author | nipkow |
Thu, 24 Sep 2020 00:29:51 +0200 | |
changeset 72282 | 415220b59d37 |
parent 70755 | 3fb16bed5d6c |
child 72540 | 8eabaf951e6b |
permissions | -rw-r--r-- |
62706 | 1 |
(* Author: Tobias Nipkow *) |
2 |
||
3 |
section \<open>Leftist Heap\<close> |
|
4 |
||
5 |
theory Leftist_Heap |
|
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
6 |
imports |
70450 | 7 |
"HOL-Library.Pattern_Aliases" |
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
8 |
Tree2 |
68492 | 9 |
Priority_Queue_Specs |
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
10 |
Complex_Main |
62706 | 11 |
begin |
12 |
||
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
13 |
fun mset_tree :: "('a*'b) tree \<Rightarrow> 'a multiset" where |
64968 | 14 |
"mset_tree Leaf = {#}" | |
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
15 |
"mset_tree (Node l (a, _) r) = {#a#} + mset_tree l + mset_tree r" |
64968 | 16 |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
17 |
type_synonym 'a lheap = "('a*nat)tree" |
62706 | 18 |
|
19 |
fun rank :: "'a lheap \<Rightarrow> nat" where |
|
20 |
"rank Leaf = 0" | |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
21 |
"rank (Node _ _ r) = rank r + 1" |
62706 | 22 |
|
23 |
fun rk :: "'a lheap \<Rightarrow> nat" where |
|
24 |
"rk Leaf = 0" | |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
25 |
"rk (Node _ (_, n) _) = n" |
62706 | 26 |
|
67406 | 27 |
text\<open>The invariants:\<close> |
64968 | 28 |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
29 |
fun (in linorder) heap :: "('a*'b) tree \<Rightarrow> bool" where |
64968 | 30 |
"heap Leaf = True" | |
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
31 |
"heap (Node l (m, _) r) = |
70585 | 32 |
(heap l \<and> heap r \<and> (\<forall>x \<in> set_tree l \<union> set_tree r. m \<le> x))" |
62706 | 33 |
|
64973 | 34 |
fun ltree :: "'a lheap \<Rightarrow> bool" where |
35 |
"ltree Leaf = True" | |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
36 |
"ltree (Node l (a, n) r) = |
64973 | 37 |
(n = rank r + 1 \<and> rank l \<ge> rank r \<and> ltree l & ltree r)" |
62706 | 38 |
|
70585 | 39 |
definition empty :: "'a lheap" where |
40 |
"empty = Leaf" |
|
41 |
||
62706 | 42 |
definition node :: "'a lheap \<Rightarrow> 'a \<Rightarrow> 'a lheap \<Rightarrow> 'a lheap" where |
43 |
"node l a r = |
|
44 |
(let rl = rk l; rr = rk r |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
45 |
in if rl \<ge> rr then Node l (a,rr+1) r else Node r (a,rl+1) l)" |
62706 | 46 |
|
47 |
fun get_min :: "'a lheap \<Rightarrow> 'a" where |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
48 |
"get_min(Node l (a, n) r) = a" |
62706 | 49 |
|
66499 | 50 |
text \<open>For function \<open>merge\<close>:\<close> |
51 |
unbundle pattern_aliases |
|
66491 | 52 |
|
66499 | 53 |
fun merge :: "'a::ord lheap \<Rightarrow> 'a lheap \<Rightarrow> 'a lheap" where |
70585 | 54 |
"merge Leaf t = t" | |
55 |
"merge t Leaf = t" | |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
56 |
"merge (Node l1 (a1, n1) r1 =: t1) (Node l2 (a2, n2) r2 =: t2) = |
66491 | 57 |
(if a1 \<le> a2 then node l1 a1 (merge r1 t2) |
68600 | 58 |
else node l2 a2 (merge t1 r2))" |
62706 | 59 |
|
70585 | 60 |
text \<open>Termination of @{const merge}: by sum or lexicographic product of the sizes |
61 |
of the two arguments. Isabelle uses a lexicographic product.\<close> |
|
62 |
||
64976 | 63 |
lemma merge_code: "merge t1 t2 = (case (t1,t2) of |
62706 | 64 |
(Leaf, _) \<Rightarrow> t2 | |
65 |
(_, Leaf) \<Rightarrow> t1 | |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
66 |
(Node l1 (a1, n1) r1, Node l2 (a2, n2) r2) \<Rightarrow> |
68600 | 67 |
if a1 \<le> a2 then node l1 a1 (merge r1 t2) else node l2 a2 (merge t1 r2))" |
64976 | 68 |
by(induction t1 t2 rule: merge.induct) (simp_all split: tree.split) |
62706 | 69 |
|
66522 | 70 |
hide_const (open) insert |
71 |
||
62706 | 72 |
definition insert :: "'a::ord \<Rightarrow> 'a lheap \<Rightarrow> 'a lheap" where |
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
73 |
"insert x t = merge (Node Leaf (x,1) Leaf) t" |
62706 | 74 |
|
68021 | 75 |
fun del_min :: "'a::ord lheap \<Rightarrow> 'a lheap" where |
76 |
"del_min Leaf = Leaf" | |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
77 |
"del_min (Node l _ r) = merge l r" |
62706 | 78 |
|
79 |
||
80 |
subsection "Lemmas" |
|
81 |
||
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
82 |
lemma mset_tree_empty: "mset_tree t = {#} \<longleftrightarrow> t = Leaf" |
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
83 |
by(cases t) auto |
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
84 |
|
64973 | 85 |
lemma rk_eq_rank[simp]: "ltree t \<Longrightarrow> rk t = rank t" |
62706 | 86 |
by(cases t) auto |
87 |
||
64973 | 88 |
lemma ltree_node: "ltree (node l a r) \<longleftrightarrow> ltree l \<and> ltree r" |
62706 | 89 |
by(auto simp add: node_def) |
90 |
||
64968 | 91 |
lemma heap_node: "heap (node l a r) \<longleftrightarrow> |
70585 | 92 |
heap l \<and> heap r \<and> (\<forall>x \<in> set_tree l \<union> set_tree r. a \<le> x)" |
64968 | 93 |
by(auto simp add: node_def) |
94 |
||
70585 | 95 |
lemma set_tree_mset: "set_tree t = set_mset(mset_tree t)" |
96 |
by(induction t) auto |
|
62706 | 97 |
|
98 |
subsection "Functional Correctness" |
|
99 |
||
72282 | 100 |
lemma mset_merge: "mset_tree (merge t1 t2) = mset_tree t1 + mset_tree t2" |
101 |
by (induction t1 t2 rule: merge.induct) (auto simp add: node_def ac_simps) |
|
62706 | 102 |
|
64968 | 103 |
lemma mset_insert: "mset_tree (insert x t) = mset_tree t + {#x#}" |
64976 | 104 |
by (auto simp add: insert_def mset_merge) |
62706 | 105 |
|
72282 | 106 |
lemma get_min: "\<lbrakk> heap t; t \<noteq> Leaf \<rbrakk> \<Longrightarrow> get_min t = Min(set_tree t)" |
107 |
by (cases t) (auto simp add: eq_Min_iff) |
|
64968 | 108 |
|
72282 | 109 |
lemma mset_del_min: "mset_tree (del_min t) = mset_tree t - {# get_min t #}" |
110 |
by (cases t) (auto simp: mset_merge) |
|
62706 | 111 |
|
64976 | 112 |
lemma ltree_merge: "\<lbrakk> ltree l; ltree r \<rbrakk> \<Longrightarrow> ltree (merge l r)" |
72282 | 113 |
by(induction l r rule: merge.induct)(auto simp: ltree_node) |
62706 | 114 |
|
64976 | 115 |
lemma heap_merge: "\<lbrakk> heap l; heap r \<rbrakk> \<Longrightarrow> heap (merge l r)" |
116 |
proof(induction l r rule: merge.induct) |
|
70585 | 117 |
case 3 thus ?case by(auto simp: heap_node mset_merge ball_Un set_tree_mset) |
64968 | 118 |
qed simp_all |
119 |
||
64973 | 120 |
lemma ltree_insert: "ltree t \<Longrightarrow> ltree(insert x t)" |
64976 | 121 |
by(simp add: insert_def ltree_merge del: merge.simps split: tree.split) |
62706 | 122 |
|
64968 | 123 |
lemma heap_insert: "heap t \<Longrightarrow> heap(insert x t)" |
64976 | 124 |
by(simp add: insert_def heap_merge del: merge.simps split: tree.split) |
64968 | 125 |
|
68021 | 126 |
lemma ltree_del_min: "ltree t \<Longrightarrow> ltree(del_min t)" |
64976 | 127 |
by(cases t)(auto simp add: ltree_merge simp del: merge.simps) |
62706 | 128 |
|
68021 | 129 |
lemma heap_del_min: "heap t \<Longrightarrow> heap(del_min t)" |
64976 | 130 |
by(cases t)(auto simp add: heap_merge simp del: merge.simps) |
64968 | 131 |
|
66565 | 132 |
text \<open>Last step of functional correctness proof: combine all the above lemmas |
133 |
to show that leftist heaps satisfy the specification of priority queues with merge.\<close> |
|
62706 | 134 |
|
66565 | 135 |
interpretation lheap: Priority_Queue_Merge |
72282 | 136 |
where empty = empty and is_empty = "\<lambda>t. t = Leaf" |
68021 | 137 |
and insert = insert and del_min = del_min |
66565 | 138 |
and get_min = get_min and merge = merge |
72282 | 139 |
and invar = "\<lambda>t. heap t \<and> ltree t" and mset = mset_tree |
62706 | 140 |
proof(standard, goal_cases) |
70585 | 141 |
case 1 show ?case by (simp add: empty_def) |
62706 | 142 |
next |
64975 | 143 |
case (2 q) show ?case by (cases q) auto |
62706 | 144 |
next |
64975 | 145 |
case 3 show ?case by(rule mset_insert) |
146 |
next |
|
68021 | 147 |
case 4 show ?case by(rule mset_del_min) |
62706 | 148 |
next |
70585 | 149 |
case 5 thus ?case by(simp add: get_min mset_tree_empty set_tree_mset) |
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
150 |
next |
70585 | 151 |
case 6 thus ?case by(simp add: empty_def) |
62706 | 152 |
next |
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
153 |
case 7 thus ?case by(simp add: heap_insert ltree_insert) |
64968 | 154 |
next |
68021 | 155 |
case 8 thus ?case by(simp add: heap_del_min ltree_del_min) |
66565 | 156 |
next |
157 |
case 9 thus ?case by (simp add: mset_merge) |
|
158 |
next |
|
159 |
case 10 thus ?case by (simp add: heap_merge ltree_merge) |
|
62706 | 160 |
qed |
161 |
||
162 |
||
163 |
subsection "Complexity" |
|
164 |
||
64973 | 165 |
lemma pow2_rank_size1: "ltree t \<Longrightarrow> 2 ^ rank t \<le> size1 t" |
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
166 |
proof(induction t rule: tree2_induct) |
62706 | 167 |
case Leaf show ?case by simp |
168 |
next |
|
68413 | 169 |
case (Node l a n r) |
62706 | 170 |
hence "rank r \<le> rank l" by simp |
171 |
hence *: "(2::nat) ^ rank r \<le> 2 ^ rank l" by simp |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
172 |
have "(2::nat) ^ rank \<langle>l, (a, n), r\<rangle> = 2 ^ rank r + 2 ^ rank r" |
62706 | 173 |
by(simp add: mult_2) |
174 |
also have "\<dots> \<le> size1 l + size1 r" |
|
175 |
using Node * by (simp del: power_increasing_iff) |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
176 |
also have "\<dots> = size1 \<langle>l, (a, n), r\<rangle>" by simp |
62706 | 177 |
finally show ?case . |
178 |
qed |
|
179 |
||
66491 | 180 |
text\<open>Explicit termination argument: sum of sizes\<close> |
181 |
||
66499 | 182 |
fun t_merge :: "'a::ord lheap \<Rightarrow> 'a lheap \<Rightarrow> nat" where |
70585 | 183 |
"t_merge Leaf t = 1" | |
184 |
"t_merge t Leaf = 1" | |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
185 |
"t_merge (Node l1 (a1, n1) r1 =: t1) (Node l2 (a2, n2) r2 =: t2) = |
66491 | 186 |
(if a1 \<le> a2 then 1 + t_merge r1 t2 |
68600 | 187 |
else 1 + t_merge t1 r2)" |
62706 | 188 |
|
189 |
definition t_insert :: "'a::ord \<Rightarrow> 'a lheap \<Rightarrow> nat" where |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
190 |
"t_insert x t = t_merge (Node Leaf (x, 1) Leaf) t" |
62706 | 191 |
|
68021 | 192 |
fun t_del_min :: "'a::ord lheap \<Rightarrow> nat" where |
193 |
"t_del_min Leaf = 1" | |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
194 |
"t_del_min (Node l _ r) = t_merge l r" |
62706 | 195 |
|
64976 | 196 |
lemma t_merge_rank: "t_merge l r \<le> rank l + rank r + 1" |
197 |
proof(induction l r rule: merge.induct) |
|
68600 | 198 |
case 3 thus ?case by(simp) |
62706 | 199 |
qed simp_all |
200 |
||
64976 | 201 |
corollary t_merge_log: assumes "ltree l" "ltree r" |
202 |
shows "t_merge l r \<le> log 2 (size1 l) + log 2 (size1 r) + 1" |
|
62706 | 203 |
using le_log2_of_power[OF pow2_rank_size1[OF assms(1)]] |
64976 | 204 |
le_log2_of_power[OF pow2_rank_size1[OF assms(2)]] t_merge_rank[of l r] |
62706 | 205 |
by linarith |
206 |
||
64973 | 207 |
corollary t_insert_log: "ltree t \<Longrightarrow> t_insert x t \<le> log 2 (size1 t) + 2" |
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
208 |
using t_merge_log[of "Node Leaf (x, 1) Leaf" t] |
62706 | 209 |
by(simp add: t_insert_def split: tree.split) |
210 |
||
66491 | 211 |
(* FIXME mv ? *) |
62706 | 212 |
lemma ld_ld_1_less: |
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
213 |
assumes "x > 0" "y > 0" shows "log 2 x + log 2 y + 1 < 2 * log 2 (x+y)" |
62706 | 214 |
proof - |
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
215 |
have "2 powr (log 2 x + log 2 y + 1) = 2*x*y" |
64977 | 216 |
using assms by(simp add: powr_add) |
217 |
also have "\<dots> < (x+y)^2" using assms |
|
62706 | 218 |
by(simp add: numeral_eq_Suc algebra_simps add_pos_pos) |
64977 | 219 |
also have "\<dots> = 2 powr (2 * log 2 (x+y))" |
66491 | 220 |
using assms by(simp add: powr_add log_powr[symmetric]) |
64977 | 221 |
finally show ?thesis by simp |
62706 | 222 |
qed |
223 |
||
68021 | 224 |
corollary t_del_min_log: assumes "ltree t" |
225 |
shows "t_del_min t \<le> 2 * log 2 (size1 t) + 1" |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
226 |
proof(cases t rule: tree2_cases) |
62706 | 227 |
case Leaf thus ?thesis using assms by simp |
228 |
next |
|
68413 | 229 |
case [simp]: (Node t1 _ _ t2) |
68021 | 230 |
have "t_del_min t = t_merge t1 t2" by simp |
62706 | 231 |
also have "\<dots> \<le> log 2 (size1 t1) + log 2 (size1 t2) + 1" |
64976 | 232 |
using \<open>ltree t\<close> by (auto simp: t_merge_log simp del: t_merge.simps) |
62706 | 233 |
also have "\<dots> \<le> 2 * log 2 (size1 t) + 1" |
234 |
using ld_ld_1_less[of "size1 t1" "size1 t2"] by (simp) |
|
235 |
finally show ?thesis . |
|
236 |
qed |
|
237 |
||
238 |
end |