author  haftmann 
Mon, 05 Jul 2010 15:12:20 +0200  
changeset 37715  44b27ea94a16 
parent 36319  8feb2c4bef1a 
child 58889  5b7a9633cfa8 
permissions  rwrr 
19761  1 
(* Title: CTT/ex/Synthesis.thy 
2 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory 

3 
Copyright 1991 University of Cambridge 

4 
*) 

5 

6 
header "Synthesis examples, using a crude form of narrowing" 

7 

8 
theory Synthesis 

9 
imports Arith 

10 
begin 

11 

12 
text "discovery of predecessor function" 

36319  13 
schematic_lemma "?a : SUM pred:?A . Eq(N, pred`0, 0) 
19761  14 
* (PROD n:N. Eq(N, pred ` succ(n), n))" 
15 
apply (tactic "intr_tac []") 

16 
apply (tactic eqintr_tac) 

17 
apply (rule_tac [3] reduction_rls) 

18 
apply (rule_tac [5] comp_rls) 

19 
apply (tactic "rew_tac []") 

20 
done 

21 

22 
text "the function fst as an element of a function type" 

36319  23 
schematic_lemma [folded basic_defs]: 
19761  24 
"A type ==> ?a: SUM f:?B . PROD i:A. PROD j:A. Eq(A, f ` <i,j>, i)" 
25 
apply (tactic "intr_tac []") 

26 
apply (tactic eqintr_tac) 

27 
apply (rule_tac [2] reduction_rls) 

28 
apply (rule_tac [4] comp_rls) 

29 
apply (tactic "typechk_tac []") 

30 
txt "now put in A everywhere" 

31 
apply assumption+ 

32 
done 

33 

34 
text "An interesting use of the eliminator, when" 

35 
(*The early implementation of unification caused nonrigid path in occur check 

36 
See following example.*) 

36319  37 
schematic_lemma "?a : PROD i:N. Eq(?A, ?b(inl(i)), <0 , i>) 
19761  38 
* Eq(?A, ?b(inr(i)), <succ(0), i>)" 
39 
apply (tactic "intr_tac []") 

40 
apply (tactic eqintr_tac) 

41 
apply (rule comp_rls) 

42 
apply (tactic "rew_tac []") 

19774
5fe7731d0836
allow nontrivial schematic goals (via embedded term vars);
wenzelm
parents:
19761
diff
changeset

43 
done 
19761  44 

19774
5fe7731d0836
allow nontrivial schematic goals (via embedded term vars);
wenzelm
parents:
19761
diff
changeset

45 
(*Here we allow the type to depend on i. 
5fe7731d0836
allow nontrivial schematic goals (via embedded term vars);
wenzelm
parents:
19761
diff
changeset

46 
This prevents the cycle in the first unification (no longer needed). 
19761  47 
Requires flexflex to preserve the dependence. 
48 
Simpler still: make ?A into a constant type N*N.*) 

36319  49 
schematic_lemma "?a : PROD i:N. Eq(?A(i), ?b(inl(i)), <0 , i>) 
19761  50 
* Eq(?A(i), ?b(inr(i)), <succ(0),i>)" 
51 
oops 

52 

53 
text "A tricky combination of when and split" 

54 
(*Now handled easily, but caused great problems once*) 

36319  55 
schematic_lemma [folded basic_defs]: 
19774
5fe7731d0836
allow nontrivial schematic goals (via embedded term vars);
wenzelm
parents:
19761
diff
changeset

56 
"?a : PROD i:N. PROD j:N. Eq(?A, ?b(inl(<i,j>)), i) 
19761  57 
* Eq(?A, ?b(inr(<i,j>)), j)" 
58 
apply (tactic "intr_tac []") 

59 
apply (tactic eqintr_tac) 

60 
apply (rule PlusC_inl [THEN trans_elem]) 

61 
apply (rule_tac [4] comp_rls) 

62 
apply (rule_tac [7] reduction_rls) 

63 
apply (rule_tac [10] comp_rls) 

64 
apply (tactic "typechk_tac []") 

19774
5fe7731d0836
allow nontrivial schematic goals (via embedded term vars);
wenzelm
parents:
19761
diff
changeset

65 
done 
19761  66 

67 
(*similar but allows the type to depend on i and j*) 

36319  68 
schematic_lemma "?a : PROD i:N. PROD j:N. Eq(?A(i,j), ?b(inl(<i,j>)), i) 
19761  69 
* Eq(?A(i,j), ?b(inr(<i,j>)), j)" 
70 
oops 

71 

72 
(*similar but specifying the type N simplifies the unification problems*) 

36319  73 
schematic_lemma "?a : PROD i:N. PROD j:N. Eq(N, ?b(inl(<i,j>)), i) 
19761  74 
* Eq(N, ?b(inr(<i,j>)), j)" 
75 
oops 

76 

77 

78 
text "Deriving the addition operator" 

36319  79 
schematic_lemma [folded arith_defs]: 
19774
5fe7731d0836
allow nontrivial schematic goals (via embedded term vars);
wenzelm
parents:
19761
diff
changeset

80 
"?c : PROD n:N. Eq(N, ?f(0,n), n) 
19761  81 
* (PROD m:N. Eq(N, ?f(succ(m), n), succ(?f(m,n))))" 
82 
apply (tactic "intr_tac []") 

83 
apply (tactic eqintr_tac) 

84 
apply (rule comp_rls) 

85 
apply (tactic "rew_tac []") 

19774
5fe7731d0836
allow nontrivial schematic goals (via embedded term vars);
wenzelm
parents:
19761
diff
changeset

86 
done 
19761  87 

88 
text "The addition function  using explicit lambdas" 

36319  89 
schematic_lemma [folded arith_defs]: 
19774
5fe7731d0836
allow nontrivial schematic goals (via embedded term vars);
wenzelm
parents:
19761
diff
changeset

90 
"?c : SUM plus : ?A . 
5fe7731d0836
allow nontrivial schematic goals (via embedded term vars);
wenzelm
parents:
19761
diff
changeset

91 
PROD x:N. Eq(N, plus`0`x, x) 
19761  92 
* (PROD y:N. Eq(N, plus`succ(y)`x, succ(plus`y`x)))" 
93 
apply (tactic "intr_tac []") 

94 
apply (tactic eqintr_tac) 

95 
apply (tactic "resolve_tac [TSimp.split_eqn] 3") 

96 
apply (tactic "SELECT_GOAL (rew_tac []) 4") 

97 
apply (tactic "resolve_tac [TSimp.split_eqn] 3") 

98 
apply (tactic "SELECT_GOAL (rew_tac []) 4") 

99 
apply (rule_tac [3] p = "y" in NC_succ) 

100 
(** by (resolve_tac comp_rls 3); caused excessive branching **) 

101 
apply (tactic "rew_tac []") 

102 
done 

103 

104 
end 

105 