doc-src/TutorialI/Misc/document/AdvancedInd.tex
author nipkow
Tue, 17 Apr 2001 16:54:38 +0200
changeset 11256 49afcce3bada
parent 11196 bb4ede27fcb7
child 11277 a2bff98d6e5d
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
9722
a5f86aed785b *** empty log message ***
nipkow
parents: 9721
diff changeset
     1
%
a5f86aed785b *** empty log message ***
nipkow
parents: 9721
diff changeset
     2
\begin{isabellebody}%
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
     3
\def\isabellecontext{AdvancedInd}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     4
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     5
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     6
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     7
Now that we have learned about rules and logic, we take another look at the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     8
finer points of induction. The two questions we answer are: what to do if the
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
     9
proposition to be proved is not directly amenable to induction
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
    10
(\S\ref{sec:ind-var-in-prems}), and how to utilize (\S\ref{sec:complete-ind})
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
    11
and even derive (\S\ref{sec:derive-ind}) new induction schemas. We conclude
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
    12
with an extended example of induction (\S\ref{sec:CTL-revisited}).%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    13
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    14
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    15
\isamarkupsubsection{Massaging the Proposition%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
    16
}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    17
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    18
\begin{isamarkuptext}%
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
    19
\label{sec:ind-var-in-prems}
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    20
Often we have assumed that the theorem we want to prove is already in a form
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    21
that is amenable to induction, but sometimes it isn't.
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    22
Here is an example.
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    23
Since \isa{hd} and \isa{last} return the first and last element of a
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    24
non-empty list, this lemma looks easy to prove:%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    25
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    26
\isacommand{lemma}\ {\isachardoublequote}xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymLongrightarrow}\ hd{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ last\ xs{\isachardoublequote}\isanewline
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    27
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ xs{\isacharparenright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    28
\begin{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    29
\noindent
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    30
But induction produces the warning
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    31
\begin{quote}\tt
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    32
Induction variable occurs also among premises!
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    33
\end{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    34
and leads to the base case
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
    35
\begin{isabelle}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
    36
\ {\isadigit{1}}{\isachardot}\ xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymLongrightarrow}\ hd\ {\isacharparenleft}rev\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\ last\ {\isacharbrackleft}{\isacharbrackright}%
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
    37
\end{isabelle}
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    38
After simplification, it becomes
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
    39
\begin{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    40
\ 1.\ xs\ {\isasymnoteq}\ []\ {\isasymLongrightarrow}\ hd\ []\ =\ last\ []
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
    41
\end{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    42
We cannot prove this equality because we do not know what \isa{hd} and
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    43
\isa{last} return when applied to \isa{{\isacharbrackleft}{\isacharbrackright}}.
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    44
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    45
We should not have ignored the warning. Because the induction
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    46
formula is only the conclusion, induction does not affect the occurrence of \isa{xs} in the premises.  
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    47
Thus the case that should have been trivial
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10236
diff changeset
    48
becomes unprovable. Fortunately, the solution is easy:\footnote{A very similar
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10236
diff changeset
    49
heuristic applies to rule inductions; see \S\ref{sec:rtc}.}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    50
\begin{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    51
\emph{Pull all occurrences of the induction variable into the conclusion
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    52
using \isa{{\isasymlongrightarrow}}.}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    53
\end{quote}
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    54
Thus we should state the lemma as an ordinary 
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    55
implication~(\isa{{\isasymlongrightarrow}}), letting
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    56
\isa{rule{\isacharunderscore}format} (\S\ref{sec:forward}) convert the
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    57
result to the usual \isa{{\isasymLongrightarrow}} form:%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    58
\end{isamarkuptxt}%
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    59
\isacommand{lemma}\ hd{\isacharunderscore}rev\ {\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymlongrightarrow}\ hd{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ last\ xs{\isachardoublequote}%
10420
ef006735bee8 *** empty log message ***
nipkow
parents: 10397
diff changeset
    60
\begin{isamarkuptxt}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    61
\noindent
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    62
This time, induction leaves us with a trivial base case:
10420
ef006735bee8 *** empty log message ***
nipkow
parents: 10397
diff changeset
    63
\begin{isabelle}%
ef006735bee8 *** empty log message ***
nipkow
parents: 10397
diff changeset
    64
\ {\isadigit{1}}{\isachardot}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymlongrightarrow}\ hd\ {\isacharparenleft}rev\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\ last\ {\isacharbrackleft}{\isacharbrackright}%
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
    65
\end{isabelle}
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10950
diff changeset
    66
And \isa{auto} completes the proof.
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10950
diff changeset
    67
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    68
If there are multiple premises $A@1$, \dots, $A@n$ containing the
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    69
induction variable, you should turn the conclusion $C$ into
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    70
\[ A@1 \longrightarrow \cdots A@n \longrightarrow C \]
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    71
Additionally, you may also have to universally quantify some other variables,
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    72
which can yield a fairly complex conclusion.  However, \isa{rule{\isacharunderscore}format} 
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    73
can remove any number of occurrences of \isa{{\isasymforall}} and
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10950
diff changeset
    74
\isa{{\isasymlongrightarrow}}.%
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10950
diff changeset
    75
\end{isamarkuptxt}%
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10950
diff changeset
    76
%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    77
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    78
A second reason why your proposition may not be amenable to induction is that
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    79
you want to induct on a whole term, rather than an individual variable. In
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
    80
general, when inducting on some term $t$ you must rephrase the conclusion $C$
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
    81
as
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
    82
\[ \forall y@1 \dots y@n.~ x = t \longrightarrow C \]
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
    83
where $y@1 \dots y@n$ are the free variables in $t$ and $x$ is new, and
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
    84
perform induction on $x$ afterwards. An example appears in
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
    85
\S\ref{sec:complete-ind} below.
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
    86
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
    87
The very same problem may occur in connection with rule induction. Remember
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
    88
that it requires a premise of the form $(x@1,\dots,x@k) \in R$, where $R$ is
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
    89
some inductively defined set and the $x@i$ are variables.  If instead we have
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
    90
a premise $t \in R$, where $t$ is not just an $n$-tuple of variables, we
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
    91
replace it with $(x@1,\dots,x@k) \in R$, and rephrase the conclusion $C$ as
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
    92
\[ \forall y@1 \dots y@n.~ (x@1,\dots,x@k) = t \longrightarrow C \]
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
    93
For an example see \S\ref{sec:CTL-revisited} below.
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
    94
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
    95
Of course, all premises that share free variables with $t$ need to be pulled into
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
    96
the conclusion as well, under the \isa{{\isasymforall}}, again using \isa{{\isasymlongrightarrow}} as shown above.%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    97
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    98
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    99
\isamarkupsubsection{Beyond Structural and Recursion Induction%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
   100
}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   101
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   102
\begin{isamarkuptext}%
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
   103
\label{sec:complete-ind}
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   104
So far, inductive proofs were by structural induction for
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   105
primitive recursive functions and recursion induction for total recursive
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   106
functions. But sometimes structural induction is awkward and there is no
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   107
recursive function that could furnish a more appropriate
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   108
induction schema. In such cases a general-purpose induction schema can
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   109
be helpful. We show how to apply such induction schemas by an example.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   110
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   111
Structural induction on \isa{nat} is
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   112
usually known as mathematical induction. There is also \emph{complete}
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   113
induction, where you must prove $P(n)$ under the assumption that $P(m)$
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
   114
holds for all $m<n$. In Isabelle, this is the theorem \isa{nat{\isacharunderscore}less{\isacharunderscore}induct}:
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   115
\begin{isabelle}%
9834
109b11c4e77e *** empty log message ***
nipkow
parents: 9792
diff changeset
   116
\ \ \ \ \ {\isacharparenleft}{\isasymAnd}n{\isachardot}\ {\isasymforall}m{\isachardot}\ m\ {\isacharless}\ n\ {\isasymlongrightarrow}\ P\ m\ {\isasymLongrightarrow}\ P\ n{\isacharparenright}\ {\isasymLongrightarrow}\ P\ n%
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
   117
\end{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   118
Here is an example of its application.%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   119
\end{isamarkuptext}%
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   120
\isacommand{consts}\ f\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ {\isasymRightarrow}\ nat{\isachardoublequote}\isanewline
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   121
\isacommand{axioms}\ f{\isacharunderscore}ax{\isacharcolon}\ {\isachardoublequote}f{\isacharparenleft}f{\isacharparenleft}n{\isacharparenright}{\isacharparenright}\ {\isacharless}\ f{\isacharparenleft}Suc{\isacharparenleft}n{\isacharparenright}{\isacharparenright}{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   122
\begin{isamarkuptext}%
11256
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   123
\begin{warn}
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   124
We discourage the use of axioms because of the danger of
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   125
inconsistencies.  Axiom \isa{f{\isacharunderscore}ax} does
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   126
not introduce an inconsistency because, for example, the identity function
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   127
satisfies it.  Axioms can be useful in exploratory developments, say when 
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   128
you assume some well-known theorems so that you can quickly demonstrate some
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   129
point about methodology.  If your example turns into a substantial proof
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   130
development, you should replace axioms by theorems.
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   131
\end{warn}\noindent
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   132
The axiom for \isa{f} implies \isa{n\ {\isasymle}\ f\ n}, which can
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10950
diff changeset
   133
be proved by induction on \mbox{\isa{f\ n}}. Following the recipe outlined
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   134
above, we have to phrase the proposition as follows to allow induction:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   135
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   136
\isacommand{lemma}\ f{\isacharunderscore}incr{\isacharunderscore}lem{\isacharcolon}\ {\isachardoublequote}{\isasymforall}i{\isachardot}\ k\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   137
\begin{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   138
\noindent
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   139
To perform induction on \isa{k} using \isa{nat{\isacharunderscore}less{\isacharunderscore}induct}, we use
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   140
the same general induction method as for recursion induction (see
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   141
\S\ref{sec:recdef-induction}):%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   142
\end{isamarkuptxt}%
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
   143
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ k\ rule{\isacharcolon}\ nat{\isacharunderscore}less{\isacharunderscore}induct{\isacharparenright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   144
\begin{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   145
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   146
which leaves us with the following proof state:
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   147
\begin{isabelle}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   148
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymforall}m{\isachardot}\ m\ {\isacharless}\ n\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymforall}i{\isachardot}\ m\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isacharparenright}\ {\isasymLongrightarrow}\isanewline
10950
aa788fcb75a5 updated;
wenzelm
parents: 10878
diff changeset
   149
\isaindent{\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ }{\isasymforall}i{\isachardot}\ n\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i%
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
   150
\end{isabelle}
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   151
After stripping the \isa{{\isasymforall}i}, the proof continues with a case
10187
0376cccd9118 *** empty log message ***
nipkow
parents: 10186
diff changeset
   152
distinction on \isa{i}. The case \isa{i\ {\isacharequal}\ {\isadigit{0}}} is trivial and we focus on
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   153
the other case:%
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   154
\end{isamarkuptxt}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   155
\isacommand{apply}{\isacharparenleft}rule\ allI{\isacharparenright}\isanewline
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   156
\isacommand{apply}{\isacharparenleft}case{\isacharunderscore}tac\ i{\isacharparenright}\isanewline
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   157
\ \isacommand{apply}{\isacharparenleft}simp{\isacharparenright}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   158
\begin{isamarkuptxt}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   159
\begin{isabelle}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   160
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n\ i\ nat{\isachardot}\isanewline
10950
aa788fcb75a5 updated;
wenzelm
parents: 10878
diff changeset
   161
\isaindent{\ {\isadigit{1}}{\isachardot}\ \ \ \ }{\isasymlbrakk}{\isasymforall}m{\isachardot}\ m\ {\isacharless}\ n\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymforall}i{\isachardot}\ m\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isacharparenright}{\isacharsemicolon}\ i\ {\isacharequal}\ Suc\ nat{\isasymrbrakk}\isanewline
aa788fcb75a5 updated;
wenzelm
parents: 10878
diff changeset
   162
\isaindent{\ {\isadigit{1}}{\isachardot}\ \ \ \ }{\isasymLongrightarrow}\ n\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i%
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
   163
\end{isabelle}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   164
\end{isamarkuptxt}%
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
   165
\isacommand{by}{\isacharparenleft}blast\ intro{\isacharbang}{\isacharcolon}\ f{\isacharunderscore}ax\ Suc{\isacharunderscore}leI\ intro{\isacharcolon}\ le{\isacharunderscore}less{\isacharunderscore}trans{\isacharparenright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   166
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   167
\noindent
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10950
diff changeset
   168
If you find the last step puzzling, here are the two lemmas it employs:
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   169
\begin{isabelle}
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   170
\isa{m\ {\isacharless}\ n\ {\isasymLongrightarrow}\ Suc\ m\ {\isasymle}\ n}
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   171
\rulename{Suc_leI}\isanewline
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   172
\isa{{\isasymlbrakk}i\ {\isasymle}\ j{\isacharsemicolon}\ j\ {\isacharless}\ k{\isasymrbrakk}\ {\isasymLongrightarrow}\ i\ {\isacharless}\ k}
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   173
\rulename{le_less_trans}
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   174
\end{isabelle}
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   175
%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   176
The proof goes like this (writing \isa{j} instead of \isa{nat}).
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   177
Since \isa{i\ {\isacharequal}\ Suc\ j} it suffices to show
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   178
\hbox{\isa{j\ {\isacharless}\ f\ {\isacharparenleft}Suc\ j{\isacharparenright}}},
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   179
by \isa{Suc{\isacharunderscore}leI}\@.  This is
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   180
proved as follows. From \isa{f{\isacharunderscore}ax} we have \isa{f\ {\isacharparenleft}f\ j{\isacharparenright}\ {\isacharless}\ f\ {\isacharparenleft}Suc\ j{\isacharparenright}}
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   181
(1) which implies \isa{f\ j\ {\isasymle}\ f\ {\isacharparenleft}f\ j{\isacharparenright}} by the induction hypothesis.
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   182
Using (1) once more we obtain \isa{f\ j\ {\isacharless}\ f\ {\isacharparenleft}Suc\ j{\isacharparenright}} (2) by the transitivity
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   183
rule \isa{le{\isacharunderscore}less{\isacharunderscore}trans}.
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   184
Using the induction hypothesis once more we obtain \isa{j\ {\isasymle}\ f\ j}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   185
which, together with (2) yields \isa{j\ {\isacharless}\ f\ {\isacharparenleft}Suc\ j{\isacharparenright}} (again by
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   186
\isa{le{\isacharunderscore}less{\isacharunderscore}trans}).
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   187
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   188
This last step shows both the power and the danger of automatic proofs: they
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   189
will usually not tell you how the proof goes, because it can be very hard to
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   190
translate the internal proof into a human-readable format. Therefore
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   191
Chapter~\ref{sec:part2?} introduces a language for writing readable
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   192
proofs.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   193
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10950
diff changeset
   194
We can now derive the desired \isa{i\ {\isasymle}\ f\ i} from \isa{f{\isacharunderscore}incr{\isacharunderscore}lem}:%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   195
\end{isamarkuptext}%
9958
67f2920862c7 *** empty log message ***
nipkow
parents: 9933
diff changeset
   196
\isacommand{lemmas}\ f{\isacharunderscore}incr\ {\isacharequal}\ f{\isacharunderscore}incr{\isacharunderscore}lem{\isacharbrackleft}rule{\isacharunderscore}format{\isacharcomma}\ OF\ refl{\isacharbrackright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   197
\begin{isamarkuptext}%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   198
\noindent
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   199
The final \isa{refl} gets rid of the premise \isa{{\isacharquery}k\ {\isacharequal}\ f\ {\isacharquery}i}. 
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   200
We could have included this derivation in the original statement of the lemma:%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   201
\end{isamarkuptext}%
9958
67f2920862c7 *** empty log message ***
nipkow
parents: 9933
diff changeset
   202
\isacommand{lemma}\ f{\isacharunderscore}incr{\isacharbrackleft}rule{\isacharunderscore}format{\isacharcomma}\ OF\ refl{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isasymforall}i{\isachardot}\ k\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   203
\begin{isamarkuptext}%
11256
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   204
\begin{exercise}
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   205
From the axiom and lemma for \isa{f}, show that \isa{f} is the
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   206
identity function.
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   207
\end{exercise}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   208
11256
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   209
Method \isa{induct{\isacharunderscore}tac} can be applied with any rule $r$
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   210
whose conclusion is of the form ${?}P~?x@1 \dots ?x@n$, in which case the
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   211
format is
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   212
\begin{quote}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   213
\isacommand{apply}\isa{{\isacharparenleft}induct{\isacharunderscore}tac} $y@1 \dots y@n$ \isa{rule{\isacharcolon}} $r$\isa{{\isacharparenright}}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   214
\end{quote}\index{*induct_tac}%
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   215
where $y@1, \dots, y@n$ are variables in the first subgoal.
11256
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   216
The conclusion of $r$ can even be an (iterated) conjunction of formulae of
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   217
the above form in which case the application is
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   218
\begin{quote}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   219
\isacommand{apply}\isa{{\isacharparenleft}induct{\isacharunderscore}tac} $y@1 \dots y@n$ \isa{and} \dots\ \isa{and} $z@1 \dots z@m$ \isa{rule{\isacharcolon}} $r$\isa{{\isacharparenright}}
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   220
\end{quote}
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   221
11256
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   222
A further useful induction rule is \isa{length{\isacharunderscore}induct},
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   223
induction on the length of a list\indexbold{*length_induct}
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   224
\begin{isabelle}%
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   225
\ \ \ \ \ {\isacharparenleft}{\isasymAnd}xs{\isachardot}\ {\isasymforall}ys{\isachardot}\ length\ ys\ {\isacharless}\ length\ xs\ {\isasymlongrightarrow}\ P\ ys\ {\isasymLongrightarrow}\ P\ xs{\isacharparenright}\ {\isasymLongrightarrow}\ P\ xs%
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   226
\end{isabelle}
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   227
which is a special case of \isa{measure{\isacharunderscore}induct}
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   228
\begin{isabelle}%
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   229
\ \ \ \ \ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ {\isasymforall}y{\isachardot}\ f\ y\ {\isacharless}\ f\ x\ {\isasymlongrightarrow}\ P\ y\ {\isasymLongrightarrow}\ P\ x{\isacharparenright}\ {\isasymLongrightarrow}\ P\ a%
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   230
\end{isabelle}
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   231
where \isa{f} may be any function into type \isa{nat}.%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   232
\end{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   233
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   234
\isamarkupsubsection{Derivation of New Induction Schemas%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
   235
}
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   236
%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   237
\begin{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   238
\label{sec:derive-ind}
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   239
Induction schemas are ordinary theorems and you can derive new ones
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   240
whenever you wish.  This section shows you how to, using the example
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
   241
of \isa{nat{\isacharunderscore}less{\isacharunderscore}induct}. Assume we only have structural induction
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   242
available for \isa{nat} and want to derive complete induction. This
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   243
requires us to generalize the statement first:%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   244
\end{isamarkuptext}%
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   245
\isacommand{lemma}\ induct{\isacharunderscore}lem{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isasymAnd}n{\isacharcolon}{\isacharcolon}nat{\isachardot}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m\ {\isasymLongrightarrow}\ P\ n{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m{\isachardoublequote}\isanewline
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   246
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ n{\isacharparenright}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   247
\begin{isamarkuptxt}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   248
\noindent
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10950
diff changeset
   249
The base case is vacuously true. For the induction step (\isa{m\ {\isacharless}\ Suc\ n}) we distinguish two cases: case \isa{m\ {\isacharless}\ n} is true by induction
9933
9feb1e0c4cb3 *** empty log message ***
nipkow
parents: 9924
diff changeset
   250
hypothesis and case \isa{m\ {\isacharequal}\ n} follows from the assumption, again using
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   251
the induction hypothesis:%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   252
\end{isamarkuptxt}%
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10950
diff changeset
   253
\ \isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
9933
9feb1e0c4cb3 *** empty log message ***
nipkow
parents: 9924
diff changeset
   254
\isacommand{by}{\isacharparenleft}blast\ elim{\isacharcolon}less{\isacharunderscore}SucE{\isacharparenright}%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   255
\begin{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   256
\noindent
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10950
diff changeset
   257
The elimination rule \isa{less{\isacharunderscore}SucE} expresses the case distinction:
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   258
\begin{isabelle}%
10696
76d7f6c9a14c *** empty log message ***
nipkow
parents: 10668
diff changeset
   259
\ \ \ \ \ {\isasymlbrakk}m\ {\isacharless}\ Suc\ n{\isacharsemicolon}\ m\ {\isacharless}\ n\ {\isasymLongrightarrow}\ P{\isacharsemicolon}\ m\ {\isacharequal}\ n\ {\isasymLongrightarrow}\ P{\isasymrbrakk}\ {\isasymLongrightarrow}\ P%
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
   260
\end{isabelle}
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   261
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   262
Now it is straightforward to derive the original version of
11256
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   263
\isa{nat{\isacharunderscore}less{\isacharunderscore}induct} by manipulating the conclusion of the above
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   264
lemma: instantiate \isa{n} by \isa{Suc\ n} and \isa{m} by \isa{n}
49afcce3bada *** empty log message ***
nipkow
parents: 11196
diff changeset
   265
and remove the trivial condition \isa{n\ {\isacharless}\ Suc\ n}. Fortunately, this
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   266
happens automatically when we add the lemma as a new premise to the
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   267
desired goal:%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   268
\end{isamarkuptext}%
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
   269
\isacommand{theorem}\ nat{\isacharunderscore}less{\isacharunderscore}induct{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isasymAnd}n{\isacharcolon}{\isacharcolon}nat{\isachardot}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m\ {\isasymLongrightarrow}\ P\ n{\isacharparenright}\ {\isasymLongrightarrow}\ P\ n{\isachardoublequote}\isanewline
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   270
\isacommand{by}{\isacharparenleft}insert\ induct{\isacharunderscore}lem{\isacharcomma}\ blast{\isacharparenright}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   271
\begin{isamarkuptext}%
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   272
Finally we should remind the reader that HOL already provides the mother of
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   273
all inductions, well-founded induction (see \S\ref{sec:Well-founded}).  For
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   274
example theorem \isa{nat{\isacharunderscore}less{\isacharunderscore}induct} is
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   275
a special case of \isa{wf{\isacharunderscore}induct} where \isa{r} is \isa{{\isacharless}} on
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   276
\isa{nat}. The details can be found in theory \isa{Wellfounded_Recursion}.%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   277
\end{isamarkuptext}%
9722
a5f86aed785b *** empty log message ***
nipkow
parents: 9721
diff changeset
   278
\end{isabellebody}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   279
%%% Local Variables:
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   280
%%% mode: latex
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   281
%%% TeX-master: "root"
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   282
%%% End: