doc-src/TutorialI/CTL/CTL.thy
author nipkow
Wed, 11 Oct 2000 09:09:06 +0200
changeset 10186 499637e8f2c6
parent 10178 aecb5bf6f76f
child 10192 4c2584e23ade
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
     1
(*<*)theory CTL = Base:;(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     2
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
     3
subsection{*Computation tree logic---CTL*};
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     4
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
     5
text{*
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
     6
The semantics of PDL only needs transitive reflexive closure.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
     7
Let us now be a bit more adventurous and introduce a new temporal operator
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
     8
that goes beyond transitive reflexive closure. We extend the datatype
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
     9
@{text formula} by a new constructor
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    10
*};
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    11
(*<*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    12
datatype formula = Atom atom
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    13
                  | Neg formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    14
                  | And formula formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    15
                  | AX formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    16
                  | EF formula(*>*)
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    17
                  | AF formula;
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    18
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    19
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    20
which stands for "always in the future":
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    21
on all paths, at some point the formula holds. Formalizing the notion of an infinite path is easy
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    22
in HOL: it is simply a function from @{typ nat} to @{typ state}.
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    23
*};
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    24
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    25
constdefs Paths :: "state \<Rightarrow> (nat \<Rightarrow> state)set"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    26
         "Paths s \<equiv> {p. s = p 0 \<and> (\<forall>i. (p i, p(i+1)) \<in> M)}";
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    27
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    28
text{*\noindent
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    29
This definition allows a very succinct statement of the semantics of @{term AF}:
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    30
\footnote{Do not be mislead: neither datatypes nor recursive functions can be
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    31
extended by new constructors or equations. This is just a trick of the
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    32
presentation. In reality one has to define a new datatype and a new function.}
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    33
*};
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    34
(*<*)
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    35
consts valid :: "state \<Rightarrow> formula \<Rightarrow> bool" ("(_ \<Turnstile> _)" [80,80] 80);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    36
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    37
primrec
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10000
diff changeset
    38
"s \<Turnstile> Atom a  =  (a \<in> L s)"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    39
"s \<Turnstile> Neg f   = (~(s \<Turnstile> f))"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    40
"s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    41
"s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    42
"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M^* \<and> t \<Turnstile> f)"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    43
(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    44
"s \<Turnstile> AF f    = (\<forall>p \<in> Paths s. \<exists>i. p i \<Turnstile> f)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    45
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    46
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    47
Model checking @{term AF} involves a function which
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    48
is just complicated enough to warrant a separate definition:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    49
*};
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    50
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    51
constdefs af :: "state set \<Rightarrow> state set \<Rightarrow> state set"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    52
         "af A T \<equiv> A \<union> {s. \<forall>t. (s, t) \<in> M \<longrightarrow> t \<in> T}";
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    53
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    54
text{*\noindent
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    55
Now we define @{term "mc(AF f)"} as the least set @{term T} that contains
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    56
@{term"mc f"} and all states all of whose direct successors are in @{term T}:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    57
*};
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    58
(*<*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    59
consts mc :: "formula \<Rightarrow> state set";
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    60
primrec
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10000
diff changeset
    61
"mc(Atom a)  = {s. a \<in> L s}"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    62
"mc(Neg f)   = -mc f"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    63
"mc(And f g) = mc f \<inter> mc g"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    64
"mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    65
"mc(EF f)    = lfp(\<lambda>T. mc f \<union> M^-1 ^^ T)"(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    66
"mc(AF f)    = lfp(af(mc f))";
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    67
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    68
text{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    69
Because @{term af} is monotone in its second argument (and also its first, but
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    70
that is irrelevant) @{term"af A"} has a least fixpoint:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    71
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    72
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    73
lemma mono_af: "mono(af A)";
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    74
apply(simp add: mono_def af_def);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    75
apply blast;
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    76
done
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    77
(*<*)
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    78
lemma mono_ef: "mono(\<lambda>T. A \<union> M^-1 ^^ T)";
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    79
apply(rule monoI);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    80
by(blast);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    81
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    82
lemma EF_lemma:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    83
  "lfp(\<lambda>T. A \<union> M^-1 ^^ T) = {s. \<exists>t. (s,t) \<in> M^* \<and> t \<in> A}";
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    84
apply(rule equalityI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    85
 apply(rule subsetI);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    86
 apply(simp);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    87
 apply(erule Lfp.induct);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    88
  apply(rule mono_ef);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    89
 apply(simp);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    90
 apply(blast intro: r_into_rtrancl rtrancl_trans);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    91
apply(rule subsetI);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    92
apply(simp, clarify);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    93
apply(erule converse_rtrancl_induct);
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
    94
 apply(rule ssubst[OF lfp_unfold[OF mono_ef]]);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    95
 apply(blast);
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
    96
apply(rule ssubst[OF lfp_unfold[OF mono_ef]]);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    97
by(blast);
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    98
(*>*)
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    99
text{*
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   100
All we need to prove now is that @{term mc} and @{text"\<Turnstile>"}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   101
agree for @{term AF}, i.e.\ that @{prop"mc(AF f) = {s. s \<Turnstile>
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   102
AF f}"}. This time we prove the two containments separately, starting
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   103
with the easy one:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   104
*};
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   105
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   106
theorem AF_lemma1:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   107
  "lfp(af A) \<subseteq> {s. \<forall> p \<in> Paths s. \<exists> i. p i \<in> A}";
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   108
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   109
txt{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   110
The proof is again pointwise. Fixpoint induction on the premise @{prop"s \<in> lfp(af A)"} followed
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   111
by simplification and clarification
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   112
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   113
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   114
apply(rule subsetI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   115
apply(erule Lfp.induct[OF _ mono_af]);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   116
apply(clarsimp simp add: af_def Paths_def);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   117
(*ML"Pretty.setmargin 70";
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   118
pr(latex xsymbols symbols);*)
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   119
txt{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   120
leads to the following somewhat involved proof state
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   121
\begin{isabelle}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   122
\ \isadigit{1}{\isachardot}\ {\isasymAnd}p{\isachardot}\ {\isasymlbrakk}p\ \isadigit{0}\ {\isasymin}\ A\ {\isasymor}\isanewline
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   123
\ \ \ \ \ \ \ \ \ {\isacharparenleft}{\isasymforall}t{\isachardot}\ {\isacharparenleft}p\ \isadigit{0}{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\ {\isasymlongrightarrow}\isanewline
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   124
\ \ \ \ \ \ \ \ \ \ \ \ \ \ t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}\ {\isasymand}\isanewline
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   125
\ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharparenleft}{\isasymforall}p{\isachardot}\ t\ {\isacharequal}\ p\ \isadigit{0}\ {\isasymand}\ {\isacharparenleft}{\isasymforall}i{\isachardot}\ {\isacharparenleft}p\ i{\isacharcomma}\ p\ {\isacharparenleft}Suc\ i{\isacharparenright}{\isacharparenright}\ {\isasymin}\ M{\isacharparenright}\ {\isasymlongrightarrow}\isanewline
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   126
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharparenleft}{\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A{\isacharparenright}{\isacharparenright}{\isacharparenright}{\isacharsemicolon}\isanewline
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   127
\ \ \ \ \ \ \ \ \ \ \ {\isasymforall}i{\isachardot}\ {\isacharparenleft}p\ i{\isacharcomma}\ p\ {\isacharparenleft}Suc\ i{\isacharparenright}{\isacharparenright}\ {\isasymin}\ M{\isasymrbrakk}\isanewline
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   128
\ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   129
\end{isabelle}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   130
Now we eliminate the disjunction. The case @{prop"p 0 \<in> A"} is trivial:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   131
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   132
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   133
apply(erule disjE);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   134
 apply(blast);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   135
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   136
txt{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   137
In the other case we set @{term t} to @{term"p 1"} and simplify matters:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   138
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   139
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   140
apply(erule_tac x = "p 1" in allE);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   141
apply(clarsimp);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   142
(*ML"Pretty.setmargin 70";
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   143
pr(latex xsymbols symbols);*)
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   144
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   145
txt{*
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   146
\begin{isabelle}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   147
\ \isadigit{1}{\isachardot}\ {\isasymAnd}p{\isachardot}\ {\isasymlbrakk}{\isasymforall}i{\isachardot}\ {\isacharparenleft}p\ i{\isacharcomma}\ p\ {\isacharparenleft}Suc\ i{\isacharparenright}{\isacharparenright}\ {\isasymin}\ M{\isacharsemicolon}\ p\ \isadigit{1}\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}{\isacharsemicolon}\isanewline
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   148
\ \ \ \ \ \ \ \ \ \ \ {\isasymforall}pa{\isachardot}\ p\ \isadigit{1}\ {\isacharequal}\ pa\ \isadigit{0}\ {\isasymand}\ {\isacharparenleft}{\isasymforall}i{\isachardot}\ {\isacharparenleft}pa\ i{\isacharcomma}\ pa\ {\isacharparenleft}Suc\ i{\isacharparenright}{\isacharparenright}\ {\isasymin}\ M{\isacharparenright}\ {\isasymlongrightarrow}\isanewline
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   149
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharparenleft}{\isasymexists}i{\isachardot}\ pa\ i\ {\isasymin}\ A{\isacharparenright}{\isasymrbrakk}\isanewline
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   150
\ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   151
\end{isabelle}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   152
It merely remains to set @{term pa} to @{term"\<lambda>i. p(i+1)"}, i.e.\ @{term p} without its
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   153
first element. The rest is practically automatic:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   154
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   155
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   156
apply(erule_tac x = "\<lambda>i. p(i+1)" in allE);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   157
apply simp;
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   158
apply blast;
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   159
done;
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   160
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   161
text{*
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   162
The opposite containment is proved by contradiction: if some state
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   163
@{term s} is not in @{term"lfp(af A)"}, then we can construct an
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   164
infinite @{term A}-avoiding path starting from @{term s}. The reason is
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   165
that by unfolding @{term lfp} we find that if @{term s} is not in
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   166
@{term"lfp(af A)"}, then @{term s} is not in @{term A} and there is a
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   167
direct successor of @{term s} that is again not in @{term"lfp(af
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   168
A)"}. Iterating this argument yields the promised infinite
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   169
@{term A}-avoiding path. Let us formalize this sketch.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   170
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   171
The one-step argument in the above sketch
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   172
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   173
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   174
lemma not_in_lfp_afD:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   175
 "s \<notin> lfp(af A) \<Longrightarrow> s \<notin> A \<and> (\<exists> t. (s,t)\<in>M \<and> t \<notin> lfp(af A))";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   176
apply(erule swap);
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   177
apply(rule ssubst[OF lfp_unfold[OF mono_af]]);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   178
apply(simp add:af_def);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   179
done;
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   180
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   181
text{*\noindent
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   182
is proved by a variant of contraposition (@{thm[source]swap}:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   183
@{thm swap[no_vars]}), i.e.\ assuming the negation of the conclusion
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   184
and proving @{term"s : lfp(af A)"}. Unfolding @{term lfp} once and
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   185
simplifying with the definition of @{term af} finishes the proof.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   186
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   187
Now we iterate this process. The following construction of the desired
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   188
path is parameterized by a predicate @{term P} that should hold along the path:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   189
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   190
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   191
consts path :: "state \<Rightarrow> (state \<Rightarrow> bool) \<Rightarrow> (nat \<Rightarrow> state)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   192
primrec
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   193
"path s P 0 = s"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   194
"path s P (Suc n) = (SOME t. (path s P n,t) \<in> M \<and> P t)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   195
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   196
text{*\noindent
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   197
Element @{term"n+1"} on this path is some arbitrary successor
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   198
@{term t} of element @{term n} such that @{term"P t"} holds.  Remember that @{text"SOME t. R t"}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   199
is some arbitrary but fixed @{term t} such that @{prop"R t"} holds (see \S\ref{sec-SOME}). Of
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   200
course, such a @{term t} may in general not exist, but that is of no
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   201
concern to us since we will only use @{term path} in such cases where a
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   202
suitable @{term t} does exist.
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   203
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   204
Let us show that if each state @{term s} that satisfies @{term P}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   205
has a successor that again satisfies @{term P}, then there exists an infinite @{term P}-path:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   206
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   207
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   208
lemma infinity_lemma:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   209
  "\<lbrakk> P s; \<forall>s. P s \<longrightarrow> (\<exists> t. (s,t) \<in> M \<and> P t) \<rbrakk> \<Longrightarrow>
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   210
   \<exists>p\<in>Paths s. \<forall>i. P(p i)";
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   211
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   212
txt{*\noindent
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   213
First we rephrase the conclusion slightly because we need to prove both the path property
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   214
and the fact that @{term P} holds simultaneously:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   215
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   216
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   217
apply(subgoal_tac "\<exists>p. s = p 0 \<and> (\<forall>i. (p i,p(i+1)) \<in> M \<and> P(p i))");
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   218
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   219
txt{*\noindent
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   220
From this proposition the original goal follows easily:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   221
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   222
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   223
 apply(simp add:Paths_def, blast);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   224
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   225
txt{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   226
The new subgoal is proved by providing the witness @{term "path s P"} for @{term p}:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   227
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   228
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   229
apply(rule_tac x = "path s P" in exI);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   230
apply(clarsimp);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   231
(*ML"Pretty.setmargin 70";
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   232
pr(latex xsymbols symbols);*)
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   233
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   234
txt{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   235
After simplification and clarification the subgoal has the following compact form
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   236
\begin{isabelle}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   237
\ \isadigit{1}{\isachardot}\ {\isasymAnd}i{\isachardot}\ {\isasymlbrakk}P\ s{\isacharsemicolon}\ {\isasymforall}s{\isachardot}\ P\ s\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ P\ t{\isacharparenright}{\isasymrbrakk}\isanewline
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   238
\ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isacharparenleft}path\ s\ P\ i{\isacharcomma}\ SOME\ t{\isachardot}\ {\isacharparenleft}path\ s\ P\ i{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ P\ t{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\isanewline
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   239
\ \ \ \ \ \ \ \ \ \ \ \ P\ {\isacharparenleft}path\ s\ P\ i{\isacharparenright}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   240
\end{isabelle}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   241
and invites a proof by induction on @{term i}:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   242
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   243
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   244
apply(induct_tac i);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   245
 apply(simp);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   246
(*ML"Pretty.setmargin 70";
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   247
pr(latex xsymbols symbols);*)
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   248
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   249
txt{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   250
After simplification the base case boils down to
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   251
\begin{isabelle}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   252
\ \isadigit{1}{\isachardot}\ {\isasymlbrakk}P\ s{\isacharsemicolon}\ {\isasymforall}s{\isachardot}\ P\ s\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ P\ t{\isacharparenright}{\isasymrbrakk}\isanewline
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   253
\ \ \ \ {\isasymLongrightarrow}\ {\isacharparenleft}s{\isacharcomma}\ SOME\ t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ P\ t{\isacharparenright}\ {\isasymin}\ M
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   254
\end{isabelle}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   255
The conclusion looks exceedingly trivial: after all, @{term t} is chosen such that @{prop"(s,t):M"}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   256
holds. However, we first have to show that such a @{term t} actually exists! This reasoning
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   257
is embodied in the theorem @{thm[source]someI2_ex}:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   258
@{thm[display,eta_contract=false]someI2_ex}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   259
When we apply this theorem as an introduction rule, @{text"?P x"} becomes
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   260
@{prop"(s, x) : M & P x"} and @{text"?Q x"} becomes @{prop"(s,x) : M"} and we have to prove
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   261
two subgoals: @{prop"EX a. (s, a) : M & P a"}, which follows from the assumptions, and
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   262
@{prop"(s, x) : M & P x ==> (s,x) : M"}, which is trivial. Thus it is not surprising that
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   263
@{text fast} can prove the base case quickly:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   264
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   265
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   266
 apply(fast intro:someI2_ex);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   267
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   268
txt{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   269
What is worth noting here is that we have used @{text fast} rather than @{text blast}.
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   270
The reason is that @{text blast} would fail because it cannot cope with @{thm[source]someI2_ex}:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   271
unifying its conclusion with the current subgoal is nontrivial because of the nested schematic
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   272
variables. For efficiency reasons @{text blast} does not even attempt such unifications.
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   273
Although @{text fast} can in principle cope with complicated unification problems, in practice
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   274
the number of unifiers arising is often prohibitive and the offending rule may need to be applied
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   275
explicitly rather than automatically.
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   276
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   277
The induction step is similar, but more involved, because now we face nested occurrences of
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   278
@{text SOME}. We merely show the proof commands but do not describe th details:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   279
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   280
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   281
apply(simp);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   282
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   283
 apply(blast);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   284
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   285
 apply(blast);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   286
apply(blast);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   287
done;
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   288
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   289
text{*
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   290
Function @{term path} has fulfilled its purpose now and can be forgotten
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   291
about. It was merely defined to provide the witness in the proof of the
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   292
@{thm[source]infinity_lemma}. Aficionados of minimal proofs might like to know
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   293
that we could have given the witness without having to define a new function:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   294
the term
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   295
@{term[display]"nat_rec s (\<lambda>n t. SOME u. (t,u)\<in>M \<and> P u)"}
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   296
is extensionally equal to @{term"path s P"},
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   297
where @{term nat_rec} is the predefined primitive recursor on @{typ nat}, whose defining
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   298
equations we omit.
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   299
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   300
(*<*)
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   301
lemma infinity_lemma:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   302
"\<lbrakk> P s; \<forall> s. P s \<longrightarrow> (\<exists> t. (s,t)\<in>M \<and> P t) \<rbrakk> \<Longrightarrow>
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   303
 \<exists> p\<in>Paths s. \<forall> i. P(p i)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   304
apply(subgoal_tac
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   305
 "\<exists> p. s = p 0 \<and> (\<forall> i. (p i,p(Suc i))\<in>M \<and> P(p i))");
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   306
 apply(simp add:Paths_def);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   307
 apply(blast);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   308
apply(rule_tac x = "nat_rec s (\<lambda>n t. SOME u. (t,u)\<in>M \<and> P u)" in exI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   309
apply(simp);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   310
apply(intro strip);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   311
apply(induct_tac i);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   312
 apply(simp);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   313
 apply(fast intro:someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   314
apply(simp);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   315
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   316
 apply(blast);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   317
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   318
 apply(blast);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   319
by(blast);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   320
(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   321
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   322
text{*
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   323
At last we can prove the opposite direction of @{thm[source]AF_lemma1}:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   324
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   325
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   326
theorem AF_lemma2:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   327
"{s. \<forall> p \<in> Paths s. \<exists> i. p i \<in> A} \<subseteq> lfp(af A)";
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   328
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   329
txt{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   330
The proof is again pointwise and then by contraposition (@{thm[source]contrapos2} is the rule
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   331
@{thm contrapos2}):
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   332
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   333
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   334
apply(rule subsetI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   335
apply(erule contrapos2);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   336
apply simp;
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   337
(*pr(latex xsymbols symbols);*)
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   338
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   339
txt{*
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   340
\begin{isabelle}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   341
\ \isadigit{1}{\isachardot}\ {\isasymAnd}s{\isachardot}\ s\ {\isasymnotin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymexists}p{\isasymin}Paths\ s{\isachardot}\ {\isasymforall}i{\isachardot}\ p\ i\ {\isasymnotin}\ A
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   342
\end{isabelle}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   343
Applying the @{thm[source]infinity_lemma} as a destruction rule leaves two subgoals, the second
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   344
premise of @{thm[source]infinity_lemma} and the original subgoal:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   345
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   346
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   347
apply(drule infinity_lemma);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   348
(*pr(latex xsymbols symbols);*)
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   349
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   350
txt{*
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   351
\begin{isabelle}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   352
\ \isadigit{1}{\isachardot}\ {\isasymAnd}s{\isachardot}\ {\isasymforall}s{\isachardot}\ s\ {\isasymnotin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ t\ {\isasymnotin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}{\isacharparenright}\isanewline
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   353
\ \isadigit{2}{\isachardot}\ {\isasymAnd}s{\isachardot}\ {\isasymexists}p{\isasymin}Paths\ s{\isachardot}\ {\isasymforall}i{\isachardot}\ p\ i\ {\isasymnotin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}\isanewline
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   354
\ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}p{\isasymin}Paths\ s{\isachardot}\ {\isasymforall}i{\isachardot}\ p\ i\ {\isasymnotin}\ A
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   355
\end{isabelle}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   356
Both are solved automatically:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   357
*};
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   358
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   359
 apply(auto dest:not_in_lfp_afD);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   360
done;
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   361
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   362
text{*
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   363
The main theorem is proved as for PDL, except that we also derive the necessary equality
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   364
@{text"lfp(af A) = ..."} by combining @{thm[source]AF_lemma1} and @{thm[source]AF_lemma2}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   365
on the spot:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   366
*}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   367
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   368
theorem "mc f = {s. s \<Turnstile> f}";
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   369
apply(induct_tac f);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   370
apply(auto simp add: EF_lemma equalityI[OF AF_lemma1 AF_lemma2]);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   371
done
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   372
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   373
text{*
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   374
The above language is not quite CTL. The latter also includes an
10178
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
   375
until-operator, which is the subject of the following exercise.
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   376
It is not definable in terms of the other operators!
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   377
\begin{exercise}
10178
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
   378
Extend the datatype of formulae by the binary until operator @{term"EU f g"} with semantics
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
   379
``there exist a path where @{term f} is true until @{term g} becomes true''
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
   380
@{text[display]"s \<Turnstile> EU f g = (\<exists>p\<in>Paths s. \<exists>j. p j \<Turnstile> g \<and> (\<exists>i < j. p i \<Turnstile> f))"}
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   381
and model checking algorithm
10178
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
   382
@{text[display]"mc(EU f g) = lfp(\<lambda>T. mc g \<union> mc f \<inter> (M^-1 ^^ T))"}
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   383
Prove the equivalence between semantics and model checking, i.e.\ that
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   384
@{prop[display]"mc(EU f g) = {s. s \<Turnstile> EU f g}"}
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   385
%For readability you may want to annotate {term EU} with its customary syntax
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   386
%{text[display]"| EU formula formula    E[_ U _]"}
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   387
%which enables you to read and write {text"E[f U g]"} instead of {term"EU f g"}.
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   388
\end{exercise}
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   389
For more CTL exercises see, for example \cite{Huth-Ryan-book,Clarke-as-well?}.
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   390
\bigskip
10178
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
   391
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   392
Let us close this section with a few words about the executability of our model checkers.
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   393
It is clear that if all sets are finite, they can be represented as lists and the usual
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   394
set operations are easily implemented. Only @{term lfp} requires a little thought.
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   395
Fortunately the HOL library proves that in the case of finite sets and a monotone @{term F},
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   396
@{term"lfp F"} can be computed by iterated application of @{term F} to @{term"{}"} until
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   397
a fixpoint is reached. It is actually possible to generate executable functional programs
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   398
from HOL definitions, but that is beyond the scope of the tutorial.
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   399
*}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   400
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   401
(*<*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   402
(*
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   403
Second proof of opposite direction, directly by wellfounded induction
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   404
on the initial segment of M that avoids A.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   405
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   406
Avoid s A = the set of successors of s that can be reached by a finite A-avoiding path
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   407
*)
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   408
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   409
consts Avoid :: "state \<Rightarrow> state set \<Rightarrow> state set";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   410
inductive "Avoid s A"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   411
intros "s \<in> Avoid s A"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   412
       "\<lbrakk> t \<in> Avoid s A; t \<notin> A; (t,u) \<in> M \<rbrakk> \<Longrightarrow> u \<in> Avoid s A";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   413
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   414
(* For any infinite A-avoiding path (f) in Avoid s A,
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   415
   there is some infinite A-avoiding path (p) in Avoid s A that starts with s.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   416
*)
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   417
lemma ex_infinite_path[rule_format]:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   418
"t \<in> Avoid s A  \<Longrightarrow>
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   419
 \<forall>f. t = f 0 \<longrightarrow> (\<forall>i. (f i, f (Suc i)) \<in> M \<and> f i \<in> Avoid s A \<and> f i \<notin> A)
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   420
                \<longrightarrow> (\<exists> p\<in>Paths s. \<forall>i. p i \<notin> A)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   421
apply(simp add:Paths_def);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   422
apply(erule Avoid.induct);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   423
 apply(blast);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   424
apply(rule allI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   425
apply(erule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> t | Suc i \<Rightarrow> f i" in allE);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   426
by(force split:nat.split);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   427
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   428
lemma Avoid_in_lfp[rule_format(no_asm)]:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   429
"\<forall>p\<in>Paths s. \<exists>i. p i \<in> A \<Longrightarrow> t \<in> Avoid s A \<longrightarrow> t \<in> lfp(af A)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   430
apply(subgoal_tac "wf{(y,x). (x,y)\<in>M \<and> x \<in> Avoid s A \<and> y \<in> Avoid s A \<and> x \<notin> A}");
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   431
 apply(erule_tac a = t in wf_induct);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   432
 apply(clarsimp);
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   433
 apply(rule ssubst [OF lfp_unfold[OF mono_af]]);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   434
 apply(unfold af_def);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   435
 apply(blast intro:Avoid.intros);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   436
apply(erule contrapos2);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   437
apply(simp add:wf_iff_no_infinite_down_chain);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   438
apply(erule exE);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   439
apply(rule ex_infinite_path);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   440
by(auto);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   441
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   442
theorem AF_lemma2:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   443
"{s. \<forall>p \<in> Paths s. \<exists> i. p i \<in> A} \<subseteq> lfp(af A)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   444
apply(rule subsetI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   445
apply(simp);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   446
apply(erule Avoid_in_lfp);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   447
by(rule Avoid.intros);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   448
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   449
end(*>*)