author | hoelzl |
Mon, 21 Jun 2010 19:33:51 +0200 | |
changeset 37489 | 44e42d392c6e |
parent 36844 | 5f9385ecc1a7 |
child 37647 | a5400b94d2dd |
permissions | -rw-r--r-- |
33175 | 1 |
(* Title: HOL/Library/Convex_Euclidean_Space.thy |
2 |
Author: Robert Himmelmann, TU Muenchen |
|
3 |
*) |
|
4 |
||
5 |
header {* Convex sets, functions and related things. *} |
|
6 |
||
7 |
theory Convex_Euclidean_Space |
|
36623 | 8 |
imports Topology_Euclidean_Space Convex |
33175 | 9 |
begin |
10 |
||
11 |
||
12 |
(* ------------------------------------------------------------------------- *) |
|
13 |
(* To be moved elsewhere *) |
|
14 |
(* ------------------------------------------------------------------------- *) |
|
15 |
||
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
16 |
lemma basis_0[simp]:"(basis i::'a::euclidean_space) = 0 \<longleftrightarrow> i\<ge>DIM('a)" |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
17 |
using norm_basis[of i, where 'a='a] unfolding norm_eq_zero[where 'a='a,THEN sym] by auto |
33175 | 18 |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
19 |
lemma scaleR_2: |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
20 |
fixes x :: "'a::real_vector" |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
21 |
shows "scaleR 2 x = x + x" |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
22 |
unfolding one_add_one_is_two [symmetric] scaleR_left_distrib by simp |
34964 | 23 |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
24 |
declare euclidean_simps[simp] |
33175 | 25 |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
26 |
lemma vector_choose_size: "0 <= c ==> \<exists>(x::'a::euclidean_space). norm x = c" |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
27 |
apply (rule exI[where x="c *\<^sub>R basis 0 ::'a"]) using DIM_positive[where 'a='a] by auto |
33175 | 28 |
|
29 |
lemma setsum_delta_notmem: assumes "x\<notin>s" |
|
30 |
shows "setsum (\<lambda>y. if (y = x) then P x else Q y) s = setsum Q s" |
|
31 |
"setsum (\<lambda>y. if (x = y) then P x else Q y) s = setsum Q s" |
|
32 |
"setsum (\<lambda>y. if (y = x) then P y else Q y) s = setsum Q s" |
|
33 |
"setsum (\<lambda>y. if (x = y) then P y else Q y) s = setsum Q s" |
|
34 |
apply(rule_tac [!] setsum_cong2) using assms by auto |
|
35 |
||
36 |
lemma setsum_delta'': |
|
37 |
fixes s::"'a::real_vector set" assumes "finite s" |
|
38 |
shows "(\<Sum>x\<in>s. (if y = x then f x else 0) *\<^sub>R x) = (if y\<in>s then (f y) *\<^sub>R y else 0)" |
|
39 |
proof- |
|
40 |
have *:"\<And>x y. (if y = x then f x else (0::real)) *\<^sub>R x = (if x=y then (f x) *\<^sub>R x else 0)" by auto |
|
41 |
show ?thesis unfolding * using setsum_delta[OF assms, of y "\<lambda>x. f x *\<^sub>R x"] by auto |
|
42 |
qed |
|
43 |
||
44 |
lemma if_smult:"(if P then x else (y::real)) *\<^sub>R v = (if P then x *\<^sub>R v else y *\<^sub>R v)" by auto |
|
45 |
||
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
46 |
lemma image_smult_interval:"(\<lambda>x. m *\<^sub>R (x::'a::ordered_euclidean_space)) ` {a..b} = |
33175 | 47 |
(if {a..b} = {} then {} else if 0 \<le> m then {m *\<^sub>R a..m *\<^sub>R b} else {m *\<^sub>R b..m *\<^sub>R a})" |
48 |
using image_affinity_interval[of m 0 a b] by auto |
|
49 |
||
50 |
lemma dist_triangle_eq: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
51 |
fixes x y z :: "'a::euclidean_space" |
33175 | 52 |
shows "dist x z = dist x y + dist y z \<longleftrightarrow> norm (x - y) *\<^sub>R (y - z) = norm (y - z) *\<^sub>R (x - y)" |
53 |
proof- have *:"x - y + (y - z) = x - z" by auto |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
54 |
show ?thesis unfolding dist_norm norm_triangle_eq[of "x - y" "y - z", unfolded *] |
33175 | 55 |
by(auto simp add:norm_minus_commute) qed |
56 |
||
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
57 |
lemma norm_minus_eqI:"x = - y \<Longrightarrow> norm x = norm y" by auto |
33175 | 58 |
|
59 |
lemma Min_grI: assumes "finite A" "A \<noteq> {}" "\<forall>a\<in>A. x < a" shows "x < Min A" |
|
60 |
unfolding Min_gr_iff[OF assms(1,2)] using assms(3) by auto |
|
61 |
||
62 |
lemma dimindex_ge_1:"CARD(_::finite) \<ge> 1" |
|
63 |
using one_le_card_finite by auto |
|
64 |
||
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
65 |
lemma norm_lt: "norm x < norm y \<longleftrightarrow> inner x x < inner y y" |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
66 |
unfolding norm_eq_sqrt_inner by simp |
33175 | 67 |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
68 |
lemma norm_le: "norm x \<le> norm y \<longleftrightarrow> inner x x \<le> inner y y" |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
69 |
unfolding norm_eq_sqrt_inner by simp |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
70 |
|
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
71 |
|
33175 | 72 |
|
73 |
subsection {* Affine set and affine hull.*} |
|
74 |
||
75 |
definition |
|
76 |
affine :: "'a::real_vector set \<Rightarrow> bool" where |
|
77 |
"affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)" |
|
78 |
||
79 |
lemma affine_alt: "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u::real. (1 - u) *\<^sub>R x + u *\<^sub>R y \<in> s)" |
|
36071 | 80 |
unfolding affine_def by(metis eq_diff_eq') |
33175 | 81 |
|
82 |
lemma affine_empty[intro]: "affine {}" |
|
83 |
unfolding affine_def by auto |
|
84 |
||
85 |
lemma affine_sing[intro]: "affine {x}" |
|
86 |
unfolding affine_alt by (auto simp add: scaleR_left_distrib [symmetric]) |
|
87 |
||
88 |
lemma affine_UNIV[intro]: "affine UNIV" |
|
89 |
unfolding affine_def by auto |
|
90 |
||
91 |
lemma affine_Inter: "(\<forall>s\<in>f. affine s) \<Longrightarrow> affine (\<Inter> f)" |
|
92 |
unfolding affine_def by auto |
|
93 |
||
94 |
lemma affine_Int: "affine s \<Longrightarrow> affine t \<Longrightarrow> affine (s \<inter> t)" |
|
95 |
unfolding affine_def by auto |
|
96 |
||
97 |
lemma affine_affine_hull: "affine(affine hull s)" |
|
98 |
unfolding hull_def using affine_Inter[of "{t \<in> affine. s \<subseteq> t}"] |
|
99 |
unfolding mem_def by auto |
|
100 |
||
101 |
lemma affine_hull_eq[simp]: "(affine hull s = s) \<longleftrightarrow> affine s" |
|
36071 | 102 |
by (metis affine_affine_hull hull_same mem_def) |
33175 | 103 |
|
104 |
lemma setsum_restrict_set'': assumes "finite A" |
|
105 |
shows "setsum f {x \<in> A. P x} = (\<Sum>x\<in>A. if P x then f x else 0)" |
|
106 |
unfolding mem_def[of _ P, symmetric] unfolding setsum_restrict_set'[OF assms] .. |
|
107 |
||
108 |
subsection {* Some explicit formulations (from Lars Schewe). *} |
|
109 |
||
110 |
lemma affine: fixes V::"'a::real_vector set" |
|
111 |
shows "affine V \<longleftrightarrow> (\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (setsum (\<lambda>x. (u x) *\<^sub>R x)) s \<in> V)" |
|
112 |
unfolding affine_def apply rule apply(rule, rule, rule) apply(erule conjE)+ |
|
113 |
defer apply(rule, rule, rule, rule, rule) proof- |
|
114 |
fix x y u v assume as:"x \<in> V" "y \<in> V" "u + v = (1::real)" |
|
115 |
"\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" |
|
116 |
thus "u *\<^sub>R x + v *\<^sub>R y \<in> V" apply(cases "x=y") |
|
117 |
using as(4)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>w. if w = x then u else v"]] and as(1-3) |
|
118 |
by(auto simp add: scaleR_left_distrib[THEN sym]) |
|
119 |
next |
|
120 |
fix s u assume as:"\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V" |
|
121 |
"finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = (1::real)" |
|
122 |
def n \<equiv> "card s" |
|
123 |
have "card s = 0 \<or> card s = 1 \<or> card s = 2 \<or> card s > 2" by auto |
|
124 |
thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" proof(auto simp only: disjE) |
|
125 |
assume "card s = 2" hence "card s = Suc (Suc 0)" by auto |
|
126 |
then obtain a b where "s = {a, b}" unfolding card_Suc_eq by auto |
|
127 |
thus ?thesis using as(1)[THEN bspec[where x=a], THEN bspec[where x=b]] using as(4,5) |
|
128 |
by(auto simp add: setsum_clauses(2)) |
|
129 |
next assume "card s > 2" thus ?thesis using as and n_def proof(induct n arbitrary: u s) |
|
130 |
case (Suc n) fix s::"'a set" and u::"'a \<Rightarrow> real" |
|
131 |
assume IA:"\<And>u s. \<lbrakk>2 < card s; \<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V; finite s; |
|
34915 | 132 |
s \<noteq> {}; s \<subseteq> V; setsum u s = 1; n = card s \<rbrakk> \<Longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" and |
133 |
as:"Suc n = card s" "2 < card s" "\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V" |
|
33175 | 134 |
"finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = 1" |
135 |
have "\<exists>x\<in>s. u x \<noteq> 1" proof(rule_tac ccontr) |
|
136 |
assume " \<not> (\<exists>x\<in>s. u x \<noteq> 1)" hence "setsum u s = real_of_nat (card s)" unfolding card_eq_setsum by auto |
|
137 |
thus False using as(7) and `card s > 2` by (metis Numeral1_eq1_nat less_0_number_of less_int_code(15) |
|
138 |
less_nat_number_of not_less_iff_gr_or_eq of_nat_1 of_nat_eq_iff pos2 rel_simps(4)) qed |
|
139 |
then obtain x where x:"x\<in>s" "u x \<noteq> 1" by auto |
|
140 |
||
141 |
have c:"card (s - {x}) = card s - 1" apply(rule card_Diff_singleton) using `x\<in>s` as(4) by auto |
|
142 |
have *:"s = insert x (s - {x})" "finite (s - {x})" using `x\<in>s` and as(4) by auto |
|
143 |
have **:"setsum u (s - {x}) = 1 - u x" |
|
144 |
using setsum_clauses(2)[OF *(2), of u x, unfolded *(1)[THEN sym] as(7)] by auto |
|
145 |
have ***:"inverse (1 - u x) * setsum u (s - {x}) = 1" unfolding ** using `u x \<noteq> 1` by auto |
|
146 |
have "(\<Sum>xa\<in>s - {x}. (inverse (1 - u x) * u xa) *\<^sub>R xa) \<in> V" proof(cases "card (s - {x}) > 2") |
|
147 |
case True hence "s - {x} \<noteq> {}" "card (s - {x}) = n" unfolding c and as(1)[symmetric] proof(rule_tac ccontr) |
|
148 |
assume "\<not> s - {x} \<noteq> {}" hence "card (s - {x}) = 0" unfolding card_0_eq[OF *(2)] by simp |
|
149 |
thus False using True by auto qed auto |
|
150 |
thus ?thesis apply(rule_tac IA[of "s - {x}" "\<lambda>y. (inverse (1 - u x) * u y)"]) |
|
151 |
unfolding setsum_right_distrib[THEN sym] using as and *** and True by auto |
|
152 |
next case False hence "card (s - {x}) = Suc (Suc 0)" using as(2) and c by auto |
|
153 |
then obtain a b where "(s - {x}) = {a, b}" "a\<noteq>b" unfolding card_Suc_eq by auto |
|
154 |
thus ?thesis using as(3)[THEN bspec[where x=a], THEN bspec[where x=b]] |
|
155 |
using *** *(2) and `s \<subseteq> V` unfolding setsum_right_distrib by(auto simp add: setsum_clauses(2)) qed |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
156 |
hence "u x + (1 - u x) = 1 \<Longrightarrow> u x *\<^sub>R x + (1 - u x) *\<^sub>R ((\<Sum>xa\<in>s - {x}. u xa *\<^sub>R xa) /\<^sub>R (1 - u x)) \<in> V" |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
157 |
apply-apply(rule as(3)[rule_format]) |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
158 |
unfolding RealVector.scaleR_right.setsum using x(1) as(6) by auto |
33175 | 159 |
thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" unfolding scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] |
160 |
apply(subst *) unfolding setsum_clauses(2)[OF *(2)] |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
161 |
using `u x \<noteq> 1` by auto |
33175 | 162 |
qed auto |
163 |
next assume "card s = 1" then obtain a where "s={a}" by(auto simp add: card_Suc_eq) |
|
164 |
thus ?thesis using as(4,5) by simp |
|
165 |
qed(insert `s\<noteq>{}` `finite s`, auto) |
|
166 |
qed |
|
167 |
||
168 |
lemma affine_hull_explicit: |
|
169 |
"affine hull p = {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> setsum (\<lambda>v. (u v) *\<^sub>R v) s = y}" |
|
170 |
apply(rule hull_unique) apply(subst subset_eq) prefer 3 apply rule unfolding mem_Collect_eq and mem_def[of _ affine] |
|
171 |
apply (erule exE)+ apply(erule conjE)+ prefer 2 apply rule proof- |
|
172 |
fix x assume "x\<in>p" thus "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" |
|
173 |
apply(rule_tac x="{x}" in exI, rule_tac x="\<lambda>x. 1" in exI) by auto |
|
174 |
next |
|
175 |
fix t x s u assume as:"p \<subseteq> t" "affine t" "finite s" "s \<noteq> {}" "s \<subseteq> p" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x" |
|
176 |
thus "x \<in> t" using as(2)[unfolded affine, THEN spec[where x=s], THEN spec[where x=u]] by auto |
|
177 |
next |
|
178 |
show "affine {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y}" unfolding affine_def |
|
179 |
apply(rule,rule,rule,rule,rule) unfolding mem_Collect_eq proof- |
|
180 |
fix u v ::real assume uv:"u + v = 1" |
|
181 |
fix x assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" |
|
182 |
then obtain sx ux where x:"finite sx" "sx \<noteq> {}" "sx \<subseteq> p" "setsum ux sx = 1" "(\<Sum>v\<in>sx. ux v *\<^sub>R v) = x" by auto |
|
183 |
fix y assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y" |
|
184 |
then obtain sy uy where y:"finite sy" "sy \<noteq> {}" "sy \<subseteq> p" "setsum uy sy = 1" "(\<Sum>v\<in>sy. uy v *\<^sub>R v) = y" by auto |
|
185 |
have xy:"finite (sx \<union> sy)" using x(1) y(1) by auto |
|
186 |
have **:"(sx \<union> sy) \<inter> sx = sx" "(sx \<union> sy) \<inter> sy = sy" by auto |
|
187 |
show "\<exists>s ua. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum ua s = 1 \<and> (\<Sum>v\<in>s. ua v *\<^sub>R v) = u *\<^sub>R x + v *\<^sub>R y" |
|
188 |
apply(rule_tac x="sx \<union> sy" in exI) |
|
189 |
apply(rule_tac x="\<lambda>a. (if a\<in>sx then u * ux a else 0) + (if a\<in>sy then v * uy a else 0)" in exI) |
|
190 |
unfolding scaleR_left_distrib setsum_addf if_smult scaleR_zero_left ** setsum_restrict_set[OF xy, THEN sym] |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
191 |
unfolding scaleR_scaleR[THEN sym] RealVector.scaleR_right.setsum [symmetric] and setsum_right_distrib[THEN sym] |
33175 | 192 |
unfolding x y using x(1-3) y(1-3) uv by simp qed qed |
193 |
||
194 |
lemma affine_hull_finite: |
|
195 |
assumes "finite s" |
|
196 |
shows "affine hull s = {y. \<exists>u. setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}" |
|
197 |
unfolding affine_hull_explicit and expand_set_eq and mem_Collect_eq apply (rule,rule) |
|
198 |
apply(erule exE)+ apply(erule conjE)+ defer apply(erule exE) apply(erule conjE) proof- |
|
199 |
fix x u assume "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x" |
|
200 |
thus "\<exists>sa u. finite sa \<and> \<not> (\<forall>x. (x \<in> sa) = (x \<in> {})) \<and> sa \<subseteq> s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = x" |
|
201 |
apply(rule_tac x=s in exI, rule_tac x=u in exI) using assms by auto |
|
202 |
next |
|
203 |
fix x t u assume "t \<subseteq> s" hence *:"s \<inter> t = t" by auto |
|
204 |
assume "finite t" "\<not> (\<forall>x. (x \<in> t) = (x \<in> {}))" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = x" |
|
205 |
thus "\<exists>u. setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI) |
|
206 |
unfolding if_smult scaleR_zero_left and setsum_restrict_set[OF assms, THEN sym] and * by auto qed |
|
207 |
||
208 |
subsection {* Stepping theorems and hence small special cases. *} |
|
209 |
||
210 |
lemma affine_hull_empty[simp]: "affine hull {} = {}" |
|
211 |
apply(rule hull_unique) unfolding mem_def by auto |
|
212 |
||
213 |
lemma affine_hull_finite_step: |
|
214 |
fixes y :: "'a::real_vector" |
|
215 |
shows "(\<exists>u. setsum u {} = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) {} = y) \<longleftrightarrow> w = 0 \<and> y = 0" (is ?th1) |
|
216 |
"finite s \<Longrightarrow> (\<exists>u. setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) (insert a s) = y) \<longleftrightarrow> |
|
217 |
(\<exists>v u. setsum u s = w - v \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y - v *\<^sub>R a)" (is "?as \<Longrightarrow> (?lhs = ?rhs)") |
|
218 |
proof- |
|
219 |
show ?th1 by simp |
|
220 |
assume ?as |
|
221 |
{ assume ?lhs |
|
222 |
then obtain u where u:"setsum u (insert a s) = w \<and> (\<Sum>x\<in>insert a s. u x *\<^sub>R x) = y" by auto |
|
223 |
have ?rhs proof(cases "a\<in>s") |
|
224 |
case True hence *:"insert a s = s" by auto |
|
225 |
show ?thesis using u[unfolded *] apply(rule_tac x=0 in exI) by auto |
|
226 |
next |
|
227 |
case False thus ?thesis apply(rule_tac x="u a" in exI) using u and `?as` by auto |
|
228 |
qed } moreover |
|
229 |
{ assume ?rhs |
|
230 |
then obtain v u where vu:"setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto |
|
231 |
have *:"\<And>x M. (if x = a then v else M) *\<^sub>R x = (if x = a then v *\<^sub>R x else M *\<^sub>R x)" by auto |
|
232 |
have ?lhs proof(cases "a\<in>s") |
|
233 |
case True thus ?thesis |
|
234 |
apply(rule_tac x="\<lambda>x. (if x=a then v else 0) + u x" in exI) |
|
235 |
unfolding setsum_clauses(2)[OF `?as`] apply simp |
|
236 |
unfolding scaleR_left_distrib and setsum_addf |
|
237 |
unfolding vu and * and scaleR_zero_left |
|
238 |
by (auto simp add: setsum_delta[OF `?as`]) |
|
239 |
next |
|
240 |
case False |
|
241 |
hence **:"\<And>x. x \<in> s \<Longrightarrow> u x = (if x = a then v else u x)" |
|
242 |
"\<And>x. x \<in> s \<Longrightarrow> u x *\<^sub>R x = (if x = a then v *\<^sub>R x else u x *\<^sub>R x)" by auto |
|
243 |
from False show ?thesis |
|
244 |
apply(rule_tac x="\<lambda>x. if x=a then v else u x" in exI) |
|
245 |
unfolding setsum_clauses(2)[OF `?as`] and * using vu |
|
246 |
using setsum_cong2[of s "\<lambda>x. u x *\<^sub>R x" "\<lambda>x. if x = a then v *\<^sub>R x else u x *\<^sub>R x", OF **(2)] |
|
247 |
using setsum_cong2[of s u "\<lambda>x. if x = a then v else u x", OF **(1)] by auto |
|
248 |
qed } |
|
249 |
ultimately show "?lhs = ?rhs" by blast |
|
250 |
qed |
|
251 |
||
252 |
lemma affine_hull_2: |
|
253 |
fixes a b :: "'a::real_vector" |
|
254 |
shows "affine hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b| u v. (u + v = 1)}" (is "?lhs = ?rhs") |
|
255 |
proof- |
|
256 |
have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" |
|
257 |
"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto |
|
258 |
have "?lhs = {y. \<exists>u. setsum u {a, b} = 1 \<and> (\<Sum>v\<in>{a, b}. u v *\<^sub>R v) = y}" |
|
259 |
using affine_hull_finite[of "{a,b}"] by auto |
|
260 |
also have "\<dots> = {y. \<exists>v u. u b = 1 - v \<and> u b *\<^sub>R b = y - v *\<^sub>R a}" |
|
261 |
by(simp add: affine_hull_finite_step(2)[of "{b}" a]) |
|
262 |
also have "\<dots> = ?rhs" unfolding * by auto |
|
263 |
finally show ?thesis by auto |
|
264 |
qed |
|
265 |
||
266 |
lemma affine_hull_3: |
|
267 |
fixes a b c :: "'a::real_vector" |
|
268 |
shows "affine hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c| u v w. u + v + w = 1}" (is "?lhs = ?rhs") |
|
269 |
proof- |
|
270 |
have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" |
|
271 |
"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto |
|
272 |
show ?thesis apply(simp add: affine_hull_finite affine_hull_finite_step) |
|
273 |
unfolding * apply auto |
|
274 |
apply(rule_tac x=v in exI) apply(rule_tac x=va in exI) apply auto |
|
275 |
apply(rule_tac x=u in exI) by(auto intro!: exI) |
|
276 |
qed |
|
277 |
||
278 |
subsection {* Some relations between affine hull and subspaces. *} |
|
279 |
||
280 |
lemma affine_hull_insert_subset_span: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
281 |
fixes a :: "'a::euclidean_space" |
33175 | 282 |
shows "affine hull (insert a s) \<subseteq> {a + v| v . v \<in> span {x - a | x . x \<in> s}}" |
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
283 |
unfolding subset_eq Ball_def unfolding affine_hull_explicit span_explicit mem_Collect_eq |
33175 | 284 |
apply(rule,rule) apply(erule exE)+ apply(erule conjE)+ proof- |
285 |
fix x t u assume as:"finite t" "t \<noteq> {}" "t \<subseteq> insert a s" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = x" |
|
286 |
have "(\<lambda>x. x - a) ` (t - {a}) \<subseteq> {x - a |x. x \<in> s}" using as(3) by auto |
|
287 |
thus "\<exists>v. x = a + v \<and> (\<exists>S u. finite S \<and> S \<subseteq> {x - a |x. x \<in> s} \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = v)" |
|
288 |
apply(rule_tac x="x - a" in exI) |
|
289 |
apply (rule conjI, simp) |
|
290 |
apply(rule_tac x="(\<lambda>x. x - a) ` (t - {a})" in exI) |
|
291 |
apply(rule_tac x="\<lambda>x. u (x + a)" in exI) |
|
292 |
apply (rule conjI) using as(1) apply simp |
|
293 |
apply (erule conjI) |
|
294 |
using as(1) |
|
295 |
apply (simp add: setsum_reindex[unfolded inj_on_def] scaleR_right_diff_distrib setsum_subtractf scaleR_left.setsum[THEN sym] setsum_diff1 scaleR_left_diff_distrib) |
|
296 |
unfolding as by simp qed |
|
297 |
||
298 |
lemma affine_hull_insert_span: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
299 |
fixes a :: "'a::euclidean_space" |
33175 | 300 |
assumes "a \<notin> s" |
301 |
shows "affine hull (insert a s) = |
|
302 |
{a + v | v . v \<in> span {x - a | x. x \<in> s}}" |
|
303 |
apply(rule, rule affine_hull_insert_subset_span) unfolding subset_eq Ball_def |
|
304 |
unfolding affine_hull_explicit and mem_Collect_eq proof(rule,rule,erule exE,erule conjE) |
|
305 |
fix y v assume "y = a + v" "v \<in> span {x - a |x. x \<in> s}" |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
306 |
then obtain t u where obt:"finite t" "t \<subseteq> {x - a |x. x \<in> s}" "a + (\<Sum>v\<in>t. u v *\<^sub>R v) = y" unfolding span_explicit by auto |
33175 | 307 |
def f \<equiv> "(\<lambda>x. x + a) ` t" |
308 |
have f:"finite f" "f \<subseteq> s" "(\<Sum>v\<in>f. u (v - a) *\<^sub>R (v - a)) = y - a" unfolding f_def using obt |
|
309 |
by(auto simp add: setsum_reindex[unfolded inj_on_def]) |
|
310 |
have *:"f \<inter> {a} = {}" "f \<inter> - {a} = f" using f(2) assms by auto |
|
311 |
show "\<exists>sa u. finite sa \<and> sa \<noteq> {} \<and> sa \<subseteq> insert a s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y" |
|
312 |
apply(rule_tac x="insert a f" in exI) |
|
313 |
apply(rule_tac x="\<lambda>x. if x=a then 1 - setsum (\<lambda>x. u (x - a)) f else u (x - a)" in exI) |
|
314 |
using assms and f unfolding setsum_clauses(2)[OF f(1)] and if_smult |
|
35577 | 315 |
unfolding setsum_cases[OF f(1), of "\<lambda>x. x = a"] |
316 |
by (auto simp add: setsum_subtractf scaleR_left.setsum algebra_simps *) qed |
|
33175 | 317 |
|
318 |
lemma affine_hull_span: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
319 |
fixes a :: "'a::euclidean_space" |
33175 | 320 |
assumes "a \<in> s" |
321 |
shows "affine hull s = {a + v | v. v \<in> span {x - a | x. x \<in> s - {a}}}" |
|
322 |
using affine_hull_insert_span[of a "s - {a}", unfolded insert_Diff[OF assms]] by auto |
|
323 |
||
324 |
subsection {* Cones. *} |
|
325 |
||
326 |
definition |
|
327 |
cone :: "'a::real_vector set \<Rightarrow> bool" where |
|
328 |
"cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)" |
|
329 |
||
330 |
lemma cone_empty[intro, simp]: "cone {}" |
|
331 |
unfolding cone_def by auto |
|
332 |
||
333 |
lemma cone_univ[intro, simp]: "cone UNIV" |
|
334 |
unfolding cone_def by auto |
|
335 |
||
336 |
lemma cone_Inter[intro]: "(\<forall>s\<in>f. cone s) \<Longrightarrow> cone(\<Inter> f)" |
|
337 |
unfolding cone_def by auto |
|
338 |
||
339 |
subsection {* Conic hull. *} |
|
340 |
||
341 |
lemma cone_cone_hull: "cone (cone hull s)" |
|
342 |
unfolding hull_def using cone_Inter[of "{t \<in> conic. s \<subseteq> t}"] |
|
343 |
by (auto simp add: mem_def) |
|
344 |
||
345 |
lemma cone_hull_eq: "(cone hull s = s) \<longleftrightarrow> cone s" |
|
346 |
apply(rule hull_eq[unfolded mem_def]) |
|
347 |
using cone_Inter unfolding subset_eq by (auto simp add: mem_def) |
|
348 |
||
349 |
subsection {* Affine dependence and consequential theorems (from Lars Schewe). *} |
|
350 |
||
351 |
definition |
|
352 |
affine_dependent :: "'a::real_vector set \<Rightarrow> bool" where |
|
353 |
"affine_dependent s \<longleftrightarrow> (\<exists>x\<in>s. x \<in> (affine hull (s - {x})))" |
|
354 |
||
355 |
lemma affine_dependent_explicit: |
|
356 |
"affine_dependent p \<longleftrightarrow> |
|
357 |
(\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and> |
|
358 |
(\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = 0)" |
|
359 |
unfolding affine_dependent_def affine_hull_explicit mem_Collect_eq apply(rule) |
|
360 |
apply(erule bexE,erule exE,erule exE) apply(erule conjE)+ defer apply(erule exE,erule exE) apply(erule conjE)+ apply(erule bexE) |
|
361 |
proof- |
|
362 |
fix x s u assume as:"x \<in> p" "finite s" "s \<noteq> {}" "s \<subseteq> p - {x}" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x" |
|
363 |
have "x\<notin>s" using as(1,4) by auto |
|
364 |
show "\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = 0" |
|
365 |
apply(rule_tac x="insert x s" in exI, rule_tac x="\<lambda>v. if v = x then - 1 else u v" in exI) |
|
366 |
unfolding if_smult and setsum_clauses(2)[OF as(2)] and setsum_delta_notmem[OF `x\<notin>s`] and as using as by auto |
|
367 |
next |
|
368 |
fix s u v assume as:"finite s" "s \<subseteq> p" "setsum u s = 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0" "v \<in> s" "u v \<noteq> 0" |
|
369 |
have "s \<noteq> {v}" using as(3,6) by auto |
|
370 |
thus "\<exists>x\<in>p. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p - {x} \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" |
|
371 |
apply(rule_tac x=v in bexI, rule_tac x="s - {v}" in exI, rule_tac x="\<lambda>x. - (1 / u v) * u x" in exI) |
|
372 |
unfolding scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] unfolding setsum_right_distrib[THEN sym] and setsum_diff1[OF as(1)] using as by auto |
|
373 |
qed |
|
374 |
||
375 |
lemma affine_dependent_explicit_finite: |
|
376 |
fixes s :: "'a::real_vector set" assumes "finite s" |
|
377 |
shows "affine_dependent s \<longleftrightarrow> (\<exists>u. setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = 0)" |
|
378 |
(is "?lhs = ?rhs") |
|
379 |
proof |
|
380 |
have *:"\<And>vt u v. (if vt then u v else 0) *\<^sub>R v = (if vt then (u v) *\<^sub>R v else (0::'a))" by auto |
|
381 |
assume ?lhs |
|
382 |
then obtain t u v where "finite t" "t \<subseteq> s" "setsum u t = 0" "v\<in>t" "u v \<noteq> 0" "(\<Sum>v\<in>t. u v *\<^sub>R v) = 0" |
|
383 |
unfolding affine_dependent_explicit by auto |
|
384 |
thus ?rhs apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI) |
|
385 |
apply auto unfolding * and setsum_restrict_set[OF assms, THEN sym] |
|
386 |
unfolding Int_absorb1[OF `t\<subseteq>s`] by auto |
|
387 |
next |
|
388 |
assume ?rhs |
|
389 |
then obtain u v where "setsum u s = 0" "v\<in>s" "u v \<noteq> 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0" by auto |
|
390 |
thus ?lhs unfolding affine_dependent_explicit using assms by auto |
|
391 |
qed |
|
392 |
||
393 |
subsection {* A general lemma. *} |
|
394 |
||
395 |
lemma convex_connected: |
|
396 |
fixes s :: "'a::real_normed_vector set" |
|
397 |
assumes "convex s" shows "connected s" |
|
398 |
proof- |
|
399 |
{ fix e1 e2 assume as:"open e1" "open e2" "e1 \<inter> e2 \<inter> s = {}" "s \<subseteq> e1 \<union> e2" |
|
400 |
assume "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}" |
|
401 |
then obtain x1 x2 where x1:"x1\<in>e1" "x1\<in>s" and x2:"x2\<in>e2" "x2\<in>s" by auto |
|
402 |
hence n:"norm (x1 - x2) > 0" unfolding zero_less_norm_iff using as(3) by auto |
|
403 |
||
404 |
{ fix x e::real assume as:"0 \<le> x" "x \<le> 1" "0 < e" |
|
405 |
{ fix y have *:"(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2) = (y - x) *\<^sub>R x1 - (y - x) *\<^sub>R x2" |
|
406 |
by (simp add: algebra_simps) |
|
407 |
assume "\<bar>y - x\<bar> < e / norm (x1 - x2)" |
|
408 |
hence "norm ((1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2)) < e" |
|
409 |
unfolding * and scaleR_right_diff_distrib[THEN sym] |
|
410 |
unfolding less_divide_eq using n by auto } |
|
411 |
hence "\<exists>d>0. \<forall>y. \<bar>y - x\<bar> < d \<longrightarrow> norm ((1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2)) < e" |
|
412 |
apply(rule_tac x="e / norm (x1 - x2)" in exI) using as |
|
413 |
apply auto unfolding zero_less_divide_iff using n by simp } note * = this |
|
414 |
||
415 |
have "\<exists>x\<ge>0. x \<le> 1 \<and> (1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e1 \<and> (1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e2" |
|
416 |
apply(rule connected_real_lemma) apply (simp add: `x1\<in>e1` `x2\<in>e2` dist_commute)+ |
|
417 |
using * apply(simp add: dist_norm) |
|
418 |
using as(1,2)[unfolded open_dist] apply simp |
|
419 |
using as(1,2)[unfolded open_dist] apply simp |
|
420 |
using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]] using x1 x2 |
|
421 |
using as(3) by auto |
|
422 |
then obtain x where "x\<ge>0" "x\<le>1" "(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e1" "(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e2" by auto |
|
423 |
hence False using as(4) |
|
424 |
using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]] |
|
425 |
using x1(2) x2(2) by auto } |
|
426 |
thus ?thesis unfolding connected_def by auto |
|
427 |
qed |
|
428 |
||
429 |
subsection {* One rather trivial consequence. *} |
|
430 |
||
34964 | 431 |
lemma connected_UNIV[intro]: "connected (UNIV :: 'a::real_normed_vector set)" |
33175 | 432 |
by(simp add: convex_connected convex_UNIV) |
433 |
||
36623 | 434 |
subsection {* Balls, being convex, are connected. *} |
33175 | 435 |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
436 |
lemma convex_box: fixes a::"'a::euclidean_space" |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
437 |
assumes "\<And>i. i<DIM('a) \<Longrightarrow> convex {x. P i x}" |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
438 |
shows "convex {x. \<forall>i<DIM('a). P i (x$$i)}" |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
439 |
using assms unfolding convex_def by(auto simp add:euclidean_simps) |
33175 | 440 |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
441 |
lemma convex_positive_orthant: "convex {x::'a::euclidean_space. (\<forall>i<DIM('a). 0 \<le> x$$i)}" |
36623 | 442 |
by (rule convex_box) (simp add: atLeast_def[symmetric] convex_real_interval) |
33175 | 443 |
|
444 |
lemma convex_local_global_minimum: |
|
445 |
fixes s :: "'a::real_normed_vector set" |
|
446 |
assumes "0<e" "convex_on s f" "ball x e \<subseteq> s" "\<forall>y\<in>ball x e. f x \<le> f y" |
|
447 |
shows "\<forall>y\<in>s. f x \<le> f y" |
|
448 |
proof(rule ccontr) |
|
449 |
have "x\<in>s" using assms(1,3) by auto |
|
450 |
assume "\<not> (\<forall>y\<in>s. f x \<le> f y)" |
|
451 |
then obtain y where "y\<in>s" and y:"f x > f y" by auto |
|
452 |
hence xy:"0 < dist x y" by (auto simp add: dist_nz[THEN sym]) |
|
453 |
||
454 |
then obtain u where "0 < u" "u \<le> 1" and u:"u < e / dist x y" |
|
455 |
using real_lbound_gt_zero[of 1 "e / dist x y"] using xy `e>0` and divide_pos_pos[of e "dist x y"] by auto |
|
456 |
hence "f ((1-u) *\<^sub>R x + u *\<^sub>R y) \<le> (1-u) * f x + u * f y" using `x\<in>s` `y\<in>s` |
|
457 |
using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x="1-u"]] by auto |
|
458 |
moreover |
|
459 |
have *:"x - ((1 - u) *\<^sub>R x + u *\<^sub>R y) = u *\<^sub>R (x - y)" by (simp add: algebra_simps) |
|
460 |
have "(1 - u) *\<^sub>R x + u *\<^sub>R y \<in> ball x e" unfolding mem_ball dist_norm unfolding * and norm_scaleR and abs_of_pos[OF `0<u`] unfolding dist_norm[THEN sym] |
|
461 |
using u unfolding pos_less_divide_eq[OF xy] by auto |
|
462 |
hence "f x \<le> f ((1 - u) *\<^sub>R x + u *\<^sub>R y)" using assms(4) by auto |
|
463 |
ultimately show False using mult_strict_left_mono[OF y `u>0`] unfolding left_diff_distrib by auto |
|
464 |
qed |
|
465 |
||
466 |
lemma convex_ball: |
|
467 |
fixes x :: "'a::real_normed_vector" |
|
468 |
shows "convex (ball x e)" |
|
469 |
proof(auto simp add: convex_def) |
|
470 |
fix y z assume yz:"dist x y < e" "dist x z < e" |
|
471 |
fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" |
|
472 |
have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z" using uv yz |
|
473 |
using convex_distance[of "ball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto |
|
36623 | 474 |
thus "dist x (u *\<^sub>R y + v *\<^sub>R z) < e" using convex_bound_lt[OF yz uv] by auto |
33175 | 475 |
qed |
476 |
||
477 |
lemma convex_cball: |
|
478 |
fixes x :: "'a::real_normed_vector" |
|
479 |
shows "convex(cball x e)" |
|
36362
06475a1547cb
fix lots of looping simp calls and other warnings
huffman
parents:
36341
diff
changeset
|
480 |
proof(auto simp add: convex_def Ball_def) |
33175 | 481 |
fix y z assume yz:"dist x y \<le> e" "dist x z \<le> e" |
482 |
fix u v ::real assume uv:" 0 \<le> u" "0 \<le> v" "u + v = 1" |
|
483 |
have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z" using uv yz |
|
484 |
using convex_distance[of "cball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto |
|
36623 | 485 |
thus "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> e" using convex_bound_le[OF yz uv] by auto |
33175 | 486 |
qed |
487 |
||
488 |
lemma connected_ball: |
|
489 |
fixes x :: "'a::real_normed_vector" |
|
490 |
shows "connected (ball x e)" |
|
491 |
using convex_connected convex_ball by auto |
|
492 |
||
493 |
lemma connected_cball: |
|
494 |
fixes x :: "'a::real_normed_vector" |
|
495 |
shows "connected(cball x e)" |
|
496 |
using convex_connected convex_cball by auto |
|
497 |
||
498 |
subsection {* Convex hull. *} |
|
499 |
||
500 |
lemma convex_convex_hull: "convex(convex hull s)" |
|
501 |
unfolding hull_def using convex_Inter[of "{t\<in>convex. s\<subseteq>t}"] |
|
502 |
unfolding mem_def by auto |
|
503 |
||
34064
eee04bbbae7e
avoid dependency on implicit dest rule predicate1D in proofs
haftmann
parents:
33758
diff
changeset
|
504 |
lemma convex_hull_eq: "convex hull s = s \<longleftrightarrow> convex s" |
36071 | 505 |
by (metis convex_convex_hull hull_same mem_def) |
33175 | 506 |
|
507 |
lemma bounded_convex_hull: |
|
508 |
fixes s :: "'a::real_normed_vector set" |
|
509 |
assumes "bounded s" shows "bounded(convex hull s)" |
|
510 |
proof- from assms obtain B where B:"\<forall>x\<in>s. norm x \<le> B" unfolding bounded_iff by auto |
|
511 |
show ?thesis apply(rule bounded_subset[OF bounded_cball, of _ 0 B]) |
|
512 |
unfolding subset_hull[unfolded mem_def, of convex, OF convex_cball] |
|
513 |
unfolding subset_eq mem_cball dist_norm using B by auto qed |
|
514 |
||
515 |
lemma finite_imp_bounded_convex_hull: |
|
516 |
fixes s :: "'a::real_normed_vector set" |
|
517 |
shows "finite s \<Longrightarrow> bounded(convex hull s)" |
|
518 |
using bounded_convex_hull finite_imp_bounded by auto |
|
519 |
||
520 |
subsection {* Stepping theorems for convex hulls of finite sets. *} |
|
521 |
||
522 |
lemma convex_hull_empty[simp]: "convex hull {} = {}" |
|
523 |
apply(rule hull_unique) unfolding mem_def by auto |
|
524 |
||
525 |
lemma convex_hull_singleton[simp]: "convex hull {a} = {a}" |
|
526 |
apply(rule hull_unique) unfolding mem_def by auto |
|
527 |
||
528 |
lemma convex_hull_insert: |
|
529 |
fixes s :: "'a::real_vector set" |
|
530 |
assumes "s \<noteq> {}" |
|
531 |
shows "convex hull (insert a s) = {x. \<exists>u\<ge>0. \<exists>v\<ge>0. \<exists>b. (u + v = 1) \<and> |
|
532 |
b \<in> (convex hull s) \<and> (x = u *\<^sub>R a + v *\<^sub>R b)}" (is "?xyz = ?hull") |
|
533 |
apply(rule,rule hull_minimal,rule) unfolding mem_def[of _ convex] and insert_iff prefer 3 apply rule proof- |
|
534 |
fix x assume x:"x = a \<or> x \<in> s" |
|
535 |
thus "x\<in>?hull" apply rule unfolding mem_Collect_eq apply(rule_tac x=1 in exI) defer |
|
536 |
apply(rule_tac x=0 in exI) using assms hull_subset[of s convex] by auto |
|
537 |
next |
|
538 |
fix x assume "x\<in>?hull" |
|
539 |
then obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "x = u *\<^sub>R a + v *\<^sub>R b" by auto |
|
540 |
have "a\<in>convex hull insert a s" "b\<in>convex hull insert a s" |
|
541 |
using hull_mono[of s "insert a s" convex] hull_mono[of "{a}" "insert a s" convex] and obt(4) by auto |
|
542 |
thus "x\<in> convex hull insert a s" unfolding obt(5) using convex_convex_hull[of "insert a s", unfolded convex_def] |
|
543 |
apply(erule_tac x=a in ballE) apply(erule_tac x=b in ballE) apply(erule_tac x=u in allE) using obt by auto |
|
544 |
next |
|
545 |
show "convex ?hull" unfolding convex_def apply(rule,rule,rule,rule,rule,rule,rule) proof- |
|
546 |
fix x y u v assume as:"(0::real) \<le> u" "0 \<le> v" "u + v = 1" "x\<in>?hull" "y\<in>?hull" |
|
547 |
from as(4) obtain u1 v1 b1 where obt1:"u1\<ge>0" "v1\<ge>0" "u1 + v1 = 1" "b1 \<in> convex hull s" "x = u1 *\<^sub>R a + v1 *\<^sub>R b1" by auto |
|
548 |
from as(5) obtain u2 v2 b2 where obt2:"u2\<ge>0" "v2\<ge>0" "u2 + v2 = 1" "b2 \<in> convex hull s" "y = u2 *\<^sub>R a + v2 *\<^sub>R b2" by auto |
|
549 |
have *:"\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp add: algebra_simps) |
|
550 |
have "\<exists>b \<in> convex hull s. u *\<^sub>R x + v *\<^sub>R y = (u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (b - (u * u1) *\<^sub>R b - (v * u2) *\<^sub>R b)" |
|
551 |
proof(cases "u * v1 + v * v2 = 0") |
|
552 |
have *:"\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp add: algebra_simps) |
|
36071 | 553 |
case True hence **:"u * v1 = 0" "v * v2 = 0" |
554 |
using mult_nonneg_nonneg[OF `u\<ge>0` `v1\<ge>0`] mult_nonneg_nonneg[OF `v\<ge>0` `v2\<ge>0`] by arith+ |
|
33175 | 555 |
hence "u * u1 + v * u2 = 1" using as(3) obt1(3) obt2(3) by auto |
556 |
thus ?thesis unfolding obt1(5) obt2(5) * using assms hull_subset[of s convex] by(auto simp add: ** scaleR_right_distrib) |
|
557 |
next |
|
558 |
have "1 - (u * u1 + v * u2) = (u + v) - (u * u1 + v * u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps) |
|
559 |
also have "\<dots> = u * (v1 + u1 - u1) + v * (v2 + u2 - u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps) |
|
560 |
also have "\<dots> = u * v1 + v * v2" by simp finally have **:"1 - (u * u1 + v * u2) = u * v1 + v * v2" by auto |
|
561 |
case False have "0 \<le> u * v1 + v * v2" "0 \<le> u * v1" "0 \<le> u * v1 + v * v2" "0 \<le> v * v2" apply - |
|
562 |
apply(rule add_nonneg_nonneg) prefer 4 apply(rule add_nonneg_nonneg) apply(rule_tac [!] mult_nonneg_nonneg) |
|
563 |
using as(1,2) obt1(1,2) obt2(1,2) by auto |
|
564 |
thus ?thesis unfolding obt1(5) obt2(5) unfolding * and ** using False |
|
565 |
apply(rule_tac x="((u * v1) / (u * v1 + v * v2)) *\<^sub>R b1 + ((v * v2) / (u * v1 + v * v2)) *\<^sub>R b2" in bexI) defer |
|
566 |
apply(rule convex_convex_hull[of s, unfolded convex_def, rule_format]) using obt1(4) obt2(4) |
|
567 |
unfolding add_divide_distrib[THEN sym] and real_0_le_divide_iff |
|
568 |
by (auto simp add: scaleR_left_distrib scaleR_right_distrib) |
|
569 |
qed note * = this |
|
36071 | 570 |
have u1:"u1 \<le> 1" unfolding obt1(3)[THEN sym] and not_le using obt1(2) by auto |
571 |
have u2:"u2 \<le> 1" unfolding obt2(3)[THEN sym] and not_le using obt2(2) by auto |
|
33175 | 572 |
have "u1 * u + u2 * v \<le> (max u1 u2) * u + (max u1 u2) * v" apply(rule add_mono) |
573 |
apply(rule_tac [!] mult_right_mono) using as(1,2) obt1(1,2) obt2(1,2) by auto |
|
574 |
also have "\<dots> \<le> 1" unfolding mult.add_right[THEN sym] and as(3) using u1 u2 by auto |
|
575 |
finally |
|
576 |
show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x="u * u1 + v * u2" in exI) |
|
577 |
apply(rule conjI) defer apply(rule_tac x="1 - u * u1 - v * u2" in exI) unfolding Bex_def |
|
578 |
using as(1,2) obt1(1,2) obt2(1,2) * by(auto intro!: mult_nonneg_nonneg add_nonneg_nonneg simp add: algebra_simps) |
|
579 |
qed |
|
580 |
qed |
|
581 |
||
582 |
||
583 |
subsection {* Explicit expression for convex hull. *} |
|
584 |
||
585 |
lemma convex_hull_indexed: |
|
586 |
fixes s :: "'a::real_vector set" |
|
587 |
shows "convex hull s = {y. \<exists>k u x. (\<forall>i\<in>{1::nat .. k}. 0 \<le> u i \<and> x i \<in> s) \<and> |
|
588 |
(setsum u {1..k} = 1) \<and> |
|
589 |
(setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} = y)}" (is "?xyz = ?hull") |
|
590 |
apply(rule hull_unique) unfolding mem_def[of _ convex] apply(rule) defer |
|
591 |
apply(subst convex_def) apply(rule,rule,rule,rule,rule,rule,rule) |
|
592 |
proof- |
|
593 |
fix x assume "x\<in>s" |
|
594 |
thus "x \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x=1 in exI, rule_tac x="\<lambda>x. 1" in exI) by auto |
|
595 |
next |
|
596 |
fix t assume as:"s \<subseteq> t" "convex t" |
|
597 |
show "?hull \<subseteq> t" apply(rule) unfolding mem_Collect_eq apply(erule exE | erule conjE)+ proof- |
|
598 |
fix x k u y assume assm:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x" |
|
599 |
show "x\<in>t" unfolding assm(3)[THEN sym] apply(rule as(2)[unfolded convex, rule_format]) |
|
600 |
using assm(1,2) as(1) by auto qed |
|
601 |
next |
|
602 |
fix x y u v assume uv:"0\<le>u" "0\<le>v" "u+v=(1::real)" and xy:"x\<in>?hull" "y\<in>?hull" |
|
603 |
from xy obtain k1 u1 x1 where x:"\<forall>i\<in>{1::nat..k1}. 0\<le>u1 i \<and> x1 i \<in> s" "setsum u1 {Suc 0..k1} = 1" "(\<Sum>i = Suc 0..k1. u1 i *\<^sub>R x1 i) = x" by auto |
|
604 |
from xy obtain k2 u2 x2 where y:"\<forall>i\<in>{1::nat..k2}. 0\<le>u2 i \<and> x2 i \<in> s" "setsum u2 {Suc 0..k2} = 1" "(\<Sum>i = Suc 0..k2. u2 i *\<^sub>R x2 i) = y" by auto |
|
605 |
have *:"\<And>P (x1::'a) x2 s1 s2 i.(if P i then s1 else s2) *\<^sub>R (if P i then x1 else x2) = (if P i then s1 *\<^sub>R x1 else s2 *\<^sub>R x2)" |
|
606 |
"{1..k1 + k2} \<inter> {1..k1} = {1..k1}" "{1..k1 + k2} \<inter> - {1..k1} = (\<lambda>i. i + k1) ` {1..k2}" |
|
607 |
prefer 3 apply(rule,rule) unfolding image_iff apply(rule_tac x="x - k1" in bexI) by(auto simp add: not_le) |
|
608 |
have inj:"inj_on (\<lambda>i. i + k1) {1..k2}" unfolding inj_on_def by auto |
|
609 |
show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" apply(rule) |
|
610 |
apply(rule_tac x="k1 + k2" in exI, rule_tac x="\<lambda>i. if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)" in exI) |
|
611 |
apply(rule_tac x="\<lambda>i. if i \<in> {1..k1} then x1 i else x2 (i - k1)" in exI) apply(rule,rule) defer apply(rule) |
|
35577 | 612 |
unfolding * and setsum_cases[OF finite_atLeastAtMost[of 1 "k1 + k2"]] and setsum_reindex[OF inj] and o_def Collect_mem_eq |
33175 | 613 |
unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] setsum_right_distrib[THEN sym] proof- |
614 |
fix i assume i:"i \<in> {1..k1+k2}" |
|
615 |
show "0 \<le> (if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)) \<and> (if i \<in> {1..k1} then x1 i else x2 (i - k1)) \<in> s" |
|
616 |
proof(cases "i\<in>{1..k1}") |
|
617 |
case True thus ?thesis using mult_nonneg_nonneg[of u "u1 i"] and uv(1) x(1)[THEN bspec[where x=i]] by auto |
|
618 |
next def j \<equiv> "i - k1" |
|
619 |
case False with i have "j \<in> {1..k2}" unfolding j_def by auto |
|
620 |
thus ?thesis unfolding j_def[symmetric] using False |
|
621 |
using mult_nonneg_nonneg[of v "u2 j"] and uv(2) y(1)[THEN bspec[where x=j]] by auto qed |
|
622 |
qed(auto simp add: not_le x(2,3) y(2,3) uv(3)) |
|
623 |
qed |
|
624 |
||
625 |
lemma convex_hull_finite: |
|
626 |
fixes s :: "'a::real_vector set" |
|
627 |
assumes "finite s" |
|
628 |
shows "convex hull s = {y. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> |
|
629 |
setsum u s = 1 \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y}" (is "?HULL = ?set") |
|
630 |
proof(rule hull_unique, auto simp add: mem_def[of _ convex] convex_def[of ?set]) |
|
631 |
fix x assume "x\<in>s" thus " \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>x\<in>s. u x *\<^sub>R x) = x" |
|
632 |
apply(rule_tac x="\<lambda>y. if x=y then 1 else 0" in exI) apply auto |
|
633 |
unfolding setsum_delta'[OF assms] and setsum_delta''[OF assms] by auto |
|
634 |
next |
|
635 |
fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" |
|
636 |
fix ux assume ux:"\<forall>x\<in>s. 0 \<le> ux x" "setsum ux s = (1::real)" |
|
637 |
fix uy assume uy:"\<forall>x\<in>s. 0 \<le> uy x" "setsum uy s = (1::real)" |
|
638 |
{ fix x assume "x\<in>s" |
|
639 |
hence "0 \<le> u * ux x + v * uy x" using ux(1)[THEN bspec[where x=x]] uy(1)[THEN bspec[where x=x]] and uv(1,2) |
|
640 |
by (auto, metis add_nonneg_nonneg mult_nonneg_nonneg uv(1) uv(2)) } |
|
641 |
moreover have "(\<Sum>x\<in>s. u * ux x + v * uy x) = 1" |
|
642 |
unfolding setsum_addf and setsum_right_distrib[THEN sym] and ux(2) uy(2) using uv(3) by auto |
|
643 |
moreover have "(\<Sum>x\<in>s. (u * ux x + v * uy x) *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>s. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>s. uy x *\<^sub>R x)" |
|
644 |
unfolding scaleR_left_distrib and setsum_addf and scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] by auto |
|
645 |
ultimately show "\<exists>uc. (\<forall>x\<in>s. 0 \<le> uc x) \<and> setsum uc s = 1 \<and> (\<Sum>x\<in>s. uc x *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>s. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>s. uy x *\<^sub>R x)" |
|
646 |
apply(rule_tac x="\<lambda>x. u * ux x + v * uy x" in exI) by auto |
|
647 |
next |
|
648 |
fix t assume t:"s \<subseteq> t" "convex t" |
|
649 |
fix u assume u:"\<forall>x\<in>s. 0 \<le> u x" "setsum u s = (1::real)" |
|
650 |
thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> t" using t(2)[unfolded convex_explicit, THEN spec[where x=s], THEN spec[where x=u]] |
|
651 |
using assms and t(1) by auto |
|
652 |
qed |
|
653 |
||
654 |
subsection {* Another formulation from Lars Schewe. *} |
|
655 |
||
656 |
lemma setsum_constant_scaleR: |
|
657 |
fixes y :: "'a::real_vector" |
|
658 |
shows "(\<Sum>x\<in>A. y) = of_nat (card A) *\<^sub>R y" |
|
659 |
apply (cases "finite A") |
|
660 |
apply (induct set: finite) |
|
661 |
apply (simp_all add: algebra_simps) |
|
662 |
done |
|
663 |
||
664 |
lemma convex_hull_explicit: |
|
665 |
fixes p :: "'a::real_vector set" |
|
666 |
shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and> |
|
667 |
(\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}" (is "?lhs = ?rhs") |
|
668 |
proof- |
|
669 |
{ fix x assume "x\<in>?lhs" |
|
670 |
then obtain k u y where obt:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> p" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x" |
|
671 |
unfolding convex_hull_indexed by auto |
|
672 |
||
673 |
have fin:"finite {1..k}" by auto |
|
674 |
have fin':"\<And>v. finite {i \<in> {1..k}. y i = v}" by auto |
|
675 |
{ fix j assume "j\<in>{1..k}" |
|
676 |
hence "y j \<in> p" "0 \<le> setsum u {i. Suc 0 \<le> i \<and> i \<le> k \<and> y i = y j}" |
|
677 |
using obt(1)[THEN bspec[where x=j]] and obt(2) apply simp |
|
678 |
apply(rule setsum_nonneg) using obt(1) by auto } |
|
679 |
moreover |
|
680 |
have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v}) = 1" |
|
681 |
unfolding setsum_image_gen[OF fin, THEN sym] using obt(2) by auto |
|
682 |
moreover have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v} *\<^sub>R v) = x" |
|
683 |
using setsum_image_gen[OF fin, of "\<lambda>i. u i *\<^sub>R y i" y, THEN sym] |
|
684 |
unfolding scaleR_left.setsum using obt(3) by auto |
|
685 |
ultimately have "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" |
|
686 |
apply(rule_tac x="y ` {1..k}" in exI) |
|
687 |
apply(rule_tac x="\<lambda>v. setsum u {i\<in>{1..k}. y i = v}" in exI) by auto |
|
688 |
hence "x\<in>?rhs" by auto } |
|
689 |
moreover |
|
690 |
{ fix y assume "y\<in>?rhs" |
|
691 |
then obtain s u where obt:"finite s" "s \<subseteq> p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = y" by auto |
|
692 |
||
693 |
obtain f where f:"inj_on f {1..card s}" "f ` {1..card s} = s" using ex_bij_betw_nat_finite_1[OF obt(1)] unfolding bij_betw_def by auto |
|
694 |
||
695 |
{ fix i::nat assume "i\<in>{1..card s}" |
|
696 |
hence "f i \<in> s" apply(subst f(2)[THEN sym]) by auto |
|
697 |
hence "0 \<le> u (f i)" "f i \<in> p" using obt(2,3) by auto } |
|
698 |
moreover have *:"finite {1..card s}" by auto |
|
699 |
{ fix y assume "y\<in>s" |
|
700 |
then obtain i where "i\<in>{1..card s}" "f i = y" using f using image_iff[of y f "{1..card s}"] by auto |
|
701 |
hence "{x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = {i}" apply auto using f(1)[unfolded inj_on_def] apply(erule_tac x=x in ballE) by auto |
|
702 |
hence "card {x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = 1" by auto |
|
703 |
hence "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x)) = u y" |
|
704 |
"(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *\<^sub>R f x) = u y *\<^sub>R y" |
|
705 |
by (auto simp add: setsum_constant_scaleR) } |
|
706 |
||
707 |
hence "(\<Sum>x = 1..card s. u (f x)) = 1" "(\<Sum>i = 1..card s. u (f i) *\<^sub>R f i) = y" |
|
708 |
unfolding setsum_image_gen[OF *(1), of "\<lambda>x. u (f x) *\<^sub>R f x" f] and setsum_image_gen[OF *(1), of "\<lambda>x. u (f x)" f] |
|
709 |
unfolding f using setsum_cong2[of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *\<^sub>R f x)" "\<lambda>v. u v *\<^sub>R v"] |
|
710 |
using setsum_cong2 [of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x))" u] unfolding obt(4,5) by auto |
|
711 |
||
712 |
ultimately have "\<exists>k u x. (\<forall>i\<in>{1..k}. 0 \<le> u i \<and> x i \<in> p) \<and> setsum u {1..k} = 1 \<and> (\<Sum>i::nat = 1..k. u i *\<^sub>R x i) = y" |
|
713 |
apply(rule_tac x="card s" in exI) apply(rule_tac x="u \<circ> f" in exI) apply(rule_tac x=f in exI) by fastsimp |
|
714 |
hence "y \<in> ?lhs" unfolding convex_hull_indexed by auto } |
|
715 |
ultimately show ?thesis unfolding expand_set_eq by blast |
|
716 |
qed |
|
717 |
||
718 |
subsection {* A stepping theorem for that expansion. *} |
|
719 |
||
720 |
lemma convex_hull_finite_step: |
|
721 |
fixes s :: "'a::real_vector set" assumes "finite s" |
|
722 |
shows "(\<exists>u. (\<forall>x\<in>insert a s. 0 \<le> u x) \<and> setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) (insert a s) = y) |
|
723 |
\<longleftrightarrow> (\<exists>v\<ge>0. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = w - v \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y - v *\<^sub>R a)" (is "?lhs = ?rhs") |
|
724 |
proof(rule, case_tac[!] "a\<in>s") |
|
725 |
assume "a\<in>s" hence *:"insert a s = s" by auto |
|
726 |
assume ?lhs thus ?rhs unfolding * apply(rule_tac x=0 in exI) by auto |
|
727 |
next |
|
728 |
assume ?lhs then obtain u where u:"\<forall>x\<in>insert a s. 0 \<le> u x" "setsum u (insert a s) = w" "(\<Sum>x\<in>insert a s. u x *\<^sub>R x) = y" by auto |
|
729 |
assume "a\<notin>s" thus ?rhs apply(rule_tac x="u a" in exI) using u(1)[THEN bspec[where x=a]] apply simp |
|
730 |
apply(rule_tac x=u in exI) using u[unfolded setsum_clauses(2)[OF assms]] and `a\<notin>s` by auto |
|
731 |
next |
|
732 |
assume "a\<in>s" hence *:"insert a s = s" by auto |
|
733 |
have fin:"finite (insert a s)" using assms by auto |
|
734 |
assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto |
|
735 |
show ?lhs apply(rule_tac x="\<lambda>x. (if a = x then v else 0) + u x" in exI) unfolding scaleR_left_distrib and setsum_addf and setsum_delta''[OF fin] and setsum_delta'[OF fin] |
|
736 |
unfolding setsum_clauses(2)[OF assms] using uv and uv(2)[THEN bspec[where x=a]] and `a\<in>s` by auto |
|
737 |
next |
|
738 |
assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto |
|
739 |
moreover assume "a\<notin>s" moreover have "(\<Sum>x\<in>s. if a = x then v else u x) = setsum u s" "(\<Sum>x\<in>s. (if a = x then v else u x) *\<^sub>R x) = (\<Sum>x\<in>s. u x *\<^sub>R x)" |
|
740 |
apply(rule_tac setsum_cong2) defer apply(rule_tac setsum_cong2) using `a\<notin>s` by auto |
|
741 |
ultimately show ?lhs apply(rule_tac x="\<lambda>x. if a = x then v else u x" in exI) unfolding setsum_clauses(2)[OF assms] by auto |
|
742 |
qed |
|
743 |
||
744 |
subsection {* Hence some special cases. *} |
|
745 |
||
746 |
lemma convex_hull_2: |
|
747 |
"convex hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b | u v. 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1}" |
|
748 |
proof- have *:"\<And>u. (\<forall>x\<in>{a, b}. 0 \<le> u x) \<longleftrightarrow> 0 \<le> u a \<and> 0 \<le> u b" by auto have **:"finite {b}" by auto |
|
749 |
show ?thesis apply(simp add: convex_hull_finite) unfolding convex_hull_finite_step[OF **, of a 1, unfolded * conj_assoc] |
|
750 |
apply auto apply(rule_tac x=v in exI) apply(rule_tac x="1 - v" in exI) apply simp |
|
751 |
apply(rule_tac x=u in exI) apply simp apply(rule_tac x="\<lambda>x. v" in exI) by simp qed |
|
752 |
||
753 |
lemma convex_hull_2_alt: "convex hull {a,b} = {a + u *\<^sub>R (b - a) | u. 0 \<le> u \<and> u \<le> 1}" |
|
754 |
unfolding convex_hull_2 unfolding Collect_def |
|
755 |
proof(rule ext) have *:"\<And>x y ::real. x + y = 1 \<longleftrightarrow> x = 1 - y" by auto |
|
756 |
fix x show "(\<exists>v u. x = v *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> v \<and> 0 \<le> u \<and> v + u = 1) = (\<exists>u. x = a + u *\<^sub>R (b - a) \<and> 0 \<le> u \<and> u \<le> 1)" |
|
757 |
unfolding * apply auto apply(rule_tac[!] x=u in exI) by (auto simp add: algebra_simps) qed |
|
758 |
||
759 |
lemma convex_hull_3: |
|
760 |
"convex hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c | u v w. 0 \<le> u \<and> 0 \<le> v \<and> 0 \<le> w \<and> u + v + w = 1}" |
|
761 |
proof- |
|
762 |
have fin:"finite {a,b,c}" "finite {b,c}" "finite {c}" by auto |
|
763 |
have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
764 |
"\<And>x y z ::_::euclidean_space. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by (auto simp add: field_simps) |
33175 | 765 |
show ?thesis unfolding convex_hull_finite[OF fin(1)] and Collect_def and convex_hull_finite_step[OF fin(2)] and * |
766 |
unfolding convex_hull_finite_step[OF fin(3)] apply(rule ext) apply simp apply auto |
|
767 |
apply(rule_tac x=va in exI) apply (rule_tac x="u c" in exI) apply simp |
|
768 |
apply(rule_tac x="1 - v - w" in exI) apply simp apply(rule_tac x=v in exI) apply simp apply(rule_tac x="\<lambda>x. w" in exI) by simp qed |
|
769 |
||
770 |
lemma convex_hull_3_alt: |
|
771 |
"convex hull {a,b,c} = {a + u *\<^sub>R (b - a) + v *\<^sub>R (c - a) | u v. 0 \<le> u \<and> 0 \<le> v \<and> u + v \<le> 1}" |
|
772 |
proof- have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by auto |
|
773 |
show ?thesis unfolding convex_hull_3 apply (auto simp add: *) apply(rule_tac x=v in exI) apply(rule_tac x=w in exI) apply (simp add: algebra_simps) |
|
774 |
apply(rule_tac x=u in exI) apply(rule_tac x=v in exI) by (simp add: algebra_simps) qed |
|
775 |
||
776 |
subsection {* Relations among closure notions and corresponding hulls. *} |
|
777 |
||
778 |
text {* TODO: Generalize linear algebra concepts defined in @{text |
|
779 |
Euclidean_Space.thy} so that we can generalize these lemmas. *} |
|
780 |
||
781 |
lemma subspace_imp_affine: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
782 |
fixes s :: "(_::euclidean_space) set" shows "subspace s \<Longrightarrow> affine s" |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
783 |
unfolding subspace_def affine_def by auto |
33175 | 784 |
|
785 |
lemma affine_imp_convex: "affine s \<Longrightarrow> convex s" |
|
786 |
unfolding affine_def convex_def by auto |
|
787 |
||
788 |
lemma subspace_imp_convex: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
789 |
fixes s :: "(_::euclidean_space) set" shows "subspace s \<Longrightarrow> convex s" |
33175 | 790 |
using subspace_imp_affine affine_imp_convex by auto |
791 |
||
792 |
lemma affine_hull_subset_span: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
793 |
fixes s :: "(_::euclidean_space) set" shows "(affine hull s) \<subseteq> (span s)" |
36071 | 794 |
by (metis hull_minimal mem_def span_inc subspace_imp_affine subspace_span) |
33175 | 795 |
|
796 |
lemma convex_hull_subset_span: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
797 |
fixes s :: "(_::euclidean_space) set" shows "(convex hull s) \<subseteq> (span s)" |
36071 | 798 |
by (metis hull_minimal mem_def span_inc subspace_imp_convex subspace_span) |
33175 | 799 |
|
800 |
lemma convex_hull_subset_affine_hull: "(convex hull s) \<subseteq> (affine hull s)" |
|
36071 | 801 |
by (metis affine_affine_hull affine_imp_convex hull_minimal hull_subset mem_def) |
802 |
||
33175 | 803 |
|
804 |
lemma affine_dependent_imp_dependent: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
805 |
fixes s :: "(_::euclidean_space) set" shows "affine_dependent s \<Longrightarrow> dependent s" |
33175 | 806 |
unfolding affine_dependent_def dependent_def |
807 |
using affine_hull_subset_span by auto |
|
808 |
||
809 |
lemma dependent_imp_affine_dependent: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
810 |
fixes s :: "(_::euclidean_space) set" |
33175 | 811 |
assumes "dependent {x - a| x . x \<in> s}" "a \<notin> s" |
812 |
shows "affine_dependent (insert a s)" |
|
813 |
proof- |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
814 |
from assms(1)[unfolded dependent_explicit] obtain S u v |
33175 | 815 |
where obt:"finite S" "S \<subseteq> {x - a |x. x \<in> s}" "v\<in>S" "u v \<noteq> 0" "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0" by auto |
816 |
def t \<equiv> "(\<lambda>x. x + a) ` S" |
|
817 |
||
818 |
have inj:"inj_on (\<lambda>x. x + a) S" unfolding inj_on_def by auto |
|
819 |
have "0\<notin>S" using obt(2) assms(2) unfolding subset_eq by auto |
|
820 |
have fin:"finite t" and "t\<subseteq>s" unfolding t_def using obt(1,2) by auto |
|
821 |
||
822 |
hence "finite (insert a t)" and "insert a t \<subseteq> insert a s" by auto |
|
823 |
moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x)) = (\<Sum>x\<in>t. Q x)" |
|
824 |
apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto |
|
825 |
have "(\<Sum>x\<in>insert a t. if x = a then - (\<Sum>x\<in>t. u (x - a)) else u (x - a)) = 0" |
|
826 |
unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` apply auto unfolding * by auto |
|
827 |
moreover have "\<exists>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) \<noteq> 0" |
|
828 |
apply(rule_tac x="v + a" in bexI) using obt(3,4) and `0\<notin>S` unfolding t_def by auto |
|
829 |
moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x) *\<^sub>R x) = (\<Sum>x\<in>t. Q x *\<^sub>R x)" |
|
830 |
apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto |
|
831 |
have "(\<Sum>x\<in>t. u (x - a)) *\<^sub>R a = (\<Sum>v\<in>t. u (v - a) *\<^sub>R v)" |
|
832 |
unfolding scaleR_left.setsum unfolding t_def and setsum_reindex[OF inj] and o_def |
|
833 |
using obt(5) by (auto simp add: setsum_addf scaleR_right_distrib) |
|
834 |
hence "(\<Sum>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) *\<^sub>R v) = 0" |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
835 |
unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` by (auto simp add: *) |
33175 | 836 |
ultimately show ?thesis unfolding affine_dependent_explicit |
837 |
apply(rule_tac x="insert a t" in exI) by auto |
|
838 |
qed |
|
839 |
||
840 |
lemma convex_cone: |
|
841 |
"convex s \<and> cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. (x + y) \<in> s) \<and> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)" (is "?lhs = ?rhs") |
|
842 |
proof- |
|
843 |
{ fix x y assume "x\<in>s" "y\<in>s" and ?lhs |
|
844 |
hence "2 *\<^sub>R x \<in>s" "2 *\<^sub>R y \<in> s" unfolding cone_def by auto |
|
845 |
hence "x + y \<in> s" using `?lhs`[unfolded convex_def, THEN conjunct1] |
|
846 |
apply(erule_tac x="2*\<^sub>R x" in ballE) apply(erule_tac x="2*\<^sub>R y" in ballE) |
|
847 |
apply(erule_tac x="1/2" in allE) apply simp apply(erule_tac x="1/2" in allE) by auto } |
|
36362
06475a1547cb
fix lots of looping simp calls and other warnings
huffman
parents:
36341
diff
changeset
|
848 |
thus ?thesis unfolding convex_def cone_def by blast |
33175 | 849 |
qed |
850 |
||
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
851 |
lemma affine_dependent_biggerset: fixes s::"('a::euclidean_space) set" |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
852 |
assumes "finite s" "card s \<ge> DIM('a) + 2" |
33175 | 853 |
shows "affine_dependent s" |
854 |
proof- |
|
855 |
have "s\<noteq>{}" using assms by auto then obtain a where "a\<in>s" by auto |
|
856 |
have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto |
|
857 |
have "card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * |
|
858 |
apply(rule card_image) unfolding inj_on_def by auto |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
859 |
also have "\<dots> > DIM('a)" using assms(2) |
33175 | 860 |
unfolding card_Diff_singleton[OF assms(1) `a\<in>s`] by auto |
861 |
finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym]) |
|
862 |
apply(rule dependent_imp_affine_dependent) |
|
863 |
apply(rule dependent_biggerset) by auto qed |
|
864 |
||
865 |
lemma affine_dependent_biggerset_general: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
866 |
assumes "finite (s::('a::euclidean_space) set)" "card s \<ge> dim s + 2" |
33175 | 867 |
shows "affine_dependent s" |
868 |
proof- |
|
869 |
from assms(2) have "s \<noteq> {}" by auto |
|
870 |
then obtain a where "a\<in>s" by auto |
|
871 |
have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto |
|
872 |
have **:"card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * |
|
873 |
apply(rule card_image) unfolding inj_on_def by auto |
|
874 |
have "dim {x - a |x. x \<in> s - {a}} \<le> dim s" |
|
875 |
apply(rule subset_le_dim) unfolding subset_eq |
|
876 |
using `a\<in>s` by (auto simp add:span_superset span_sub) |
|
877 |
also have "\<dots> < dim s + 1" by auto |
|
878 |
also have "\<dots> \<le> card (s - {a})" using assms |
|
879 |
using card_Diff_singleton[OF assms(1) `a\<in>s`] by auto |
|
880 |
finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym]) |
|
881 |
apply(rule dependent_imp_affine_dependent) apply(rule dependent_biggerset_general) unfolding ** by auto qed |
|
882 |
||
883 |
subsection {* Caratheodory's theorem. *} |
|
884 |
||
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
885 |
lemma convex_hull_caratheodory: fixes p::"('a::euclidean_space) set" |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
886 |
shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> DIM('a) + 1 \<and> |
33175 | 887 |
(\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}" |
888 |
unfolding convex_hull_explicit expand_set_eq mem_Collect_eq |
|
889 |
proof(rule,rule) |
|
890 |
fix y let ?P = "\<lambda>n. \<exists>s u. finite s \<and> card s = n \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y" |
|
891 |
assume "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y" |
|
892 |
then obtain N where "?P N" by auto |
|
893 |
hence "\<exists>n\<le>N. (\<forall>k<n. \<not> ?P k) \<and> ?P n" apply(rule_tac ex_least_nat_le) by auto |
|
894 |
then obtain n where "?P n" and smallest:"\<forall>k<n. \<not> ?P k" by blast |
|
895 |
then obtain s u where obt:"finite s" "card s = n" "s\<subseteq>p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = y" by auto |
|
896 |
||
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
897 |
have "card s \<le> DIM('a) + 1" proof(rule ccontr, simp only: not_le) |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
898 |
assume "DIM('a) + 1 < card s" |
33175 | 899 |
hence "affine_dependent s" using affine_dependent_biggerset[OF obt(1)] by auto |
900 |
then obtain w v where wv:"setsum w s = 0" "v\<in>s" "w v \<noteq> 0" "(\<Sum>v\<in>s. w v *\<^sub>R v) = 0" |
|
901 |
using affine_dependent_explicit_finite[OF obt(1)] by auto |
|
902 |
def i \<equiv> "(\<lambda>v. (u v) / (- w v)) ` {v\<in>s. w v < 0}" def t \<equiv> "Min i" |
|
903 |
have "\<exists>x\<in>s. w x < 0" proof(rule ccontr, simp add: not_less) |
|
904 |
assume as:"\<forall>x\<in>s. 0 \<le> w x" |
|
905 |
hence "setsum w (s - {v}) \<ge> 0" apply(rule_tac setsum_nonneg) by auto |
|
906 |
hence "setsum w s > 0" unfolding setsum_diff1'[OF obt(1) `v\<in>s`] |
|
907 |
using as[THEN bspec[where x=v]] and `v\<in>s` using `w v \<noteq> 0` by auto |
|
908 |
thus False using wv(1) by auto |
|
909 |
qed hence "i\<noteq>{}" unfolding i_def by auto |
|
910 |
||
911 |
hence "t \<ge> 0" using Min_ge_iff[of i 0 ] and obt(1) unfolding t_def i_def |
|
912 |
using obt(4)[unfolded le_less] apply auto unfolding divide_le_0_iff by auto |
|
913 |
have t:"\<forall>v\<in>s. u v + t * w v \<ge> 0" proof |
|
914 |
fix v assume "v\<in>s" hence v:"0\<le>u v" using obt(4)[THEN bspec[where x=v]] by auto |
|
915 |
show"0 \<le> u v + t * w v" proof(cases "w v < 0") |
|
916 |
case False thus ?thesis apply(rule_tac add_nonneg_nonneg) |
|
917 |
using v apply simp apply(rule mult_nonneg_nonneg) using `t\<ge>0` by auto next |
|
918 |
case True hence "t \<le> u v / (- w v)" using `v\<in>s` |
|
919 |
unfolding t_def i_def apply(rule_tac Min_le) using obt(1) by auto |
|
920 |
thus ?thesis unfolding real_0_le_add_iff |
|
921 |
using pos_le_divide_eq[OF True[unfolded neg_0_less_iff_less[THEN sym]]] by auto |
|
922 |
qed qed |
|
923 |
||
924 |
obtain a where "a\<in>s" and "t = (\<lambda>v. (u v) / (- w v)) a" and "w a < 0" |
|
925 |
using Min_in[OF _ `i\<noteq>{}`] and obt(1) unfolding i_def t_def by auto |
|
926 |
hence a:"a\<in>s" "u a + t * w a = 0" by auto |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
927 |
have *:"\<And>f. setsum f (s - {a}) = setsum f s - ((f a)::'b::ab_group_add)" |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
928 |
unfolding setsum_diff1'[OF obt(1) `a\<in>s`] by auto |
33175 | 929 |
have "(\<Sum>v\<in>s. u v + t * w v) = 1" |
930 |
unfolding setsum_addf wv(1) setsum_right_distrib[THEN sym] obt(5) by auto |
|
931 |
moreover have "(\<Sum>v\<in>s. u v *\<^sub>R v + (t * w v) *\<^sub>R v) - (u a *\<^sub>R a + (t * w a) *\<^sub>R a) = y" |
|
932 |
unfolding setsum_addf obt(6) scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] wv(4) |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
933 |
using a(2) [THEN eq_neg_iff_add_eq_0 [THEN iffD2]] by simp |
33175 | 934 |
ultimately have "?P (n - 1)" apply(rule_tac x="(s - {a})" in exI) |
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
935 |
apply(rule_tac x="\<lambda>v. u v + t * w v" in exI) using obt(1-3) and t and a |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
936 |
by (auto simp add: * scaleR_left_distrib) |
33175 | 937 |
thus False using smallest[THEN spec[where x="n - 1"]] by auto qed |
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
938 |
thus "\<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> DIM('a) + 1 |
33175 | 939 |
\<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y" using obt by auto |
940 |
qed auto |
|
941 |
||
942 |
lemma caratheodory: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
943 |
"convex hull p = {x::'a::euclidean_space. \<exists>s. finite s \<and> s \<subseteq> p \<and> |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
944 |
card s \<le> DIM('a) + 1 \<and> x \<in> convex hull s}" |
33175 | 945 |
unfolding expand_set_eq apply(rule, rule) unfolding mem_Collect_eq proof- |
946 |
fix x assume "x \<in> convex hull p" |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
947 |
then obtain s u where "finite s" "s \<subseteq> p" "card s \<le> DIM('a) + 1" |
33175 | 948 |
"\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"unfolding convex_hull_caratheodory by auto |
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
949 |
thus "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> DIM('a) + 1 \<and> x \<in> convex hull s" |
33175 | 950 |
apply(rule_tac x=s in exI) using hull_subset[of s convex] |
951 |
using convex_convex_hull[unfolded convex_explicit, of s, THEN spec[where x=s], THEN spec[where x=u]] by auto |
|
952 |
next |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
953 |
fix x assume "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> DIM('a) + 1 \<and> x \<in> convex hull s" |
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
954 |
then obtain s where "finite s" "s \<subseteq> p" "card s \<le> DIM('a) + 1" "x \<in> convex hull s" by auto |
33175 | 955 |
thus "x \<in> convex hull p" using hull_mono[OF `s\<subseteq>p`] by auto |
956 |
qed |
|
957 |
||
958 |
subsection {* Openness and compactness are preserved by convex hull operation. *} |
|
959 |
||
34964 | 960 |
lemma open_convex_hull[intro]: |
33175 | 961 |
fixes s :: "'a::real_normed_vector set" |
962 |
assumes "open s" |
|
963 |
shows "open(convex hull s)" |
|
36362
06475a1547cb
fix lots of looping simp calls and other warnings
huffman
parents:
36341
diff
changeset
|
964 |
unfolding open_contains_cball convex_hull_explicit unfolding mem_Collect_eq ball_simps(10) |
33175 | 965 |
proof(rule, rule) fix a |
966 |
assume "\<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = a" |
|
967 |
then obtain t u where obt:"finite t" "t\<subseteq>s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = a" by auto |
|
968 |
||
969 |
from assms[unfolded open_contains_cball] obtain b where b:"\<forall>x\<in>s. 0 < b x \<and> cball x (b x) \<subseteq> s" |
|
970 |
using bchoice[of s "\<lambda>x e. e>0 \<and> cball x e \<subseteq> s"] by auto |
|
971 |
have "b ` t\<noteq>{}" unfolding i_def using obt by auto def i \<equiv> "b ` t" |
|
972 |
||
973 |
show "\<exists>e>0. cball a e \<subseteq> {y. \<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y}" |
|
974 |
apply(rule_tac x="Min i" in exI) unfolding subset_eq apply rule defer apply rule unfolding mem_Collect_eq |
|
975 |
proof- |
|
976 |
show "0 < Min i" unfolding i_def and Min_gr_iff[OF finite_imageI[OF obt(1)] `b \` t\<noteq>{}`] |
|
977 |
using b apply simp apply rule apply(erule_tac x=x in ballE) using `t\<subseteq>s` by auto |
|
978 |
next fix y assume "y \<in> cball a (Min i)" |
|
979 |
hence y:"norm (a - y) \<le> Min i" unfolding dist_norm[THEN sym] by auto |
|
980 |
{ fix x assume "x\<in>t" |
|
981 |
hence "Min i \<le> b x" unfolding i_def apply(rule_tac Min_le) using obt(1) by auto |
|
982 |
hence "x + (y - a) \<in> cball x (b x)" using y unfolding mem_cball dist_norm by auto |
|
983 |
moreover from `x\<in>t` have "x\<in>s" using obt(2) by auto |
|
36362
06475a1547cb
fix lots of looping simp calls and other warnings
huffman
parents:
36341
diff
changeset
|
984 |
ultimately have "x + (y - a) \<in> s" using y and b[THEN bspec[where x=x]] unfolding subset_eq by fast } |
33175 | 985 |
moreover |
986 |
have *:"inj_on (\<lambda>v. v + (y - a)) t" unfolding inj_on_def by auto |
|
987 |
have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a))) = 1" |
|
988 |
unfolding setsum_reindex[OF *] o_def using obt(4) by auto |
|
989 |
moreover have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a)) *\<^sub>R v) = y" |
|
990 |
unfolding setsum_reindex[OF *] o_def using obt(4,5) |
|
991 |
by (simp add: setsum_addf setsum_subtractf scaleR_left.setsum[THEN sym] scaleR_right_distrib) |
|
992 |
ultimately show "\<exists>sa u. finite sa \<and> (\<forall>x\<in>sa. x \<in> s) \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y" |
|
993 |
apply(rule_tac x="(\<lambda>v. v + (y - a)) ` t" in exI) apply(rule_tac x="\<lambda>v. u (v - (y - a))" in exI) |
|
994 |
using obt(1, 3) by auto |
|
995 |
qed |
|
996 |
qed |
|
997 |
||
998 |
lemma compact_convex_combinations: |
|
999 |
fixes s t :: "'a::real_normed_vector set" |
|
1000 |
assumes "compact s" "compact t" |
|
1001 |
shows "compact { (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t}" |
|
1002 |
proof- |
|
1003 |
let ?X = "{0..1} \<times> s \<times> t" |
|
1004 |
let ?h = "(\<lambda>z. (1 - fst z) *\<^sub>R fst (snd z) + fst z *\<^sub>R snd (snd z))" |
|
1005 |
have *:"{ (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t} = ?h ` ?X" |
|
1006 |
apply(rule set_ext) unfolding image_iff mem_Collect_eq |
|
1007 |
apply rule apply auto |
|
1008 |
apply (rule_tac x=u in rev_bexI, simp) |
|
1009 |
apply (erule rev_bexI, erule rev_bexI, simp) |
|
1010 |
by auto |
|
1011 |
have "continuous_on ({0..1} \<times> s \<times> t) |
|
1012 |
(\<lambda>z. (1 - fst z) *\<^sub>R fst (snd z) + fst z *\<^sub>R snd (snd z))" |
|
1013 |
unfolding continuous_on by (rule ballI) (intro tendsto_intros) |
|
1014 |
thus ?thesis unfolding * |
|
1015 |
apply (rule compact_continuous_image) |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
1016 |
apply (intro compact_Times compact_interval assms) |
33175 | 1017 |
done |
1018 |
qed |
|
1019 |
||
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
1020 |
lemma compact_convex_hull: fixes s::"('a::euclidean_space) set" |
33175 | 1021 |
assumes "compact s" shows "compact(convex hull s)" |
1022 |
proof(cases "s={}") |
|
1023 |
case True thus ?thesis using compact_empty by simp |
|
1024 |
next |
|
1025 |
case False then obtain w where "w\<in>s" by auto |
|
1026 |
show ?thesis unfolding caratheodory[of s] |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
1027 |
proof(induct ("DIM('a) + 1")) |
33175 | 1028 |
have *:"{x.\<exists>sa. finite sa \<and> sa \<subseteq> s \<and> card sa \<le> 0 \<and> x \<in> convex hull sa} = {}" |
36362
06475a1547cb
fix lots of looping simp calls and other warnings
huffman
parents:
36341
diff
changeset
|
1029 |
using compact_empty by auto |
33175 | 1030 |
case 0 thus ?case unfolding * by simp |
1031 |
next |
|
1032 |
case (Suc n) |
|
1033 |
show ?case proof(cases "n=0") |
|
1034 |
case True have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} = s" |
|
1035 |
unfolding expand_set_eq and mem_Collect_eq proof(rule, rule) |
|
1036 |
fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" |
|
1037 |
then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto |
|
1038 |
show "x\<in>s" proof(cases "card t = 0") |
|
36362
06475a1547cb
fix lots of looping simp calls and other warnings
huffman
parents:
36341
diff
changeset
|
1039 |
case True thus ?thesis using t(4) unfolding card_0_eq[OF t(1)] by simp |
33175 | 1040 |
next |
1041 |
case False hence "card t = Suc 0" using t(3) `n=0` by auto |
|
1042 |
then obtain a where "t = {a}" unfolding card_Suc_eq by auto |
|
36362
06475a1547cb
fix lots of looping simp calls and other warnings
huffman
parents:
36341
diff
changeset
|
1043 |
thus ?thesis using t(2,4) by simp |
33175 | 1044 |
qed |
1045 |
next |
|
1046 |
fix x assume "x\<in>s" |
|
1047 |
thus "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" |
|
1048 |
apply(rule_tac x="{x}" in exI) unfolding convex_hull_singleton by auto |
|
1049 |
qed thus ?thesis using assms by simp |
|
1050 |
next |
|
1051 |
case False have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} = |
|
1052 |
{ (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. |
|
1053 |
0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> {x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> x \<in> convex hull t}}" |
|
1054 |
unfolding expand_set_eq and mem_Collect_eq proof(rule,rule) |
|
1055 |
fix x assume "\<exists>u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \<and> |
|
1056 |
0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)" |
|
1057 |
then obtain u v c t where obt:"x = (1 - c) *\<^sub>R u + c *\<^sub>R v" |
|
1058 |
"0 \<le> c \<and> c \<le> 1" "u \<in> s" "finite t" "t \<subseteq> s" "card t \<le> n" "v \<in> convex hull t" by auto |
|
1059 |
moreover have "(1 - c) *\<^sub>R u + c *\<^sub>R v \<in> convex hull insert u t" |
|
1060 |
apply(rule mem_convex) using obt(2) and convex_convex_hull and hull_subset[of "insert u t" convex] |
|
1061 |
using obt(7) and hull_mono[of t "insert u t"] by auto |
|
1062 |
ultimately show "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" |
|
1063 |
apply(rule_tac x="insert u t" in exI) by (auto simp add: card_insert_if) |
|
1064 |
next |
|
1065 |
fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" |
|
1066 |
then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto |
|
1067 |
let ?P = "\<exists>u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \<and> |
|
1068 |
0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)" |
|
1069 |
show ?P proof(cases "card t = Suc n") |
|
1070 |
case False hence "card t \<le> n" using t(3) by auto |
|
1071 |
thus ?P apply(rule_tac x=w in exI, rule_tac x=x in exI, rule_tac x=1 in exI) using `w\<in>s` and t |
|
1072 |
by(auto intro!: exI[where x=t]) |
|
1073 |
next |
|
1074 |
case True then obtain a u where au:"t = insert a u" "a\<notin>u" apply(drule_tac card_eq_SucD) by auto |
|
1075 |
show ?P proof(cases "u={}") |
|
1076 |
case True hence "x=a" using t(4)[unfolded au] by auto |
|
1077 |
show ?P unfolding `x=a` apply(rule_tac x=a in exI, rule_tac x=a in exI, rule_tac x=1 in exI) |
|
36362
06475a1547cb
fix lots of looping simp calls and other warnings
huffman
parents:
36341
diff
changeset
|
1078 |
using t and `n\<noteq>0` unfolding au by(auto intro!: exI[where x="{a}"]) |
33175 | 1079 |
next |
1080 |
case False obtain ux vx b where obt:"ux\<ge>0" "vx\<ge>0" "ux + vx = 1" "b \<in> convex hull u" "x = ux *\<^sub>R a + vx *\<^sub>R b" |
|
1081 |
using t(4)[unfolded au convex_hull_insert[OF False]] by auto |
|
1082 |
have *:"1 - vx = ux" using obt(3) by auto |
|
1083 |
show ?P apply(rule_tac x=a in exI, rule_tac x=b in exI, rule_tac x=vx in exI) |
|
1084 |
using obt and t(1-3) unfolding au and * using card_insert_disjoint[OF _ au(2)] |
|
1085 |
by(auto intro!: exI[where x=u]) |
|
1086 |
qed |
|
1087 |
qed |
|
1088 |
qed |
|
1089 |
thus ?thesis using compact_convex_combinations[OF assms Suc] by simp |
|
1090 |
qed |
|
36362
06475a1547cb
fix lots of looping simp calls and other warnings
huffman
parents:
36341
diff
changeset
|
1091 |
qed |
33175 | 1092 |
qed |
1093 |
||
1094 |
lemma finite_imp_compact_convex_hull: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
1095 |
fixes s :: "('a::euclidean_space) set" |
33175 | 1096 |
shows "finite s \<Longrightarrow> compact(convex hull s)" |
36071 | 1097 |
by (metis compact_convex_hull finite_imp_compact) |
33175 | 1098 |
|
1099 |
subsection {* Extremal points of a simplex are some vertices. *} |
|
1100 |
||
1101 |
lemma dist_increases_online: |
|
1102 |
fixes a b d :: "'a::real_inner" |
|
1103 |
assumes "d \<noteq> 0" |
|
1104 |
shows "dist a (b + d) > dist a b \<or> dist a (b - d) > dist a b" |
|
1105 |
proof(cases "inner a d - inner b d > 0") |
|
1106 |
case True hence "0 < inner d d + (inner a d * 2 - inner b d * 2)" |
|
1107 |
apply(rule_tac add_pos_pos) using assms by auto |
|
1108 |
thus ?thesis apply(rule_tac disjI2) unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff |
|
1109 |
by (simp add: algebra_simps inner_commute) |
|
1110 |
next |
|
1111 |
case False hence "0 < inner d d + (inner b d * 2 - inner a d * 2)" |
|
1112 |
apply(rule_tac add_pos_nonneg) using assms by auto |
|
1113 |
thus ?thesis apply(rule_tac disjI1) unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff |
|
1114 |
by (simp add: algebra_simps inner_commute) |
|
1115 |
qed |
|
1116 |
||
1117 |
lemma norm_increases_online: |
|
1118 |
fixes d :: "'a::real_inner" |
|
1119 |
shows "d \<noteq> 0 \<Longrightarrow> norm(a + d) > norm a \<or> norm(a - d) > norm a" |
|
1120 |
using dist_increases_online[of d a 0] unfolding dist_norm by auto |
|
1121 |
||
1122 |
lemma simplex_furthest_lt: |
|
1123 |
fixes s::"'a::real_inner set" assumes "finite s" |
|
1124 |
shows "\<forall>x \<in> (convex hull s). x \<notin> s \<longrightarrow> (\<exists>y\<in>(convex hull s). norm(x - a) < norm(y - a))" |
|
1125 |
proof(induct_tac rule: finite_induct[of s]) |
|
1126 |
fix x s assume as:"finite s" "x\<notin>s" "\<forall>x\<in>convex hull s. x \<notin> s \<longrightarrow> (\<exists>y\<in>convex hull s. norm (x - a) < norm (y - a))" |
|
1127 |
show "\<forall>xa\<in>convex hull insert x s. xa \<notin> insert x s \<longrightarrow> (\<exists>y\<in>convex hull insert x s. norm (xa - a) < norm (y - a))" |
|
1128 |
proof(rule,rule,cases "s = {}") |
|
1129 |
case False fix y assume y:"y \<in> convex hull insert x s" "y \<notin> insert x s" |
|
1130 |
obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "y = u *\<^sub>R x + v *\<^sub>R b" |
|
1131 |
using y(1)[unfolded convex_hull_insert[OF False]] by auto |
|
1132 |
show "\<exists>z\<in>convex hull insert x s. norm (y - a) < norm (z - a)" |
|
1133 |
proof(cases "y\<in>convex hull s") |
|
1134 |
case True then obtain z where "z\<in>convex hull s" "norm (y - a) < norm (z - a)" |
|
1135 |
using as(3)[THEN bspec[where x=y]] and y(2) by auto |
|
1136 |
thus ?thesis apply(rule_tac x=z in bexI) unfolding convex_hull_insert[OF False] by auto |
|
1137 |
next |
|
1138 |
case False show ?thesis using obt(3) proof(cases "u=0", case_tac[!] "v=0") |
|
1139 |
assume "u=0" "v\<noteq>0" hence "y = b" using obt by auto |
|
1140 |
thus ?thesis using False and obt(4) by auto |
|
1141 |
next |
|
1142 |
assume "u\<noteq>0" "v=0" hence "y = x" using obt by auto |
|
1143 |
thus ?thesis using y(2) by auto |
|
1144 |
next |
|
1145 |
assume "u\<noteq>0" "v\<noteq>0" |
|
1146 |
then obtain w where w:"w>0" "w<u" "w<v" using real_lbound_gt_zero[of u v] and obt(1,2) by auto |
|
1147 |
have "x\<noteq>b" proof(rule ccontr) |
|
1148 |
assume "\<not> x\<noteq>b" hence "y=b" unfolding obt(5) |
|
1149 |
using obt(3) by(auto simp add: scaleR_left_distrib[THEN sym]) |
|
1150 |
thus False using obt(4) and False by simp qed |
|
1151 |
hence *:"w *\<^sub>R (x - b) \<noteq> 0" using w(1) by auto |
|
1152 |
show ?thesis using dist_increases_online[OF *, of a y] |
|
1153 |
proof(erule_tac disjE) |
|
1154 |
assume "dist a y < dist a (y + w *\<^sub>R (x - b))" |
|
1155 |
hence "norm (y - a) < norm ((u + w) *\<^sub>R x + (v - w) *\<^sub>R b - a)" |
|
1156 |
unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: algebra_simps) |
|
1157 |
moreover have "(u + w) *\<^sub>R x + (v - w) *\<^sub>R b \<in> convex hull insert x s" |
|
1158 |
unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq |
|
1159 |
apply(rule_tac x="u + w" in exI) apply rule defer |
|
1160 |
apply(rule_tac x="v - w" in exI) using `u\<ge>0` and w and obt(3,4) by auto |
|
1161 |
ultimately show ?thesis by auto |
|
1162 |
next |
|
1163 |
assume "dist a y < dist a (y - w *\<^sub>R (x - b))" |
|
1164 |
hence "norm (y - a) < norm ((u - w) *\<^sub>R x + (v + w) *\<^sub>R b - a)" |
|
1165 |
unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: algebra_simps) |
|
1166 |
moreover have "(u - w) *\<^sub>R x + (v + w) *\<^sub>R b \<in> convex hull insert x s" |
|
1167 |
unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq |
|
1168 |
apply(rule_tac x="u - w" in exI) apply rule defer |
|
1169 |
apply(rule_tac x="v + w" in exI) using `u\<ge>0` and w and obt(3,4) by auto |
|
1170 |
ultimately show ?thesis by auto |
|
1171 |
qed |
|
1172 |
qed auto |
|
1173 |
qed |
|
1174 |
qed auto |
|
1175 |
qed (auto simp add: assms) |
|
1176 |
||
1177 |
lemma simplex_furthest_le: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
1178 |
fixes s :: "('a::euclidean_space) set" |
33175 | 1179 |
assumes "finite s" "s \<noteq> {}" |
1180 |
shows "\<exists>y\<in>s. \<forall>x\<in>(convex hull s). norm(x - a) \<le> norm(y - a)" |
|
1181 |
proof- |
|
1182 |
have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto |
|
1183 |
then obtain x where x:"x\<in>convex hull s" "\<forall>y\<in>convex hull s. norm (y - a) \<le> norm (x - a)" |
|
1184 |
using distance_attains_sup[OF finite_imp_compact_convex_hull[OF assms(1)], of a] |
|
1185 |
unfolding dist_commute[of a] unfolding dist_norm by auto |
|
1186 |
thus ?thesis proof(cases "x\<in>s") |
|
1187 |
case False then obtain y where "y\<in>convex hull s" "norm (x - a) < norm (y - a)" |
|
1188 |
using simplex_furthest_lt[OF assms(1), THEN bspec[where x=x]] and x(1) by auto |
|
1189 |
thus ?thesis using x(2)[THEN bspec[where x=y]] by auto |
|
1190 |
qed auto |
|
1191 |
qed |
|
1192 |
||
1193 |
lemma simplex_furthest_le_exists: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
1194 |
fixes s :: "('a::euclidean_space) set" |
33175 | 1195 |
shows "finite s \<Longrightarrow> (\<forall>x\<in>(convex hull s). \<exists>y\<in>s. norm(x - a) \<le> norm(y - a))" |
1196 |
using simplex_furthest_le[of s] by (cases "s={}")auto |
|
1197 |
||
1198 |
lemma simplex_extremal_le: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
1199 |
fixes s :: "('a::euclidean_space) set" |
33175 | 1200 |
assumes "finite s" "s \<noteq> {}" |
1201 |
shows "\<exists>u\<in>s. \<exists>v\<in>s. \<forall>x\<in>convex hull s. \<forall>y \<in> convex hull s. norm(x - y) \<le> norm(u - v)" |
|
1202 |
proof- |
|
1203 |
have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto |
|
1204 |
then obtain u v where obt:"u\<in>convex hull s" "v\<in>convex hull s" |
|
1205 |
"\<forall>x\<in>convex hull s. \<forall>y\<in>convex hull s. norm (x - y) \<le> norm (u - v)" |
|
1206 |
using compact_sup_maxdistance[OF finite_imp_compact_convex_hull[OF assms(1)]] by auto |
|
1207 |
thus ?thesis proof(cases "u\<notin>s \<or> v\<notin>s", erule_tac disjE) |
|
1208 |
assume "u\<notin>s" then obtain y where "y\<in>convex hull s" "norm (u - v) < norm (y - v)" |
|
1209 |
using simplex_furthest_lt[OF assms(1), THEN bspec[where x=u]] and obt(1) by auto |
|
1210 |
thus ?thesis using obt(3)[THEN bspec[where x=y], THEN bspec[where x=v]] and obt(2) by auto |
|
1211 |
next |
|
1212 |
assume "v\<notin>s" then obtain y where "y\<in>convex hull s" "norm (v - u) < norm (y - u)" |
|
1213 |
using simplex_furthest_lt[OF assms(1), THEN bspec[where x=v]] and obt(2) by auto |
|
1214 |
thus ?thesis using obt(3)[THEN bspec[where x=u], THEN bspec[where x=y]] and obt(1) |
|
1215 |
by (auto simp add: norm_minus_commute) |
|
1216 |
qed auto |
|
1217 |
qed |
|
1218 |
||
1219 |
lemma simplex_extremal_le_exists: |
|
37489
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
36844
diff
changeset
|
1220 |
fixes s :: "('a::euclidean_space) set" |
33175 | 1221 |
shows "finite s \<Longrightarrow> x \<in> convex hull s \<Longrightarrow> y \<in> convex hull s |
1222 |
\<Longrightarrow> (\<exists>u\<in>s. \<exists>v\<in>s. norm(x - y) \<le> norm(u - v))" |
|
1223 |
using convex_hull_empty simplex_extremal_le[of s] by(cases "s={}")auto |
|
1224 |
||
1225 |
subsection {* Closest point of a convex set is unique, with a continuous projection. *} |
|
1226 |
||
1227 |
definition |
|
36337 | 1228 |
closest_point :: "'a::{real_inner,heine_borel} set \<Rightarrow> 'a \<Rightarrow> 'a" where |
33175 | 1229 |
"closest_point s a = (SOME x. x \<in> s \<and> (\<forall>y\<in>s. dist a x \<le> dist a y))" |
1230 |
||
1231 |
lemma closest_point_exists: |
|
1232 |
assumes "closed s" "s \<noteq> {}" |
|
1233 |
shows "closest_point s a \<in> s" "\<forall>y\<in>s. dist a (closest_point s a) \<le> dist a y" |
|
1234 |
unfolding closest_point_def apply(rule_tac[!] someI2_ex) |
|
1235 |
using distance_attains_inf[OF assms(1,2), of a] by auto |
|
1236 |
||
1237 |
lemma closest_point_in_set: |
|
1238 |
"closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s a) \<in> s" |
|
1239 |
by(meson closest_point_exists) |
|
1240 |
||
1241 |
lemma closest_point_le: |
|
1242 |
"closed s \<Longrightarrow> x \<in> s \<Longrightarrow> dist a (closest_point s a) \<le> dist a x" |
|
1243 |
using closest_point_exists[of s] by auto |
|
1244 |
||
1245 |
lemma closest_point_self: |
|
1246 |
assumes "x \<in> s" shows "closest_point s x = x" |
|
1247 |
unfolding closest_point_def apply(rule some1_equality, rule ex1I[of _ x]) |
|
|