w))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   530
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   531
definition max_word :: "'a::len word" -- "Largest representable machine integer." where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   532
  "max_word = word_of_int (2 ^ len_of TYPE('a) - 1)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   533
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   534
primrec of_bool :: "bool \<Rightarrow> 'a::len word" where
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   535
  "of_bool False = 0"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   536
| "of_bool True = 1"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   537
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   538
(* FIXME: only provide one theorem name *)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   539
lemmas of_nth_def = word_set_bits_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   540
46010
ebbc2d5cd720 add section headings
huffman
parents: 46009
diff changeset
   541
subsection {* Theorems about typedefs *}
ebbc2d5cd720 add section headings
huffman
parents: 46009
diff changeset
   542
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   543
lemma sint_sbintrunc': 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   544
  "sint (word_of_int bin :: 'a word) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   545
    (sbintrunc (len_of TYPE ('a :: len) - 1) bin)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   546
  unfolding sint_uint 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   547
  by (auto simp: word_ubin.eq_norm sbintrunc_bintrunc_lt)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   548
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   549
lemma uint_sint: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   550
  "uint w = bintrunc (len_of TYPE('a)) (sint (w :: 'a :: len word))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   551
  unfolding sint_uint by (auto simp: bintrunc_sbintrunc_le)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   552
46057
8664713db181 remove unnecessary intermediate lemmas
huffman
parents: 46026
diff changeset
   553
lemma bintr_uint:
8664713db181 remove unnecessary intermediate lemmas
huffman
parents: 46026
diff changeset
   554
  fixes w :: "'a::len0 word"
8664713db181 remove unnecessary intermediate lemmas
huffman
parents: 46026
diff changeset
   555
  shows "len_of TYPE('a) \<le> n \<Longrightarrow> bintrunc n (uint w) = uint w"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   556
  apply (subst word_ubin.norm_Rep [symmetric]) 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   557
  apply (simp only: bintrunc_bintrunc_min word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   558
  apply (simp add: min_max.inf_absorb2)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   559
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   560
46057
8664713db181 remove unnecessary intermediate lemmas
huffman
parents: 46026
diff changeset
   561
lemma wi_bintr:
8664713db181 remove unnecessary intermediate lemmas
huffman
parents: 46026
diff changeset
   562
  "len_of TYPE('a::len0) \<le> n \<Longrightarrow>
8664713db181 remove unnecessary intermediate lemmas
huffman
parents: 46026
diff changeset
   563
    word_of_int (bintrunc n w) = (word_of_int w :: 'a word)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   564
  by (clarsimp simp add: word_ubin.norm_eq_iff [symmetric] min_max.inf_absorb1)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   565
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   566
lemma td_ext_sbin: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   567
  "td_ext (sint :: 'a word => int) word_of_int (sints (len_of TYPE('a::len))) 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   568
    (sbintrunc (len_of TYPE('a) - 1))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   569
  apply (unfold td_ext_def' sint_uint)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   570
  apply (simp add : word_ubin.eq_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   571
  apply (cases "len_of TYPE('a)")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   572
   apply (auto simp add : sints_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   573
  apply (rule sym [THEN trans])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   574
  apply (rule word_ubin.Abs_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   575
  apply (simp only: bintrunc_sbintrunc)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   576
  apply (drule sym)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   577
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   578
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   579
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   580
lemmas td_ext_sint = td_ext_sbin 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   581
  [simplified len_gt_0 no_sbintr_alt2 Suc_pred' [symmetric]]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   582
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   583
(* We do sint before sbin, before sint is the user version
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   584
   and interpretations do not produce thm duplicates. I.e. 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   585
   we get the name word_sint.Rep_eqD, but not word_sbin.Req_eqD,
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   586
   because the latter is the same thm as the former *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   587
interpretation word_sint:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   588
  td_ext "sint ::'a::len word => int" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   589
          word_of_int 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   590
          "sints (len_of TYPE('a::len))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   591
          "%w. (w + 2^(len_of TYPE('a::len) - 1)) mod 2^len_of TYPE('a::len) -
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   592
               2 ^ (len_of TYPE('a::len) - 1)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   593
  by (rule td_ext_sint)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   594
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   595
interpretation word_sbin:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   596
  td_ext "sint ::'a::len word => int" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   597
          word_of_int 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   598
          "sints (len_of TYPE('a::len))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   599
          "sbintrunc (len_of TYPE('a::len) - 1)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   600
  by (rule td_ext_sbin)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   601
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
   602
lemmas int_word_sint = td_ext_sint [THEN td_ext.eq_norm]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   603
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   604
lemmas td_sint = word_sint.td
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   605
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   606
lemma to_bl_def': 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   607
  "(to_bl :: 'a :: len0 word => bool list) =
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   608
    bin_to_bl (len_of TYPE('a)) o uint"
44762
8f9d09241a68 tuned proofs;
wenzelm
parents: 42793
diff changeset
   609
  by (auto simp: to_bl_def)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   610
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   611
lemmas word_reverse_no_def [simp] = word_reverse_def [of "numeral w"] for w
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   612
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   613
lemma uints_mod: "uints n = range (\<lambda>w. w mod 2 ^ n)"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   614
  by (fact uints_def [unfolded no_bintr_alt1])
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   615
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   616
lemma word_numeral_alt:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   617
  "numeral b = word_of_int (numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   618
  by (induct b, simp_all only: numeral.simps word_of_int_homs)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   619
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   620
declare word_numeral_alt [symmetric, code_abbrev]
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   621
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   622
lemma word_neg_numeral_alt:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   623
  "neg_numeral b = word_of_int (neg_numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   624
  by (simp only: neg_numeral_def word_numeral_alt wi_hom_neg)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   625
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   626
declare word_neg_numeral_alt [symmetric, code_abbrev]
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   627
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   628
lemma word_numeral_transfer [transfer_rule]:
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   629
  "(fun_rel op = cr_word) numeral numeral"
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   630
  "(fun_rel op = cr_word) neg_numeral neg_numeral"
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   631
  unfolding fun_rel_def cr_word_def word_numeral_alt word_neg_numeral_alt
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   632
  by simp_all
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
   633
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   634
lemma uint_bintrunc [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   635
  "uint (numeral bin :: 'a word) = 
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   636
    bintrunc (len_of TYPE ('a :: len0)) (numeral bin)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   637
  unfolding word_numeral_alt by (rule word_ubin.eq_norm)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   638
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   639
lemma uint_bintrunc_neg [simp]: "uint (neg_numeral bin :: 'a word) = 
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   640
    bintrunc (len_of TYPE ('a :: len0)) (neg_numeral bin)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   641
  by (simp only: word_neg_numeral_alt word_ubin.eq_norm)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   642
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   643
lemma sint_sbintrunc [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   644
  "sint (numeral bin :: 'a word) = 
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   645
    sbintrunc (len_of TYPE ('a :: len) - 1) (numeral bin)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   646
  by (simp only: word_numeral_alt word_sbin.eq_norm)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   647
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   648
lemma sint_sbintrunc_neg [simp]: "sint (neg_numeral bin :: 'a word) = 
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   649
    sbintrunc (len_of TYPE ('a :: len) - 1) (neg_numeral bin)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   650
  by (simp only: word_neg_numeral_alt word_sbin.eq_norm)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   651
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   652
lemma unat_bintrunc [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   653
  "unat (numeral bin :: 'a :: len0 word) =
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   654
    nat (bintrunc (len_of TYPE('a)) (numeral bin))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   655
  by (simp only: unat_def uint_bintrunc)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   656
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   657
lemma unat_bintrunc_neg [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   658
  "unat (neg_numeral bin :: 'a :: len0 word) =
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   659
    nat (bintrunc (len_of TYPE('a)) (neg_numeral bin))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   660
  by (simp only: unat_def uint_bintrunc_neg)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   661
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   662
lemma size_0_eq: "size (w :: 'a :: len0 word) = 0 \<Longrightarrow> v = w"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   663
  apply (unfold word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   664
  apply (rule word_uint.Rep_eqD)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   665
  apply (rule box_equals)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   666
    defer
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   667
    apply (rule word_ubin.norm_Rep)+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   668
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   669
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   670
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   671
lemma uint_ge_0 [iff]: "0 \<le> uint (x::'a::len0 word)"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   672
  using word_uint.Rep [of x] by (simp add: uints_num)
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   673
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   674
lemma uint_lt2p [iff]: "uint (x::'a::len0 word) < 2 ^ len_of TYPE('a)"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   675
  using word_uint.Rep [of x] by (simp add: uints_num)
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   676
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   677
lemma sint_ge: "- (2 ^ (len_of TYPE('a) - 1)) \<le> sint (x::'a::len word)"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   678
  using word_sint.Rep [of x] by (simp add: sints_num)
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   679
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   680
lemma sint_lt: "sint (x::'a::len word) < 2 ^ (len_of TYPE('a) - 1)"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   681
  using word_sint.Rep [of x] by (simp add: sints_num)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   682
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   683
lemma sign_uint_Pls [simp]: 
46604
9f9e85264e4d make uses of bin_sign respect int/bin distinction
huffman
parents: 46603
diff changeset
   684
  "bin_sign (uint x) = 0"
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   685
  by (simp add: sign_Pls_ge_0)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   686
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   687
lemma uint_m2p_neg: "uint (x::'a::len0 word) - 2 ^ len_of TYPE('a) < 0"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   688
  by (simp only: diff_less_0_iff_less uint_lt2p)
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   689
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   690
lemma uint_m2p_not_non_neg:
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   691
  "\<not> 0 \<le> uint (x::'a::len0 word) - 2 ^ len_of TYPE('a)"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   692
  by (simp only: not_le uint_m2p_neg)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   693
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   694
lemma lt2p_lem:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   695
  "len_of TYPE('a) <= n \<Longrightarrow> uint (w :: 'a :: len0 word) < 2 ^ n"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   696
  by (rule xtr8 [OF _ uint_lt2p]) simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   697
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   698
lemma uint_le_0_iff [simp]: "uint x \<le> 0 \<longleftrightarrow> uint x = 0"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   699
  by (fact uint_ge_0 [THEN leD, THEN linorder_antisym_conv1])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   700
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   701
lemma uint_nat: "uint w = int (unat w)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   702
  unfolding unat_def by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   703
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   704
lemma uint_numeral:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   705
  "uint (numeral b :: 'a :: len0 word) = numeral b mod 2 ^ len_of TYPE('a)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   706
  unfolding word_numeral_alt
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   707
  by (simp only: int_word_uint)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   708
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   709
lemma uint_neg_numeral:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   710
  "uint (neg_numeral b :: 'a :: len0 word) = neg_numeral b mod 2 ^ len_of TYPE('a)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   711
  unfolding word_neg_numeral_alt
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   712
  by (simp only: int_word_uint)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   713
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   714
lemma unat_numeral: 
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   715
  "unat (numeral b::'a::len0 word) = numeral b mod 2 ^ len_of TYPE ('a)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   716
  apply (unfold unat_def)
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   717
  apply (clarsimp simp only: uint_numeral)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   718
  apply (rule nat_mod_distrib [THEN trans])
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   719
    apply (rule zero_le_numeral)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   720
   apply (simp_all add: nat_power_eq)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   721
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   722
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   723
lemma sint_numeral: "sint (numeral b :: 'a :: len word) = (numeral b + 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   724
    2 ^ (len_of TYPE('a) - 1)) mod 2 ^ len_of TYPE('a) -
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   725
    2 ^ (len_of TYPE('a) - 1)"
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   726
  unfolding word_numeral_alt by (rule int_word_sint)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   727
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   728
lemma word_of_int_0 [simp, code_post]: "word_of_int 0 = 0"
45958
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
   729
  unfolding word_0_wi ..
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
   730
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   731
lemma word_of_int_1 [simp, code_post]: "word_of_int 1 = 1"
45958
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
   732
  unfolding word_1_wi ..
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
   733
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   734
lemma word_of_int_numeral [simp] : 
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   735
  "(word_of_int (numeral bin) :: 'a :: len0 word) = (numeral bin)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   736
  unfolding word_numeral_alt ..
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   737
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   738
lemma word_of_int_neg_numeral [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   739
  "(word_of_int (neg_numeral bin) :: 'a :: len0 word) = (neg_numeral bin)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   740
  unfolding neg_numeral_def word_numeral_alt wi_hom_syms ..
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   741
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   742
lemma word_int_case_wi: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   743
  "word_int_case f (word_of_int i :: 'b word) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   744
    f (i mod 2 ^ len_of TYPE('b::len0))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   745
  unfolding word_int_case_def by (simp add: word_uint.eq_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   746
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   747
lemma word_int_split: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   748
  "P (word_int_case f x) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   749
    (ALL i. x = (word_of_int i :: 'b :: len0 word) & 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   750
      0 <= i & i < 2 ^ len_of TYPE('b) --> P (f i))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   751
  unfolding word_int_case_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   752
  by (auto simp: word_uint.eq_norm int_mod_eq')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   753
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   754
lemma word_int_split_asm: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   755
  "P (word_int_case f x) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   756
    (~ (EX n. x = (word_of_int n :: 'b::len0 word) &
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   757
      0 <= n & n < 2 ^ len_of TYPE('b::len0) & ~ P (f n)))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   758
  unfolding word_int_case_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   759
  by (auto simp: word_uint.eq_norm int_mod_eq')
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   760
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
   761
lemmas uint_range' = word_uint.Rep [unfolded uints_num mem_Collect_eq]
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
   762
lemmas sint_range' = word_sint.Rep [unfolded One_nat_def sints_num mem_Collect_eq]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   763
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   764
lemma uint_range_size: "0 <= uint w & uint w < 2 ^ size w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   765
  unfolding word_size by (rule uint_range')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   766
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   767
lemma sint_range_size:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   768
  "- (2 ^ (size w - Suc 0)) <= sint w & sint w < 2 ^ (size w - Suc 0)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   769
  unfolding word_size by (rule sint_range')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   770
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   771
lemma sint_above_size: "2 ^ (size (w::'a::len word) - 1) \<le> x \<Longrightarrow> sint w < x"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   772
  unfolding word_size by (rule less_le_trans [OF sint_lt])
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   773
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   774
lemma sint_below_size:
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   775
  "x \<le> - (2 ^ (size (w::'a::len word) - 1)) \<Longrightarrow> x \<le> sint w"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   776
  unfolding word_size by (rule order_trans [OF _ sint_ge])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   777
46010
ebbc2d5cd720 add section headings
huffman
parents: 46009
diff changeset
   778
subsection {* Testing bits *}
ebbc2d5cd720 add section headings
huffman
parents: 46009
diff changeset
   779
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   780
lemma test_bit_eq_iff: "(test_bit (u::'a::len0 word) = test_bit v) = (u = v)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   781
  unfolding word_test_bit_def by (simp add: bin_nth_eq_iff)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   782
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   783
lemma test_bit_size [rule_format] : "(w::'a::len0 word) !! n --> n < size w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   784
  apply (unfold word_test_bit_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   785
  apply (subst word_ubin.norm_Rep [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   786
  apply (simp only: nth_bintr word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   787
  apply fast
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   788
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   789
46021
272c63f83398 add lemma word_eq_iff
huffman
parents: 46020
diff changeset
   790
lemma word_eq_iff:
272c63f83398 add lemma word_eq_iff
huffman
parents: 46020
diff changeset
   791
  fixes x y :: "'a::len0 word"
272c63f83398 add lemma word_eq_iff
huffman
parents: 46020
diff changeset
   792
  shows "x = y \<longleftrightarrow> (\<forall>n<len_of TYPE('a). x !! n = y !! n)"
272c63f83398 add lemma word_eq_iff
huffman
parents: 46020
diff changeset
   793
  unfolding uint_inject [symmetric] bin_eq_iff word_test_bit_def [symmetric]
272c63f83398 add lemma word_eq_iff
huffman
parents: 46020
diff changeset
   794
  by (metis test_bit_size [unfolded word_size])
272c63f83398 add lemma word_eq_iff
huffman
parents: 46020
diff changeset
   795
46023
fad87bb608fc restate some lemmas to respect int/bin distinction
huffman
parents: 46022
diff changeset
   796
lemma word_eqI [rule_format]:
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   797
  fixes u :: "'a::len0 word"
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   798
  shows "(ALL n. n < size u --> u !! n = v !! n) \<Longrightarrow> u = v"
46021
272c63f83398 add lemma word_eq_iff
huffman
parents: 46020
diff changeset
   799
  by (simp add: word_size word_eq_iff)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   800
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   801
lemma word_eqD: "(u::'a::len0 word) = v \<Longrightarrow> u !! x = v !! x"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   802
  by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   803
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   804
lemma test_bit_bin': "w !! n = (n < size w & bin_nth (uint w) n)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   805
  unfolding word_test_bit_def word_size
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   806
  by (simp add: nth_bintr [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   807
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   808
lemmas test_bit_bin = test_bit_bin' [unfolded word_size]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   809
46057
8664713db181 remove unnecessary intermediate lemmas
huffman
parents: 46026
diff changeset
   810
lemma bin_nth_uint_imp:
8664713db181 remove unnecessary intermediate lemmas
huffman
parents: 46026
diff changeset
   811
  "bin_nth (uint (w::'a::len0 word)) n \<Longrightarrow> n < len_of TYPE('a)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   812
  apply (rule nth_bintr [THEN iffD1, THEN conjunct1])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   813
  apply (subst word_ubin.norm_Rep)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   814
  apply assumption
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   815
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   816
46057
8664713db181 remove unnecessary intermediate lemmas
huffman
parents: 46026
diff changeset
   817
lemma bin_nth_sint:
8664713db181 remove unnecessary intermediate lemmas
huffman
parents: 46026
diff changeset
   818
  fixes w :: "'a::len word"
8664713db181 remove unnecessary intermediate lemmas
huffman
parents: 46026
diff changeset
   819
  shows "len_of TYPE('a) \<le> n \<Longrightarrow>
8664713db181 remove unnecessary intermediate lemmas
huffman
parents: 46026
diff changeset
   820
    bin_nth (sint w) n = bin_nth (sint w) (len_of TYPE('a) - 1)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   821
  apply (subst word_sbin.norm_Rep [symmetric])
46057
8664713db181 remove unnecessary intermediate lemmas
huffman
parents: 46026
diff changeset
   822
  apply (auto simp add: nth_sbintr)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   823
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   824
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   825
(* type definitions theorem for in terms of equivalent bool list *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   826
lemma td_bl: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   827
  "type_definition (to_bl :: 'a::len0 word => bool list) 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   828
                   of_bl  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   829
                   {bl. length bl = len_of TYPE('a)}"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   830
  apply (unfold type_definition_def of_bl_def to_bl_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   831
  apply (simp add: word_ubin.eq_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   832
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   833
  apply (drule sym)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   834
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   835
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   836
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   837
interpretation word_bl:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   838
  type_definition "to_bl :: 'a::len0 word => bool list"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   839
                  of_bl  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   840
                  "{bl. length bl = len_of TYPE('a::len0)}"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   841
  by (rule td_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   842
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
   843
lemmas word_bl_Rep' = word_bl.Rep [unfolded mem_Collect_eq, iff]
45538
1fffa81b9b83 eliminated slightly odd Rep' with dynamically-scoped [simplified];
wenzelm
parents: 45529
diff changeset
   844
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   845
lemma word_size_bl: "size w = size (to_bl w)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   846
  unfolding word_size by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   847
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   848
lemma to_bl_use_of_bl:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   849
  "(to_bl w = bl) = (w = of_bl bl \<and> length bl = length (to_bl w))"
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
   850
  by (fastforce elim!: word_bl.Abs_inverse [unfolded mem_Collect_eq])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   851
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   852
lemma to_bl_word_rev: "to_bl (word_reverse w) = rev (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   853
  unfolding word_reverse_def by (simp add: word_bl.Abs_inverse)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   854
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   855
lemma word_rev_rev [simp] : "word_reverse (word_reverse w) = w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   856
  unfolding word_reverse_def by (simp add : word_bl.Abs_inverse)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   857
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   858
lemma word_rev_gal: "word_reverse w = u \<Longrightarrow> word_reverse u = w"
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   859
  by (metis word_rev_rev)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   860
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   861
lemma word_rev_gal': "u = word_reverse w \<Longrightarrow> w = word_reverse u"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   862
  by simp
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   863
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   864
lemma length_bl_gt_0 [iff]: "0 < length (to_bl (x::'a::len word))"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   865
  unfolding word_bl_Rep' by (rule len_gt_0)
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   866
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   867
lemma bl_not_Nil [iff]: "to_bl (x::'a::len word) \<noteq> []"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   868
  by (fact length_bl_gt_0 [unfolded length_greater_0_conv])
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   869
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   870
lemma length_bl_neq_0 [iff]: "length (to_bl (x::'a::len word)) \<noteq> 0"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
   871
  by (fact length_bl_gt_0 [THEN gr_implies_not0])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   872
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
   873
lemma hd_bl_sign_sint: "hd (to_bl w) = (bin_sign (sint w) = -1)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   874
  apply (unfold to_bl_def sint_uint)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   875
  apply (rule trans [OF _ bl_sbin_sign])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   876
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   877
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   878
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   879
lemma of_bl_drop': 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   880
  "lend = length bl - len_of TYPE ('a :: len0) \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   881
    of_bl (drop lend bl) = (of_bl bl :: 'a word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   882
  apply (unfold of_bl_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   883
  apply (clarsimp simp add : trunc_bl2bin [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   884
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   885
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   886
lemma test_bit_of_bl:  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   887
  "(of_bl bl::'a::len0 word) !! n = (rev bl ! n \<and> n < len_of TYPE('a) \<and> n < length bl)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   888
  apply (unfold of_bl_def word_test_bit_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   889
  apply (auto simp add: word_size word_ubin.eq_norm nth_bintr bin_nth_of_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   890
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   891
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   892
lemma no_of_bl: 
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   893
  "(numeral bin ::'a::len0 word) = of_bl (bin_to_bl (len_of TYPE ('a)) (numeral bin))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   894
  unfolding of_bl_def by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   895
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   896
lemma uint_bl: "to_bl w = bin_to_bl (size w) (uint w)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   897
  unfolding word_size to_bl_def by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   898
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   899
lemma to_bl_bin: "bl_to_bin (to_bl w) = uint w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   900
  unfolding uint_bl by (simp add : word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   901
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   902
lemma to_bl_of_bin: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   903
  "to_bl (word_of_int bin::'a::len0 word) = bin_to_bl (len_of TYPE('a)) bin"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   904
  unfolding uint_bl by (clarsimp simp add: word_ubin.eq_norm word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   905
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   906
lemma to_bl_numeral [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   907
  "to_bl (numeral bin::'a::len0 word) =
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   908
    bin_to_bl (len_of TYPE('a)) (numeral bin)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   909
  unfolding word_numeral_alt by (rule to_bl_of_bin)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   910
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   911
lemma to_bl_neg_numeral [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   912
  "to_bl (neg_numeral bin::'a::len0 word) =
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   913
    bin_to_bl (len_of TYPE('a)) (neg_numeral bin)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   914
  unfolding word_neg_numeral_alt by (rule to_bl_of_bin)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   915
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   916
lemma to_bl_to_bin [simp] : "bl_to_bin (to_bl w) = uint w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   917
  unfolding uint_bl by (simp add : word_size)
46011
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
   918
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
   919
lemma uint_bl_bin:
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
   920
  fixes x :: "'a::len0 word"
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
   921
  shows "bl_to_bin (bin_to_bl (len_of TYPE('a)) (uint x)) = uint x"
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
   922
  by (rule trans [OF bin_bl_bin word_ubin.norm_Rep])
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
   923
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   924
(* naturals *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   925
lemma uints_unats: "uints n = int ` unats n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   926
  apply (unfold unats_def uints_num)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   927
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   928
  apply (rule_tac image_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   929
  apply (erule_tac nat_0_le [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   930
  apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   931
  apply (erule_tac nat_less_iff [THEN iffD2])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   932
  apply (rule_tac [2] zless_nat_eq_int_zless [THEN iffD1])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   933
  apply (auto simp add : nat_power_eq int_power)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   934
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   935
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   936
lemma unats_uints: "unats n = nat ` uints n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   937
  by (auto simp add : uints_unats image_iff)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   938
46962
5bdcdb28be83 make more word theorems respect int/bin distinction
huffman
parents: 46656
diff changeset
   939
lemmas bintr_num = word_ubin.norm_eq_iff
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   940
  [of "numeral a" "numeral b", symmetric, folded word_numeral_alt] for a b
46962
5bdcdb28be83 make more word theorems respect int/bin distinction
huffman
parents: 46656
diff changeset
   941
lemmas sbintr_num = word_sbin.norm_eq_iff
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   942
  [of "numeral a" "numeral b", symmetric, folded word_numeral_alt] for a b
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   943
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   944
lemma num_of_bintr':
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   945
  "bintrunc (len_of TYPE('a :: len0)) (numeral a) = (numeral b) \<Longrightarrow> 
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   946
    numeral a = (numeral b :: 'a word)"
46962
5bdcdb28be83 make more word theorems respect int/bin distinction
huffman
parents: 46656
diff changeset
   947
  unfolding bintr_num by (erule subst, simp)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   948
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   949
lemma num_of_sbintr':
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   950
  "sbintrunc (len_of TYPE('a :: len) - 1) (numeral a) = (numeral b) \<Longrightarrow> 
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   951
    numeral a = (numeral b :: 'a word)"
46962
5bdcdb28be83 make more word theorems respect int/bin distinction
huffman
parents: 46656
diff changeset
   952
  unfolding sbintr_num by (erule subst, simp)
5bdcdb28be83 make more word theorems respect int/bin distinction
huffman
parents: 46656
diff changeset
   953
5bdcdb28be83 make more word theorems respect int/bin distinction
huffman
parents: 46656
diff changeset
   954
lemma num_abs_bintr:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   955
  "(numeral x :: 'a word) =
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   956
    word_of_int (bintrunc (len_of TYPE('a::len0)) (numeral x))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   957
  by (simp only: word_ubin.Abs_norm word_numeral_alt)
46962
5bdcdb28be83 make more word theorems respect int/bin distinction
huffman
parents: 46656
diff changeset
   958
5bdcdb28be83 make more word theorems respect int/bin distinction
huffman
parents: 46656
diff changeset
   959
lemma num_abs_sbintr:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   960
  "(numeral x :: 'a word) =
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   961
    word_of_int (sbintrunc (len_of TYPE('a::len) - 1) (numeral x))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   962
  by (simp only: word_sbin.Abs_norm word_numeral_alt)
46962
5bdcdb28be83 make more word theorems respect int/bin distinction
huffman
parents: 46656
diff changeset
   963
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   964
(** cast - note, no arg for new length, as it's determined by type of result,
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   965
  thus in "cast w = w, the type means cast to length of w! **)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   966
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   967
lemma ucast_id: "ucast w = w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   968
  unfolding ucast_def by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   969
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   970
lemma scast_id: "scast w = w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   971
  unfolding scast_def by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   972
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
   973
lemma ucast_bl: "ucast w = of_bl (to_bl w)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   974
  unfolding ucast_def of_bl_def uint_bl
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   975
  by (auto simp add : word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   976
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   977
lemma nth_ucast: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   978
  "(ucast w::'a::len0 word) !! n = (w !! n & n < len_of TYPE('a))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   979
  apply (unfold ucast_def test_bit_bin)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   980
  apply (simp add: word_ubin.eq_norm nth_bintr word_size) 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   981
  apply (fast elim!: bin_nth_uint_imp)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   982
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   983
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   984
(* for literal u(s)cast *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   985
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
   986
lemma ucast_bintr [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   987
  "ucast (numeral w ::'a::len0 word) = 
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   988
   word_of_int (bintrunc (len_of TYPE('a)) (numeral w))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   989
  unfolding ucast_def by simp
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   990
(* TODO: neg_numeral *)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   991
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
   992
lemma scast_sbintr [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   993
  "scast (numeral w ::'a::len word) = 
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
   994
   word_of_int (sbintrunc (len_of TYPE('a) - Suc 0) (numeral w))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   995
  unfolding scast_def by simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
   996
46011
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
   997
lemma source_size: "source_size (c::'a::len0 word \<Rightarrow> _) = len_of TYPE('a)"
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
   998
  unfolding source_size_def word_size Let_def ..
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
   999
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  1000
lemma target_size: "target_size (c::_ \<Rightarrow> 'b::len0 word) = len_of TYPE('b)"
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  1001
  unfolding target_size_def word_size Let_def ..
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  1002
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  1003
lemma is_down:
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  1004
  fixes c :: "'a::len0 word \<Rightarrow> 'b::len0 word"
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  1005
  shows "is_down c \<longleftrightarrow> len_of TYPE('b) \<le> len_of TYPE('a)"
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  1006
  unfolding is_down_def source_size target_size ..
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  1007
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  1008
lemma is_up:
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  1009
  fixes c :: "'a::len0 word \<Rightarrow> 'b::len0 word"
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  1010
  shows "is_up c \<longleftrightarrow> len_of TYPE('a) \<le> len_of TYPE('b)"
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  1011
  unfolding is_up_def source_size target_size ..
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1012
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1013
lemmas is_up_down = trans [OF is_up is_down [symmetric]]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1014
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1015
lemma down_cast_same [OF refl]: "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc = scast"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1016
  apply (unfold is_down)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1017
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1018
  apply (rule ext)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1019
  apply (unfold ucast_def scast_def uint_sint)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1020
  apply (rule word_ubin.norm_eq_iff [THEN iffD1])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1021
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1022
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1023
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1024
lemma word_rev_tf:
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1025
  "to_bl (of_bl bl::'a::len0 word) =
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1026
    rev (takefill False (len_of TYPE('a)) (rev bl))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1027
  unfolding of_bl_def uint_bl
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1028
  by (clarsimp simp add: bl_bin_bl_rtf word_ubin.eq_norm word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1029
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1030
lemma word_rep_drop:
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1031
  "to_bl (of_bl bl::'a::len0 word) =
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1032
    replicate (len_of TYPE('a) - length bl) False @
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1033
    drop (length bl - len_of TYPE('a)) bl"
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1034
  by (simp add: word_rev_tf takefill_alt rev_take)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1035
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1036
lemma to_bl_ucast: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1037
  "to_bl (ucast (w::'b::len0 word) ::'a::len0 word) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1038
   replicate (len_of TYPE('a) - len_of TYPE('b)) False @
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1039
   drop (len_of TYPE('b) - len_of TYPE('a)) (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1040
  apply (unfold ucast_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1041
  apply (rule trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1042
   apply (rule word_rep_drop)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1043
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1044
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1045
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1046
lemma ucast_up_app [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1047
  "uc = ucast \<Longrightarrow> source_size uc + n = target_size uc \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1048
    to_bl (uc w) = replicate n False @ (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1049
  by (auto simp add : source_size target_size to_bl_ucast)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1050
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1051
lemma ucast_down_drop [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1052
  "uc = ucast \<Longrightarrow> source_size uc = target_size uc + n \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1053
    to_bl (uc w) = drop n (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1054
  by (auto simp add : source_size target_size to_bl_ucast)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1055
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1056
lemma scast_down_drop [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1057
  "sc = scast \<Longrightarrow> source_size sc = target_size sc + n \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1058
    to_bl (sc w) = drop n (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1059
  apply (subgoal_tac "sc = ucast")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1060
   apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1061
   apply simp
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1062
   apply (erule ucast_down_drop)
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1063
  apply (rule down_cast_same [symmetric])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1064
  apply (simp add : source_size target_size is_down)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1065
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1066
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1067
lemma sint_up_scast [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1068
  "sc = scast \<Longrightarrow> is_up sc \<Longrightarrow> sint (sc w) = sint w"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1069
  apply (unfold is_up)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1070
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1071
  apply (simp add: scast_def word_sbin.eq_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1072
  apply (rule box_equals)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1073
    prefer 3
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1074
    apply (rule word_sbin.norm_Rep)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1075
   apply (rule sbintrunc_sbintrunc_l)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1076
   defer
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1077
   apply (subst word_sbin.norm_Rep)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1078
   apply (rule refl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1079
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1080
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1081
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1082
lemma uint_up_ucast [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1083
  "uc = ucast \<Longrightarrow> is_up uc \<Longrightarrow> uint (uc w) = uint w"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1084
  apply (unfold is_up)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1085
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1086
  apply (rule bin_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1087
  apply (fold word_test_bit_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1088
  apply (auto simp add: nth_ucast)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1089
  apply (auto simp add: test_bit_bin)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1090
  done
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1091
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1092
lemma ucast_up_ucast [OF refl]:
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1093
  "uc = ucast \<Longrightarrow> is_up uc \<Longrightarrow> ucast (uc w) = ucast w"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1094
  apply (simp (no_asm) add: ucast_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1095
  apply (clarsimp simp add: uint_up_ucast)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1096
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1097
    
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1098
lemma scast_up_scast [OF refl]:
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1099
  "sc = scast \<Longrightarrow> is_up sc \<Longrightarrow> scast (sc w) = scast w"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1100
  apply (simp (no_asm) add: scast_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1101
  apply (clarsimp simp add: sint_up_scast)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1102
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1103
    
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1104
lemma ucast_of_bl_up [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1105
  "w = of_bl bl \<Longrightarrow> size bl <= size w \<Longrightarrow> ucast w = of_bl bl"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1106
  by (auto simp add : nth_ucast word_size test_bit_of_bl intro!: word_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1107
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1108
lemmas ucast_up_ucast_id = trans [OF ucast_up_ucast ucast_id]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1109
lemmas scast_up_scast_id = trans [OF scast_up_scast scast_id]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1110
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1111
lemmas isduu = is_up_down [where c = "ucast", THEN iffD2]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1112
lemmas isdus = is_up_down [where c = "scast", THEN iffD2]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1113
lemmas ucast_down_ucast_id = isduu [THEN ucast_up_ucast_id]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1114
lemmas scast_down_scast_id = isdus [THEN ucast_up_ucast_id]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1115
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1116
lemma up_ucast_surj:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1117
  "is_up (ucast :: 'b::len0 word => 'a::len0 word) \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1118
   surj (ucast :: 'a word => 'b word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1119
  by (rule surjI, erule ucast_up_ucast_id)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1120
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1121
lemma up_scast_surj:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1122
  "is_up (scast :: 'b::len word => 'a::len word) \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1123
   surj (scast :: 'a word => 'b word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1124
  by (rule surjI, erule scast_up_scast_id)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1125
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1126
lemma down_scast_inj:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1127
  "is_down (scast :: 'b::len word => 'a::len word) \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1128
   inj_on (ucast :: 'a word => 'b word) A"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1129
  by (rule inj_on_inverseI, erule scast_down_scast_id)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1130
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1131
lemma down_ucast_inj:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1132
  "is_down (ucast :: 'b::len0 word => 'a::len0 word) \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1133
   inj_on (ucast :: 'a word => 'b word) A"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1134
  by (rule inj_on_inverseI, erule ucast_down_ucast_id)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1135
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1136
lemma of_bl_append_same: "of_bl (X @ to_bl w) = w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1137
  by (rule word_bl.Rep_eqD) (simp add: word_rep_drop)
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1138
46646
0abbf6dd09ee remove ill-formed lemma of_bl_no; adapt proofs
huffman
parents: 46645
diff changeset
  1139
lemma ucast_down_wi [OF refl]:
0abbf6dd09ee remove ill-formed lemma of_bl_no; adapt proofs
huffman
parents: 46645
diff changeset
  1140
  "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc (word_of_int x) = word_of_int x"
0abbf6dd09ee remove ill-formed lemma of_bl_no; adapt proofs
huffman
parents: 46645
diff changeset
  1141
  apply (unfold is_down)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1142
  apply (clarsimp simp add: ucast_def word_ubin.eq_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1143
  apply (rule word_ubin.norm_eq_iff [THEN iffD1])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1144
  apply (erule bintrunc_bintrunc_ge)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1145
  done
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1146
46646
0abbf6dd09ee remove ill-formed lemma of_bl_no; adapt proofs
huffman
parents: 46645
diff changeset
  1147
lemma ucast_down_no [OF refl]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1148
  "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc (numeral bin) = numeral bin"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1149
  unfolding word_numeral_alt by clarify (rule ucast_down_wi)
46646
0abbf6dd09ee remove ill-formed lemma of_bl_no; adapt proofs
huffman
parents: 46645
diff changeset
  1150
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1151
lemma ucast_down_bl [OF refl]:
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1152
  "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc (of_bl bl) = of_bl bl"
46646
0abbf6dd09ee remove ill-formed lemma of_bl_no; adapt proofs
huffman
parents: 46645
diff changeset
  1153
  unfolding of_bl_def by clarify (erule ucast_down_wi)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1154
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1155
lemmas slice_def' = slice_def [unfolded word_size]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1156
lemmas test_bit_def' = word_test_bit_def [THEN fun_cong]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1157
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1158
lemmas word_log_defs = word_and_def word_or_def word_xor_def word_not_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1159
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1160
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1161
subsection {* Word Arithmetic *}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1162
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1163
lemma word_less_alt: "(a < b) = (uint a < uint b)"
46012
8a070c62b548 simplify proof
huffman
parents: 46011
diff changeset
  1164
  unfolding word_less_def word_le_def by (simp add: less_le)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1165
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1166
lemma signed_linorder: "class.linorder word_sle word_sless"
46124
3ee75fe01986 misc tuning;
wenzelm
parents: 46064
diff changeset
  1167
  by default (unfold word_sle_def word_sless_def, auto)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1168
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1169
interpretation signed: linorder "word_sle" "word_sless"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1170
  by (rule signed_linorder)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1171
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1172
lemma udvdI: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1173
  "0 \<le> n \<Longrightarrow> uint b = n * uint a \<Longrightarrow> a udvd b"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1174
  by (auto simp: udvd_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1175
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1176
lemmas word_div_no [simp] = word_div_def [of "numeral a" "numeral b"] for a b
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1177
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1178
lemmas word_mod_no [simp] = word_mod_def [of "numeral a" "numeral b"] for a b
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1179
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1180
lemmas word_less_no [simp] = word_less_def [of "numeral a" "numeral b"] for a b
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1181
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1182
lemmas word_le_no [simp] = word_le_def [of "numeral a" "numeral b"] for a b
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1183
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1184
lemmas word_sless_no [simp] = word_sless_def [of "numeral a" "numeral b"] for a b
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1185
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1186
lemmas word_sle_no [simp] = word_sle_def [of "numeral a" "numeral b"] for a b
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1187
46020
0a29b51f0b0d restate lemma word_1_no in terms of Numeral1
huffman
parents: 46013
diff changeset
  1188
lemma word_1_no: "(1::'a::len0 word) = Numeral1"
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1189
  by (simp add: word_numeral_alt)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1190
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1191
lemma word_m1_wi: "-1 = word_of_int -1" 
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1192
  by (rule word_neg_numeral_alt)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1193
46648
689ebcbd6343 avoid using Int.Pls_def in proofs
huffman
parents: 46647
diff changeset
  1194
lemma word_0_bl [simp]: "of_bl [] = 0"
689ebcbd6343 avoid using Int.Pls_def in proofs
huffman
parents: 46647
diff changeset
  1195
  unfolding of_bl_def by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1196
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1197
lemma word_1_bl: "of_bl [True] = 1" 
46648
689ebcbd6343 avoid using Int.Pls_def in proofs
huffman
parents: 46647
diff changeset
  1198
  unfolding of_bl_def by (simp add: bl_to_bin_def)
689ebcbd6343 avoid using Int.Pls_def in proofs
huffman
parents: 46647
diff changeset
  1199
689ebcbd6343 avoid using Int.Pls_def in proofs
huffman
parents: 46647
diff changeset
  1200
lemma uint_eq_0 [simp]: "uint 0 = 0"
689ebcbd6343 avoid using Int.Pls_def in proofs
huffman
parents: 46647
diff changeset
  1201
  unfolding word_0_wi word_ubin.eq_norm by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1202
45995
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  1203
lemma of_bl_0 [simp]: "of_bl (replicate n False) = 0"
46648
689ebcbd6343 avoid using Int.Pls_def in proofs
huffman
parents: 46647
diff changeset
  1204
  by (simp add: of_bl_def bl_to_bin_rep_False)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1205
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  1206
lemma to_bl_0 [simp]:
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1207
  "to_bl (0::'a::len0 word) = replicate (len_of TYPE('a)) False"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1208
  unfolding uint_bl
46617
8c5d10d41391 make bool list functions respect int/bin distinction
huffman
parents: 46604
diff changeset
  1209
  by (simp add: word_size bin_to_bl_zero)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1210
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1211
lemma uint_0_iff: "(uint x = 0) = (x = 0)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1212
  by (auto intro!: word_uint.Rep_eqD)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1213
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1214
lemma unat_0_iff: "(unat x = 0) = (x = 0)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1215
  unfolding unat_def by (auto simp add : nat_eq_iff uint_0_iff)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1216
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1217
lemma unat_0 [simp]: "unat 0 = 0"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1218
  unfolding unat_def by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1219
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1220
lemma size_0_same': "size w = 0 \<Longrightarrow> w = (v :: 'a :: len0 word)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1221
  apply (unfold word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1222
  apply (rule box_equals)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1223
    defer
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1224
    apply (rule word_uint.Rep_inverse)+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1225
  apply (rule word_ubin.norm_eq_iff [THEN iffD1])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1226
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1227
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1228
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  1229
lemmas size_0_same = size_0_same' [unfolded word_size]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1230
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1231
lemmas unat_eq_0 = unat_0_iff
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1232
lemmas unat_eq_zero = unat_0_iff
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1233
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1234
lemma unat_gt_0: "(0 < unat x) = (x ~= 0)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1235
by (auto simp: unat_0_iff [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1236
45958
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1237
lemma ucast_0 [simp]: "ucast 0 = 0"
45995
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  1238
  unfolding ucast_def by simp
45958
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1239
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1240
lemma sint_0 [simp]: "sint 0 = 0"
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1241
  unfolding sint_uint by simp
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1242
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1243
lemma scast_0 [simp]: "scast 0 = 0"
45995
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  1244
  unfolding scast_def by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1245
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1246
lemma sint_n1 [simp] : "sint -1 = -1"
45958
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1247
  unfolding word_m1_wi by (simp add: word_sbin.eq_norm)
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1248
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1249
lemma scast_n1 [simp]: "scast -1 = -1"
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1250
  unfolding scast_def by simp
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1251
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1252
lemma uint_1 [simp]: "uint (1::'a::len word) = 1"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1253
  unfolding word_1_wi
45995
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  1254
  by (simp add: word_ubin.eq_norm bintrunc_minus_simps del: word_of_int_1)
45958
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1255
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1256
lemma unat_1 [simp]: "unat (1::'a::len word) = 1"
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1257
  unfolding unat_def by simp
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1258
c28235388c43 simplify some proofs
huffman
parents: 45957
diff changeset
  1259
lemma ucast_1 [simp]: "ucast (1::'a::len word) = 1"
45995
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  1260
  unfolding ucast_def by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1261
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1262
(* now, to get the weaker results analogous to word_div/mod_def *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1263
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1264
lemmas word_arith_alts = 
46000
871bdab23f5c remove some uses of Int.succ and Int.pred
huffman
parents: 45998
diff changeset
  1265
  word_sub_wi
871bdab23f5c remove some uses of Int.succ and Int.pred
huffman
parents: 45998
diff changeset
  1266
  word_arith_wis (* FIXME: duplicate *)
871bdab23f5c remove some uses of Int.succ and Int.pred
huffman
parents: 45998
diff changeset
  1267
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1268
subsection  "Transferring goals from words to ints"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1269
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1270
lemma word_ths:  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1271
  shows
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1272
  word_succ_p1:   "word_succ a = a + 1" and
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1273
  word_pred_m1:   "word_pred a = a - 1" and
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1274
  word_pred_succ: "word_pred (word_succ a) = a" and
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1275
  word_succ_pred: "word_succ (word_pred a) = a" and
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1276
  word_mult_succ: "word_succ a * b = b + a * b"
47374
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
  1277
  by (transfer, simp add: algebra_simps)+
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1278
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  1279
lemma uint_cong: "x = y \<Longrightarrow> uint x = uint y"
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  1280
  by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1281
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1282
lemmas uint_word_ariths = 
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1283
  word_arith_alts [THEN trans [OF uint_cong int_word_uint]]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1284
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1285
lemmas uint_word_arith_bintrs = uint_word_ariths [folded bintrunc_mod2p]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1286
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1287
(* similar expressions for sint (arith operations) *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1288
lemmas sint_word_ariths = uint_word_arith_bintrs
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1289
  [THEN uint_sint [symmetric, THEN trans],
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1290
  unfolded uint_sint bintr_arith1s bintr_ariths 
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1291
    len_gt_0 [THEN bin_sbin_eq_iff'] word_sbin.norm_Rep]
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1292
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1293
lemmas uint_div_alt = word_div_def [THEN trans [OF uint_cong int_word_uint]]
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1294
lemmas uint_mod_alt = word_mod_def [THEN trans [OF uint_cong int_word_uint]]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1295
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1296
lemma word_pred_0_n1: "word_pred 0 = word_of_int -1"
47374
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
  1297
  unfolding word_pred_m1 by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1298
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1299
lemma succ_pred_no [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1300
  "word_succ (numeral w) = numeral w + 1"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1301
  "word_pred (numeral w) = numeral w - 1"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1302
  "word_succ (neg_numeral w) = neg_numeral w + 1"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1303
  "word_pred (neg_numeral w) = neg_numeral w - 1"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1304
  unfolding word_succ_p1 word_pred_m1 by simp_all
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1305
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1306
lemma word_sp_01 [simp] : 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1307
  "word_succ -1 = 0 & word_succ 0 = 1 & word_pred 0 = -1 & word_pred 1 = 0"
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1308
  unfolding word_succ_p1 word_pred_m1 by simp_all
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1309
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1310
(* alternative approach to lifting arithmetic equalities *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1311
lemma word_of_int_Ex:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1312
  "\<exists>y. x = word_of_int y"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1313
  by (rule_tac x="uint x" in exI) simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1314
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1315
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1316
subsection "Order on fixed-length words"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1317
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1318
lemma word_zero_le [simp] :
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1319
  "0 <= (y :: 'a :: len0 word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1320
  unfolding word_le_def by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1321
  
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  1322
lemma word_m1_ge [simp] : "word_pred 0 >= y" (* FIXME: delete *)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1323
  unfolding word_le_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1324
  by (simp only : word_pred_0_n1 word_uint.eq_norm m1mod2k) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1325
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  1326
lemma word_n1_ge [simp]: "y \<le> (-1::'a::len0 word)"
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  1327
  unfolding word_le_def
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  1328
  by (simp only: word_m1_wi word_uint.eq_norm m1mod2k) auto
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1329
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1330
lemmas word_not_simps [simp] = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1331
  word_zero_le [THEN leD] word_m1_ge [THEN leD] word_n1_ge [THEN leD]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1332
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1333
lemma word_gt_0: "0 < y \<longleftrightarrow> 0 \<noteq> (y :: 'a :: len0 word)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1334
  by (simp add: less_le)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1335
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1336
lemmas word_gt_0_no [simp] = word_gt_0 [of "numeral y"] for y
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1337
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1338
lemma word_sless_alt: "(a <s b) = (sint a < sint b)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1339
  unfolding word_sle_def word_sless_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1340
  by (auto simp add: less_le)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1341
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1342
lemma word_le_nat_alt: "(a <= b) = (unat a <= unat b)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1343
  unfolding unat_def word_le_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1344
  by (rule nat_le_eq_zle [symmetric]) simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1345
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1346
lemma word_less_nat_alt: "(a < b) = (unat a < unat b)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1347
  unfolding unat_def word_less_alt
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1348
  by (rule nat_less_eq_zless [symmetric]) simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1349
  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1350
lemma wi_less: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1351
  "(word_of_int n < (word_of_int m :: 'a :: len0 word)) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1352
    (n mod 2 ^ len_of TYPE('a) < m mod 2 ^ len_of TYPE('a))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1353
  unfolding word_less_alt by (simp add: word_uint.eq_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1354
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1355
lemma wi_le: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1356
  "(word_of_int n <= (word_of_int m :: 'a :: len0 word)) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1357
    (n mod 2 ^ len_of TYPE('a) <= m mod 2 ^ len_of TYPE('a))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1358
  unfolding word_le_def by (simp add: word_uint.eq_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1359
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1360
lemma udvd_nat_alt: "a udvd b = (EX n>=0. unat b = n * unat a)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1361
  apply (unfold udvd_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1362
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1363
   apply (simp add: unat_def nat_mult_distrib)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1364
  apply (simp add: uint_nat int_mult)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1365
  apply (rule exI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1366
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1367
   prefer 2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1368
   apply (erule notE)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1369
   apply (rule refl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1370
  apply force
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1371
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1372
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1373
lemma udvd_iff_dvd: "x udvd y <-> unat x dvd unat y"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1374
  unfolding dvd_def udvd_nat_alt by force
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1375
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1376
lemmas unat_mono = word_less_nat_alt [THEN iffD1]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1377
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1378
lemma unat_minus_one: "x ~= 0 \<Longrightarrow> unat (x - 1) = unat x - 1"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1379
  apply (unfold unat_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1380
  apply (simp only: int_word_uint word_arith_alts rdmods)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1381
  apply (subgoal_tac "uint x >= 1")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1382
   prefer 2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1383
   apply (drule contrapos_nn)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1384
    apply (erule word_uint.Rep_inverse' [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1385
   apply (insert uint_ge_0 [of x])[1]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1386
   apply arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1387
  apply (rule box_equals)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1388
    apply (rule nat_diff_distrib)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1389
     prefer 2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1390
     apply assumption
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1391
    apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1392
   apply (subst mod_pos_pos_trivial)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1393
     apply arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1394
    apply (insert uint_lt2p [of x])[1]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1395
    apply arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1396
   apply (rule refl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1397
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1398
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1399
    
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1400
lemma measure_unat: "p ~= 0 \<Longrightarrow> unat (p - 1) < unat p"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1401
  by (simp add: unat_minus_one) (simp add: unat_0_iff [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1402
  
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1403
lemmas uint_add_ge0 [simp] = add_nonneg_nonneg [OF uint_ge_0 uint_ge_0]
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1404
lemmas uint_mult_ge0 [simp] = mult_nonneg_nonneg [OF uint_ge_0 uint_ge_0]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1405
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1406
lemma uint_sub_lt2p [simp]: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1407
  "uint (x :: 'a :: len0 word) - uint (y :: 'b :: len0 word) < 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1408
    2 ^ len_of TYPE('a)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1409
  using uint_ge_0 [of y] uint_lt2p [of x] by arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1410
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1411
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1412
subsection "Conditions for the addition (etc) of two words to overflow"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1413
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1414
lemma uint_add_lem: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1415
  "(uint x + uint y < 2 ^ len_of TYPE('a)) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1416
    (uint (x + y :: 'a :: len0 word) = uint x + uint y)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1417
  by (unfold uint_word_ariths) (auto intro!: trans [OF _ int_mod_lem])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1418
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1419
lemma uint_mult_lem: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1420
  "(uint x * uint y < 2 ^ len_of TYPE('a)) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1421
    (uint (x * y :: 'a :: len0 word) = uint x * uint y)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1422
  by (unfold uint_word_ariths) (auto intro!: trans [OF _ int_mod_lem])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1423
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1424
lemma uint_sub_lem: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1425
  "(uint x >= uint y) = (uint (x - y) = uint x - uint y)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1426
  by (unfold uint_word_ariths) (auto intro!: trans [OF _ int_mod_lem])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1427
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1428
lemma uint_add_le: "uint (x + y) <= uint x + uint y"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1429
  unfolding uint_word_ariths by (auto simp: mod_add_if_z)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1430
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1431
lemma uint_sub_ge: "uint (x - y) >= uint x - uint y"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1432
  unfolding uint_word_ariths by (auto simp: mod_sub_if_z)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1433
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1434
lemmas uint_sub_if' = trans [OF uint_word_ariths(1) mod_sub_if_z, simplified]
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1435
lemmas uint_plus_if' = trans [OF uint_word_ariths(2) mod_add_if_z, simplified]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1436
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1437
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1438
subsection {* Definition of uint\_arith *}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1439
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1440
lemma word_of_int_inverse:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1441
  "word_of_int r = a \<Longrightarrow> 0 <= r \<Longrightarrow> r < 2 ^ len_of TYPE('a) \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1442
   uint (a::'a::len0 word) = r"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1443
  apply (erule word_uint.Abs_inverse' [rotated])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1444
  apply (simp add: uints_num)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1445
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1446
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1447
lemma uint_split:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1448
  fixes x::"'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1449
  shows "P (uint x) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1450
         (ALL i. word_of_int i = x & 0 <= i & i < 2^len_of TYPE('a) --> P i)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1451
  apply (fold word_int_case_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1452
  apply (auto dest!: word_of_int_inverse simp: int_word_uint int_mod_eq'
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1453
              split: word_int_split)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1454
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1455
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1456
lemma uint_split_asm:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1457
  fixes x::"'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1458
  shows "P (uint x) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1459
         (~(EX i. word_of_int i = x & 0 <= i & i < 2^len_of TYPE('a) & ~ P i))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1460
  by (auto dest!: word_of_int_inverse 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1461
           simp: int_word_uint int_mod_eq'
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1462
           split: uint_split)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1463
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1464
lemmas uint_splits = uint_split uint_split_asm
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1465
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1466
lemmas uint_arith_simps = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1467
  word_le_def word_less_alt
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1468
  word_uint.Rep_inject [symmetric] 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1469
  uint_sub_if' uint_plus_if'
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1470
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1471
(* use this to stop, eg, 2 ^ len_of TYPE (32) being simplified *)
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1472
lemma power_False_cong: "False \<Longrightarrow> a ^ b = c ^ d" 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1473
  by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1474
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1475
(* uint_arith_tac: reduce to arithmetic on int, try to solve by arith *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1476
ML {*
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1477
fun uint_arith_ss_of ss = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1478
  ss addsimps @{thms uint_arith_simps}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1479
     delsimps @{thms word_uint.Rep_inject}
45620
f2a587696afb modernized some old-style infix operations, which were left over from the time of ML proof scripts;
wenzelm
parents: 45604
diff changeset
  1480
     |> fold Splitter.add_split @{thms split_if_asm}
f2a587696afb modernized some old-style infix operations, which were left over from the time of ML proof scripts;
wenzelm
parents: 45604
diff changeset
  1481
     |> fold Simplifier.add_cong @{thms power_False_cong}
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1482
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1483
fun uint_arith_tacs ctxt = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1484
  let
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1485
    fun arith_tac' n t =
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1486
      Arith_Data.verbose_arith_tac ctxt n t
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1487
        handle Cooper.COOPER _ => Seq.empty;
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1488
  in 
42793
88bee9f6eec7 proper Proof.context for classical tactics;
wenzelm
parents: 41550
diff changeset
  1489
    [ clarify_tac ctxt 1,
88bee9f6eec7 proper Proof.context for classical tactics;
wenzelm
parents: 41550
diff changeset
  1490
      full_simp_tac (uint_arith_ss_of (simpset_of ctxt)) 1,
45620
f2a587696afb modernized some old-style infix operations, which were left over from the time of ML proof scripts;
wenzelm
parents: 45604
diff changeset
  1491
      ALLGOALS (full_simp_tac (HOL_ss |> fold Splitter.add_split @{thms uint_splits}
f2a587696afb modernized some old-style infix operations, which were left over from the time of ML proof scripts;
wenzelm
parents: 45604
diff changeset
  1492
                                      |> fold Simplifier.add_cong @{thms power_False_cong})),
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1493
      rewrite_goals_tac @{thms word_size}, 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1494
      ALLGOALS  (fn n => REPEAT (resolve_tac [allI, impI] n) THEN      
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1495
                         REPEAT (etac conjE n) THEN
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1496
                         REPEAT (dtac @{thm word_of_int_inverse} n 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1497
                                 THEN atac n 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1498
                                 THEN atac n)),
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1499
      TRYALL arith_tac' ]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1500
  end
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1501
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1502
fun uint_arith_tac ctxt = SELECT_GOAL (EVERY (uint_arith_tacs ctxt))
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1503
*}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1504
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1505
method_setup uint_arith = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1506
  {* Scan.succeed (SIMPLE_METHOD' o uint_arith_tac) *}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1507
  "solving word arithmetic via integers and arith"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1508
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1509
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1510
subsection "More on overflows and monotonicity"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1511
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1512
lemma no_plus_overflow_uint_size: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1513
  "((x :: 'a :: len0 word) <= x + y) = (uint x + uint y < 2 ^ size x)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1514
  unfolding word_size by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1515
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1516
lemmas no_olen_add = no_plus_overflow_uint_size [unfolded word_size]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1517
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1518
lemma no_ulen_sub: "((x :: 'a :: len0 word) >= x - y) = (uint y <= uint x)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1519
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1520
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1521
lemma no_olen_add':
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1522
  fixes x :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1523
  shows "(x \<le> y + x) = (uint y + uint x < 2 ^ len_of TYPE('a))"
45546
6dd3e88de4c2 HOL-Word: removed many duplicate theorems (see NEWS)
huffman
parents: 45545
diff changeset
  1524
  by (simp add: add_ac no_olen_add)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1525
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1526
lemmas olen_add_eqv = trans [OF no_olen_add no_olen_add' [symmetric]]
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1527
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1528
lemmas uint_plus_simple_iff = trans [OF no_olen_add uint_add_lem]
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1529
lemmas uint_plus_simple = uint_plus_simple_iff [THEN iffD1]
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1530
lemmas uint_minus_simple_iff = trans [OF no_ulen_sub uint_sub_lem]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1531
lemmas uint_minus_simple_alt = uint_sub_lem [folded word_le_def]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1532
lemmas word_sub_le_iff = no_ulen_sub [folded word_le_def]
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1533
lemmas word_sub_le = word_sub_le_iff [THEN iffD2]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1534
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1535
lemma word_less_sub1: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1536
  "(x :: 'a :: len word) ~= 0 \<Longrightarrow> (1 < x) = (0 < x - 1)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1537
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1538
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1539
lemma word_le_sub1: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1540
  "(x :: 'a :: len word) ~= 0 \<Longrightarrow> (1 <= x) = (0 <= x - 1)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1541
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1542
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1543
lemma sub_wrap_lt: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1544
  "((x :: 'a :: len0 word) < x - z) = (x < z)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1545
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1546
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1547
lemma sub_wrap: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1548
  "((x :: 'a :: len0 word) <= x - z) = (z = 0 | x < z)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1549
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1550
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1551
lemma plus_minus_not_NULL_ab: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1552
  "(x :: 'a :: len0 word) <= ab - c \<Longrightarrow> c <= ab \<Longrightarrow> c ~= 0 \<Longrightarrow> x + c ~= 0"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1553
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1554
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1555
lemma plus_minus_no_overflow_ab: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1556
  "(x :: 'a :: len0 word) <= ab - c \<Longrightarrow> c <= ab \<Longrightarrow> x <= x + c" 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1557
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1558
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1559
lemma le_minus': 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1560
  "(a :: 'a :: len0 word) + c <= b \<Longrightarrow> a <= a + c \<Longrightarrow> c <= b - a"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1561
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1562
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1563
lemma le_plus': 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1564
  "(a :: 'a :: len0 word) <= b \<Longrightarrow> c <= b - a \<Longrightarrow> a + c <= b"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1565
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1566
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1567
lemmas le_plus = le_plus' [rotated]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1568
46011
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  1569
lemmas le_minus = leD [THEN thin_rl, THEN le_minus'] (* FIXME *)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1570
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1571
lemma word_plus_mono_right: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1572
  "(y :: 'a :: len0 word) <= z \<Longrightarrow> x <= x + z \<Longrightarrow> x + y <= x + z"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1573
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1574
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1575
lemma word_less_minus_cancel: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1576
  "y - x < z - x \<Longrightarrow> x <= z \<Longrightarrow> (y :: 'a :: len0 word) < z"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1577
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1578
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1579
lemma word_less_minus_mono_left: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1580
  "(y :: 'a :: len0 word) < z \<Longrightarrow> x <= y \<Longrightarrow> y - x < z - x"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1581
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1582
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1583
lemma word_less_minus_mono:  
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1584
  "a < c \<Longrightarrow> d < b \<Longrightarrow> a - b < a \<Longrightarrow> c - d < c 
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1585
  \<Longrightarrow> a - b < c - (d::'a::len word)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1586
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1587
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1588
lemma word_le_minus_cancel: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1589
  "y - x <= z - x \<Longrightarrow> x <= z \<Longrightarrow> (y :: 'a :: len0 word) <= z"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1590
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1591
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1592
lemma word_le_minus_mono_left: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1593
  "(y :: 'a :: len0 word) <= z \<Longrightarrow> x <= y \<Longrightarrow> y - x <= z - x"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1594
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1595
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1596
lemma word_le_minus_mono:  
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1597
  "a <= c \<Longrightarrow> d <= b \<Longrightarrow> a - b <= a \<Longrightarrow> c - d <= c 
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1598
  \<Longrightarrow> a - b <= c - (d::'a::len word)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1599
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1600
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1601
lemma plus_le_left_cancel_wrap: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1602
  "(x :: 'a :: len0 word) + y' < x \<Longrightarrow> x + y < x \<Longrightarrow> (x + y' < x + y) = (y' < y)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1603
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1604
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1605
lemma plus_le_left_cancel_nowrap: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1606
  "(x :: 'a :: len0 word) <= x + y' \<Longrightarrow> x <= x + y \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1607
    (x + y' < x + y) = (y' < y)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1608
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1609
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1610
lemma word_plus_mono_right2: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1611
  "(a :: 'a :: len0 word) <= a + b \<Longrightarrow> c <= b \<Longrightarrow> a <= a + c"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1612
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1613
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1614
lemma word_less_add_right: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1615
  "(x :: 'a :: len0 word) < y - z \<Longrightarrow> z <= y \<Longrightarrow> x + z < y"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1616
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1617
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1618
lemma word_less_sub_right: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1619
  "(x :: 'a :: len0 word) < y + z \<Longrightarrow> y <= x \<Longrightarrow> x - y < z"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1620
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1621
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1622
lemma word_le_plus_either: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1623
  "(x :: 'a :: len0 word) <= y | x <= z \<Longrightarrow> y <= y + z \<Longrightarrow> x <= y + z"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1624
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1625
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1626
lemma word_less_nowrapI: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1627
  "(x :: 'a :: len0 word) < z - k \<Longrightarrow> k <= z \<Longrightarrow> 0 < k \<Longrightarrow> x < x + k"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1628
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1629
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1630
lemma inc_le: "(i :: 'a :: len word) < m \<Longrightarrow> i + 1 <= m"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1631
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1632
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1633
lemma inc_i: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1634
  "(1 :: 'a :: len word) <= i \<Longrightarrow> i < m \<Longrightarrow> 1 <= (i + 1) & i + 1 <= m"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1635
  by uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1636
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1637
lemma udvd_incr_lem:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1638
  "up < uq \<Longrightarrow> up = ua + n * uint K \<Longrightarrow> 
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1639
    uq = ua + n' * uint K \<Longrightarrow> up + uint K <= uq"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1640
  apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1641
  apply (drule less_le_mult)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1642
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1643
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1644
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1645
lemma udvd_incr': 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1646
  "p < q \<Longrightarrow> uint p = ua + n * uint K \<Longrightarrow> 
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1647
    uint q = ua + n' * uint K \<Longrightarrow> p + K <= q" 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1648
  apply (unfold word_less_alt word_le_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1649
  apply (drule (2) udvd_incr_lem)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1650
  apply (erule uint_add_le [THEN order_trans])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1651
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1652
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1653
lemma udvd_decr': 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1654
  "p < q \<Longrightarrow> uint p = ua + n * uint K \<Longrightarrow> 
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1655
    uint q = ua + n' * uint K \<Longrightarrow> p <= q - K"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1656
  apply (unfold word_less_alt word_le_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1657
  apply (drule (2) udvd_incr_lem)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1658
  apply (drule le_diff_eq [THEN iffD2])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1659
  apply (erule order_trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1660
  apply (rule uint_sub_ge)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1661
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1662
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  1663
lemmas udvd_incr_lem0 = udvd_incr_lem [where ua=0, unfolded add_0_left]
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  1664
lemmas udvd_incr0 = udvd_incr' [where ua=0, unfolded add_0_left]
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  1665
lemmas udvd_decr0 = udvd_decr' [where ua=0, unfolded add_0_left]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1666
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1667
lemma udvd_minus_le': 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1668
  "xy < k \<Longrightarrow> z udvd xy \<Longrightarrow> z udvd k \<Longrightarrow> xy <= k - z"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1669
  apply (unfold udvd_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1670
  apply clarify
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1671
  apply (erule (2) udvd_decr0)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1672
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1673
45284
ae78a4ffa81d use simproc_setup for cancellation simprocs, to get proper name bindings
huffman
parents: 44938
diff changeset
  1674
ML {* Delsimprocs [@{simproc linordered_ring_less_cancel_factor}] *}
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1675
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1676
lemma udvd_incr2_K: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1677
  "p < a + s \<Longrightarrow> a <= a + s \<Longrightarrow> K udvd s \<Longrightarrow> K udvd p - a \<Longrightarrow> a <= p \<Longrightarrow> 
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1678
    0 < K \<Longrightarrow> p <= p + K & p + K <= a + s"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1679
  apply (unfold udvd_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1680
  apply clarify
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1681
  apply (simp add: uint_arith_simps split: split_if_asm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1682
   prefer 2 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1683
   apply (insert uint_range' [of s])[1]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1684
   apply arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1685
  apply (drule add_commute [THEN xtr1])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1686
  apply (simp add: diff_less_eq [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1687
  apply (drule less_le_mult)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1688
   apply arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1689
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1690
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1691
45284
ae78a4ffa81d use simproc_setup for cancellation simprocs, to get proper name bindings
huffman
parents: 44938
diff changeset
  1692
ML {* Addsimprocs [@{simproc linordered_ring_less_cancel_factor}] *}
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1693
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1694
(* links with rbl operations *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1695
lemma word_succ_rbl:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1696
  "to_bl w = bl \<Longrightarrow> to_bl (word_succ w) = (rev (rbl_succ (rev bl)))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1697
  apply (unfold word_succ_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1698
  apply clarify
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1699
  apply (simp add: to_bl_of_bin)
46654
134b74908a8e avoid using Int.succ or Int.pred in proofs
huffman
parents: 46648
diff changeset
  1700
  apply (simp add: to_bl_def rbl_succ)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1701
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1702
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1703
lemma word_pred_rbl:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1704
  "to_bl w = bl \<Longrightarrow> to_bl (word_pred w) = (rev (rbl_pred (rev bl)))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1705
  apply (unfold word_pred_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1706
  apply clarify
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1707
  apply (simp add: to_bl_of_bin)
46654
134b74908a8e avoid using Int.succ or Int.pred in proofs
huffman
parents: 46648
diff changeset
  1708
  apply (simp add: to_bl_def rbl_pred)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1709
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1710
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1711
lemma word_add_rbl:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1712
  "to_bl v = vbl \<Longrightarrow> to_bl w = wbl \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1713
    to_bl (v + w) = (rev (rbl_add (rev vbl) (rev wbl)))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1714
  apply (unfold word_add_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1715
  apply clarify
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1716
  apply (simp add: to_bl_of_bin)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1717
  apply (simp add: to_bl_def rbl_add)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1718
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1719
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1720
lemma word_mult_rbl:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1721
  "to_bl v = vbl \<Longrightarrow> to_bl w = wbl \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1722
    to_bl (v * w) = (rev (rbl_mult (rev vbl) (rev wbl)))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1723
  apply (unfold word_mult_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1724
  apply clarify
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1725
  apply (simp add: to_bl_of_bin)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1726
  apply (simp add: to_bl_def rbl_mult)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1727
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1728
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1729
lemma rtb_rbl_ariths:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1730
  "rev (to_bl w) = ys \<Longrightarrow> rev (to_bl (word_succ w)) = rbl_succ ys"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1731
  "rev (to_bl w) = ys \<Longrightarrow> rev (to_bl (word_pred w)) = rbl_pred ys"
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1732
  "rev (to_bl v) = ys \<Longrightarrow> rev (to_bl w) = xs \<Longrightarrow> rev (to_bl (v * w)) = rbl_mult ys xs"
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1733
  "rev (to_bl v) = ys \<Longrightarrow> rev (to_bl w) = xs \<Longrightarrow> rev (to_bl (v + w)) = rbl_add ys xs"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1734
  by (auto simp: rev_swap [symmetric] word_succ_rbl 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1735
                 word_pred_rbl word_mult_rbl word_add_rbl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1736
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1737
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1738
subsection "Arithmetic type class instantiations"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1739
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1740
lemmas word_le_0_iff [simp] =
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1741
  word_zero_le [THEN leD, THEN linorder_antisym_conv1]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1742
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1743
lemma word_of_int_nat: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1744
  "0 <= x \<Longrightarrow> word_of_int x = of_nat (nat x)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1745
  by (simp add: of_nat_nat word_of_int)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1746
46603
83a5160e6b4d removed unnecessary lemma zero_bintrunc
huffman
parents: 46602
diff changeset
  1747
(* note that iszero_def is only for class comm_semiring_1_cancel,
83a5160e6b4d removed unnecessary lemma zero_bintrunc
huffman
parents: 46602
diff changeset
  1748
   which requires word length >= 1, ie 'a :: len word *) 
83a5160e6b4d removed unnecessary lemma zero_bintrunc
huffman
parents: 46602
diff changeset
  1749
lemma iszero_word_no [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1750
  "iszero (numeral bin :: 'a :: len word) = 
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1751
    iszero (bintrunc (len_of TYPE('a)) (numeral bin))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1752
  using word_ubin.norm_eq_iff [where 'a='a, of "numeral bin" 0]
46603
83a5160e6b4d removed unnecessary lemma zero_bintrunc
huffman
parents: 46602
diff changeset
  1753
  by (simp add: iszero_def [symmetric])
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1754
    
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1755
text {* Use @{text iszero} to simplify equalities between word numerals. *}
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1756
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1757
lemmas word_eq_numeral_iff_iszero [simp] =
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  1758
  eq_numeral_iff_iszero [where 'a="'a::len word"]
46603
83a5160e6b4d removed unnecessary lemma zero_bintrunc
huffman
parents: 46602
diff changeset
  1759
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1760
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1761
subsection "Word and nat"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1762
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  1763
lemma td_ext_unat [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1764
  "n = len_of TYPE ('a :: len) \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1765
    td_ext (unat :: 'a word => nat) of_nat 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1766
    (unats n) (%i. i mod 2 ^ n)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1767
  apply (unfold td_ext_def' unat_def word_of_nat unats_uints)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1768
  apply (auto intro!: imageI simp add : word_of_int_hom_syms)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1769
  apply (erule word_uint.Abs_inverse [THEN arg_cong])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1770
  apply (simp add: int_word_uint nat_mod_distrib nat_power_eq)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1771
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1772
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1773
lemmas unat_of_nat = td_ext_unat [THEN td_ext.eq_norm]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1774
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1775
interpretation word_unat:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1776
  td_ext "unat::'a::len word => nat" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1777
         of_nat 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1778
         "unats (len_of TYPE('a::len))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1779
         "%i. i mod 2 ^ len_of TYPE('a::len)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1780
  by (rule td_ext_unat)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1781
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1782
lemmas td_unat = word_unat.td_thm
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1783
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1784
lemmas unat_lt2p [iff] = word_unat.Rep [unfolded unats_def mem_Collect_eq]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1785
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1786
lemma unat_le: "y <= unat (z :: 'a :: len word) \<Longrightarrow> y : unats (len_of TYPE ('a))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1787
  apply (unfold unats_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1788
  apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1789
  apply (rule xtrans, rule unat_lt2p, assumption) 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1790
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1791
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1792
lemma word_nchotomy:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1793
  "ALL w. EX n. (w :: 'a :: len word) = of_nat n & n < 2 ^ len_of TYPE ('a)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1794
  apply (rule allI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1795
  apply (rule word_unat.Abs_cases)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1796
  apply (unfold unats_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1797
  apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1798
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1799
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1800
lemma of_nat_eq:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1801
  fixes w :: "'a::len word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1802
  shows "(of_nat n = w) = (\<exists>q. n = unat w + q * 2 ^ len_of TYPE('a))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1803
  apply (rule trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1804
   apply (rule word_unat.inverse_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1805
  apply (rule iffI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1806
   apply (rule mod_eqD)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1807
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1808
  apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1809
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1810
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1811
lemma of_nat_eq_size: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1812
  "(of_nat n = w) = (EX q. n = unat w + q * 2 ^ size w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1813
  unfolding word_size by (rule of_nat_eq)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1814
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1815
lemma of_nat_0:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1816
  "(of_nat m = (0::'a::len word)) = (\<exists>q. m = q * 2 ^ len_of TYPE('a))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1817
  by (simp add: of_nat_eq)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1818
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  1819
lemma of_nat_2p [simp]:
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  1820
  "of_nat (2 ^ len_of TYPE('a)) = (0::'a::len word)"
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  1821
  by (fact mult_1 [symmetric, THEN iffD2 [OF of_nat_0 exI]])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1822
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1823
lemma of_nat_gt_0: "of_nat k ~= 0 \<Longrightarrow> 0 < k"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1824
  by (cases k) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1825
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1826
lemma of_nat_neq_0: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1827
  "0 < k \<Longrightarrow> k < 2 ^ len_of TYPE ('a :: len) \<Longrightarrow> of_nat k ~= (0 :: 'a word)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1828
  by (clarsimp simp add : of_nat_0)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1829
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1830
lemma Abs_fnat_hom_add:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1831
  "of_nat a + of_nat b = of_nat (a + b)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1832
  by simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1833
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1834
lemma Abs_fnat_hom_mult:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1835
  "of_nat a * of_nat b = (of_nat (a * b) :: 'a :: len word)"
46013
d2f179d26133 remove some duplicate lemmas
huffman
parents: 46012
diff changeset
  1836
  by (simp add: word_of_nat wi_hom_mult zmult_int)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1837
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1838
lemma Abs_fnat_hom_Suc:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1839
  "word_succ (of_nat a) = of_nat (Suc a)"
46013
d2f179d26133 remove some duplicate lemmas
huffman
parents: 46012
diff changeset
  1840
  by (simp add: word_of_nat wi_hom_succ add_ac)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1841
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1842
lemma Abs_fnat_hom_0: "(0::'a::len word) = of_nat 0"
45995
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  1843
  by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1844
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1845
lemma Abs_fnat_hom_1: "(1::'a::len word) = of_nat (Suc 0)"
45995
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  1846
  by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1847
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1848
lemmas Abs_fnat_homs = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1849
  Abs_fnat_hom_add Abs_fnat_hom_mult Abs_fnat_hom_Suc 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1850
  Abs_fnat_hom_0 Abs_fnat_hom_1
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1851
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1852
lemma word_arith_nat_add:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1853
  "a + b = of_nat (unat a + unat b)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1854
  by simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1855
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1856
lemma word_arith_nat_mult:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1857
  "a * b = of_nat (unat a * unat b)"
45995
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  1858
  by (simp add: of_nat_mult)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1859
    
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1860
lemma word_arith_nat_Suc:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1861
  "word_succ a = of_nat (Suc (unat a))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1862
  by (subst Abs_fnat_hom_Suc [symmetric]) simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1863
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1864
lemma word_arith_nat_div:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1865
  "a div b = of_nat (unat a div unat b)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1866
  by (simp add: word_div_def word_of_nat zdiv_int uint_nat)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1867
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1868
lemma word_arith_nat_mod:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1869
  "a mod b = of_nat (unat a mod unat b)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1870
  by (simp add: word_mod_def word_of_nat zmod_int uint_nat)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1871
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1872
lemmas word_arith_nat_defs =
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1873
  word_arith_nat_add word_arith_nat_mult
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1874
  word_arith_nat_Suc Abs_fnat_hom_0
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1875
  Abs_fnat_hom_1 word_arith_nat_div
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1876
  word_arith_nat_mod 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1877
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  1878
lemma unat_cong: "x = y \<Longrightarrow> unat x = unat y"
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  1879
  by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1880
  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1881
lemmas unat_word_ariths = word_arith_nat_defs
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1882
  [THEN trans [OF unat_cong unat_of_nat]]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1883
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1884
lemmas word_sub_less_iff = word_sub_le_iff
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  1885
  [unfolded linorder_not_less [symmetric] Not_eq_iff]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1886
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1887
lemma unat_add_lem: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1888
  "(unat x + unat y < 2 ^ len_of TYPE('a)) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1889
    (unat (x + y :: 'a :: len word) = unat x + unat y)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1890
  unfolding unat_word_ariths
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1891
  by (auto intro!: trans [OF _ nat_mod_lem])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1892
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1893
lemma unat_mult_lem: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1894
  "(unat x * unat y < 2 ^ len_of TYPE('a)) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1895
    (unat (x * y :: 'a :: len word) = unat x * unat y)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1896
  unfolding unat_word_ariths
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1897
  by (auto intro!: trans [OF _ nat_mod_lem])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1898
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1899
lemmas unat_plus_if' = trans [OF unat_word_ariths(1) mod_nat_add, simplified]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1900
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1901
lemma le_no_overflow: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  1902
  "x <= b \<Longrightarrow> a <= a + b \<Longrightarrow> x <= a + (b :: 'a :: len0 word)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1903
  apply (erule order_trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1904
  apply (erule olen_add_eqv [THEN iffD1])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1905
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1906
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  1907
lemmas un_ui_le = trans [OF word_le_nat_alt [symmetric] word_le_def]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1908
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1909
lemma unat_sub_if_size:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1910
  "unat (x - y) = (if unat y <= unat x 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1911
   then unat x - unat y 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1912
   else unat x + 2 ^ size x - unat y)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1913
  apply (unfold word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1914
  apply (simp add: un_ui_le)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1915
  apply (auto simp add: unat_def uint_sub_if')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1916
   apply (rule nat_diff_distrib)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1917
    prefer 3
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1918
    apply (simp add: algebra_simps)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1919
    apply (rule nat_diff_distrib [THEN trans])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1920
      prefer 3
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1921
      apply (subst nat_add_distrib)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1922
        prefer 3
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1923
        apply (simp add: nat_power_eq)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1924
       apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1925
  apply uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1926
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1927
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1928
lemmas unat_sub_if' = unat_sub_if_size [unfolded word_size]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1929
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1930
lemma unat_div: "unat ((x :: 'a :: len word) div y) = unat x div unat y"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1931
  apply (simp add : unat_word_ariths)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1932
  apply (rule unat_lt2p [THEN xtr7, THEN nat_mod_eq'])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1933
  apply (rule div_le_dividend)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1934
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1935
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1936
lemma unat_mod: "unat ((x :: 'a :: len word) mod y) = unat x mod unat y"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1937
  apply (clarsimp simp add : unat_word_ariths)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1938
  apply (cases "unat y")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1939
   prefer 2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1940
   apply (rule unat_lt2p [THEN xtr7, THEN nat_mod_eq'])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1941
   apply (rule mod_le_divisor)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1942
   apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1943
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1944
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1945
lemma uint_div: "uint ((x :: 'a :: len word) div y) = uint x div uint y"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1946
  unfolding uint_nat by (simp add : unat_div zdiv_int)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1947
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1948
lemma uint_mod: "uint ((x :: 'a :: len word) mod y) = uint x mod uint y"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1949
  unfolding uint_nat by (simp add : unat_mod zmod_int)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1950
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1951
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1952
subsection {* Definition of unat\_arith tactic *}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1953
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1954
lemma unat_split:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1955
  fixes x::"'a::len word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1956
  shows "P (unat x) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1957
         (ALL n. of_nat n = x & n < 2^len_of TYPE('a) --> P n)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1958
  by (auto simp: unat_of_nat)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1959
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1960
lemma unat_split_asm:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1961
  fixes x::"'a::len word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1962
  shows "P (unat x) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1963
         (~(EX n. of_nat n = x & n < 2^len_of TYPE('a) & ~ P n))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1964
  by (auto simp: unat_of_nat)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1965
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1966
lemmas of_nat_inverse = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1967
  word_unat.Abs_inverse' [rotated, unfolded unats_def, simplified]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1968
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1969
lemmas unat_splits = unat_split unat_split_asm
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1970
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1971
lemmas unat_arith_simps =
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1972
  word_le_nat_alt word_less_nat_alt
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1973
  word_unat.Rep_inject [symmetric]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1974
  unat_sub_if' unat_plus_if' unat_div unat_mod
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1975
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1976
(* unat_arith_tac: tactic to reduce word arithmetic to nat, 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1977
   try to solve via arith *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1978
ML {*
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1979
fun unat_arith_ss_of ss = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1980
  ss addsimps @{thms unat_arith_simps}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1981
     delsimps @{thms word_unat.Rep_inject}
45620
f2a587696afb modernized some old-style infix operations, which were left over from the time of ML proof scripts;
wenzelm
parents: 45604
diff changeset
  1982
     |> fold Splitter.add_split @{thms split_if_asm}
f2a587696afb modernized some old-style infix operations, which were left over from the time of ML proof scripts;
wenzelm
parents: 45604
diff changeset
  1983
     |> fold Simplifier.add_cong @{thms power_False_cong}
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1984
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1985
fun unat_arith_tacs ctxt =   
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1986
  let
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1987
    fun arith_tac' n t =
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1988
      Arith_Data.verbose_arith_tac ctxt n t
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1989
        handle Cooper.COOPER _ => Seq.empty;
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1990
  in 
42793
88bee9f6eec7 proper Proof.context for classical tactics;
wenzelm
parents: 41550
diff changeset
  1991
    [ clarify_tac ctxt 1,
88bee9f6eec7 proper Proof.context for classical tactics;
wenzelm
parents: 41550
diff changeset
  1992
      full_simp_tac (unat_arith_ss_of (simpset_of ctxt)) 1,
45620
f2a587696afb modernized some old-style infix operations, which were left over from the time of ML proof scripts;
wenzelm
parents: 45604
diff changeset
  1993
      ALLGOALS (full_simp_tac (HOL_ss |> fold Splitter.add_split @{thms unat_splits}
f2a587696afb modernized some old-style infix operations, which were left over from the time of ML proof scripts;
wenzelm
parents: 45604
diff changeset
  1994
                                      |> fold Simplifier.add_cong @{thms power_False_cong})),
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1995
      rewrite_goals_tac @{thms word_size}, 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1996
      ALLGOALS  (fn n => REPEAT (resolve_tac [allI, impI] n) THEN      
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1997
                         REPEAT (etac conjE n) THEN
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1998
                         REPEAT (dtac @{thm of_nat_inverse} n THEN atac n)),
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  1999
      TRYALL arith_tac' ] 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2000
  end
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2001
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2002
fun unat_arith_tac ctxt = SELECT_GOAL (EVERY (unat_arith_tacs ctxt))
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2003
*}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2004
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2005
method_setup unat_arith = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2006
  {* Scan.succeed (SIMPLE_METHOD' o unat_arith_tac) *}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2007
  "solving word arithmetic via natural numbers and arith"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2008
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2009
lemma no_plus_overflow_unat_size: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2010
  "((x :: 'a :: len word) <= x + y) = (unat x + unat y < 2 ^ size x)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2011
  unfolding word_size by unat_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2012
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2013
lemmas no_olen_add_nat = no_plus_overflow_unat_size [unfolded word_size]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2014
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  2015
lemmas unat_plus_simple = trans [OF no_olen_add_nat unat_add_lem]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2016
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2017
lemma word_div_mult: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2018
  "(0 :: 'a :: len word) < y \<Longrightarrow> unat x * unat y < 2 ^ len_of TYPE('a) \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2019
    x * y div y = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2020
  apply unat_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2021
  apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2022
  apply (subst unat_mult_lem [THEN iffD1])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2023
  apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2024
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2025
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2026
lemma div_lt': "(i :: 'a :: len word) <= k div x \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2027
    unat i * unat x < 2 ^ len_of TYPE('a)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2028
  apply unat_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2029
  apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2030
  apply (drule mult_le_mono1)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2031
  apply (erule order_le_less_trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2032
  apply (rule xtr7 [OF unat_lt2p div_mult_le])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2033
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2034
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2035
lemmas div_lt'' = order_less_imp_le [THEN div_lt']
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2036
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2037
lemma div_lt_mult: "(i :: 'a :: len word) < k div x \<Longrightarrow> 0 < x \<Longrightarrow> i * x < k"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2038
  apply (frule div_lt'' [THEN unat_mult_lem [THEN iffD1]])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2039
  apply (simp add: unat_arith_simps)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2040
  apply (drule (1) mult_less_mono1)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2041
  apply (erule order_less_le_trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2042
  apply (rule div_mult_le)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2043
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2044
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2045
lemma div_le_mult: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2046
  "(i :: 'a :: len word) <= k div x \<Longrightarrow> 0 < x \<Longrightarrow> i * x <= k"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2047
  apply (frule div_lt' [THEN unat_mult_lem [THEN iffD1]])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2048
  apply (simp add: unat_arith_simps)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2049
  apply (drule mult_le_mono1)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2050
  apply (erule order_trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2051
  apply (rule div_mult_le)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2052
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2053
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2054
lemma div_lt_uint': 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2055
  "(i :: 'a :: len word) <= k div x \<Longrightarrow> uint i * uint x < 2 ^ len_of TYPE('a)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2056
  apply (unfold uint_nat)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2057
  apply (drule div_lt')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2058
  apply (simp add: zmult_int zless_nat_eq_int_zless [symmetric] 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2059
                   nat_power_eq)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2060
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2061
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2062
lemmas div_lt_uint'' = order_less_imp_le [THEN div_lt_uint']
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2063
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2064
lemma word_le_exists': 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2065
  "(x :: 'a :: len0 word) <= y \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2066
    (EX z. y = x + z & uint x + uint z < 2 ^ len_of TYPE('a))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2067
  apply (rule exI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2068
  apply (rule conjI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2069
  apply (rule zadd_diff_inverse)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2070
  apply uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2071
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2072
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2073
lemmas plus_minus_not_NULL = order_less_imp_le [THEN plus_minus_not_NULL_ab]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2074
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2075
lemmas plus_minus_no_overflow =
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2076
  order_less_imp_le [THEN plus_minus_no_overflow_ab]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2077
  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2078
lemmas mcs = word_less_minus_cancel word_less_minus_mono_left
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2079
  word_le_minus_cancel word_le_minus_mono_left
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2080
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  2081
lemmas word_l_diffs = mcs [where y = "w + x", unfolded add_diff_cancel] for w x
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  2082
lemmas word_diff_ls = mcs [where z = "w + x", unfolded add_diff_cancel] for w x
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  2083
lemmas word_plus_mcs = word_diff_ls [where y = "v + x", unfolded add_diff_cancel] for v x
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2084
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2085
lemmas le_unat_uoi = unat_le [THEN word_unat.Abs_inverse]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2086
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2087
lemmas thd = refl [THEN [2] split_div_lemma [THEN iffD2], THEN conjunct1]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2088
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2089
lemma thd1:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2090
  "a div b * b \<le> (a::nat)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2091
  using gt_or_eq_0 [of b]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2092
  apply (rule disjE)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2093
   apply (erule xtr4 [OF thd mult_commute])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2094
  apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2095
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2096
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  2097
lemmas uno_simps [THEN le_unat_uoi] = mod_le_divisor div_le_dividend thd1 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2098
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2099
lemma word_mod_div_equality:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2100
  "(n div b) * b + (n mod b) = (n :: 'a :: len word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2101
  apply (unfold word_less_nat_alt word_arith_nat_defs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2102
  apply (cut_tac y="unat b" in gt_or_eq_0)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2103
  apply (erule disjE)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2104
   apply (simp add: mod_div_equality uno_simps)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2105
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2106
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2107
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2108
lemma word_div_mult_le: "a div b * b <= (a::'a::len word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2109
  apply (unfold word_le_nat_alt word_arith_nat_defs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2110
  apply (cut_tac y="unat b" in gt_or_eq_0)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2111
  apply (erule disjE)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2112
   apply (simp add: div_mult_le uno_simps)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2113
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2114
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2115
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2116
lemma word_mod_less_divisor: "0 < n \<Longrightarrow> m mod n < (n :: 'a :: len word)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2117
  apply (simp only: word_less_nat_alt word_arith_nat_defs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2118
  apply (clarsimp simp add : uno_simps)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2119
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2120
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2121
lemma word_of_int_power_hom: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2122
  "word_of_int a ^ n = (word_of_int (a ^ n) :: 'a :: len word)"
45995
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  2123
  by (induct n) (simp_all add: wi_hom_mult [symmetric])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2124
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2125
lemma word_arith_power_alt: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2126
  "a ^ n = (word_of_int (uint a ^ n) :: 'a :: len word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2127
  by (simp add : word_of_int_power_hom [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2128
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2129
lemma of_bl_length_less: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2130
  "length x = k \<Longrightarrow> k < len_of TYPE('a) \<Longrightarrow> (of_bl x :: 'a :: len word) < 2 ^ k"
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2131
  apply (unfold of_bl_def word_less_alt word_numeral_alt)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2132
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2133
  apply (simp (no_asm) add: word_of_int_power_hom word_uint.eq_norm 
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2134
                       del: word_of_int_numeral)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2135
  apply (simp add: mod_pos_pos_trivial)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2136
  apply (subst mod_pos_pos_trivial)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2137
    apply (rule bl_to_bin_ge0)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2138
   apply (rule order_less_trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2139
    apply (rule bl_to_bin_lt2p)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2140
   apply simp
46646
0abbf6dd09ee remove ill-formed lemma of_bl_no; adapt proofs
huffman
parents: 46645
diff changeset
  2141
  apply (rule bl_to_bin_lt2p)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2142
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2143
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2144
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2145
subsection "Cardinality, finiteness of set of words"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2146
45809
2bee94cbae72 finite class instance for word type; remove unused lemmas
huffman
parents: 45808
diff changeset
  2147
instance word :: (len0) finite
2bee94cbae72 finite class instance for word type; remove unused lemmas
huffman
parents: 45808
diff changeset
  2148
  by (default, simp add: type_definition.univ [OF type_definition_word])
2bee94cbae72 finite class instance for word type; remove unused lemmas
huffman
parents: 45808
diff changeset
  2149
2bee94cbae72 finite class instance for word type; remove unused lemmas
huffman
parents: 45808
diff changeset
  2150
lemma card_word: "CARD('a::len0 word) = 2 ^ len_of TYPE('a)"
2bee94cbae72 finite class instance for word type; remove unused lemmas
huffman
parents: 45808
diff changeset
  2151
  by (simp add: type_definition.card [OF type_definition_word] nat_power_eq)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2152
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2153
lemma card_word_size: 
45809
2bee94cbae72 finite class instance for word type; remove unused lemmas
huffman
parents: 45808
diff changeset
  2154
  "card (UNIV :: 'a :: len0 word set) = (2 ^ size (x :: 'a word))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2155
unfolding word_size by (rule card_word)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2156
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2157
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2158
subsection {* Bitwise Operations on Words *}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2159
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2160
lemmas bin_log_bintrs = bin_trunc_not bin_trunc_xor bin_trunc_and bin_trunc_or
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2161
  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2162
(* following definitions require both arithmetic and bit-wise word operations *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2163
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2164
(* to get word_no_log_defs from word_log_defs, using bin_log_bintrs *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2165
lemmas wils1 = bin_log_bintrs [THEN word_ubin.norm_eq_iff [THEN iffD1],
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  2166
  folded word_ubin.eq_norm, THEN eq_reflection]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2167
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2168
(* the binary operations only *)
46013
d2f179d26133 remove some duplicate lemmas
huffman
parents: 46012
diff changeset
  2169
(* BH: why is this needed? *)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2170
lemmas word_log_binary_defs = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2171
  word_and_def word_or_def word_xor_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2172
46011
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  2173
lemma word_wi_log_defs:
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  2174
  "NOT word_of_int a = word_of_int (NOT a)"
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  2175
  "word_of_int a AND word_of_int b = word_of_int (a AND b)"
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  2176
  "word_of_int a OR word_of_int b = word_of_int (a OR b)"
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  2177
  "word_of_int a XOR word_of_int b = word_of_int (a XOR b)"
47374
9475d524bafb set up and use lift_definition for word operations
huffman
parents: 47372
diff changeset
  2178
  by (transfer, rule refl)+
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2179
46011
96a5f44c22da replace 'lemmas' with explicit 'lemma'
huffman
parents: 46010
diff changeset
  2180
lemma word_no_log_defs [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2181
  "NOT (numeral a) = word_of_int (NOT (numeral a))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2182
  "NOT (neg_numeral a) = word_of_int (NOT (neg_numeral a))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2183
  "numeral a AND numeral b = word_of_int (numeral a AND numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2184
  "numeral a AND neg_numeral b = word_of_int (numeral a AND neg_numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2185
  "neg_numeral a AND numeral b = word_of_int (neg_numeral a AND numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2186
  "neg_numeral a AND neg_numeral b = word_of_int (neg_numeral a AND neg_numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2187
  "numeral a OR numeral b = word_of_int (numeral a OR numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2188
  "numeral a OR neg_numeral b = word_of_int (numeral a OR neg_numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2189
  "neg_numeral a OR numeral b = word_of_int (neg_numeral a OR numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2190
  "neg_numeral a OR neg_numeral b = word_of_int (neg_numeral a OR neg_numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2191
  "numeral a XOR numeral b = word_of_int (numeral a XOR numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2192
  "numeral a XOR neg_numeral b = word_of_int (numeral a XOR neg_numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2193
  "neg_numeral a XOR numeral b = word_of_int (neg_numeral a XOR numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2194
  "neg_numeral a XOR neg_numeral b = word_of_int (neg_numeral a XOR neg_numeral b)"
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2195
  by (transfer, rule refl)+
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2196
46064
88ef116e0522 add simp rules for bitwise word operations with 1
huffman
parents: 46057
diff changeset
  2197
text {* Special cases for when one of the arguments equals 1. *}
88ef116e0522 add simp rules for bitwise word operations with 1
huffman
parents: 46057
diff changeset
  2198
88ef116e0522 add simp rules for bitwise word operations with 1
huffman
parents: 46057
diff changeset
  2199
lemma word_bitwise_1_simps [simp]:
88ef116e0522 add simp rules for bitwise word operations with 1
huffman
parents: 46057
diff changeset
  2200
  "NOT (1::'a::len0 word) = -2"
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2201
  "1 AND numeral b = word_of_int (1 AND numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2202
  "1 AND neg_numeral b = word_of_int (1 AND neg_numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2203
  "numeral a AND 1 = word_of_int (numeral a AND 1)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2204
  "neg_numeral a AND 1 = word_of_int (neg_numeral a AND 1)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2205
  "1 OR numeral b = word_of_int (1 OR numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2206
  "1 OR neg_numeral b = word_of_int (1 OR neg_numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2207
  "numeral a OR 1 = word_of_int (numeral a OR 1)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2208
  "neg_numeral a OR 1 = word_of_int (neg_numeral a OR 1)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2209
  "1 XOR numeral b = word_of_int (1 XOR numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2210
  "1 XOR neg_numeral b = word_of_int (1 XOR neg_numeral b)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2211
  "numeral a XOR 1 = word_of_int (numeral a XOR 1)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2212
  "neg_numeral a XOR 1 = word_of_int (neg_numeral a XOR 1)"
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2213
  by (transfer, simp)+
46064
88ef116e0522 add simp rules for bitwise word operations with 1
huffman
parents: 46057
diff changeset
  2214
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2215
lemma uint_or: "uint (x OR y) = (uint x) OR (uint y)"
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2216
  by (transfer, simp add: bin_trunc_ao)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2217
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2218
lemma uint_and: "uint (x AND y) = (uint x) AND (uint y)"
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2219
  by (transfer, simp add: bin_trunc_ao)
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2220
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2221
lemma test_bit_wi [simp]:
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2222
  "(word_of_int x::'a::len0 word) !! n \<longleftrightarrow> n < len_of TYPE('a) \<and> bin_nth x n"
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2223
  unfolding word_test_bit_def
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2224
  by (simp add: word_ubin.eq_norm nth_bintr)
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2225
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2226
lemma word_test_bit_transfer [transfer_rule]:
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2227
  "(fun_rel cr_word (fun_rel op = op =))
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2228
    (\<lambda>x n. n < len_of TYPE('a) \<and> bin_nth x n) (test_bit :: 'a::len0 word \<Rightarrow> _)"
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2229
  unfolding fun_rel_def cr_word_def by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2230
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2231
lemma word_ops_nth_size:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2232
  "n < size (x::'a::len0 word) \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2233
    (x OR y) !! n = (x !! n | y !! n) & 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2234
    (x AND y) !! n = (x !! n & y !! n) & 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2235
    (x XOR y) !! n = (x !! n ~= y !! n) & 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2236
    (NOT x) !! n = (~ x !! n)"
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2237
  unfolding word_size by transfer (simp add: bin_nth_ops)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2238
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2239
lemma word_ao_nth:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2240
  fixes x :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2241
  shows "(x OR y) !! n = (x !! n | y !! n) & 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2242
         (x AND y) !! n = (x !! n & y !! n)"
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2243
  by transfer (auto simp add: bin_nth_ops)
46023
fad87bb608fc restate some lemmas to respect int/bin distinction
huffman
parents: 46022
diff changeset
  2244
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2245
lemma test_bit_numeral [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2246
  "(numeral w :: 'a::len0 word) !! n \<longleftrightarrow>
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2247
    n < len_of TYPE('a) \<and> bin_nth (numeral w) n"
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2248
  by transfer (rule refl)
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2249
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2250
lemma test_bit_neg_numeral [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2251
  "(neg_numeral w :: 'a::len0 word) !! n \<longleftrightarrow>
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2252
    n < len_of TYPE('a) \<and> bin_nth (neg_numeral w) n"
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2253
  by transfer (rule refl)
46023
fad87bb608fc restate some lemmas to respect int/bin distinction
huffman
parents: 46022
diff changeset
  2254
46172
c06e868dc339 add simp rule test_bit_1
huffman
parents: 46136
diff changeset
  2255
lemma test_bit_1 [simp]: "(1::'a::len word) !! n \<longleftrightarrow> n = 0"
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2256
  by transfer auto
46172
c06e868dc339 add simp rule test_bit_1
huffman
parents: 46136
diff changeset
  2257
  
46023
fad87bb608fc restate some lemmas to respect int/bin distinction
huffman
parents: 46022
diff changeset
  2258
lemma nth_0 [simp]: "~ (0::'a::len0 word) !! n"
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2259
  by transfer simp
46023
fad87bb608fc restate some lemmas to respect int/bin distinction
huffman
parents: 46022
diff changeset
  2260
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2261
lemma nth_minus1 [simp]: "(-1::'a::len0 word) !! n \<longleftrightarrow> n < len_of TYPE('a)"
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2262
  by transfer simp
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2263
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2264
(* get from commutativity, associativity etc of int_and etc
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2265
  to same for word_and etc *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2266
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2267
lemmas bwsimps = 
46013
d2f179d26133 remove some duplicate lemmas
huffman
parents: 46012
diff changeset
  2268
  wi_hom_add
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2269
  word_wi_log_defs
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2270
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2271
lemma word_bw_assocs:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2272
  fixes x :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2273
  shows
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2274
  "(x AND y) AND z = x AND y AND z"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2275
  "(x OR y) OR z = x OR y OR z"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2276
  "(x XOR y) XOR z = x XOR y XOR z"
46022
657f87b10944 simplify some proofs
huffman
parents: 46021
diff changeset
  2277
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2278
  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2279
lemma word_bw_comms:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2280
  fixes x :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2281
  shows
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2282
  "x AND y = y AND x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2283
  "x OR y = y OR x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2284
  "x XOR y = y XOR x"
46022
657f87b10944 simplify some proofs
huffman
parents: 46021
diff changeset
  2285
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2286
  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2287
lemma word_bw_lcs:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2288
  fixes x :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2289
  shows
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2290
  "y AND x AND z = x AND y AND z"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2291
  "y OR x OR z = x OR y OR z"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2292
  "y XOR x XOR z = x XOR y XOR z"
46022
657f87b10944 simplify some proofs
huffman
parents: 46021
diff changeset
  2293
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2294
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2295
lemma word_log_esimps [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2296
  fixes x :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2297
  shows
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2298
  "x AND 0 = 0"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2299
  "x AND -1 = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2300
  "x OR 0 = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2301
  "x OR -1 = -1"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2302
  "x XOR 0 = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2303
  "x XOR -1 = NOT x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2304
  "0 AND x = 0"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2305
  "-1 AND x = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2306
  "0 OR x = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2307
  "-1 OR x = -1"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2308
  "0 XOR x = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2309
  "-1 XOR x = NOT x"
46023
fad87bb608fc restate some lemmas to respect int/bin distinction
huffman
parents: 46022
diff changeset
  2310
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2311
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2312
lemma word_not_dist:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2313
  fixes x :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2314
  shows
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2315
  "NOT (x OR y) = NOT x AND NOT y"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2316
  "NOT (x AND y) = NOT x OR NOT y"
46022
657f87b10944 simplify some proofs
huffman
parents: 46021
diff changeset
  2317
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2318
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2319
lemma word_bw_same:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2320
  fixes x :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2321
  shows
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2322
  "x AND x = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2323
  "x OR x = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2324
  "x XOR x = 0"
46023
fad87bb608fc restate some lemmas to respect int/bin distinction
huffman
parents: 46022
diff changeset
  2325
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2326
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2327
lemma word_ao_absorbs [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2328
  fixes x :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2329
  shows
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2330
  "x AND (y OR x) = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2331
  "x OR y AND x = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2332
  "x AND (x OR y) = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2333
  "y AND x OR x = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2334
  "(y OR x) AND x = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2335
  "x OR x AND y = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2336
  "(x OR y) AND x = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2337
  "x AND y OR x = x"
46022
657f87b10944 simplify some proofs
huffman
parents: 46021
diff changeset
  2338
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2339
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2340
lemma word_not_not [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2341
  "NOT NOT (x::'a::len0 word) = x"
46022
657f87b10944 simplify some proofs
huffman
parents: 46021
diff changeset
  2342
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2343
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2344
lemma word_ao_dist:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2345
  fixes x :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2346
  shows "(x OR y) AND z = x AND z OR y AND z"
46022
657f87b10944 simplify some proofs
huffman
parents: 46021
diff changeset
  2347
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2348
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2349
lemma word_oa_dist:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2350
  fixes x :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2351
  shows "x AND y OR z = (x OR z) AND (y OR z)"
46022
657f87b10944 simplify some proofs
huffman
parents: 46021
diff changeset
  2352
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2353
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2354
lemma word_add_not [simp]: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2355
  fixes x :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2356
  shows "x + NOT x = -1"
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2357
  by transfer (simp add: bin_add_not)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2358
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2359
lemma word_plus_and_or [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2360
  fixes x :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2361
  shows "(x AND y) + (x OR y) = x + y"
47372
9ab4e22dac7b configure transfer method for 'a word -> int
huffman
parents: 47168
diff changeset
  2362
  by transfer (simp add: plus_and_or)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2363
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2364
lemma leoa:   
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2365
  fixes x :: "'a::len0 word"
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2366
  shows "(w = (x OR y)) \<Longrightarrow> (y = (w AND y))" by auto
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2367
lemma leao: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2368
  fixes x' :: "'a::len0 word"
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2369
  shows "(w' = (x' AND y')) \<Longrightarrow> (x' = (x' OR w'))" by auto 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2370
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2371
lemmas word_ao_equiv = leao [COMP leoa [COMP iffI]]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2372
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2373
lemma le_word_or2: "x <= x OR (y::'a::len0 word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2374
  unfolding word_le_def uint_or
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2375
  by (auto intro: le_int_or) 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2376
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  2377
lemmas le_word_or1 = xtr3 [OF word_bw_comms (2) le_word_or2]
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  2378
lemmas word_and_le1 = xtr3 [OF word_ao_absorbs (4) [symmetric] le_word_or2]
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  2379
lemmas word_and_le2 = xtr3 [OF word_ao_absorbs (8) [symmetric] le_word_or2]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2380
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2381
lemma bl_word_not: "to_bl (NOT w) = map Not (to_bl w)" 
45550
73a4f31d41c4 Word.thy: reduce usage of numeral-representation-dependent thms like number_of_is_id in proofs
huffman
parents: 45549
diff changeset
  2382
  unfolding to_bl_def word_log_defs bl_not_bin
73a4f31d41c4 Word.thy: reduce usage of numeral-representation-dependent thms like number_of_is_id in proofs
huffman
parents: 45549
diff changeset
  2383
  by (simp add: word_ubin.eq_norm)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2384
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2385
lemma bl_word_xor: "to_bl (v XOR w) = map2 op ~= (to_bl v) (to_bl w)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2386
  unfolding to_bl_def word_log_defs bl_xor_bin
45550
73a4f31d41c4 Word.thy: reduce usage of numeral-representation-dependent thms like number_of_is_id in proofs
huffman
parents: 45549
diff changeset
  2387
  by (simp add: word_ubin.eq_norm)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2388
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2389
lemma bl_word_or: "to_bl (v OR w) = map2 op | (to_bl v) (to_bl w)" 
45550
73a4f31d41c4 Word.thy: reduce usage of numeral-representation-dependent thms like number_of_is_id in proofs
huffman
parents: 45549
diff changeset
  2390
  unfolding to_bl_def word_log_defs bl_or_bin
73a4f31d41c4 Word.thy: reduce usage of numeral-representation-dependent thms like number_of_is_id in proofs
huffman
parents: 45549
diff changeset
  2391
  by (simp add: word_ubin.eq_norm)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2392
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2393
lemma bl_word_and: "to_bl (v AND w) = map2 op & (to_bl v) (to_bl w)" 
45550
73a4f31d41c4 Word.thy: reduce usage of numeral-representation-dependent thms like number_of_is_id in proofs
huffman
parents: 45549
diff changeset
  2394
  unfolding to_bl_def word_log_defs bl_and_bin
73a4f31d41c4 Word.thy: reduce usage of numeral-representation-dependent thms like number_of_is_id in proofs
huffman
parents: 45549
diff changeset
  2395
  by (simp add: word_ubin.eq_norm)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2396
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2397
lemma word_lsb_alt: "lsb (w::'a::len0 word) = test_bit w 0"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2398
  by (auto simp: word_test_bit_def word_lsb_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2399
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  2400
lemma word_lsb_1_0 [simp]: "lsb (1::'a::len word) & ~ lsb (0::'b::len0 word)"
45550
73a4f31d41c4 Word.thy: reduce usage of numeral-representation-dependent thms like number_of_is_id in proofs
huffman
parents: 45549
diff changeset
  2401
  unfolding word_lsb_def uint_eq_0 uint_1 by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2402
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2403
lemma word_lsb_last: "lsb (w::'a::len word) = last (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2404
  apply (unfold word_lsb_def uint_bl bin_to_bl_def) 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2405
  apply (rule_tac bin="uint w" in bin_exhaust)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2406
  apply (cases "size w")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2407
   apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2408
   apply (auto simp add: bin_to_bl_aux_alt)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2409
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2410
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2411
lemma word_lsb_int: "lsb w = (uint w mod 2 = 1)"
45529
0e1037d4e049 remove redundant lemmas bin_last_mod and bin_rest_div, use bin_last_def and bin_rest_def instead
huffman
parents: 45528
diff changeset
  2412
  unfolding word_lsb_def bin_last_def by auto
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2413
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2414
lemma word_msb_sint: "msb w = (sint w < 0)" 
46604
9f9e85264e4d make uses of bin_sign respect int/bin distinction
huffman
parents: 46603
diff changeset
  2415
  unfolding word_msb_def sign_Min_lt_0 ..
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2416
46173
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2417
lemma msb_word_of_int:
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2418
  "msb (word_of_int x::'a::len word) = bin_nth x (len_of TYPE('a) - 1)"
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2419
  unfolding word_msb_def by (simp add: word_sbin.eq_norm bin_sign_lem)
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2420
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2421
lemma word_msb_numeral [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2422
  "msb (numeral w::'a::len word) = bin_nth (numeral w) (len_of TYPE('a) - 1)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2423
  unfolding word_numeral_alt by (rule msb_word_of_int)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2424
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2425
lemma word_msb_neg_numeral [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2426
  "msb (neg_numeral w::'a::len word) = bin_nth (neg_numeral w) (len_of TYPE('a) - 1)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2427
  unfolding word_neg_numeral_alt by (rule msb_word_of_int)
46173
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2428
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2429
lemma word_msb_0 [simp]: "\<not> msb (0::'a::len word)"
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2430
  unfolding word_msb_def by simp
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2431
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2432
lemma word_msb_1 [simp]: "msb (1::'a::len word) \<longleftrightarrow> len_of TYPE('a) = 1"
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2433
  unfolding word_1_wi msb_word_of_int eq_iff [where 'a=nat]
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2434
  by (simp add: Suc_le_eq)
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  2435
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  2436
lemma word_msb_nth:
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  2437
  "msb (w::'a::len word) = bin_nth (uint w) (len_of TYPE('a) - 1)"
46023
fad87bb608fc restate some lemmas to respect int/bin distinction
huffman
parents: 46022
diff changeset
  2438
  unfolding word_msb_def sint_uint by (simp add: bin_sign_lem)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2439
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2440
lemma word_msb_alt: "msb (w::'a::len word) = hd (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2441
  apply (unfold word_msb_nth uint_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2442
  apply (subst hd_conv_nth)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2443
  apply (rule length_greater_0_conv [THEN iffD1])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2444
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2445
  apply (simp add : nth_bin_to_bl word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2446
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2447
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  2448
lemma word_set_nth [simp]:
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2449
  "set_bit w n (test_bit w n) = (w::'a::len0 word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2450
  unfolding word_test_bit_def word_set_bit_def by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2451
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2452
lemma bin_nth_uint':
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2453
  "bin_nth (uint w) n = (rev (bin_to_bl (size w) (uint w)) ! n & n < size w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2454
  apply (unfold word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2455
  apply (safe elim!: bin_nth_uint_imp)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2456
   apply (frule bin_nth_uint_imp)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2457
   apply (fast dest!: bin_nth_bl)+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2458
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2459
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2460
lemmas bin_nth_uint = bin_nth_uint' [unfolded word_size]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2461
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2462
lemma test_bit_bl: "w !! n = (rev (to_bl w) ! n & n < size w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2463
  unfolding to_bl_def word_test_bit_def word_size
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2464
  by (rule bin_nth_uint)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2465
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2466
lemma to_bl_nth: "n < size w \<Longrightarrow> to_bl w ! n = w !! (size w - Suc n)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2467
  apply (unfold test_bit_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2468
  apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2469
  apply (rule trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2470
   apply (rule nth_rev_alt)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2471
   apply (auto simp add: word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2472
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2473
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2474
lemma test_bit_set: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2475
  fixes w :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2476
  shows "(set_bit w n x) !! n = (n < size w & x)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2477
  unfolding word_size word_test_bit_def word_set_bit_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2478
  by (clarsimp simp add : word_ubin.eq_norm nth_bintr)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2479
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2480
lemma test_bit_set_gen: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2481
  fixes w :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2482
  shows "test_bit (set_bit w n x) m = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2483
         (if m = n then n < size w & x else test_bit w m)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2484
  apply (unfold word_size word_test_bit_def word_set_bit_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2485
  apply (clarsimp simp add: word_ubin.eq_norm nth_bintr bin_nth_sc_gen)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2486
  apply (auto elim!: test_bit_size [unfolded word_size]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2487
              simp add: word_test_bit_def [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2488
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2489
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2490
lemma of_bl_rep_False: "of_bl (replicate n False @ bs) = of_bl bs"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2491
  unfolding of_bl_def bl_to_bin_rep_F by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2492
  
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  2493
lemma msb_nth:
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2494
  fixes w :: "'a::len word"
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  2495
  shows "msb w = w !! (len_of TYPE('a) - 1)"
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  2496
  unfolding word_msb_nth word_test_bit_def by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2497
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  2498
lemmas msb0 = len_gt_0 [THEN diff_Suc_less, THEN word_ops_nth_size [unfolded word_size]]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2499
lemmas msb1 = msb0 [where i = 0]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2500
lemmas word_ops_msb = msb1 [unfolded msb_nth [symmetric, unfolded One_nat_def]]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2501
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  2502
lemmas lsb0 = len_gt_0 [THEN word_ops_nth_size [unfolded word_size]]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2503
lemmas word_ops_lsb = lsb0 [unfolded word_lsb_alt]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2504
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  2505
lemma td_ext_nth [OF refl refl refl, unfolded word_size]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2506
  "n = size (w::'a::len0 word) \<Longrightarrow> ofn = set_bits \<Longrightarrow> [w, ofn g] = l \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2507
    td_ext test_bit ofn {f. ALL i. f i --> i < n} (%h i. h i & i < n)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2508
  apply (unfold word_size td_ext_def')
46008
c296c75f4cf4 reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
wenzelm
parents: 46001
diff changeset
  2509
  apply safe
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2510
     apply (rule_tac [3] ext)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2511
     apply (rule_tac [4] ext)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2512
     apply (unfold word_size of_nth_def test_bit_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2513
     apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2514
       defer
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2515
       apply (clarsimp simp: word_bl.Abs_inverse)+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2516
  apply (rule word_bl.Rep_inverse')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2517
  apply (rule sym [THEN trans])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2518
  apply (rule bl_of_nth_nth)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2519
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2520
  apply (rule bl_of_nth_inj)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2521
  apply (clarsimp simp add : test_bit_bl word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2522
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2523
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2524
interpretation test_bit:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2525
  td_ext "op !! :: 'a::len0 word => nat => bool"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2526
         set_bits
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2527
         "{f. \<forall>i. f i \<longrightarrow> i < len_of TYPE('a::len0)}"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2528
         "(\<lambda>h i. h i \<and> i < len_of TYPE('a::len0))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2529
  by (rule td_ext_nth)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2530
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2531
lemmas td_nth = test_bit.td_thm
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2532
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  2533
lemma word_set_set_same [simp]:
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2534
  fixes w :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2535
  shows "set_bit (set_bit w n x) n y = set_bit w n y" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2536
  by (rule word_eqI) (simp add : test_bit_set_gen word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2537
    
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2538
lemma word_set_set_diff: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2539
  fixes w :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2540
  assumes "m ~= n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2541
  shows "set_bit (set_bit w m x) n y = set_bit (set_bit w n y) m x" 
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41413
diff changeset
  2542
  by (rule word_eqI) (clarsimp simp add: test_bit_set_gen word_size assms)
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2543
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2544
lemma nth_sint: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2545
  fixes w :: "'a::len word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2546
  defines "l \<equiv> len_of TYPE ('a)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2547
  shows "bin_nth (sint w) n = (if n < l - 1 then w !! n else w !! (l - 1))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2548
  unfolding sint_uint l_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2549
  by (clarsimp simp add: nth_sbintr word_test_bit_def [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2550
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2551
lemma word_lsb_numeral [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2552
  "lsb (numeral bin :: 'a :: len word) = (bin_last (numeral bin) = 1)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2553
  unfolding word_lsb_alt test_bit_numeral by simp
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2554
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2555
lemma word_lsb_neg_numeral [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2556
  "lsb (neg_numeral bin :: 'a :: len word) = (bin_last (neg_numeral bin) = 1)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2557
  unfolding word_lsb_alt test_bit_neg_numeral by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2558
46173
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2559
lemma set_bit_word_of_int:
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2560
  "set_bit (word_of_int x) n b = word_of_int (bin_sc n (if b then 1 else 0) x)"
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2561
  unfolding word_set_bit_def
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2562
  apply (rule word_eqI)
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2563
  apply (simp add: word_size bin_nth_sc_gen word_ubin.eq_norm nth_bintr)
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2564
  done
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2565
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2566
lemma word_set_numeral [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2567
  "set_bit (numeral bin::'a::len0 word) n b = 
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2568
    word_of_int (bin_sc n (if b then 1 else 0) (numeral bin))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2569
  unfolding word_numeral_alt by (rule set_bit_word_of_int)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2570
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2571
lemma word_set_neg_numeral [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2572
  "set_bit (neg_numeral bin::'a::len0 word) n b = 
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2573
    word_of_int (bin_sc n (if b then 1 else 0) (neg_numeral bin))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2574
  unfolding word_neg_numeral_alt by (rule set_bit_word_of_int)
46173
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2575
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2576
lemma word_set_bit_0 [simp]:
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2577
  "set_bit 0 n b = word_of_int (bin_sc n (if b then 1 else 0) 0)"
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2578
  unfolding word_0_wi by (rule set_bit_word_of_int)
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2579
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2580
lemma word_set_bit_1 [simp]:
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2581
  "set_bit 1 n b = word_of_int (bin_sc n (if b then 1 else 0) 1)"
5cc700033194 add simp rules for set_bit and msb applied to 0 and 1
huffman
parents: 46172
diff changeset
  2582
  unfolding word_1_wi by (rule set_bit_word_of_int)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2583
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  2584
lemma setBit_no [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2585
  "setBit (numeral bin) n = word_of_int (bin_sc n 1 (numeral bin))"
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  2586
  by (simp add: setBit_def)
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  2587
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  2588
lemma clearBit_no [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2589
  "clearBit (numeral bin) n = word_of_int (bin_sc n 0 (numeral bin))"
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  2590
  by (simp add: clearBit_def)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2591
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2592
lemma to_bl_n1: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2593
  "to_bl (-1::'a::len0 word) = replicate (len_of TYPE ('a)) True"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2594
  apply (rule word_bl.Abs_inverse')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2595
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2596
  apply (rule word_eqI)
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  2597
  apply (clarsimp simp add: word_size)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2598
  apply (auto simp add: word_bl.Abs_inverse test_bit_bl word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2599
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2600
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  2601
lemma word_msb_n1 [simp]: "msb (-1::'a::len word)"
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41413
diff changeset
  2602
  unfolding word_msb_alt to_bl_n1 by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2603
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2604
lemma word_set_nth_iff: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2605
  "(set_bit w n b = w) = (w !! n = b | n >= size (w::'a::len0 word))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2606
  apply (rule iffI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2607
   apply (rule disjCI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2608
   apply (drule word_eqD)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2609
   apply (erule sym [THEN trans])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2610
   apply (simp add: test_bit_set)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2611
  apply (erule disjE)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2612
   apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2613
  apply (rule word_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2614
  apply (clarsimp simp add : test_bit_set_gen)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2615
  apply (drule test_bit_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2616
  apply force
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2617
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2618
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  2619
lemma test_bit_2p:
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  2620
  "(word_of_int (2 ^ n)::'a::len word) !! m \<longleftrightarrow> m = n \<and> m < len_of TYPE('a)"
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  2621
  unfolding word_test_bit_def
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2622
  by (auto simp add: word_ubin.eq_norm nth_bintr nth_2p_bin)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2623
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2624
lemma nth_w2p:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2625
  "((2\<Colon>'a\<Colon>len word) ^ n) !! m \<longleftrightarrow> m = n \<and> m < len_of TYPE('a\<Colon>len)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2626
  unfolding test_bit_2p [symmetric] word_of_int [symmetric]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2627
  by (simp add:  of_int_power)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2628
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2629
lemma uint_2p: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2630
  "(0::'a::len word) < 2 ^ n \<Longrightarrow> uint (2 ^ n::'a::len word) = 2 ^ n"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2631
  apply (unfold word_arith_power_alt)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2632
  apply (case_tac "len_of TYPE ('a)")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2633
   apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2634
  apply (case_tac "nat")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2635
   apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2636
   apply (case_tac "n")
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2637
    apply clarsimp
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2638
   apply clarsimp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2639
  apply (drule word_gt_0 [THEN iffD1])
46124
3ee75fe01986 misc tuning;
wenzelm
parents: 46064
diff changeset
  2640
  apply (safe intro!: word_eqI bin_nth_lem)
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2641
     apply (auto simp add: test_bit_2p nth_2p_bin word_test_bit_def [symmetric])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2642
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2643
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2644
lemma word_of_int_2p: "(word_of_int (2 ^ n) :: 'a :: len word) = 2 ^ n" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2645
  apply (unfold word_arith_power_alt)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2646
  apply (case_tac "len_of TYPE ('a)")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2647
   apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2648
  apply (case_tac "nat")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2649
   apply (rule word_ubin.norm_eq_iff [THEN iffD1]) 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2650
   apply (rule box_equals) 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2651
     apply (rule_tac [2] bintr_ariths (1))+ 
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2652
   apply simp
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2653
  apply simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2654
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2655
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2656
lemma bang_is_le: "x !! m \<Longrightarrow> 2 ^ m <= (x :: 'a :: len word)" 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2657
  apply (rule xtr3) 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2658
  apply (rule_tac [2] y = "x" in le_word_or2)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2659
  apply (rule word_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2660
  apply (auto simp add: word_ao_nth nth_w2p word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2661
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2662
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2663
lemma word_clr_le: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2664
  fixes w :: "'a::len0 word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2665
  shows "w >= set_bit w n False"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2666
  apply (unfold word_set_bit_def word_le_def word_ubin.eq_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2667
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2668
  apply (rule order_trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2669
   apply (rule bintr_bin_clr_le)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2670
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2671
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2672
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2673
lemma word_set_ge: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2674
  fixes w :: "'a::len word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2675
  shows "w <= set_bit w n True"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2676
  apply (unfold word_set_bit_def word_le_def word_ubin.eq_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2677
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2678
  apply (rule order_trans [OF _ bintr_bin_set_ge])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2679
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2680
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2681
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2682
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2683
subsection {* Shifting, Rotating, and Splitting Words *}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2684
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2685
lemma shiftl1_wi [simp]: "shiftl1 (word_of_int w) = word_of_int (w BIT 0)"
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2686
  unfolding shiftl1_def
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2687
  apply (simp add: word_ubin.norm_eq_iff [symmetric] word_ubin.eq_norm)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2688
  apply (subst refl [THEN bintrunc_BIT_I, symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2689
  apply (subst bintrunc_bintrunc_min)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2690
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2691
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2692
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2693
lemma shiftl1_numeral [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2694
  "shiftl1 (numeral w) = numeral (Num.Bit0 w)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2695
  unfolding word_numeral_alt shiftl1_wi by simp
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2696
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2697
lemma shiftl1_neg_numeral [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2698
  "shiftl1 (neg_numeral w) = neg_numeral (Num.Bit0 w)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2699
  unfolding word_neg_numeral_alt shiftl1_wi by simp
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2700
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2701
lemma shiftl1_0 [simp] : "shiftl1 0 = 0"
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2702
  unfolding shiftl1_def by simp
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2703
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2704
lemma shiftl1_def_u: "shiftl1 w = word_of_int (uint w BIT 0)"
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2705
  by (simp only: shiftl1_def) (* FIXME: duplicate *)
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2706
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2707
lemma shiftl1_def_s: "shiftl1 w = word_of_int (sint w BIT 0)"
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2708
  unfolding shiftl1_def Bit_B0 wi_hom_syms by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2709
45995
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  2710
lemma shiftr1_0 [simp]: "shiftr1 0 = 0"
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  2711
  unfolding shiftr1_def by simp
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  2712
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  2713
lemma sshiftr1_0 [simp]: "sshiftr1 0 = 0"
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  2714
  unfolding sshiftr1_def by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2715
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2716
lemma sshiftr1_n1 [simp] : "sshiftr1 -1 = -1"
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2717
  unfolding sshiftr1_def by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2718
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2719
lemma shiftl_0 [simp] : "(0::'a::len0 word) << n = 0"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2720
  unfolding shiftl_def by (induct n) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2721
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2722
lemma shiftr_0 [simp] : "(0::'a::len0 word) >> n = 0"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2723
  unfolding shiftr_def by (induct n) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2724
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2725
lemma sshiftr_0 [simp] : "0 >>> n = 0"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2726
  unfolding sshiftr_def by (induct n) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2727
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2728
lemma sshiftr_n1 [simp] : "-1 >>> n = -1"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2729
  unfolding sshiftr_def by (induct n) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2730
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2731
lemma nth_shiftl1: "shiftl1 w !! n = (n < size w & n > 0 & w !! (n - 1))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2732
  apply (unfold shiftl1_def word_test_bit_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2733
  apply (simp add: nth_bintr word_ubin.eq_norm word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2734
  apply (cases n)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2735
   apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2736
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2737
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2738
lemma nth_shiftl' [rule_format]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2739
  "ALL n. ((w::'a::len0 word) << m) !! n = (n < size w & n >= m & w !! (n - m))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2740
  apply (unfold shiftl_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2741
  apply (induct "m")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2742
   apply (force elim!: test_bit_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2743
  apply (clarsimp simp add : nth_shiftl1 word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2744
  apply arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2745
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2746
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2747
lemmas nth_shiftl = nth_shiftl' [unfolded word_size] 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2748
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2749
lemma nth_shiftr1: "shiftr1 w !! n = w !! Suc n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2750
  apply (unfold shiftr1_def word_test_bit_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2751
  apply (simp add: nth_bintr word_ubin.eq_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2752
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2753
  apply (drule bin_nth.Suc [THEN iffD2, THEN bin_nth_uint_imp])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2754
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2755
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2756
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2757
lemma nth_shiftr: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2758
  "\<And>n. ((w::'a::len0 word) >> m) !! n = w !! (n + m)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2759
  apply (unfold shiftr_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2760
  apply (induct "m")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2761
   apply (auto simp add : nth_shiftr1)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2762
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2763
   
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2764
(* see paper page 10, (1), (2), shiftr1_def is of the form of (1),
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2765
  where f (ie bin_rest) takes normal arguments to normal results,
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2766
  thus we get (2) from (1) *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2767
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2768
lemma uint_shiftr1: "uint (shiftr1 w) = bin_rest (uint w)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2769
  apply (unfold shiftr1_def word_ubin.eq_norm bin_rest_trunc_i)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2770
  apply (subst bintr_uint [symmetric, OF order_refl])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2771
  apply (simp only : bintrunc_bintrunc_l)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2772
  apply simp 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2773
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2774
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2775
lemma nth_sshiftr1: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2776
  "sshiftr1 w !! n = (if n = size w - 1 then w !! n else w !! Suc n)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2777
  apply (unfold sshiftr1_def word_test_bit_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2778
  apply (simp add: nth_bintr word_ubin.eq_norm
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2779
                   bin_nth.Suc [symmetric] word_size 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2780
             del: bin_nth.simps)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2781
  apply (simp add: nth_bintr uint_sint del : bin_nth.simps)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2782
  apply (auto simp add: bin_nth_sint)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2783
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2784
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2785
lemma nth_sshiftr [rule_format] : 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2786
  "ALL n. sshiftr w m !! n = (n < size w & 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2787
    (if n + m >= size w then w !! (size w - 1) else w !! (n + m)))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2788
  apply (unfold sshiftr_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2789
  apply (induct_tac "m")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2790
   apply (simp add: test_bit_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2791
  apply (clarsimp simp add: nth_sshiftr1 word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2792
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2793
       apply arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2794
      apply arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2795
     apply (erule thin_rl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2796
     apply (case_tac n)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2797
      apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2798
      apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2799
     apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2800
    apply (erule thin_rl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2801
    apply (case_tac n)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2802
     apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2803
     apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2804
    apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2805
   apply arith+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2806
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2807
    
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2808
lemma shiftr1_div_2: "uint (shiftr1 w) = uint w div 2"
45529
0e1037d4e049 remove redundant lemmas bin_last_mod and bin_rest_div, use bin_last_def and bin_rest_def instead
huffman
parents: 45528
diff changeset
  2809
  apply (unfold shiftr1_def bin_rest_def)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2810
  apply (rule word_uint.Abs_inverse)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2811
  apply (simp add: uints_num pos_imp_zdiv_nonneg_iff)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2812
  apply (rule xtr7)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2813
   prefer 2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2814
   apply (rule zdiv_le_dividend)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2815
    apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2816
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2817
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2818
lemma sshiftr1_div_2: "sint (sshiftr1 w) = sint w div 2"
45529
0e1037d4e049 remove redundant lemmas bin_last_mod and bin_rest_div, use bin_last_def and bin_rest_def instead
huffman
parents: 45528
diff changeset
  2819
  apply (unfold sshiftr1_def bin_rest_def [symmetric])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2820
  apply (simp add: word_sbin.eq_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2821
  apply (rule trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2822
   defer
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2823
   apply (subst word_sbin.norm_Rep [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2824
   apply (rule refl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2825
  apply (subst word_sbin.norm_Rep [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2826
  apply (unfold One_nat_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2827
  apply (rule sbintrunc_rest)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2828
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2829
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2830
lemma shiftr_div_2n: "uint (shiftr w n) = uint w div 2 ^ n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2831
  apply (unfold shiftr_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2832
  apply (induct "n")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2833
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2834
  apply (simp add: shiftr1_div_2 mult_commute
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2835
                   zdiv_zmult2_eq [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2836
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2837
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2838
lemma sshiftr_div_2n: "sint (sshiftr w n) = sint w div 2 ^ n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2839
  apply (unfold sshiftr_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2840
  apply (induct "n")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2841
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2842
  apply (simp add: sshiftr1_div_2 mult_commute
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2843
                   zdiv_zmult2_eq [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2844
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2845
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2846
subsubsection "shift functions in terms of lists of bools"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2847
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2848
lemmas bshiftr1_numeral [simp] = 
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  2849
  bshiftr1_def [where w="numeral w", unfolded to_bl_numeral] for w
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2850
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2851
lemma bshiftr1_bl: "to_bl (bshiftr1 b w) = b # butlast (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2852
  unfolding bshiftr1_def by (rule word_bl.Abs_inverse) simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2853
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2854
lemma shiftl1_of_bl: "shiftl1 (of_bl bl) = of_bl (bl @ [False])"
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  2855
  by (simp add: of_bl_def bl_to_bin_append)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2856
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2857
lemma shiftl1_bl: "shiftl1 (w::'a::len0 word) = of_bl (to_bl w @ [False])"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2858
proof -
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2859
  have "shiftl1 w = shiftl1 (of_bl (to_bl w))" by simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2860
  also have "\<dots> = of_bl (to_bl w @ [False])" by (rule shiftl1_of_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2861
  finally show ?thesis .
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2862
qed
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2863
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2864
lemma bl_shiftl1:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2865
  "to_bl (shiftl1 (w :: 'a :: len word)) = tl (to_bl w) @ [False]"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2866
  apply (simp add: shiftl1_bl word_rep_drop drop_Suc drop_Cons')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2867
  apply (fast intro!: Suc_leI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2868
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2869
45807
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2870
(* Generalized version of bl_shiftl1. Maybe this one should replace it? *)
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2871
lemma bl_shiftl1':
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2872
  "to_bl (shiftl1 w) = tl (to_bl w @ [False])"
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2873
  unfolding shiftl1_bl
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2874
  by (simp add: word_rep_drop drop_Suc del: drop_append)
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2875
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2876
lemma shiftr1_bl: "shiftr1 w = of_bl (butlast (to_bl w))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2877
  apply (unfold shiftr1_def uint_bl of_bl_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2878
  apply (simp add: butlast_rest_bin word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2879
  apply (simp add: bin_rest_trunc [symmetric, unfolded One_nat_def])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2880
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2881
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2882
lemma bl_shiftr1: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2883
  "to_bl (shiftr1 (w :: 'a :: len word)) = False # butlast (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2884
  unfolding shiftr1_bl
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2885
  by (simp add : word_rep_drop len_gt_0 [THEN Suc_leI])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2886
45807
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2887
(* Generalized version of bl_shiftr1. Maybe this one should replace it? *)
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2888
lemma bl_shiftr1':
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2889
  "to_bl (shiftr1 w) = butlast (False # to_bl w)"
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2890
  apply (rule word_bl.Abs_inverse')
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2891
  apply (simp del: butlast.simps)
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2892
  apply (simp add: shiftr1_bl of_bl_def)
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2893
  done
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2894
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2895
lemma shiftl1_rev: 
45807
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2896
  "shiftl1 w = word_reverse (shiftr1 (word_reverse w))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2897
  apply (unfold word_reverse_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2898
  apply (rule word_bl.Rep_inverse' [symmetric])
45807
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2899
  apply (simp add: bl_shiftl1' bl_shiftr1' word_bl.Abs_inverse)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2900
  apply (cases "to_bl w")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2901
   apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2902
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2903
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2904
lemma shiftl_rev: 
45807
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2905
  "shiftl w n = word_reverse (shiftr (word_reverse w) n)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2906
  apply (unfold shiftl_def shiftr_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2907
  apply (induct "n")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2908
   apply (auto simp add : shiftl1_rev)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2909
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2910
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  2911
lemma rev_shiftl: "word_reverse w << n = word_reverse (w >> n)"
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  2912
  by (simp add: shiftl_rev)
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  2913
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  2914
lemma shiftr_rev: "w >> n = word_reverse (word_reverse w << n)"
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  2915
  by (simp add: rev_shiftl)
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  2916
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  2917
lemma rev_shiftr: "word_reverse w >> n = word_reverse (w << n)"
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  2918
  by (simp add: shiftr_rev)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2919
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2920
lemma bl_sshiftr1:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2921
  "to_bl (sshiftr1 (w :: 'a :: len word)) = hd (to_bl w) # butlast (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2922
  apply (unfold sshiftr1_def uint_bl word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2923
  apply (simp add: butlast_rest_bin word_ubin.eq_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2924
  apply (simp add: sint_uint)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2925
  apply (rule nth_equalityI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2926
   apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2927
  apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2928
  apply (case_tac i)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2929
   apply (simp_all add: hd_conv_nth length_0_conv [symmetric]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2930
                        nth_bin_to_bl bin_nth.Suc [symmetric] 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2931
                        nth_sbintr 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2932
                   del: bin_nth.Suc)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2933
   apply force
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2934
  apply (rule impI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2935
  apply (rule_tac f = "bin_nth (uint w)" in arg_cong)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2936
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2937
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2938
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2939
lemma drop_shiftr: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2940
  "drop n (to_bl ((w :: 'a :: len word) >> n)) = take (size w - n) (to_bl w)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2941
  apply (unfold shiftr_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2942
  apply (induct n)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2943
   prefer 2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2944
   apply (simp add: drop_Suc bl_shiftr1 butlast_drop [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2945
   apply (rule butlast_take [THEN trans])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2946
  apply (auto simp: word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2947
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2948
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2949
lemma drop_sshiftr: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2950
  "drop n (to_bl ((w :: 'a :: len word) >>> n)) = take (size w - n) (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2951
  apply (unfold sshiftr_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2952
  apply (induct n)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2953
   prefer 2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2954
   apply (simp add: drop_Suc bl_sshiftr1 butlast_drop [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2955
   apply (rule butlast_take [THEN trans])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2956
  apply (auto simp: word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2957
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2958
45807
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2959
lemma take_shiftr:
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2960
  "n \<le> size w \<Longrightarrow> take n (to_bl (w >> n)) = replicate n False"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2961
  apply (unfold shiftr_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2962
  apply (induct n)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2963
   prefer 2
45807
ff10ec0d62ea generalize some lemmas
huffman
parents: 45805
diff changeset
  2964
   apply (simp add: bl_shiftr1' length_0_conv [symmetric] word_size)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2965
   apply (rule take_butlast [THEN trans])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2966
  apply (auto simp: word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2967
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2968
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2969
lemma take_sshiftr' [rule_format] :
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2970
  "n <= size (w :: 'a :: len word) --> hd (to_bl (w >>> n)) = hd (to_bl w) & 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2971
    take n (to_bl (w >>> n)) = replicate n (hd (to_bl w))" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2972
  apply (unfold sshiftr_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2973
  apply (induct n)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2974
   prefer 2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2975
   apply (simp add: bl_sshiftr1)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2976
   apply (rule impI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2977
   apply (rule take_butlast [THEN trans])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2978
  apply (auto simp: word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2979
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2980
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  2981
lemmas hd_sshiftr = take_sshiftr' [THEN conjunct1]
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  2982
lemmas take_sshiftr = take_sshiftr' [THEN conjunct2]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2983
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  2984
lemma atd_lem: "take n xs = t \<Longrightarrow> drop n xs = d \<Longrightarrow> xs = t @ d"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2985
  by (auto intro: append_take_drop_id [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2986
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2987
lemmas bl_shiftr = atd_lem [OF take_shiftr drop_shiftr]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2988
lemmas bl_sshiftr = atd_lem [OF take_sshiftr drop_sshiftr]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2989
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2990
lemma shiftl_of_bl: "of_bl bl << n = of_bl (bl @ replicate n False)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2991
  unfolding shiftl_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2992
  by (induct n) (auto simp: shiftl1_of_bl replicate_app_Cons_same)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2993
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2994
lemma shiftl_bl:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2995
  "(w::'a::len0 word) << (n::nat) = of_bl (to_bl w @ replicate n False)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2996
proof -
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2997
  have "w << n = of_bl (to_bl w) << n" by simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2998
  also have "\<dots> = of_bl (to_bl w @ replicate n False)" by (rule shiftl_of_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  2999
  finally show ?thesis .
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3000
qed
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3001
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3002
lemmas shiftl_numeral [simp] = shiftl_def [where w="numeral w"] for w
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3003
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3004
lemma bl_shiftl:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3005
  "to_bl (w << n) = drop n (to_bl w) @ replicate (min (size w) n) False"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3006
  by (simp add: shiftl_bl word_rep_drop word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3007
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3008
lemma shiftl_zero_size: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3009
  fixes x :: "'a::len0 word"
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3010
  shows "size x <= n \<Longrightarrow> x << n = 0"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3011
  apply (unfold word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3012
  apply (rule word_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3013
  apply (clarsimp simp add: shiftl_bl word_size test_bit_of_bl nth_append)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3014
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3015
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3016
(* note - the following results use 'a :: len word < number_ring *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3017
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3018
lemma shiftl1_2t: "shiftl1 (w :: 'a :: len word) = 2 * w"
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  3019
  by (simp add: shiftl1_def Bit_def wi_hom_mult [symmetric])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3020
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3021
lemma shiftl1_p: "shiftl1 (w :: 'a :: len word) = w + w"
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  3022
  by (simp add: shiftl1_2t)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3023
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3024
lemma shiftl_t2n: "shiftl (w :: 'a :: len word) n = 2 ^ n * w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3025
  unfolding shiftl_def 
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41413
diff changeset
  3026
  by (induct n) (auto simp: shiftl1_2t)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3027
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3028
lemma shiftr1_bintr [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3029
  "(shiftr1 (numeral w) :: 'a :: len0 word) =
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3030
    word_of_int (bin_rest (bintrunc (len_of TYPE ('a)) (numeral w)))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3031
  unfolding shiftr1_def word_numeral_alt
46962
5bdcdb28be83 make more word theorems respect int/bin distinction
huffman
parents: 46656
diff changeset
  3032
  by (simp add: word_ubin.eq_norm)
5bdcdb28be83 make more word theorems respect int/bin distinction
huffman
parents: 46656
diff changeset
  3033
5bdcdb28be83 make more word theorems respect int/bin distinction
huffman
parents: 46656
diff changeset
  3034
lemma sshiftr1_sbintr [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3035
  "(sshiftr1 (numeral w) :: 'a :: len word) =
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3036
    word_of_int (bin_rest (sbintrunc (len_of TYPE ('a) - 1) (numeral w)))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3037
  unfolding sshiftr1_def word_numeral_alt
46962
5bdcdb28be83 make more word theorems respect int/bin distinction
huffman
parents: 46656
diff changeset
  3038
  by (simp add: word_sbin.eq_norm)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3039
46057
8664713db181 remove unnecessary intermediate lemmas
huffman
parents: 46026
diff changeset
  3040
lemma shiftr_no [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3041
  (* FIXME: neg_numeral *)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3042
  "(numeral w::'a::len0 word) >> n = word_of_int
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3043
    ((bin_rest ^^ n) (bintrunc (len_of TYPE('a)) (numeral w)))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3044
  apply (rule word_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3045
  apply (auto simp: nth_shiftr nth_rest_power_bin nth_bintr word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3046
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3047
46057
8664713db181 remove unnecessary intermediate lemmas
huffman
parents: 46026
diff changeset
  3048
lemma sshiftr_no [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3049
  (* FIXME: neg_numeral *)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3050
  "(numeral w::'a::len word) >>> n = word_of_int
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3051
    ((bin_rest ^^ n) (sbintrunc (len_of TYPE('a) - 1) (numeral w)))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3052
  apply (rule word_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3053
  apply (auto simp: nth_sshiftr nth_rest_power_bin nth_sbintr word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3054
   apply (subgoal_tac "na + n = len_of TYPE('a) - Suc 0", simp, simp)+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3055
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3056
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3057
lemma shiftr1_bl_of:
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3058
  "length bl \<le> len_of TYPE('a) \<Longrightarrow>
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3059
    shiftr1 (of_bl bl::'a::len0 word) = of_bl (butlast bl)"
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3060
  by (clarsimp simp: shiftr1_def of_bl_def butlast_rest_bl2bin 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3061
                     word_ubin.eq_norm trunc_bl2bin)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3062
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3063
lemma shiftr_bl_of:
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3064
  "length bl \<le> len_of TYPE('a) \<Longrightarrow>
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3065
    (of_bl bl::'a::len0 word) >> n = of_bl (take (length bl - n) bl)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3066
  apply (unfold shiftr_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3067
  apply (induct n)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3068
   apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3069
  apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3070
  apply (subst shiftr1_bl_of)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3071
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3072
  apply (simp add: butlast_take)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3073
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3074
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3075
lemma shiftr_bl:
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3076
  "(x::'a::len0 word) >> n \<equiv> of_bl (take (len_of TYPE('a) - n) (to_bl x))"
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3077
  using shiftr_bl_of [where 'a='a, of "to_bl x"] by simp
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3078
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3079
lemma msb_shift:
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3080
  "msb (w::'a::len word) \<longleftrightarrow> (w >> (len_of TYPE('a) - 1)) \<noteq> 0"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3081
  apply (unfold shiftr_bl word_msb_alt)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3082
  apply (simp add: word_size Suc_le_eq take_Suc)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3083
  apply (cases "hd (to_bl w)")
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  3084
   apply (auto simp: word_1_bl
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3085
                     of_bl_rep_False [where n=1 and bs="[]", simplified])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3086
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3087
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3088
lemma align_lem_or [rule_format] :
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3089
  "ALL x m. length x = n + m --> length y = n + m --> 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3090
    drop m x = replicate n False --> take m y = replicate m False --> 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3091
    map2 op | x y = take m x @ drop m y"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3092
  apply (induct_tac y)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3093
   apply force
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3094
  apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3095
  apply (case_tac x, force)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3096
  apply (case_tac m, auto)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3097
  apply (drule sym)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3098
  apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3099
  apply (induct_tac list, auto)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3100
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3101
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3102
lemma align_lem_and [rule_format] :
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3103
  "ALL x m. length x = n + m --> length y = n + m --> 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3104
    drop m x = replicate n False --> take m y = replicate m False --> 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3105
    map2 op & x y = replicate (n + m) False"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3106
  apply (induct_tac y)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3107
   apply force
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3108
  apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3109
  apply (case_tac x, force)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3110
  apply (case_tac m, auto)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3111
  apply (drule sym)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3112
  apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3113
  apply (induct_tac list, auto)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3114
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3115
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3116
lemma aligned_bl_add_size [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3117
  "size x - n = m \<Longrightarrow> n <= size x \<Longrightarrow> drop m (to_bl x) = replicate n False \<Longrightarrow>
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3118
    take m (to_bl y) = replicate m False \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3119
    to_bl (x + y) = take m (to_bl x) @ drop m (to_bl y)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3120
  apply (subgoal_tac "x AND y = 0")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3121
   prefer 2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3122
   apply (rule word_bl.Rep_eqD)
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  3123
   apply (simp add: bl_word_and)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3124
   apply (rule align_lem_and [THEN trans])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3125
       apply (simp_all add: word_size)[5]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3126
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3127
  apply (subst word_plus_and_or [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3128
  apply (simp add : bl_word_or)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3129
  apply (rule align_lem_or)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3130
     apply (simp_all add: word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3131
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3132
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3133
subsubsection "Mask"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3134
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3135
lemma nth_mask [OF refl, simp]:
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3136
  "m = mask n \<Longrightarrow> test_bit m i = (i < n & i < size m)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3137
  apply (unfold mask_def test_bit_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3138
  apply (simp only: word_1_bl [symmetric] shiftl_of_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3139
  apply (clarsimp simp add: word_size)
46645
573aff6b9b0a adapt lemma mask_lem to respect int/bin distinction
huffman
parents: 46618
diff changeset
  3140
  apply (simp only: of_bl_def mask_lem word_of_int_hom_syms add_diff_cancel2)
573aff6b9b0a adapt lemma mask_lem to respect int/bin distinction
huffman
parents: 46618
diff changeset
  3141
  apply (fold of_bl_def)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3142
  apply (simp add: word_1_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3143
  apply (rule test_bit_of_bl [THEN trans, unfolded test_bit_bl word_size])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3144
  apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3145
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3146
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3147
lemma mask_bl: "mask n = of_bl (replicate n True)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3148
  by (auto simp add : test_bit_of_bl word_size intro: word_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3149
46023
fad87bb608fc restate some lemmas to respect int/bin distinction
huffman
parents: 46022
diff changeset
  3150
lemma mask_bin: "mask n = word_of_int (bintrunc n -1)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3151
  by (auto simp add: nth_bintr word_size intro: word_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3152
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  3153
lemma and_mask_bintr: "w AND mask n = word_of_int (bintrunc n (uint w))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3154
  apply (rule word_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3155
  apply (simp add: nth_bintr word_size word_ops_nth_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3156
  apply (auto simp add: test_bit_bin)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3157
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3158
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3159
lemma and_mask_wi: "word_of_int i AND mask n = word_of_int (bintrunc n i)"
46023
fad87bb608fc restate some lemmas to respect int/bin distinction
huffman
parents: 46022
diff changeset
  3160
  by (auto simp add: nth_bintr word_size word_ops_nth_size word_eq_iff)
fad87bb608fc restate some lemmas to respect int/bin distinction
huffman
parents: 46022
diff changeset
  3161
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3162
lemma and_mask_no: "numeral i AND mask n = word_of_int (bintrunc n (numeral i))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3163
  unfolding word_numeral_alt by (rule and_mask_wi)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3164
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3165
lemma bl_and_mask':
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3166
  "to_bl (w AND mask n :: 'a :: len word) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3167
    replicate (len_of TYPE('a) - n) False @ 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3168
    drop (len_of TYPE('a) - n) (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3169
  apply (rule nth_equalityI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3170
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3171
  apply (clarsimp simp add: to_bl_nth word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3172
  apply (simp add: word_size word_ops_nth_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3173
  apply (auto simp add: word_size test_bit_bl nth_append nth_rev)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3174
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3175
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3176
lemma and_mask_mod_2p: "w AND mask n = word_of_int (uint w mod 2 ^ n)"
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  3177
  by (simp only: and_mask_bintr bintrunc_mod2p)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3178
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3179
lemma and_mask_lt_2p: "uint (w AND mask n) < 2 ^ n"
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  3180
  apply (simp add: and_mask_bintr word_ubin.eq_norm)
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  3181
  apply (simp add: bintrunc_mod2p)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3182
  apply (rule xtr8)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3183
   prefer 2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3184
   apply (rule pos_mod_bound)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3185
  apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3186
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3187
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3188
lemma eq_mod_iff: "0 < (n::int) \<Longrightarrow> b = b mod n \<longleftrightarrow> 0 \<le> b \<and> b < n"
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3189
  by (simp add: int_mod_lem eq_sym_conv)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3190
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3191
lemma mask_eq_iff: "(w AND mask n) = w <-> uint w < 2 ^ n"
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3192
  apply (simp add: and_mask_bintr)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3193
  apply (simp add: word_ubin.inverse_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3194
  apply (simp add: eq_mod_iff bintrunc_mod2p min_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3195
  apply (fast intro!: lt2p_lem)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3196
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3197
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3198
lemma and_mask_dvd: "2 ^ n dvd uint w = (w AND mask n = 0)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3199
  apply (simp add: dvd_eq_mod_eq_0 and_mask_mod_2p)
45995
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  3200
  apply (simp add: word_uint.norm_eq_iff [symmetric] word_of_int_homs
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  3201
    del: word_of_int_0)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3202
  apply (subst word_uint.norm_Rep [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3203
  apply (simp only: bintrunc_bintrunc_min bintrunc_mod2p [symmetric] min_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3204
  apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3205
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3206
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3207
lemma and_mask_dvd_nat: "2 ^ n dvd unat w = (w AND mask n = 0)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3208
  apply (unfold unat_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3209
  apply (rule trans [OF _ and_mask_dvd])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3210
  apply (unfold dvd_def) 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3211
  apply auto 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3212
  apply (drule uint_ge_0 [THEN nat_int.Abs_inverse' [simplified], symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3213
  apply (simp add : int_mult int_power)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3214
  apply (simp add : nat_mult_distrib nat_power_eq)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3215
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3216
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3217
lemma word_2p_lem: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3218
  "n < size w \<Longrightarrow> w < 2 ^ n = (uint (w :: 'a :: len word) < 2 ^ n)"
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3219
  apply (unfold word_size word_less_alt word_numeral_alt)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3220
  apply (clarsimp simp add: word_of_int_power_hom word_uint.eq_norm 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3221
                            int_mod_eq'
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3222
                  simp del: word_of_int_numeral)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3223
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3224
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3225
lemma less_mask_eq: "x < 2 ^ n \<Longrightarrow> x AND mask n = (x :: 'a :: len word)"
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3226
  apply (unfold word_less_alt word_numeral_alt)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3227
  apply (clarsimp simp add: and_mask_mod_2p word_of_int_power_hom 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3228
                            word_uint.eq_norm
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3229
                  simp del: word_of_int_numeral)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3230
  apply (drule xtr8 [rotated])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3231
  apply (rule int_mod_le)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3232
  apply (auto simp add : mod_pos_pos_trivial)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3233
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3234
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  3235
lemmas mask_eq_iff_w2p = trans [OF mask_eq_iff word_2p_lem [symmetric]]
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  3236
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  3237
lemmas and_mask_less' = iffD2 [OF word_2p_lem and_mask_lt_2p, simplified word_size]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3238
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3239
lemma and_mask_less_size: "n < size x \<Longrightarrow> x AND mask n < 2^n"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3240
  unfolding word_size by (erule and_mask_less')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3241
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3242
lemma word_mod_2p_is_mask [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3243
  "c = 2 ^ n \<Longrightarrow> c > 0 \<Longrightarrow> x mod c = (x :: 'a :: len word) AND mask n" 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3244
  by (clarsimp simp add: word_mod_def uint_2p and_mask_mod_2p) 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3245
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3246
lemma mask_eqs:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3247
  "(a AND mask n) + b AND mask n = a + b AND mask n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3248
  "a + (b AND mask n) AND mask n = a + b AND mask n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3249
  "(a AND mask n) - b AND mask n = a - b AND mask n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3250
  "a - (b AND mask n) AND mask n = a - b AND mask n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3251
  "a * (b AND mask n) AND mask n = a * b AND mask n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3252
  "(b AND mask n) * a AND mask n = b * a AND mask n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3253
  "(a AND mask n) + (b AND mask n) AND mask n = a + b AND mask n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3254
  "(a AND mask n) - (b AND mask n) AND mask n = a - b AND mask n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3255
  "(a AND mask n) * (b AND mask n) AND mask n = a * b AND mask n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3256
  "- (a AND mask n) AND mask n = - a AND mask n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3257
  "word_succ (a AND mask n) AND mask n = word_succ a AND mask n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3258
  "word_pred (a AND mask n) AND mask n = word_pred a AND mask n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3259
  using word_of_int_Ex [where x=a] word_of_int_Ex [where x=b]
46009
5cb7ef5bfef2 remove duplicate lemma lists
huffman
parents: 46001
diff changeset
  3260
  by (auto simp: and_mask_wi bintr_ariths bintr_arith1s word_of_int_homs)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3261
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3262
lemma mask_power_eq:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3263
  "(x AND mask n) ^ k AND mask n = x ^ k AND mask n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3264
  using word_of_int_Ex [where x=x]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3265
  by (clarsimp simp: and_mask_wi word_of_int_power_hom bintr_ariths)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3266
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3267
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3268
subsubsection "Revcast"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3269
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3270
lemmas revcast_def' = revcast_def [simplified]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3271
lemmas revcast_def'' = revcast_def' [simplified word_size]
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3272
lemmas revcast_no_def [simp] = revcast_def' [where w="numeral w", unfolded word_size] for w
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3273
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3274
lemma to_bl_revcast: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3275
  "to_bl (revcast w :: 'a :: len0 word) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3276
   takefill False (len_of TYPE ('a)) (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3277
  apply (unfold revcast_def' word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3278
  apply (rule word_bl.Abs_inverse)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3279
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3280
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3281
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3282
lemma revcast_rev_ucast [OF refl refl refl]: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3283
  "cs = [rc, uc] \<Longrightarrow> rc = revcast (word_reverse w) \<Longrightarrow> uc = ucast w \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3284
    rc = word_reverse uc"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3285
  apply (unfold ucast_def revcast_def' Let_def word_reverse_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3286
  apply (clarsimp simp add : to_bl_of_bin takefill_bintrunc)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3287
  apply (simp add : word_bl.Abs_inverse word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3288
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3289
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3290
lemma revcast_ucast: "revcast w = word_reverse (ucast (word_reverse w))"
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3291
  using revcast_rev_ucast [of "word_reverse w"] by simp
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3292
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3293
lemma ucast_revcast: "ucast w = word_reverse (revcast (word_reverse w))"
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3294
  by (fact revcast_rev_ucast [THEN word_rev_gal'])
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3295
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3296
lemma ucast_rev_revcast: "ucast (word_reverse w) = word_reverse (revcast w)"
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3297
  by (fact revcast_ucast [THEN word_rev_gal'])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3298
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3299
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3300
-- "linking revcast and cast via shift"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3301
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3302
lemmas wsst_TYs = source_size target_size word_size
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3303
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3304
lemma revcast_down_uu [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3305
  "rc = revcast \<Longrightarrow> source_size rc = target_size rc + n \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3306
    rc (w :: 'a :: len word) = ucast (w >> n)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3307
  apply (simp add: revcast_def')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3308
  apply (rule word_bl.Rep_inverse')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3309
  apply (rule trans, rule ucast_down_drop)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3310
   prefer 2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3311
   apply (rule trans, rule drop_shiftr)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3312
   apply (auto simp: takefill_alt wsst_TYs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3313
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3314
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3315
lemma revcast_down_us [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3316
  "rc = revcast \<Longrightarrow> source_size rc = target_size rc + n \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3317
    rc (w :: 'a :: len word) = ucast (w >>> n)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3318
  apply (simp add: revcast_def')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3319
  apply (rule word_bl.Rep_inverse')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3320
  apply (rule trans, rule ucast_down_drop)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3321
   prefer 2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3322
   apply (rule trans, rule drop_sshiftr)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3323
   apply (auto simp: takefill_alt wsst_TYs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3324
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3325
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3326
lemma revcast_down_su [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3327
  "rc = revcast \<Longrightarrow> source_size rc = target_size rc + n \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3328
    rc (w :: 'a :: len word) = scast (w >> n)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3329
  apply (simp add: revcast_def')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3330
  apply (rule word_bl.Rep_inverse')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3331
  apply (rule trans, rule scast_down_drop)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3332
   prefer 2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3333
   apply (rule trans, rule drop_shiftr)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3334
   apply (auto simp: takefill_alt wsst_TYs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3335
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3336
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3337
lemma revcast_down_ss [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3338
  "rc = revcast \<Longrightarrow> source_size rc = target_size rc + n \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3339
    rc (w :: 'a :: len word) = scast (w >>> n)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3340
  apply (simp add: revcast_def')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3341
  apply (rule word_bl.Rep_inverse')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3342
  apply (rule trans, rule scast_down_drop)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3343
   prefer 2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3344
   apply (rule trans, rule drop_sshiftr)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3345
   apply (auto simp: takefill_alt wsst_TYs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3346
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3347
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3348
(* FIXME: should this also be [OF refl] ? *)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3349
lemma cast_down_rev: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3350
  "uc = ucast \<Longrightarrow> source_size uc = target_size uc + n \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3351
    uc w = revcast ((w :: 'a :: len word) << n)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3352
  apply (unfold shiftl_rev)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3353
  apply clarify
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3354
  apply (simp add: revcast_rev_ucast)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3355
  apply (rule word_rev_gal')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3356
  apply (rule trans [OF _ revcast_rev_ucast])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3357
  apply (rule revcast_down_uu [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3358
  apply (auto simp add: wsst_TYs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3359
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3360
45811
f506015ca2dc replace many uses of 'lemmas' with 'lemma';
huffman
parents: 45810
diff changeset
  3361
lemma revcast_up [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3362
  "rc = revcast \<Longrightarrow> source_size rc + n = target_size rc \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3363
    rc w = (ucast w :: 'a :: len word) << n" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3364
  apply (simp add: revcast_def')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3365
  apply (rule word_bl.Rep_inverse')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3366
  apply (simp add: takefill_alt)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3367
  apply (rule bl_shiftl [THEN trans])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3368
  apply (subst ucast_up_app)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3369
  apply (auto simp add: wsst_TYs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3370
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3371
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3372
lemmas rc1 = revcast_up [THEN 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3373
  revcast_rev_ucast [symmetric, THEN trans, THEN word_rev_gal, symmetric]]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3374
lemmas rc2 = revcast_down_uu [THEN 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3375
  revcast_rev_ucast [symmetric, THEN trans, THEN word_rev_gal, symmetric]]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3376
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3377
lemmas ucast_up =
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3378
 rc1 [simplified rev_shiftr [symmetric] revcast_ucast [symmetric]]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3379
lemmas ucast_down = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3380
  rc2 [simplified rev_shiftr revcast_ucast [symmetric]]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3381
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3382
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3383
subsubsection "Slices"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3384
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3385
lemma slice1_no_bin [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3386
  "slice1 n (numeral w :: 'b word) = of_bl (takefill False n (bin_to_bl (len_of TYPE('b :: len0)) (numeral w)))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3387
  by (simp add: slice1_def) (* TODO: neg_numeral *)
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3388
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3389
lemma slice_no_bin [simp]:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3390
  "slice n (numeral w :: 'b word) = of_bl (takefill False (len_of TYPE('b :: len0) - n)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3391
    (bin_to_bl (len_of TYPE('b :: len0)) (numeral w)))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3392
  by (simp add: slice_def word_size) (* TODO: neg_numeral *)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3393
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3394
lemma slice1_0 [simp] : "slice1 n 0 = 0"
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  3395
  unfolding slice1_def by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3396
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3397
lemma slice_0 [simp] : "slice n 0 = 0"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3398
  unfolding slice_def by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3399
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3400
lemma slice_take': "slice n w = of_bl (take (size w - n) (to_bl w))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3401
  unfolding slice_def' slice1_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3402
  by (simp add : takefill_alt word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3403
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3404
lemmas slice_take = slice_take' [unfolded word_size]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3405
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3406
-- "shiftr to a word of the same size is just slice, 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3407
    slice is just shiftr then ucast"
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  3408
lemmas shiftr_slice = trans [OF shiftr_bl [THEN meta_eq_to_obj_eq] slice_take [symmetric]]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3409
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3410
lemma slice_shiftr: "slice n w = ucast (w >> n)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3411
  apply (unfold slice_take shiftr_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3412
  apply (rule ucast_of_bl_up [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3413
  apply (simp add: word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3414
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3415
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3416
lemma nth_slice: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3417
  "(slice n w :: 'a :: len0 word) !! m = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3418
   (w !! (m + n) & m < len_of TYPE ('a))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3419
  unfolding slice_shiftr 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3420
  by (simp add : nth_ucast nth_shiftr)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3421
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3422
lemma slice1_down_alt': 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3423
  "sl = slice1 n w \<Longrightarrow> fs = size sl \<Longrightarrow> fs + k = n \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3424
    to_bl sl = takefill False fs (drop k (to_bl w))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3425
  unfolding slice1_def word_size of_bl_def uint_bl
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3426
  by (clarsimp simp: word_ubin.eq_norm bl_bin_bl_rep_drop drop_takefill)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3427
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3428
lemma slice1_up_alt': 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3429
  "sl = slice1 n w \<Longrightarrow> fs = size sl \<Longrightarrow> fs = n + k \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3430
    to_bl sl = takefill False fs (replicate k False @ (to_bl w))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3431
  apply (unfold slice1_def word_size of_bl_def uint_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3432
  apply (clarsimp simp: word_ubin.eq_norm bl_bin_bl_rep_drop 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3433
                        takefill_append [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3434
  apply (rule_tac f = "%k. takefill False (len_of TYPE('a))
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3435
    (replicate k False @ bin_to_bl (len_of TYPE('b)) (uint w))" in arg_cong)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3436
  apply arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3437
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3438
    
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3439
lemmas sd1 = slice1_down_alt' [OF refl refl, unfolded word_size]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3440
lemmas su1 = slice1_up_alt' [OF refl refl, unfolded word_size]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3441
lemmas slice1_down_alt = le_add_diff_inverse [THEN sd1]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3442
lemmas slice1_up_alts = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3443
  le_add_diff_inverse [symmetric, THEN su1] 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3444
  le_add_diff_inverse2 [symmetric, THEN su1]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3445
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3446
lemma ucast_slice1: "ucast w = slice1 (size w) w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3447
  unfolding slice1_def ucast_bl
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3448
  by (simp add : takefill_same' word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3449
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3450
lemma ucast_slice: "ucast w = slice 0 w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3451
  unfolding slice_def by (simp add : ucast_slice1)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3452
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3453
lemma slice_id: "slice 0 t = t"
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3454
  by (simp only: ucast_slice [symmetric] ucast_id)
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3455
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3456
lemma revcast_slice1 [OF refl]: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3457
  "rc = revcast w \<Longrightarrow> slice1 (size rc) w = rc"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3458
  unfolding slice1_def revcast_def' by (simp add : word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3459
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3460
lemma slice1_tf_tf': 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3461
  "to_bl (slice1 n w :: 'a :: len0 word) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3462
   rev (takefill False (len_of TYPE('a)) (rev (takefill False n (to_bl w))))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3463
  unfolding slice1_def by (rule word_rev_tf)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3464
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  3465
lemmas slice1_tf_tf = slice1_tf_tf' [THEN word_bl.Rep_inverse', symmetric]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3466
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3467
lemma rev_slice1:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3468
  "n + k = len_of TYPE('a) + len_of TYPE('b) \<Longrightarrow> 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3469
  slice1 n (word_reverse w :: 'b :: len0 word) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3470
  word_reverse (slice1 k w :: 'a :: len0 word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3471
  apply (unfold word_reverse_def slice1_tf_tf)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3472
  apply (rule word_bl.Rep_inverse')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3473
  apply (rule rev_swap [THEN iffD1])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3474
  apply (rule trans [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3475
  apply (rule tf_rev)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3476
   apply (simp add: word_bl.Abs_inverse)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3477
  apply (simp add: word_bl.Abs_inverse)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3478
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3479
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3480
lemma rev_slice:
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3481
  "n + k + len_of TYPE('a::len0) = len_of TYPE('b::len0) \<Longrightarrow>
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3482
    slice n (word_reverse (w::'b word)) = word_reverse (slice k w::'a word)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3483
  apply (unfold slice_def word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3484
  apply (rule rev_slice1)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3485
  apply arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3486
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3487
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3488
lemmas sym_notr = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3489
  not_iff [THEN iffD2, THEN not_sym, THEN not_iff [THEN iffD1]]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3490
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3491
-- {* problem posed by TPHOLs referee:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3492
      criterion for overflow of addition of signed integers *}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3493
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3494
lemma sofl_test:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3495
  "(sint (x :: 'a :: len word) + sint y = sint (x + y)) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3496
     ((((x+y) XOR x) AND ((x+y) XOR y)) >> (size x - 1) = 0)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3497
  apply (unfold word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3498
  apply (cases "len_of TYPE('a)", simp) 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3499
  apply (subst msb_shift [THEN sym_notr])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3500
  apply (simp add: word_ops_msb)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3501
  apply (simp add: word_msb_sint)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3502
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3503
       apply simp_all
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3504
     apply (unfold sint_word_ariths)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3505
     apply (unfold word_sbin.set_iff_norm [symmetric] sints_num)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3506
     apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3507
        apply (insert sint_range' [where x=x])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3508
        apply (insert sint_range' [where x=y])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3509
        defer 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3510
        apply (simp (no_asm), arith)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3511
       apply (simp (no_asm), arith)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3512
      defer
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3513
      defer
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3514
      apply (simp (no_asm), arith)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3515
     apply (simp (no_asm), arith)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3516
    apply (rule notI [THEN notnotD],
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3517
           drule leI not_leE,
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3518
           drule sbintrunc_inc sbintrunc_dec,      
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3519
           simp)+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3520
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3521
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3522
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3523
subsection "Split and cat"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3524
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3525
lemmas word_split_bin' = word_split_def
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3526
lemmas word_cat_bin' = word_cat_def
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3527
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3528
lemma word_rsplit_no:
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3529
  "(word_rsplit (numeral bin :: 'b :: len0 word) :: 'a word list) = 
46962
5bdcdb28be83 make more word theorems respect int/bin distinction
huffman
parents: 46656
diff changeset
  3530
    map word_of_int (bin_rsplit (len_of TYPE('a :: len)) 
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3531
      (len_of TYPE('b), bintrunc (len_of TYPE('b)) (numeral bin)))"
46962
5bdcdb28be83 make more word theorems respect int/bin distinction
huffman
parents: 46656
diff changeset
  3532
  unfolding word_rsplit_def by (simp add: word_ubin.eq_norm)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3533
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3534
lemmas word_rsplit_no_cl [simp] = word_rsplit_no
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3535
  [unfolded bin_rsplitl_def bin_rsplit_l [symmetric]]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3536
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3537
lemma test_bit_cat:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3538
  "wc = word_cat a b \<Longrightarrow> wc !! n = (n < size wc & 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3539
    (if n < size b then b !! n else a !! (n - size b)))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3540
  apply (unfold word_cat_bin' test_bit_bin)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3541
  apply (auto simp add : word_ubin.eq_norm nth_bintr bin_nth_cat word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3542
  apply (erule bin_nth_uint_imp)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3543
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3544
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3545
lemma word_cat_bl: "word_cat a b = of_bl (to_bl a @ to_bl b)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3546
  apply (unfold of_bl_def to_bl_def word_cat_bin')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3547
  apply (simp add: bl_to_bin_app_cat)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3548
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3549
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3550
lemma of_bl_append:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3551
  "(of_bl (xs @ ys) :: 'a :: len word) = of_bl xs * 2^(length ys) + of_bl ys"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3552
  apply (unfold of_bl_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3553
  apply (simp add: bl_to_bin_app_cat bin_cat_num)
46009
5cb7ef5bfef2 remove duplicate lemma lists
huffman
parents: 46001
diff changeset
  3554
  apply (simp add: word_of_int_power_hom [symmetric] word_of_int_hom_syms)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3555
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3556
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3557
lemma of_bl_False [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3558
  "of_bl (False#xs) = of_bl xs"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3559
  by (rule word_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3560
     (auto simp add: test_bit_of_bl nth_append)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3561
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  3562
lemma of_bl_True [simp]:
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3563
  "(of_bl (True#xs)::'a::len word) = 2^length xs + of_bl xs"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3564
  by (subst of_bl_append [where xs="[True]", simplified])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3565
     (simp add: word_1_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3566
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3567
lemma of_bl_Cons:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3568
  "of_bl (x#xs) = of_bool x * 2^length xs + of_bl xs"
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  3569
  by (cases x) simp_all
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3570
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3571
lemma split_uint_lem: "bin_split n (uint (w :: 'a :: len0 word)) = (a, b) \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3572
  a = bintrunc (len_of TYPE('a) - n) a & b = bintrunc (len_of TYPE('a)) b"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3573
  apply (frule word_ubin.norm_Rep [THEN ssubst])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3574
  apply (drule bin_split_trunc1)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3575
  apply (drule sym [THEN trans])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3576
  apply assumption
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3577
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3578
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3579
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3580
lemma word_split_bl': 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3581
  "std = size c - size b \<Longrightarrow> (word_split c = (a, b)) \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3582
    (a = of_bl (take std (to_bl c)) & b = of_bl (drop std (to_bl c)))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3583
  apply (unfold word_split_bin')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3584
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3585
   defer
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3586
   apply (clarsimp split: prod.splits)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3587
   apply (drule word_ubin.norm_Rep [THEN ssubst])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3588
   apply (drule split_bintrunc)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3589
   apply (simp add : of_bl_def bl2bin_drop word_size
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3590
       word_ubin.norm_eq_iff [symmetric] min_def del : word_ubin.norm_Rep)    
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3591
  apply (clarsimp split: prod.splits)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3592
  apply (frule split_uint_lem [THEN conjunct1])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3593
  apply (unfold word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3594
  apply (cases "len_of TYPE('a) >= len_of TYPE('b)")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3595
   defer
46001
0b562d564d5f redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents: 46000
diff changeset
  3596
   apply simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3597
  apply (simp add : of_bl_def to_bl_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3598
  apply (subst bin_split_take1 [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3599
    prefer 2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3600
    apply assumption
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3601
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3602
  apply (erule thin_rl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3603
  apply (erule arg_cong [THEN trans])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3604
  apply (simp add : word_ubin.norm_eq_iff [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3605
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3606
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3607
lemma word_split_bl: "std = size c - size b \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3608
    (a = of_bl (take std (to_bl c)) & b = of_bl (drop std (to_bl c))) <-> 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3609
    word_split c = (a, b)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3610
  apply (rule iffI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3611
   defer
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3612
   apply (erule (1) word_split_bl')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3613
  apply (case_tac "word_split c")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3614
  apply (auto simp add : word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3615
  apply (frule word_split_bl' [rotated])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3616
  apply (auto simp add : word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3617
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3618
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3619
lemma word_split_bl_eq:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3620
   "(word_split (c::'a::len word) :: ('c :: len0 word * 'd :: len0 word)) =
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3621
      (of_bl (take (len_of TYPE('a::len) - len_of TYPE('d::len0)) (to_bl c)),
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3622
       of_bl (drop (len_of TYPE('a) - len_of TYPE('d)) (to_bl c)))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3623
  apply (rule word_split_bl [THEN iffD1])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3624
  apply (unfold word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3625
  apply (rule refl conjI)+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3626
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3627
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3628
-- "keep quantifiers for use in simplification"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3629
lemma test_bit_split':
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3630
  "word_split c = (a, b) --> (ALL n m. b !! n = (n < size b & c !! n) & 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3631
    a !! m = (m < size a & c !! (m + size b)))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3632
  apply (unfold word_split_bin' test_bit_bin)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3633
  apply (clarify)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3634
  apply (clarsimp simp: word_ubin.eq_norm nth_bintr word_size split: prod.splits)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3635
  apply (drule bin_nth_split)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3636
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3637
       apply (simp_all add: add_commute)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3638
   apply (erule bin_nth_uint_imp)+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3639
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3640
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3641
lemma test_bit_split:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3642
  "word_split c = (a, b) \<Longrightarrow>
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3643
    (\<forall>n\<Colon>nat. b !! n \<longleftrightarrow> n < size b \<and> c !! n) \<and> (\<forall>m\<Colon>nat. a !! m \<longleftrightarrow> m < size a \<and> c !! (m + size b))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3644
  by (simp add: test_bit_split')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3645
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3646
lemma test_bit_split_eq: "word_split c = (a, b) <-> 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3647
  ((ALL n::nat. b !! n = (n < size b & c !! n)) &
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3648
    (ALL m::nat. a !! m = (m < size a & c !! (m + size b))))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3649
  apply (rule_tac iffI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3650
   apply (rule_tac conjI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3651
    apply (erule test_bit_split [THEN conjunct1])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3652
   apply (erule test_bit_split [THEN conjunct2])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3653
  apply (case_tac "word_split c")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3654
  apply (frule test_bit_split)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3655
  apply (erule trans)
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44821
diff changeset
  3656
  apply (fastforce intro ! : word_eqI simp add : word_size)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3657
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3658
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3659
-- {* this odd result is analogous to @{text "ucast_id"}, 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3660
      result to the length given by the result type *}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3661
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3662
lemma word_cat_id: "word_cat a b = b"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3663
  unfolding word_cat_bin' by (simp add: word_ubin.inverse_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3664
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3665
-- "limited hom result"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3666
lemma word_cat_hom:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3667
  "len_of TYPE('a::len0) <= len_of TYPE('b::len0) + len_of TYPE ('c::len0)
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3668
  \<Longrightarrow>
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3669
  (word_cat (word_of_int w :: 'b word) (b :: 'c word) :: 'a word) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3670
  word_of_int (bin_cat w (size b) (uint b))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3671
  apply (unfold word_cat_def word_size) 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3672
  apply (clarsimp simp add: word_ubin.norm_eq_iff [symmetric]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3673
      word_ubin.eq_norm bintr_cat min_max.inf_absorb1)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3674
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3675
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3676
lemma word_cat_split_alt:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3677
  "size w <= size u + size v \<Longrightarrow> word_split w = (u, v) \<Longrightarrow> word_cat u v = w"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3678
  apply (rule word_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3679
  apply (drule test_bit_split)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3680
  apply (clarsimp simp add : test_bit_cat word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3681
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3682
  apply arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3683
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3684
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  3685
lemmas word_cat_split_size = sym [THEN [2] word_cat_split_alt [symmetric]]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3686
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3687
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3688
subsubsection "Split and slice"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3689
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3690
lemma split_slices: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3691
  "word_split w = (u, v) \<Longrightarrow> u = slice (size v) w & v = slice 0 w"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3692
  apply (drule test_bit_split)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3693
  apply (rule conjI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3694
   apply (rule word_eqI, clarsimp simp: nth_slice word_size)+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3695
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3696
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3697
lemma slice_cat1 [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3698
  "wc = word_cat a b \<Longrightarrow> size wc >= size a + size b \<Longrightarrow> slice (size b) wc = a"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3699
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3700
  apply (rule word_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3701
  apply (simp add: nth_slice test_bit_cat word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3702
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3703
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3704
lemmas slice_cat2 = trans [OF slice_id word_cat_id]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3705
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3706
lemma cat_slices:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3707
  "a = slice n c \<Longrightarrow> b = slice 0 c \<Longrightarrow> n = size b \<Longrightarrow>
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3708
    size a + size b >= size c \<Longrightarrow> word_cat a b = c"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3709
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3710
  apply (rule word_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3711
  apply (simp add: nth_slice test_bit_cat word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3712
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3713
  apply arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3714
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3715
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3716
lemma word_split_cat_alt:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3717
  "w = word_cat u v \<Longrightarrow> size u + size v <= size w \<Longrightarrow> word_split w = (u, v)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3718
  apply (case_tac "word_split ?w")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3719
  apply (rule trans, assumption)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3720
  apply (drule test_bit_split)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3721
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3722
   apply (rule word_eqI, clarsimp simp: test_bit_cat word_size)+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3723
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3724
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3725
lemmas word_cat_bl_no_bin [simp] =
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3726
  word_cat_bl [where a="numeral a" and b="numeral b",
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3727
    unfolded to_bl_numeral]
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3728
  for a b (* FIXME: negative numerals, 0 and 1 *)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3729
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3730
lemmas word_split_bl_no_bin [simp] =
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3731
  word_split_bl_eq [where c="numeral c", unfolded to_bl_numeral] for c
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3732
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  3733
text {* this odd result arises from the fact that the statement of the
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3734
      result implies that the decoded words are of the same type, 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3735
      and therefore of the same length, as the original word *}
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3736
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3737
lemma word_rsplit_same: "word_rsplit w = [w]"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3738
  unfolding word_rsplit_def by (simp add : bin_rsplit_all)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3739
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3740
lemma word_rsplit_empty_iff_size:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3741
  "(word_rsplit w = []) = (size w = 0)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3742
  unfolding word_rsplit_def bin_rsplit_def word_size
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3743
  by (simp add: bin_rsplit_aux_simp_alt Let_def split: Product_Type.split_split)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3744
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3745
lemma test_bit_rsplit:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3746
  "sw = word_rsplit w \<Longrightarrow> m < size (hd sw :: 'a :: len word) \<Longrightarrow> 
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3747
    k < length sw \<Longrightarrow> (rev sw ! k) !! m = (w !! (k * size (hd sw) + m))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3748
  apply (unfold word_rsplit_def word_test_bit_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3749
  apply (rule trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3750
   apply (rule_tac f = "%x. bin_nth x m" in arg_cong)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3751
   apply (rule nth_map [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3752
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3753
  apply (rule bin_nth_rsplit)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3754
     apply simp_all
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3755
  apply (simp add : word_size rev_map)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3756
  apply (rule trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3757
   defer
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3758
   apply (rule map_ident [THEN fun_cong])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3759
  apply (rule refl [THEN map_cong])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3760
  apply (simp add : word_ubin.eq_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3761
  apply (erule bin_rsplit_size_sign [OF len_gt_0 refl])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3762
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3763
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3764
lemma word_rcat_bl: "word_rcat wl = of_bl (concat (map to_bl wl))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3765
  unfolding word_rcat_def to_bl_def' of_bl_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3766
  by (clarsimp simp add : bin_rcat_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3767
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3768
lemma size_rcat_lem':
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3769
  "size (concat (map to_bl wl)) = length wl * size (hd wl)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3770
  unfolding word_size by (induct wl) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3771
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3772
lemmas size_rcat_lem = size_rcat_lem' [unfolded word_size]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3773
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  3774
lemmas td_gal_lt_len = len_gt_0 [THEN td_gal_lt]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3775
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3776
lemma nth_rcat_lem:
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3777
  "n < length (wl::'a word list) * len_of TYPE('a::len) \<Longrightarrow>
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3778
    rev (concat (map to_bl wl)) ! n =
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3779
    rev (to_bl (rev wl ! (n div len_of TYPE('a)))) ! (n mod len_of TYPE('a))"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3780
  apply (induct "wl")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3781
   apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3782
  apply (clarsimp simp add : nth_append size_rcat_lem)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3783
  apply (simp (no_asm_use) only:  mult_Suc [symmetric] 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3784
         td_gal_lt_len less_Suc_eq_le mod_div_equality')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3785
  apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3786
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3787
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3788
lemma test_bit_rcat:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3789
  "sw = size (hd wl :: 'a :: len word) \<Longrightarrow> rc = word_rcat wl \<Longrightarrow> rc !! n = 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3790
    (n < size rc & n div sw < size wl & (rev wl) ! (n div sw) !! (n mod sw))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3791
  apply (unfold word_rcat_bl word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3792
  apply (clarsimp simp add : 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3793
    test_bit_of_bl size_rcat_lem word_size td_gal_lt_len)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3794
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3795
   apply (auto simp add : 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3796
    test_bit_bl word_size td_gal_lt_len [THEN iffD2, THEN nth_rcat_lem])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3797
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3798
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3799
lemma foldl_eq_foldr:
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3800
  "foldl op + x xs = foldr op + (x # xs) (0 :: 'a :: comm_monoid_add)" 
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3801
  by (induct xs arbitrary: x) (auto simp add : add_assoc)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3802
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3803
lemmas test_bit_cong = arg_cong [where f = "test_bit", THEN fun_cong]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3804
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3805
lemmas test_bit_rsplit_alt = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3806
  trans [OF nth_rev_alt [THEN test_bit_cong] 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3807
  test_bit_rsplit [OF refl asm_rl diff_Suc_less]]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3808
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3809
-- "lazy way of expressing that u and v, and su and sv, have same types"
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3810
lemma word_rsplit_len_indep [OF refl refl refl refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3811
  "[u,v] = p \<Longrightarrow> [su,sv] = q \<Longrightarrow> word_rsplit u = su \<Longrightarrow> 
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3812
    word_rsplit v = sv \<Longrightarrow> length su = length sv"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3813
  apply (unfold word_rsplit_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3814
  apply (auto simp add : bin_rsplit_len_indep)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3815
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3816
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3817
lemma length_word_rsplit_size: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3818
  "n = len_of TYPE ('a :: len) \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3819
    (length (word_rsplit w :: 'a word list) <= m) = (size w <= m * n)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3820
  apply (unfold word_rsplit_def word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3821
  apply (clarsimp simp add : bin_rsplit_len_le)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3822
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3823
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3824
lemmas length_word_rsplit_lt_size = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3825
  length_word_rsplit_size [unfolded Not_eq_iff linorder_not_less [symmetric]]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3826
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3827
lemma length_word_rsplit_exp_size:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3828
  "n = len_of TYPE ('a :: len) \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3829
    length (word_rsplit w :: 'a word list) = (size w + n - 1) div n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3830
  unfolding word_rsplit_def by (clarsimp simp add : word_size bin_rsplit_len)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3831
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3832
lemma length_word_rsplit_even_size: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3833
  "n = len_of TYPE ('a :: len) \<Longrightarrow> size w = m * n \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3834
    length (word_rsplit w :: 'a word list) = m"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3835
  by (clarsimp simp add : length_word_rsplit_exp_size given_quot_alt)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3836
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3837
lemmas length_word_rsplit_exp_size' = refl [THEN length_word_rsplit_exp_size]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3838
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3839
(* alternative proof of word_rcat_rsplit *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3840
lemmas tdle = iffD2 [OF split_div_lemma refl, THEN conjunct1] 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3841
lemmas dtle = xtr4 [OF tdle mult_commute]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3842
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3843
lemma word_rcat_rsplit: "word_rcat (word_rsplit w) = w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3844
  apply (rule word_eqI)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3845
  apply (clarsimp simp add : test_bit_rcat word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3846
  apply (subst refl [THEN test_bit_rsplit])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3847
    apply (simp_all add: word_size 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3848
      refl [THEN length_word_rsplit_size [simplified not_less [symmetric], simplified]])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3849
   apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3850
   apply (erule xtr7, rule len_gt_0 [THEN dtle])+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3851
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3852
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3853
lemma size_word_rsplit_rcat_size:
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3854
  "\<lbrakk>word_rcat (ws::'a::len word list) = (frcw::'b::len0 word);
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3855
     size frcw = length ws * len_of TYPE('a)\<rbrakk>
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3856
    \<Longrightarrow> length (word_rsplit frcw::'a word list) = length ws"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3857
  apply (clarsimp simp add : word_size length_word_rsplit_exp_size')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3858
  apply (fast intro: given_quot_alt)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3859
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3860
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3861
lemma msrevs:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3862
  fixes n::nat
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3863
  shows "0 < n \<Longrightarrow> (k * n + m) div n = m div n + k"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3864
  and   "(k * n + m) mod n = m mod n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3865
  by (auto simp: add_commute)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3866
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3867
lemma word_rsplit_rcat_size [OF refl]:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3868
  "word_rcat (ws :: 'a :: len word list) = frcw \<Longrightarrow> 
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3869
    size frcw = length ws * len_of TYPE ('a) \<Longrightarrow> word_rsplit frcw = ws" 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3870
  apply (frule size_word_rsplit_rcat_size, assumption)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3871
  apply (clarsimp simp add : word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3872
  apply (rule nth_equalityI, assumption)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3873
  apply clarsimp
46023
fad87bb608fc restate some lemmas to respect int/bin distinction
huffman
parents: 46022
diff changeset
  3874
  apply (rule word_eqI [rule_format])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3875
  apply (rule trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3876
   apply (rule test_bit_rsplit_alt)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3877
     apply (clarsimp simp: word_size)+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3878
  apply (rule trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3879
  apply (rule test_bit_rcat [OF refl refl])
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41413
diff changeset
  3880
  apply (simp add: word_size msrevs)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3881
  apply (subst nth_rev)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3882
   apply arith
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41413
diff changeset
  3883
  apply (simp add: le0 [THEN [2] xtr7, THEN diff_Suc_less])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3884
  apply safe
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41413
diff changeset
  3885
  apply (simp add: diff_mult_distrib)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3886
  apply (rule mpl_lem)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3887
  apply (cases "size ws")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3888
   apply simp_all
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3889
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3890
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3891
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3892
subsection "Rotation"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3893
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3894
lemmas rotater_0' [simp] = rotater_def [where n = "0", simplified]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3895
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3896
lemmas word_rot_defs = word_roti_def word_rotr_def word_rotl_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3897
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3898
lemma rotate_eq_mod: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3899
  "m mod length xs = n mod length xs \<Longrightarrow> rotate m xs = rotate n xs"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3900
  apply (rule box_equals)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3901
    defer
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3902
    apply (rule rotate_conv_mod [symmetric])+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3903
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3904
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3905
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  3906
lemmas rotate_eqs = 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3907
  trans [OF rotate0 [THEN fun_cong] id_apply]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3908
  rotate_rotate [symmetric] 
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  3909
  rotate_id
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3910
  rotate_conv_mod 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3911
  rotate_eq_mod
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3912
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3913
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3914
subsubsection "Rotation of list to right"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3915
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3916
lemma rotate1_rl': "rotater1 (l @ [a]) = a # l"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3917
  unfolding rotater1_def by (cases l) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3918
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3919
lemma rotate1_rl [simp] : "rotater1 (rotate1 l) = l"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3920
  apply (unfold rotater1_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3921
  apply (cases "l")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3922
  apply (case_tac [2] "list")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3923
  apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3924
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3925
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3926
lemma rotate1_lr [simp] : "rotate1 (rotater1 l) = l"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3927
  unfolding rotater1_def by (cases l) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3928
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3929
lemma rotater1_rev': "rotater1 (rev xs) = rev (rotate1 xs)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3930
  apply (cases "xs")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3931
  apply (simp add : rotater1_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3932
  apply (simp add : rotate1_rl')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3933
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3934
  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3935
lemma rotater_rev': "rotater n (rev xs) = rev (rotate n xs)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3936
  unfolding rotater_def by (induct n) (auto intro: rotater1_rev')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3937
45816
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3938
lemma rotater_rev: "rotater n ys = rev (rotate n (rev ys))"
6a04efd99f25 replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents: 45811
diff changeset
  3939
  using rotater_rev' [where xs = "rev ys"] by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3940
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3941
lemma rotater_drop_take: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3942
  "rotater n xs = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3943
   drop (length xs - n mod length xs) xs @
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3944
   take (length xs - n mod length xs) xs"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3945
  by (clarsimp simp add : rotater_rev rotate_drop_take rev_take rev_drop)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3946
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3947
lemma rotater_Suc [simp] : 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3948
  "rotater (Suc n) xs = rotater1 (rotater n xs)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3949
  unfolding rotater_def by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3950
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3951
lemma rotate_inv_plus [rule_format] :
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3952
  "ALL k. k = m + n --> rotater k (rotate n xs) = rotater m xs & 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3953
    rotate k (rotater n xs) = rotate m xs & 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3954
    rotater n (rotate k xs) = rotate m xs & 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3955
    rotate n (rotater k xs) = rotater m xs"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3956
  unfolding rotater_def rotate_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3957
  by (induct n) (auto intro: funpow_swap1 [THEN trans])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3958
  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3959
lemmas rotate_inv_rel = le_add_diff_inverse2 [symmetric, THEN rotate_inv_plus]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3960
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3961
lemmas rotate_inv_eq = order_refl [THEN rotate_inv_rel, simplified]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3962
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  3963
lemmas rotate_lr [simp] = rotate_inv_eq [THEN conjunct1]
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  3964
lemmas rotate_rl [simp] = rotate_inv_eq [THEN conjunct2, THEN conjunct1]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3965
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3966
lemma rotate_gal: "(rotater n xs = ys) = (rotate n ys = xs)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3967
  by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3968
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3969
lemma rotate_gal': "(ys = rotater n xs) = (xs = rotate n ys)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3970
  by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3971
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3972
lemma length_rotater [simp]: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3973
  "length (rotater n xs) = length xs"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3974
  by (simp add : rotater_rev)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3975
38527
f2709bc1e41f moved spurious auxiliary lemma here
haftmann
parents: 37887
diff changeset
  3976
lemma restrict_to_left:
f2709bc1e41f moved spurious auxiliary lemma here
haftmann
parents: 37887
diff changeset
  3977
  assumes "x = y"
f2709bc1e41f moved spurious auxiliary lemma here
haftmann
parents: 37887
diff changeset
  3978
  shows "(x = z) = (y = z)"
f2709bc1e41f moved spurious auxiliary lemma here
haftmann
parents: 37887
diff changeset
  3979
  using assms by simp
f2709bc1e41f moved spurious auxiliary lemma here
haftmann
parents: 37887
diff changeset
  3980
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3981
lemmas rrs0 = rotate_eqs [THEN restrict_to_left, 
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  3982
  simplified rotate_gal [symmetric] rotate_gal' [symmetric]]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3983
lemmas rrs1 = rrs0 [THEN refl [THEN rev_iffD1]]
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  3984
lemmas rotater_eqs = rrs1 [simplified length_rotater]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3985
lemmas rotater_0 = rotater_eqs (1)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3986
lemmas rotater_add = rotater_eqs (2)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3987
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3988
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3989
subsubsection "map, map2, commuting with rotate(r)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3990
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3991
lemma last_map: "xs ~= [] \<Longrightarrow> last (map f xs) = f (last xs)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3992
  by (induct xs) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3993
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3994
lemma butlast_map:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  3995
  "xs ~= [] \<Longrightarrow> butlast (map f xs) = map f (butlast xs)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3996
  by (induct xs) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3997
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3998
lemma rotater1_map: "rotater1 (map f xs) = map f (rotater1 xs)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  3999
  unfolding rotater1_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4000
  by (cases xs) (auto simp add: last_map butlast_map)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4001
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4002
lemma rotater_map:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4003
  "rotater n (map f xs) = map f (rotater n xs)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4004
  unfolding rotater_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4005
  by (induct n) (auto simp add : rotater1_map)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4006
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4007
lemma but_last_zip [rule_format] :
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4008
  "ALL ys. length xs = length ys --> xs ~= [] --> 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4009
    last (zip xs ys) = (last xs, last ys) & 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4010
    butlast (zip xs ys) = zip (butlast xs) (butlast ys)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4011
  apply (induct "xs")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4012
  apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4013
     apply ((case_tac ys, auto simp: neq_Nil_conv)[1])+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4014
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4015
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4016
lemma but_last_map2 [rule_format] :
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4017
  "ALL ys. length xs = length ys --> xs ~= [] --> 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4018
    last (map2 f xs ys) = f (last xs) (last ys) & 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4019
    butlast (map2 f xs ys) = map2 f (butlast xs) (butlast ys)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4020
  apply (induct "xs")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4021
  apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4022
     apply (unfold map2_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4023
     apply ((case_tac ys, auto simp: neq_Nil_conv)[1])+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4024
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4025
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4026
lemma rotater1_zip:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  4027
  "length xs = length ys \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4028
    rotater1 (zip xs ys) = zip (rotater1 xs) (rotater1 ys)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4029
  apply (unfold rotater1_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4030
  apply (cases "xs")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4031
   apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4032
   apply ((case_tac ys, auto simp: neq_Nil_conv but_last_zip)[1])+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4033
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4034
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4035
lemma rotater1_map2:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  4036
  "length xs = length ys \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4037
    rotater1 (map2 f xs ys) = map2 f (rotater1 xs) (rotater1 ys)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4038
  unfolding map2_def by (simp add: rotater1_map rotater1_zip)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4039
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4040
lemmas lrth = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4041
  box_equals [OF asm_rl length_rotater [symmetric] 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4042
                 length_rotater [symmetric], 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4043
              THEN rotater1_map2]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4044
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4045
lemma rotater_map2: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  4046
  "length xs = length ys \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4047
    rotater n (map2 f xs ys) = map2 f (rotater n xs) (rotater n ys)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4048
  by (induct n) (auto intro!: lrth)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4049
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4050
lemma rotate1_map2:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  4051
  "length xs = length ys \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4052
    rotate1 (map2 f xs ys) = map2 f (rotate1 xs) (rotate1 ys)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4053
  apply (unfold map2_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4054
  apply (cases xs)
46440
d4994e2e7364 use 'primrec' to define "rotate1", for uniformity (and to help first-order tools that rely on "Spec_Rules")
blanchet
parents: 46173
diff changeset
  4055
   apply (cases ys, auto)+
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4056
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4057
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4058
lemmas lth = box_equals [OF asm_rl length_rotate [symmetric] 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4059
  length_rotate [symmetric], THEN rotate1_map2]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4060
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4061
lemma rotate_map2: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  4062
  "length xs = length ys \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4063
    rotate n (map2 f xs ys) = map2 f (rotate n xs) (rotate n ys)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4064
  by (induct n) (auto intro!: lth)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4065
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4066
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4067
-- "corresponding equalities for word rotation"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4068
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4069
lemma to_bl_rotl: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4070
  "to_bl (word_rotl n w) = rotate n (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4071
  by (simp add: word_bl.Abs_inverse' word_rotl_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4072
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4073
lemmas blrs0 = rotate_eqs [THEN to_bl_rotl [THEN trans]]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4074
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4075
lemmas word_rotl_eqs =
45538
1fffa81b9b83 eliminated slightly odd Rep' with dynamically-scoped [simplified];
wenzelm
parents: 45529
diff changeset
  4076
  blrs0 [simplified word_bl_Rep' word_bl.Rep_inject to_bl_rotl [symmetric]]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4077
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4078
lemma to_bl_rotr: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4079
  "to_bl (word_rotr n w) = rotater n (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4080
  by (simp add: word_bl.Abs_inverse' word_rotr_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4081
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4082
lemmas brrs0 = rotater_eqs [THEN to_bl_rotr [THEN trans]]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4083
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4084
lemmas word_rotr_eqs =
45538
1fffa81b9b83 eliminated slightly odd Rep' with dynamically-scoped [simplified];
wenzelm
parents: 45529
diff changeset
  4085
  brrs0 [simplified word_bl_Rep' word_bl.Rep_inject to_bl_rotr [symmetric]]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4086
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4087
declare word_rotr_eqs (1) [simp]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4088
declare word_rotl_eqs (1) [simp]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4089
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4090
lemma
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4091
  word_rot_rl [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4092
  "word_rotl k (word_rotr k v) = v" and
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4093
  word_rot_lr [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4094
  "word_rotr k (word_rotl k v) = v"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4095
  by (auto simp add: to_bl_rotr to_bl_rotl word_bl.Rep_inject [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4096
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4097
lemma
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4098
  word_rot_gal:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4099
  "(word_rotr n v = w) = (word_rotl n w = v)" and
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4100
  word_rot_gal':
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4101
  "(w = word_rotr n v) = (v = word_rotl n w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4102
  by (auto simp: to_bl_rotr to_bl_rotl word_bl.Rep_inject [symmetric] 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4103
           dest: sym)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4104
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4105
lemma word_rotr_rev:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4106
  "word_rotr n w = word_reverse (word_rotl n (word_reverse w))"
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  4107
  by (simp only: word_bl.Rep_inject [symmetric] to_bl_word_rev
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4108
                to_bl_rotr to_bl_rotl rotater_rev)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4109
  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4110
lemma word_roti_0 [simp]: "word_roti 0 w = w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4111
  by (unfold word_rot_defs) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4112
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4113
lemmas abl_cong = arg_cong [where f = "of_bl"]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4114
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4115
lemma word_roti_add: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4116
  "word_roti (m + n) w = word_roti m (word_roti n w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4117
proof -
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4118
  have rotater_eq_lem: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  4119
    "\<And>m n xs. m = n \<Longrightarrow> rotater m xs = rotater n xs"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4120
    by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4121
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4122
  have rotate_eq_lem: 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  4123
    "\<And>m n xs. m = n \<Longrightarrow> rotate m xs = rotate n xs"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4124
    by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4125
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  4126
  note rpts [symmetric] = 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4127
    rotate_inv_plus [THEN conjunct1]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4128
    rotate_inv_plus [THEN conjunct2, THEN conjunct1]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4129
    rotate_inv_plus [THEN conjunct2, THEN conjunct2, THEN conjunct1]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4130
    rotate_inv_plus [THEN conjunct2, THEN conjunct2, THEN conjunct2]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4131
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4132
  note rrp = trans [symmetric, OF rotate_rotate rotate_eq_lem]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4133
  note rrrp = trans [symmetric, OF rotater_add [symmetric] rotater_eq_lem]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4134
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4135
  show ?thesis
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4136
  apply (unfold word_rot_defs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4137
  apply (simp only: split: split_if)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4138
  apply (safe intro!: abl_cong)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4139
  apply (simp_all only: to_bl_rotl [THEN word_bl.Rep_inverse'] 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4140
                    to_bl_rotl
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4141
                    to_bl_rotr [THEN word_bl.Rep_inverse']
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4142
                    to_bl_rotr)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4143
  apply (rule rrp rrrp rpts,
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4144
         simp add: nat_add_distrib [symmetric] 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4145
                   nat_diff_distrib [symmetric])+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4146
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4147
qed
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4148
    
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4149
lemma word_roti_conv_mod': "word_roti n w = word_roti (n mod int (size w)) w"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4150
  apply (unfold word_rot_defs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4151
  apply (cut_tac y="size w" in gt_or_eq_0)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4152
  apply (erule disjE)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4153
   apply simp_all
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4154
  apply (safe intro!: abl_cong)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4155
   apply (rule rotater_eqs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4156
   apply (simp add: word_size nat_mod_distrib)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4157
  apply (simp add: rotater_add [symmetric] rotate_gal [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4158
  apply (rule rotater_eqs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4159
  apply (simp add: word_size nat_mod_distrib)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4160
  apply (rule int_eq_0_conv [THEN iffD1])
44821
a92f65e174cf avoid using legacy theorem names
huffman
parents: 44762
diff changeset
  4161
  apply (simp only: zmod_int of_nat_add)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4162
  apply (simp add: rdmods)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4163
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4164
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4165
lemmas word_roti_conv_mod = word_roti_conv_mod' [unfolded word_size]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4166
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4167
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4168
subsubsection "Word rotation commutes with bit-wise operations"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4169
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4170
(* using locale to not pollute lemma namespace *)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4171
locale word_rotate 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4172
begin
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4173
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4174
lemmas word_rot_defs' = to_bl_rotl to_bl_rotr
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4175
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4176
lemmas blwl_syms [symmetric] = bl_word_not bl_word_and bl_word_or bl_word_xor
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4177
45538
1fffa81b9b83 eliminated slightly odd Rep' with dynamically-scoped [simplified];
wenzelm
parents: 45529
diff changeset
  4178
lemmas lbl_lbl = trans [OF word_bl_Rep' word_bl_Rep' [symmetric]]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4179
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4180
lemmas ths_map2 [OF lbl_lbl] = rotate_map2 rotater_map2
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4181
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  4182
lemmas ths_map [where xs = "to_bl v"] = rotate_map rotater_map for v
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4183
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4184
lemmas th1s [simplified word_rot_defs' [symmetric]] = ths_map2 ths_map
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4185
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4186
lemma word_rot_logs:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4187
  "word_rotl n (NOT v) = NOT word_rotl n v"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4188
  "word_rotr n (NOT v) = NOT word_rotr n v"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4189
  "word_rotl n (x AND y) = word_rotl n x AND word_rotl n y"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4190
  "word_rotr n (x AND y) = word_rotr n x AND word_rotr n y"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4191
  "word_rotl n (x OR y) = word_rotl n x OR word_rotl n y"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4192
  "word_rotr n (x OR y) = word_rotr n x OR word_rotr n y"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4193
  "word_rotl n (x XOR y) = word_rotl n x XOR word_rotl n y"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4194
  "word_rotr n (x XOR y) = word_rotr n x XOR word_rotr n y"  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4195
  by (rule word_bl.Rep_eqD,
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4196
      rule word_rot_defs' [THEN trans],
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4197
      simp only: blwl_syms [symmetric],
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4198
      rule th1s [THEN trans], 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4199
      rule refl)+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4200
end
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4201
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4202
lemmas word_rot_logs = word_rotate.word_rot_logs
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4203
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4204
lemmas bl_word_rotl_dt = trans [OF to_bl_rotl rotate_drop_take,
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  4205
  simplified word_bl_Rep']
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4206
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4207
lemmas bl_word_rotr_dt = trans [OF to_bl_rotr rotater_drop_take,
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  4208
  simplified word_bl_Rep']
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4209
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4210
lemma bl_word_roti_dt': 
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  4211
  "n = nat ((- i) mod int (size (w :: 'a :: len word))) \<Longrightarrow> 
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4212
    to_bl (word_roti i w) = drop n (to_bl w) @ take n (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4213
  apply (unfold word_roti_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4214
  apply (simp add: bl_word_rotl_dt bl_word_rotr_dt word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4215
  apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4216
   apply (simp add: zmod_zminus1_eq_if)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4217
   apply safe
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4218
    apply (simp add: nat_mult_distrib)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4219
   apply (simp add: nat_diff_distrib [OF pos_mod_sign pos_mod_conj 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4220
                                      [THEN conjunct2, THEN order_less_imp_le]]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4221
                    nat_mod_distrib)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4222
  apply (simp add: nat_mod_distrib)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4223
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4224
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4225
lemmas bl_word_roti_dt = bl_word_roti_dt' [unfolded word_size]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4226
45604
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  4227
lemmas word_rotl_dt = bl_word_rotl_dt [THEN word_bl.Rep_inverse' [symmetric]] 
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  4228
lemmas word_rotr_dt = bl_word_rotr_dt [THEN word_bl.Rep_inverse' [symmetric]]
29cf40fe8daf eliminated obsolete "standard";
wenzelm
parents: 45550
diff changeset
  4229
lemmas word_roti_dt = bl_word_roti_dt [THEN word_bl.Rep_inverse' [symmetric]]
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4230
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4231
lemma word_rotx_0 [simp] : "word_rotr i 0 = 0 & word_rotl i 0 = 0"
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  4232
  by (simp add : word_rotr_dt word_rotl_dt replicate_add [symmetric])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4233
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4234
lemma word_roti_0' [simp] : "word_roti n 0 = 0"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4235
  unfolding word_roti_def by auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4236
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4237
lemmas word_rotr_dt_no_bin' [simp] = 
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  4238
  word_rotr_dt [where w="numeral w", unfolded to_bl_numeral] for w
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  4239
  (* FIXME: negative numerals, 0 and 1 *)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4240
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4241
lemmas word_rotl_dt_no_bin' [simp] = 
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  4242
  word_rotl_dt [where w="numeral w", unfolded to_bl_numeral] for w
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  4243
  (* FIXME: negative numerals, 0 and 1 *)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4244
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4245
declare word_roti_def [simp]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4246
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4247
46010
ebbc2d5cd720 add section headings
huffman
parents: 46009
diff changeset
  4248
subsection {* Maximum machine word *}
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4249
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4250
lemma word_int_cases:
46124
3ee75fe01986 misc tuning;
wenzelm
parents: 46064
diff changeset
  4251
  obtains n where "(x ::'a::len0 word) = word_of_int n" and "0 \<le> n" and "n < 2^len_of TYPE('a)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4252
  by (cases x rule: word_uint.Abs_cases) (simp add: uints_num)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4253
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4254
lemma word_nat_cases [cases type: word]:
46124
3ee75fe01986 misc tuning;
wenzelm
parents: 46064
diff changeset
  4255
  obtains n where "(x ::'a::len word) = of_nat n" and "n < 2^len_of TYPE('a)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4256
  by (cases x rule: word_unat.Abs_cases) (simp add: unats_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4257
46124
3ee75fe01986 misc tuning;
wenzelm
parents: 46064
diff changeset
  4258
lemma max_word_eq: "(max_word::'a::len word) = 2^len_of TYPE('a) - 1"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4259
  by (simp add: max_word_def word_of_int_hom_syms word_of_int_2p)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4260
46124
3ee75fe01986 misc tuning;
wenzelm
parents: 46064
diff changeset
  4261
lemma max_word_max [simp,intro!]: "n \<le> max_word"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4262
  by (cases n rule: word_int_cases)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4263
     (simp add: max_word_def word_le_def int_word_uint int_mod_eq')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4264
  
46124
3ee75fe01986 misc tuning;
wenzelm
parents: 46064
diff changeset
  4265
lemma word_of_int_2p_len: "word_of_int (2 ^ len_of TYPE('a)) = (0::'a::len0 word)"
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  4266
  by (subst word_uint.Abs_norm [symmetric]) simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4267
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4268
lemma word_pow_0:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4269
  "(2::'a::len word) ^ len_of TYPE('a) = 0"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4270
proof -
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4271
  have "word_of_int (2 ^ len_of TYPE('a)) = (0::'a word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4272
    by (rule word_of_int_2p_len)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4273
  thus ?thesis by (simp add: word_of_int_2p)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4274
qed
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4275
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4276
lemma max_word_wrap: "x + 1 = 0 \<Longrightarrow> x = max_word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4277
  apply (simp add: max_word_eq)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4278
  apply uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4279
  apply auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4280
  apply (simp add: word_pow_0)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4281
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4282
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4283
lemma max_word_minus: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4284
  "max_word = (-1::'a::len word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4285
proof -
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4286
  have "-1 + 1 = (0::'a word)" by simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4287
  thus ?thesis by (rule max_word_wrap [symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4288
qed
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4289
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4290
lemma max_word_bl [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4291
  "to_bl (max_word::'a::len word) = replicate (len_of TYPE('a)) True"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4292
  by (subst max_word_minus to_bl_n1)+ simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4293
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4294
lemma max_test_bit [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4295
  "(max_word::'a::len word) !! n = (n < len_of TYPE('a))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4296
  by (auto simp add: test_bit_bl word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4297
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4298
lemma word_and_max [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4299
  "x AND max_word = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4300
  by (rule word_eqI) (simp add: word_ops_nth_size word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4301
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4302
lemma word_or_max [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4303
  "x OR max_word = max_word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4304
  by (rule word_eqI) (simp add: word_ops_nth_size word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4305
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4306
lemma word_ao_dist2:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4307
  "x AND (y OR z) = x AND y OR x AND (z::'a::len0 word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4308
  by (rule word_eqI) (auto simp add: word_ops_nth_size word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4309
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4310
lemma word_oa_dist2:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4311
  "x OR y AND z = (x OR y) AND (x OR (z::'a::len0 word))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4312
  by (rule word_eqI) (auto simp add: word_ops_nth_size word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4313
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4314
lemma word_and_not [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4315
  "x AND NOT x = (0::'a::len0 word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4316
  by (rule word_eqI) (auto simp add: word_ops_nth_size word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4317
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4318
lemma word_or_not [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4319
  "x OR NOT x = max_word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4320
  by (rule word_eqI) (auto simp add: word_ops_nth_size word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4321
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4322
lemma word_boolean:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4323
  "boolean (op AND) (op OR) bitNOT 0 max_word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4324
  apply (rule boolean.intro)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4325
           apply (rule word_bw_assocs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4326
          apply (rule word_bw_assocs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4327
         apply (rule word_bw_comms)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4328
        apply (rule word_bw_comms)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4329
       apply (rule word_ao_dist2)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4330
      apply (rule word_oa_dist2)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4331
     apply (rule word_and_max)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4332
    apply (rule word_log_esimps)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4333
   apply (rule word_and_not)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4334
  apply (rule word_or_not)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4335
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4336
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4337
interpretation word_bool_alg:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4338
  boolean "op AND" "op OR" bitNOT 0 max_word
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4339
  by (rule word_boolean)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4340
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4341
lemma word_xor_and_or:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4342
  "x XOR y = x AND NOT y OR NOT x AND (y::'a::len0 word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4343
  by (rule word_eqI) (auto simp add: word_ops_nth_size word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4344
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4345
interpretation word_bool_alg:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4346
  boolean_xor "op AND" "op OR" bitNOT 0 max_word "op XOR"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4347
  apply (rule boolean_xor.intro)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4348
   apply (rule word_boolean)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4349
  apply (rule boolean_xor_axioms.intro)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4350
  apply (rule word_xor_and_or)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4351
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4352
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4353
lemma shiftr_x_0 [iff]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4354
  "(x::'a::len0 word) >> 0 = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4355
  by (simp add: shiftr_bl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4356
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4357
lemma shiftl_x_0 [simp]: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4358
  "(x :: 'a :: len word) << 0 = x"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4359
  by (simp add: shiftl_t2n)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4360
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4361
lemma shiftl_1 [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4362
  "(1::'a::len word) << n = 2^n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4363
  by (simp add: shiftl_t2n)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4364
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4365
lemma uint_lt_0 [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4366
  "uint x < 0 = False"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4367
  by (simp add: linorder_not_less)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4368
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4369
lemma shiftr1_1 [simp]: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4370
  "shiftr1 (1::'a::len word) = 0"
45995
b16070689726 declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents: 45958
diff changeset
  4371
  unfolding shiftr1_def by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4372
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4373
lemma shiftr_1[simp]: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4374
  "(1::'a::len word) >> n = (if n = 0 then 1 else 0)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4375
  by (induct n) (auto simp: shiftr_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4376
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4377
lemma word_less_1 [simp]: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4378
  "((x::'a::len word) < 1) = (x = 0)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4379
  by (simp add: word_less_nat_alt unat_0_iff)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4380
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4381
lemma to_bl_mask:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4382
  "to_bl (mask n :: 'a::len word) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4383
  replicate (len_of TYPE('a) - n) False @ 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4384
    replicate (min (len_of TYPE('a)) n) True"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4385
  by (simp add: mask_bl word_rep_drop min_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4386
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4387
lemma map_replicate_True:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  4388
  "n = length xs \<Longrightarrow>
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4389
    map (\<lambda>(x,y). x & y) (zip xs (replicate n True)) = xs"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4390
  by (induct xs arbitrary: n) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4391
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4392
lemma map_replicate_False:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  4393
  "n = length xs \<Longrightarrow> map (\<lambda>(x,y). x & y)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4394
    (zip xs (replicate n False)) = replicate n False"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4395
  by (induct xs arbitrary: n) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4396
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4397
lemma bl_and_mask:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4398
  fixes w :: "'a::len word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4399
  fixes n
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4400
  defines "n' \<equiv> len_of TYPE('a) - n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4401
  shows "to_bl (w AND mask n) =  replicate n' False @ drop n' (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4402
proof - 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4403
  note [simp] = map_replicate_True map_replicate_False
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4404
  have "to_bl (w AND mask n) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4405
        map2 op & (to_bl w) (to_bl (mask n::'a::len word))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4406
    by (simp add: bl_word_and)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4407
  also
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4408
  have "to_bl w = take n' (to_bl w) @ drop n' (to_bl w)" by simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4409
  also
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4410
  have "map2 op & \<dots> (to_bl (mask n::'a::len word)) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4411
        replicate n' False @ drop n' (to_bl w)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4412
    unfolding to_bl_mask n'_def map2_def
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4413
    by (subst zip_append) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4414
  finally
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4415
  show ?thesis .
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4416
qed
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4417
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4418
lemma drop_rev_takefill:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  4419
  "length xs \<le> n \<Longrightarrow>
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4420
    drop (n - length xs) (rev (takefill False n (rev xs))) = xs"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4421
  by (simp add: takefill_alt rev_take)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4422
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4423
lemma map_nth_0 [simp]:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4424
  "map (op !! (0::'a::len0 word)) xs = replicate (length xs) False"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4425
  by (induct xs) auto
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4426
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4427
lemma uint_plus_if_size:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4428
  "uint (x + y) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4429
  (if uint x + uint y < 2^size x then 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4430
      uint x + uint y 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4431
   else 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4432
      uint x + uint y - 2^size x)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4433
  by (simp add: word_arith_alts int_word_uint mod_add_if_z 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4434
                word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4435
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4436
lemma unat_plus_if_size:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4437
  "unat (x + (y::'a::len word)) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4438
  (if unat x + unat y < 2^size x then 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4439
      unat x + unat y 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4440
   else 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4441
      unat x + unat y - 2^size x)" 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4442
  apply (subst word_arith_nat_defs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4443
  apply (subst unat_of_nat)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4444
  apply (simp add:  mod_nat_add word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4445
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4446
44938
98e05fc1ce7d removed word_neq_0_conv from simpset, it's almost never wanted.
kleing
parents: 44890
diff changeset
  4447
lemma word_neq_0_conv:
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4448
  fixes w :: "'a :: len word"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4449
  shows "(w \<noteq> 0) = (0 < w)"
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  4450
  unfolding word_gt_0 by simp
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4451
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4452
lemma max_lt:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4453
  "unat (max a b div c) = unat (max a b) div unat (c:: 'a :: len word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4454
  apply (subst word_arith_nat_defs)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4455
  apply (subst word_unat.eq_norm)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4456
  apply (subst mod_if)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4457
  apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4458
  apply (erule notE)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4459
  apply (insert div_le_dividend [of "unat (max a b)" "unat c"])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4460
  apply (erule order_le_less_trans)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4461
  apply (insert unat_lt2p [of "max a b"])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4462
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4463
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4464
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4465
lemma uint_sub_if_size:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4466
  "uint (x - y) = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4467
  (if uint y \<le> uint x then 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4468
      uint x - uint y 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4469
   else 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4470
      uint x - uint y + 2^size x)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4471
  by (simp add: word_arith_alts int_word_uint mod_sub_if_z 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4472
                word_size)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4473
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4474
lemma unat_sub:
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  4475
  "b <= a \<Longrightarrow> unat (a - b) = unat a - unat b"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4476
  by (simp add: unat_def uint_sub_if_size word_le_def nat_diff_distrib)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4477
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  4478
lemmas word_less_sub1_numberof [simp] = word_less_sub1 [of "numeral w"] for w
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  4479
lemmas word_le_sub1_numberof [simp] = word_le_sub1 [of "numeral w"] for w
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4480
  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4481
lemma word_of_int_minus: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4482
  "word_of_int (2^len_of TYPE('a) - i) = (word_of_int (-i)::'a::len word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4483
proof -
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4484
  have x: "2^len_of TYPE('a) - i = -i + 2^len_of TYPE('a)" by simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4485
  show ?thesis
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4486
    apply (subst x)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4487
    apply (subst word_uint.Abs_norm [symmetric], subst mod_add_self2)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4488
    apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4489
    done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4490
qed
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4491
  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4492
lemmas word_of_int_inj = 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4493
  word_uint.Abs_inject [unfolded uints_num, simplified]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4494
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4495
lemma word_le_less_eq:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4496
  "(x ::'z::len word) \<le> y = (x = y \<or> x < y)"
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  4497
  by (auto simp add: order_class.le_less)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4498
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4499
lemma mod_plus_cong:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4500
  assumes 1: "(b::int) = b'"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4501
      and 2: "x mod b' = x' mod b'"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4502
      and 3: "y mod b' = y' mod b'"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4503
      and 4: "x' + y' = z'"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4504
  shows "(x + y) mod b = z' mod b'"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4505
proof -
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4506
  from 1 2[symmetric] 3[symmetric] have "(x + y) mod b = (x' mod b' + y' mod b') mod b'"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4507
    by (simp add: mod_add_eq[symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4508
  also have "\<dots> = (x' + y') mod b'"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4509
    by (simp add: mod_add_eq[symmetric])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4510
  finally show ?thesis by (simp add: 4)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4511
qed
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4512
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4513
lemma mod_minus_cong:
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4514
  assumes 1: "(b::int) = b'"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4515
      and 2: "x mod b' = x' mod b'"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4516
      and 3: "y mod b' = y' mod b'"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4517
      and 4: "x' - y' = z'"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4518
  shows "(x - y) mod b = z' mod b'"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4519
  using assms
47168
8395d7d63fc8 mark some duplicate lemmas for deletion
huffman
parents: 47108
diff changeset
  4520
  apply (subst mod_diff_left_eq)
8395d7d63fc8 mark some duplicate lemmas for deletion
huffman
parents: 47108
diff changeset
  4521
  apply (subst mod_diff_right_eq)
8395d7d63fc8 mark some duplicate lemmas for deletion
huffman
parents: 47108
diff changeset
  4522
  apply (simp add: mod_diff_left_eq [symmetric] mod_diff_right_eq [symmetric])
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4523
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4524
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4525
lemma word_induct_less: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4526
  "\<lbrakk>P (0::'a::len word); \<And>n. \<lbrakk>n < m; P n\<rbrakk> \<Longrightarrow> P (1 + n)\<rbrakk> \<Longrightarrow> P m"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4527
  apply (cases m)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4528
  apply atomize
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4529
  apply (erule rev_mp)+
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4530
  apply (rule_tac x=m in spec)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4531
  apply (induct_tac n)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4532
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4533
  apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4534
  apply (erule impE)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4535
   apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4536
   apply (erule_tac x=n in allE)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4537
   apply (erule impE)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4538
    apply (simp add: unat_arith_simps)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4539
    apply (clarsimp simp: unat_of_nat)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4540
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4541
  apply (erule_tac x="of_nat na" in allE)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4542
  apply (erule impE)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4543
   apply (simp add: unat_arith_simps)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4544
   apply (clarsimp simp: unat_of_nat)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4545
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4546
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4547
  
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4548
lemma word_induct: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4549
  "\<lbrakk>P (0::'a::len word); \<And>n. P n \<Longrightarrow> P (1 + n)\<rbrakk> \<Longrightarrow> P m"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4550
  by (erule word_induct_less, simp)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4551
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4552
lemma word_induct2 [induct type]: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4553
  "\<lbrakk>P 0; \<And>n. \<lbrakk>1 + n \<noteq> 0; P n\<rbrakk> \<Longrightarrow> P (1 + n)\<rbrakk> \<Longrightarrow> P (n::'b::len word)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4554
  apply (rule word_induct, simp)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4555
  apply (case_tac "1+n = 0", auto)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4556
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4557
46010
ebbc2d5cd720 add section headings
huffman
parents: 46009
diff changeset
  4558
subsection {* Recursion combinator for words *}
ebbc2d5cd720 add section headings
huffman
parents: 46009
diff changeset
  4559
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4560
definition word_rec :: "'a \<Rightarrow> ('b::len word \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'b word \<Rightarrow> 'a" where
40827
abbc05c20e24 code preprocessor setup for numerals on word type;
haftmann
parents: 39910
diff changeset
  4561
  "word_rec forZero forSuc n = nat_rec forZero (forSuc \<circ> of_nat) (unat n)"
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4562
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4563
lemma word_rec_0: "word_rec z s 0 = z"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4564
  by (simp add: word_rec_def)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4565
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4566
lemma word_rec_Suc: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4567
  "1 + n \<noteq> (0::'a::len word) \<Longrightarrow> word_rec z s (1 + n) = s n (word_rec z s n)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4568
  apply (simp add: word_rec_def unat_word_ariths)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4569
  apply (subst nat_mod_eq')
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4570
   apply (cut_tac x=n in unat_lt2p)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4571
   apply (drule Suc_mono)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4572
   apply (simp add: less_Suc_eq_le)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4573
   apply (simp only: order_less_le, simp)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4574
   apply (erule contrapos_pn, simp)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4575
   apply (drule arg_cong[where f=of_nat])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4576
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4577
   apply (subst (asm) word_unat.Rep_inverse[of n])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4578
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4579
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4580
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4581
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4582
lemma word_rec_Pred: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4583
  "n \<noteq> 0 \<Longrightarrow> word_rec z s n = s (n - 1) (word_rec z s (n - 1))"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4584
  apply (rule subst[where t="n" and s="1 + (n - 1)"])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4585
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4586
  apply (subst word_rec_Suc)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4587
   apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4588
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4589
  done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4590
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4591
lemma word_rec_in: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4592
  "f (word_rec z (\<lambda>_. f) n) = word_rec (f z) (\<lambda>_. f) n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4593
  by (induct n) (simp_all add: word_rec_0 word_rec_Suc)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4594
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4595
lemma word_rec_in2: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4596
  "f n (word_rec z f n) = word_rec (f 0 z) (f \<circ> op + 1) n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4597
  by (induct n) (simp_all add: word_rec_0 word_rec_Suc)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4598
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4599
lemma word_rec_twice: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4600
  "m \<le> n \<Longrightarrow> word_rec z f n = word_rec (word_rec z f (n - m)) (f \<circ> op + (n - m)) m"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4601
apply (erule rev_mp)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4602
apply (rule_tac x=z in spec)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4603
apply (rule_tac x=f in spec)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4604
apply (induct n)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4605
 apply (simp add: word_rec_0)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4606
apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4607
apply (rule_tac t="1 + n - m" and s="1 + (n - m)" in subst)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4608
 apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4609
apply (case_tac "1 + (n - m) = 0")
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4610
 apply (simp add: word_rec_0)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4611
 apply (rule_tac f = "word_rec ?a ?b" in arg_cong)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4612
 apply (rule_tac t="m" and s="m + (1 + (n - m))" in subst)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4613
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4614
 apply (simp (no_asm_use))
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4615
apply (simp add: word_rec_Suc word_rec_in2)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4616
apply (erule impE)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4617
 apply uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4618
apply (drule_tac x="x \<circ> op + 1" in spec)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4619
apply (drule_tac x="x 0 xa" in spec)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4620
apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4621
apply (rule_tac t="\<lambda>a. x (1 + (n - m + a))" and s="\<lambda>a. x (1 + (n - m) + a)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4622
       in subst)
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  4623
 apply (clarsimp simp add: fun_eq_iff)
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4624
 apply (rule_tac t="(1 + (n - m + xb))" and s="1 + (n - m) + xb" in subst)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4625
  apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4626
 apply (rule refl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4627
apply (rule refl)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4628
done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4629
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4630
lemma word_rec_id: "word_rec z (\<lambda>_. id) n = z"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4631
  by (induct n) (auto simp add: word_rec_0 word_rec_Suc)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4632
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4633
lemma word_rec_id_eq: "\<forall>m < n. f m = id \<Longrightarrow> word_rec z f n = z"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4634
apply (erule rev_mp)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4635
apply (induct n)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4636
 apply (auto simp add: word_rec_0 word_rec_Suc)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4637
 apply (drule spec, erule mp)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4638
 apply uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4639
apply (drule_tac x=n in spec, erule impE)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4640
 apply uint_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4641
apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4642
done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4643
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4644
lemma word_rec_max: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4645
  "\<forall>m\<ge>n. m \<noteq> -1 \<longrightarrow> f m = id \<Longrightarrow> word_rec z f -1 = word_rec z f n"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4646
apply (subst word_rec_twice[where n="-1" and m="-1 - n"])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4647
 apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4648
apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4649
apply (rule word_rec_id_eq)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4650
apply clarsimp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4651
apply (drule spec, rule mp, erule mp)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4652
 apply (rule word_plus_mono_right2[OF _ order_less_imp_le])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4653
  prefer 2 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4654
  apply assumption
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4655
 apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4656
apply (erule contrapos_pn)
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4657
apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4658
apply (drule arg_cong[where f="\<lambda>x. x - n"])
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4659
apply simp
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4660
done
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4661
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4662
lemma unatSuc: 
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4663
  "1 + n \<noteq> (0::'a::len word) \<Longrightarrow> unat (1 + n) = Suc (unat n)"
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4664
  by unat_arith
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4665
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  4666
lemma word_no_1 [simp]: "(Numeral1::'a::len0 word) = 1"
46020
0a29b51f0b0d restate lemma word_1_no in terms of Numeral1
huffman
parents: 46013
diff changeset
  4667
  by (fact word_1_no [symmetric])
45805
3c609e8785f2 tidied Word.thy;
huffman
parents: 45804
diff changeset
  4668
37660
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4669
declare bin_to_bl_def [simp]
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4670
56e3520b68b2 one unified Word theory
haftmann
parents: 36899
diff changeset
  4671
41060
4199fdcfa3c0 moved smt_word.ML into the directory of the Word library
boehmes
parents: 40827
diff changeset
  4672
use "~~/src/HOL/Word/Tools/smt_word.ML"
36899
bcd6fce5bf06 layered SMT setup, adapted SMT clients, added further tests, made Z3 proof abstraction configurable
boehmes
parents: 35049
diff changeset
  4673
setup {* SMT_Word.setup *}
bcd6fce5bf06 layered SMT setup, adapted SMT clients, added further tests, made Z3 proof abstraction configurable
boehmes
parents: 35049
diff changeset
  4674
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  4675
hide_const (open) Word
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46962
diff changeset
  4676
41060
4199fdcfa3c0 moved smt_word.ML into the directory of the Word library
boehmes
parents: 40827
diff changeset
  4677
end