author  paulson 
Thu, 22 May 1997 15:13:16 +0200  
changeset 3302  404fe31fd8d2 
parent 3271  b873969b05d3 
child 3331  c81c7f8ad333 
permissions  rwrr 
3302  1 
(* Title: TFL/post 
2 
ID: $Id$ 

3 
Author: Konrad Slind, Cambridge University Computer Laboratory 

4 
Copyright 1997 University of Cambridge 

5 

6 
Postprocessing of TFL definitions 

7 
*) 

8 

3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

9 
(* 
3302  10 
Three postprocessors are applied to the definition: 
3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

11 
 a wellfoundedness prover (WF_TAC) 
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

12 
 a simplifier (tries to eliminate the language of termination expressions) 
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

13 
 a termination prover 
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

14 
**) 
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

15 

3191  16 
signature TFL = 
17 
sig 

2112  18 
structure Prim : TFL_sig 
19 

3191  20 
val tgoalw : theory > thm list > thm list > thm list 
21 
val tgoal: theory > thm list > thm list 

2112  22 

23 
val WF_TAC : thm list > tactic 

24 

25 
val simplifier : thm > thm 

26 
val std_postprocessor : theory 

27 
> {induction:thm, rules:thm, TCs:term list list} 

28 
> {induction:thm, rules:thm, nested_tcs:thm list} 

29 

3191  30 
val define_i : theory > term > term > theory * (thm * Prim.pattern list) 
31 
val define : theory > string > string list > theory * Prim.pattern list 

2112  32 

3191  33 
val simplify_defn : theory * (string * Prim.pattern list) 
34 
> {rules:thm list, induct:thm, tcs:term list} 

2112  35 

3191  36 
(* 
37 
val function : theory > term > {theory:theory, eq_ind : thm} 

38 
val lazyR_def: theory > term > {theory:theory, eqns : thm} 

39 
**) 

2112  40 

41 
val tflcongs : theory > thm list 

42 

3191  43 
end; 
44 

45 

46 
structure Tfl: TFL = 

2112  47 
struct 
48 
structure Prim = Prim 

3191  49 
structure S = Prim.USyntax 
2112  50 

3191  51 
(* 
52 
* Extract termination goals so that they can be put it into a goalstack, or 

53 
* have a tactic directly applied to them. 

54 
**) 

55 
fun termination_goals rules = 

3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

56 
map (Logic.freeze_vars o HOLogic.dest_Trueprop) 
3191  57 
(foldr (fn (th,A) => union_term (prems_of th, A)) (rules, [])); 
58 

59 
(* 

60 
* Finds the termination conditions in (highly massaged) definition and 

61 
* puts them into a goalstack. 

62 
**) 

63 
fun tgoalw thy defs rules = 

64 
let val L = termination_goals rules 

2112  65 
open USyntax 
3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

66 
val g = cterm_of (sign_of thy) (HOLogic.mk_Trueprop(list_mk_conj L)) 
2112  67 
in goalw_cterm defs g 
68 
end; 

69 

3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

70 
fun tgoal thy = tgoalw thy []; 
2112  71 

3191  72 
(* 
73 
* Simple wellfoundedness prover. 

74 
**) 

2112  75 
fun WF_TAC thms = REPEAT(FIRST1(map rtac thms)) 
3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

76 
val WFtac = WF_TAC[wf_measure, wf_inv_image, wf_lex_prod, wf_less_than, 
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

77 
wf_pred_list, wf_trancl]; 
2112  78 

3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

79 
val terminator = simp_tac(!simpset addsimps [less_Suc_eq, pred_list_def]) 1 
3208  80 
THEN TRY(best_tac 
3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

81 
(!claset addSDs [not0_implies_Suc] 
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

82 
addss (!simpset)) 1); 
3191  83 

2112  84 
val simpls = [less_eq RS eq_reflection, 
3302  85 
lex_prod_def, measure_def, inv_image_def]; 
2112  86 

3191  87 
(* 
88 
* Does some standard things with the termination conditions of a definition: 

89 
* attempts to prove wellfoundedness of the given relation; simplifies the 

90 
* nonproven termination conditions; and finally attempts to prove the 

91 
* simplified termination conditions. 

92 
**) 

2112  93 
val std_postprocessor = Prim.postprocess{WFtac = WFtac, 
94 
terminator = terminator, 

95 
simplifier = Prim.Rules.simpl_conv simpls}; 

96 

3208  97 
val simplifier = rewrite_rule (simpls @ #simps(rep_ss (!simpset)) @ 
3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

98 
[pred_list_def]); 
3191  99 

2112  100 
fun tflcongs thy = Prim.Context.read() @ (#case_congs(Thry.extract_info thy)); 
101 

102 

103 
val concl = #2 o Prim.Rules.dest_thm; 

104 

105 
(* 

3191  106 
* Defining a function with an associated termination relation. 
107 
**) 

108 
fun define_i thy R eqs = 

109 
let val dummy = require_thy thy "WF_Rel" "recursive function definitions"; 

110 

111 
val {functional,pats} = Prim.mk_functional thy eqs 

112 
val (thm,thry) = Prim.wfrec_definition0 thy R functional 

113 
in (thry,(thm,pats)) 

114 
end; 

115 

116 
(*lcp's version: takes strings; doesn't return "thm" 

3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

117 
(whose signature is a draft and therefore useless) *) 
3191  118 
fun define thy R eqs = 
119 
let fun read thy = readtm (sign_of thy) (TVar(("DUMMY",0),[])) 

120 
val (thy',(_,pats)) = 

3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

121 
define_i thy (read thy R) 
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

122 
(fold_bal (app Ind_Syntax.conj) (map (read thy) eqs)) 
3191  123 
in (thy',pats) end 
124 
handle Utils.ERR {mesg,...} => error mesg; 

125 

126 
(* 

127 
* Postprocess a definition made by "define". This is a separate stage of 

128 
* processing from the definition stage. 

2112  129 
**) 
130 
local 

131 
structure R = Prim.Rules 

132 
structure U = Utils 

133 

3191  134 
(* The rest of these local definitions are for the tricky nested case *) 
2112  135 
val solved = not o U.can S.dest_eq o #2 o S.strip_forall o concl 
136 

137 
fun id_thm th = 

138 
let val {lhs,rhs} = S.dest_eq(#2(S.strip_forall(#2 (R.dest_thm th)))) 

139 
in S.aconv lhs rhs 

140 
end handle _ => false 

141 

142 
fun prover s = prove_goal HOL.thy s (fn _ => [fast_tac HOL_cs 1]); 

143 
val P_imp_P_iff_True = prover "P > (P= True)" RS mp; 

144 
val P_imp_P_eq_True = P_imp_P_iff_True RS eq_reflection; 

145 
fun mk_meta_eq r = case concl_of r of 

146 
Const("==",_)$_$_ => r 

147 
 _$(Const("op =",_)$_$_) => r RS eq_reflection 

148 
 _ => r RS P_imp_P_eq_True 

3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

149 
fun rewrite L = rewrite_rule (map mk_meta_eq (filter(not o id_thm) L)) 
3271
b873969b05d3
Basis library input/output primitives; currying the induction rule;
paulson
parents:
3245
diff
changeset

150 
fun reducer thl = rewrite (map standard thl @ #simps(rep_ss (!simpset))) 
2112  151 

152 
fun join_assums th = 

153 
let val {sign,...} = rep_thm th 

154 
val tych = cterm_of sign 

155 
val {lhs,rhs} = S.dest_eq(#2 (S.strip_forall (concl th))) 

156 
val cntxtl = (#1 o S.strip_imp) lhs (* cntxtl should = cntxtr *) 

157 
val cntxtr = (#1 o S.strip_imp) rhs (* but union is solider *) 

3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

158 
val cntxt = gen_union (op aconv) (cntxtl, cntxtr) 
2112  159 
in 
3191  160 
R.GEN_ALL 
161 
(R.DISCH_ALL 

162 
(rewrite (map (R.ASSUME o tych) cntxt) (R.SPEC_ALL th))) 

2112  163 
end 
164 
val gen_all = S.gen_all 

165 
in 

3191  166 
(* 
167 
* The "reducer" argument is 

3271
b873969b05d3
Basis library input/output primitives; currying the induction rule;
paulson
parents:
3245
diff
changeset

168 
* (fn thl => rewrite (map standard thl @ #simps(rep_ss (!simpset)))); 
3191  169 
**) 
170 
fun proof_stage theory reducer {f, R, rules, full_pats_TCs, TCs} = 

3271
b873969b05d3
Basis library input/output primitives; currying the induction rule;
paulson
parents:
3245
diff
changeset

171 
let val dummy = prs "Proving induction theorem.. " 
3191  172 
val ind = Prim.mk_induction theory f R full_pats_TCs 
3271
b873969b05d3
Basis library input/output primitives; currying the induction rule;
paulson
parents:
3245
diff
changeset

173 
val dummy = writeln "Proved induction theorem." 
3191  174 
val pp = std_postprocessor theory 
3271
b873969b05d3
Basis library input/output primitives; currying the induction rule;
paulson
parents:
3245
diff
changeset

175 
val dummy = prs "Postprocessing.. " 
3191  176 
val {rules,induction,nested_tcs} = pp{rules=rules,induction=ind,TCs=TCs} 
177 
in 

178 
case nested_tcs 

3271
b873969b05d3
Basis library input/output primitives; currying the induction rule;
paulson
parents:
3245
diff
changeset

179 
of [] => (writeln "Postprocessing done."; 
3191  180 
{induction=induction, rules=rules,tcs=[]}) 
3271
b873969b05d3
Basis library input/output primitives; currying the induction rule;
paulson
parents:
3245
diff
changeset

181 
 L => let val dummy = prs "Simplifying nested TCs.. " 
2112  182 
val (solved,simplified,stubborn) = 
183 
U.itlist (fn th => fn (So,Si,St) => 

184 
if (id_thm th) then (So, Si, th::St) else 

185 
if (solved th) then (th::So, Si, St) 

186 
else (So, th::Si, St)) nested_tcs ([],[],[]) 

187 
val simplified' = map join_assums simplified 

188 
val induction' = reducer (solved@simplified') induction 

189 
val rules' = reducer (solved@simplified') rules 

3271
b873969b05d3
Basis library input/output primitives; currying the induction rule;
paulson
parents:
3245
diff
changeset

190 
val dummy = writeln "Postprocessing done." 
2112  191 
in 
192 
{induction = induction', 

193 
rules = rules', 

3191  194 
tcs = map (gen_all o S.rhs o #2 o S.strip_forall o concl) 
195 
(simplified@stubborn)} 

2112  196 
end 
3191  197 
end handle (e as Utils.ERR _) => Utils.Raise e 
198 
 e => print_exn e; 

199 

200 

3302  201 
(*lcp: curry the predicate of the induction rule*) 
202 
fun curry_rule rl = Prod_Syntax.split_rule_var 

3271
b873969b05d3
Basis library input/output primitives; currying the induction rule;
paulson
parents:
3245
diff
changeset

203 
(head_of (HOLogic.dest_Trueprop (concl_of rl)), 
b873969b05d3
Basis library input/output primitives; currying the induction rule;
paulson
parents:
3245
diff
changeset

204 
rl); 
b873969b05d3
Basis library input/output primitives; currying the induction rule;
paulson
parents:
3245
diff
changeset

205 

3191  206 
(*lcp: put a theorem into Isabelle form, using metalevel connectives*) 
207 
val meta_outer = 

3302  208 
curry_rule o standard o 
3271
b873969b05d3
Basis library input/output primitives; currying the induction rule;
paulson
parents:
3245
diff
changeset

209 
rule_by_tactic (REPEAT_FIRST (resolve_tac [allI, impI, conjI] 
b873969b05d3
Basis library input/output primitives; currying the induction rule;
paulson
parents:
3245
diff
changeset

210 
ORELSE' etac conjE)); 
3191  211 

212 
(*Strip off the outer !P*) 

213 
val spec'= read_instantiate [("x","P::?'b=>bool")] spec; 

2112  214 

215 

3191  216 
fun simplify_defn (thy,(id,pats)) = 
3208  217 
let val dummy = deny (id mem map ! (stamps_of_thy thy)) 
218 
("Recursive definition " ^ id ^ 

3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

219 
" would clash with the theory of the same name!") 
3208  220 
val def = freezeT(get_def thy id RS meta_eq_to_obj_eq) 
3191  221 
val {theory,rules,TCs,full_pats_TCs,patterns} = 
3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

222 
Prim.post_definition (thy,(def,pats)) 
3191  223 
val {lhs=f,rhs} = S.dest_eq(concl def) 
224 
val (_,[R,_]) = S.strip_comb rhs 

225 
val {induction, rules, tcs} = 

226 
proof_stage theory reducer 

3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

227 
{f = f, R = R, rules = rules, 
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

228 
full_pats_TCs = full_pats_TCs, 
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

229 
TCs = TCs} 
3191  230 
val rules' = map (standard o normalize_thm [RSmp]) (R.CONJUNCTS rules) 
231 
in {induct = meta_outer 

3245
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

232 
(normalize_thm [RSspec,RSmp] (induction RS spec')), 
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

233 
rules = rules', 
241838c01caf
Removal of redundant code (unused or already present in Isabelle.
paulson
parents:
3208
diff
changeset

234 
tcs = (termination_goals rules') @ tcs} 
3191  235 
end 
236 
handle Utils.ERR {mesg,...} => error mesg 

2112  237 
end; 
238 

3191  239 
(* 
240 
* 

241 
* Definitions with synthesized termination relation temporarily 

242 
* deleted  it's not clear how to integrate this facility with 

243 
* the Isabelle theory file scheme, which restricts 

244 
* inference at theoryconstruction time. 

245 
* 

2112  246 

3208  247 
local structure R = Prim.Rules 
2112  248 
in 
249 
fun function theory eqs = 

3208  250 
let val dummy = prs "Making definition.. " 
2112  251 
val {rules,R,theory,full_pats_TCs,...} = Prim.lazyR_def theory eqs 
252 
val f = func_of_cond_eqn (concl(R.CONJUNCT1 rules handle _ => rules)) 

3208  253 
val dummy = prs "Definition made.\n" 
254 
val dummy = prs "Proving induction theorem.. " 

2112  255 
val induction = Prim.mk_induction theory f R full_pats_TCs 
3208  256 
val dummy = prs "Induction theorem proved.\n" 
2112  257 
in {theory = theory, 
258 
eq_ind = standard (induction RS (rules RS conjI))} 

259 
end 

260 
handle (e as Utils.ERR _) => Utils.Raise e 

261 
 e => print_exn e 

262 
end; 

263 

264 

265 
fun lazyR_def theory eqs = 

266 
let val {rules,theory, ...} = Prim.lazyR_def theory eqs 

267 
in {eqns=rules, theory=theory} 

268 
end 

269 
handle (e as Utils.ERR _) => Utils.Raise e 

270 
 e => print_exn e; 

3191  271 
* 
272 
* 

273 
**) 

274 

275 

2112  276 

277 

3191  278 
(* 
279 
* Install the basic context notions. Others (for nat and list and prod) 

280 
* have already been added in thry.sml 

281 
**) 

282 
val () = Prim.Context.write[Thms.LET_CONG, Thms.COND_CONG]; 

2112  283 

284 
end; 