18105

1 


2 
theory lam_public


3 
imports "../nominal"


4 
begin


5 


6 
(* WEAKENING EXAMPLE*)


7 


8 
section {* SimplyTyped LambdaCalculus *}


9 
(*======================================*)


10 


11 
atom_decl name


12 


13 
nominal_datatype lam = Var "name"


14 
 App "lam" "lam"


15 
 Lam "\<guillemotleft>name\<guillemotright>lam" ("Lam [_]._" [100,100] 100)


16 


17 
datatype ty =


18 
TVar "string"


19 
 TArr "ty" "ty" (infix "\<rightarrow>" 200)


20 


21 
primrec


22 
"pi\<bullet>(TVar s) = TVar s"


23 
"pi\<bullet>(\<tau> \<rightarrow> \<sigma>) = (\<tau> \<rightarrow> \<sigma>)"


24 


25 
lemma perm_ty[simp]:


26 
fixes pi ::"name prm"


27 
and \<tau> ::"ty"


28 
shows "pi\<bullet>\<tau> = \<tau>"


29 
by (cases \<tau>, simp_all)


30 


31 
instance ty :: pt_name


32 
apply(intro_classes)


33 
apply(simp_all)


34 
done


35 


36 
instance ty :: fs_name


37 
apply(intro_classes)


38 
apply(simp add: supp_def)


39 
done


40 


41 
(* valid contexts *)


42 
consts


43 
ctxts :: "((name\<times>ty) list) set"


44 
valid :: "(name\<times>ty) list \<Rightarrow> bool"


45 
translations


46 
"valid \<Gamma>" \<rightleftharpoons> "\<Gamma> \<in> ctxts"


47 
inductive ctxts


48 
intros


49 
v1[intro]: "valid []"


50 
v2[intro]: "\<lbrakk>valid \<Gamma>;a\<sharp>\<Gamma>\<rbrakk>\<Longrightarrow> valid ((a,\<sigma>)#\<Gamma>)"


51 


52 
lemma eqvt_valid:


53 
fixes pi:: "name prm"


54 
assumes a: "valid \<Gamma>"


55 
shows "valid (pi\<bullet>\<Gamma>)"


56 
using a


57 
apply(induct)


58 
apply(auto simp add: pt_fresh_bij[OF pt_name_inst, OF at_name_inst])


59 
done


60 


61 
(* typing judgements *)


62 
consts


63 
typing :: "(((name\<times>ty) list)\<times>lam\<times>ty) set"


64 
syntax


65 
"_typing_judge" :: "(name\<times>ty) list\<Rightarrow>lam\<Rightarrow>ty\<Rightarrow>bool" (" _ \<turnstile> _ : _ " [80,80,80] 80)


66 
translations


67 
"\<Gamma> \<turnstile> t : \<tau>" \<rightleftharpoons> "(\<Gamma>,t,\<tau>) \<in> typing"


68 


69 
inductive typing


70 
intros


71 
t1[intro]: "\<lbrakk>valid \<Gamma>; (a,\<tau>)\<in>set \<Gamma>\<rbrakk>\<Longrightarrow> \<Gamma> \<turnstile> Var a : \<tau>"


72 
t2[intro]: "\<lbrakk>\<Gamma> \<turnstile> t1 : \<tau>\<rightarrow>\<sigma>; \<Gamma> \<turnstile> t2 : \<tau>\<rbrakk>\<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 : \<sigma>"


73 
t3[intro]: "\<lbrakk>a\<sharp>\<Gamma>;((a,\<tau>)#\<Gamma>) \<turnstile> t : \<sigma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam [a].t : \<tau>\<rightarrow>\<sigma>"


74 


75 
lemma eqvt_typing:


76 
fixes \<Gamma> :: "(name\<times>ty) list"


77 
and t :: "lam"


78 
and \<tau> :: "ty"


79 
and pi:: "name prm"


80 
assumes a: "\<Gamma> \<turnstile> t : \<tau>"


81 
shows "(pi\<bullet>\<Gamma>) \<turnstile> (pi\<bullet>t) : \<tau>"


82 
using a


83 
proof (induct)


84 
case (t1 \<Gamma> \<tau> a)


85 
have "valid (pi\<bullet>\<Gamma>)" by (rule eqvt_valid)


86 
moreover


87 
have "(pi\<bullet>(a,\<tau>))\<in>((pi::name prm)\<bullet>set \<Gamma>)" by (rule pt_set_bij2[OF pt_name_inst, OF at_name_inst])


88 
ultimately show "(pi\<bullet>\<Gamma>) \<turnstile> ((pi::name prm)\<bullet>Var a) : \<tau>"


89 
using typing.intros by (force simp add: pt_list_set_pi[OF pt_name_inst, symmetric])


90 
next


91 
case (t3 \<Gamma> \<sigma> \<tau> a t)


92 
moreover have "(pi\<bullet>a)\<sharp>(pi\<bullet>\<Gamma>)" by (rule pt_fresh_bij1[OF pt_name_inst, OF at_name_inst])


93 
ultimately show "(pi\<bullet>\<Gamma>) \<turnstile> (pi\<bullet>Lam [a].t) :\<tau>\<rightarrow>\<sigma>" by force


94 
qed (auto)


95 


96 


97 
lemma typing_induct_weak[THEN spec, case_names t1 t2 t3]:


98 
fixes P :: "(name\<times>ty) list \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow>'a\<Rightarrow>bool"


99 
and \<Gamma> :: "(name\<times>ty) list"


100 
and t :: "lam"


101 
and \<tau> :: "ty"


102 
assumes a: "\<Gamma> \<turnstile> t : \<tau>"


103 
and a1: "\<And>x \<Gamma> (a::name) \<tau>. valid \<Gamma> \<Longrightarrow> (a,\<tau>) \<in> set \<Gamma> \<Longrightarrow> P \<Gamma> (Var a) \<tau> x"


104 
and a2: "\<And>x \<Gamma> \<tau> \<sigma> t1 t2.


105 
\<Gamma> \<turnstile> t1 : \<tau>\<rightarrow>\<sigma> \<Longrightarrow> (\<forall>z. P \<Gamma> t1 (\<tau>\<rightarrow>\<sigma>) z) \<Longrightarrow> \<Gamma> \<turnstile> t2 : \<tau> \<Longrightarrow> (\<forall>z. P \<Gamma> t2 \<tau> z)


106 
\<Longrightarrow> P \<Gamma> (App t1 t2) \<sigma> x"


107 
and a3: "\<And>x (a::name) \<Gamma> \<tau> \<sigma> t.


108 
a\<sharp>\<Gamma> \<Longrightarrow> ((a,\<tau>) # \<Gamma>) \<turnstile> t : \<sigma> \<Longrightarrow> (\<forall>z. P ((a,\<tau>)#\<Gamma>) t \<sigma> z)


109 
\<Longrightarrow> P \<Gamma> (Lam [a].t) (\<tau>\<rightarrow>\<sigma>) x"


110 
shows "\<forall>x. P \<Gamma> t \<tau> x"


111 
using a by (induct, simp_all add: a1 a2 a3)


112 


113 
lemma typing_induct_aux[rule_format]:


114 
fixes P :: "(name\<times>ty) list \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow>'a::fs_name\<Rightarrow>bool"


115 
and \<Gamma> :: "(name\<times>ty) list"


116 
and t :: "lam"


117 
and \<tau> :: "ty"


118 
assumes a: "\<Gamma> \<turnstile> t : \<tau>"


119 
and a1: "\<And>x \<Gamma> (a::name) \<tau>. valid \<Gamma> \<Longrightarrow> (a,\<tau>) \<in> set \<Gamma> \<Longrightarrow> P \<Gamma> (Var a) \<tau> x"


120 
and a2: "\<And>x \<Gamma> \<tau> \<sigma> t1 t2.


121 
\<Gamma> \<turnstile> t1 : \<tau>\<rightarrow>\<sigma> \<Longrightarrow> (\<And>z. P \<Gamma> t1 (\<tau>\<rightarrow>\<sigma>) z) \<Longrightarrow> \<Gamma> \<turnstile> t2 : \<tau> \<Longrightarrow> (\<And>z. P \<Gamma> t2 \<tau> z)


122 
\<Longrightarrow> P \<Gamma> (App t1 t2) \<sigma> x"


123 
and a3: "\<And>x (a::name) \<Gamma> \<tau> \<sigma> t.


124 
a\<sharp>x \<Longrightarrow> a\<sharp>\<Gamma> \<Longrightarrow> ((a,\<tau>) # \<Gamma>) \<turnstile> t : \<sigma> \<Longrightarrow> (\<forall>z. P ((a,\<tau>)#\<Gamma>) t \<sigma> z)


125 
\<Longrightarrow> P \<Gamma> (Lam [a].t) (\<tau>\<rightarrow>\<sigma>) x"


126 
shows "\<forall>(pi::name prm) (x::'a::fs_name). P (pi\<bullet>\<Gamma>) (pi\<bullet>t) \<tau> x"


127 
using a


128 
proof (induct)


129 
case (t1 \<Gamma> \<tau> a)


130 
have j1: "valid \<Gamma>" by fact


131 
have j2: "(a,\<tau>)\<in>set \<Gamma>" by fact


132 
show ?case


133 
proof (intro strip, simp)


134 
fix pi::"name prm" and x::"'a::fs_name"


135 
from j1 have j3: "valid (pi\<bullet>\<Gamma>)" by (rule eqvt_valid)


136 
from j2 have "pi\<bullet>(a,\<tau>)\<in>pi\<bullet>(set \<Gamma>)" by (simp only: pt_set_bij[OF pt_name_inst, OF at_name_inst])


137 
hence j4: "(pi\<bullet>a,\<tau>)\<in>set (pi\<bullet>\<Gamma>)" by (simp add: pt_list_set_pi[OF pt_name_inst])


138 
show "P (pi\<bullet>\<Gamma>) (Var (pi\<bullet>a)) \<tau> x" using a1 j3 j4 by force


139 
qed


140 
next


141 
case (t2 \<Gamma> \<sigma> \<tau> t1 t2)


142 
thus ?case using a2 by (simp, blast intro: eqvt_typing)


143 
next


144 
case (t3 \<Gamma> \<sigma> \<tau> a t)


145 
have k1: "a\<sharp>\<Gamma>" by fact


146 
have k2: "((a,\<tau>)#\<Gamma>)\<turnstile>t:\<sigma>" by fact


147 
have k3: "\<forall>(pi::name prm) (x::'a::fs_name). P (pi \<bullet> ((a,\<tau>)#\<Gamma>)) (pi\<bullet>t) \<sigma> x" by fact


148 
show ?case


149 
proof (intro strip, simp)


150 
fix pi::"name prm" and x::"'a::fs_name"


151 
have f: "\<exists>c::name. c\<sharp>(pi\<bullet>a,pi\<bullet>t,pi\<bullet>\<Gamma>,x)"


152 
by (rule at_exists_fresh[OF at_name_inst], simp add: fs_name1)


153 
then obtain c::"name"


154 
where f1: "c\<noteq>(pi\<bullet>a)" and f2: "c\<sharp>x" and f3: "c\<sharp>(pi\<bullet>t)" and f4: "c\<sharp>(pi\<bullet>\<Gamma>)"


155 
by (force simp add: fresh_prod at_fresh[OF at_name_inst])


156 
from k1 have k1a: "(pi\<bullet>a)\<sharp>(pi\<bullet>\<Gamma>)"


157 
by (simp add: pt_fresh_left[OF pt_name_inst, OF at_name_inst]


158 
pt_rev_pi[OF pt_name_inst, OF at_name_inst])


159 
have l1: "(([(c,pi\<bullet>a)]@pi)\<bullet>\<Gamma>) = (pi\<bullet>\<Gamma>)" using f4 k1a


160 
by (simp only: pt2[OF pt_name_inst], rule pt_fresh_fresh[OF pt_name_inst, OF at_name_inst])


161 
have "\<forall>x. P (([(c,pi\<bullet>a)]@pi)\<bullet>((a,\<tau>)#\<Gamma>)) (([(c,pi\<bullet>a)]@pi)\<bullet>t) \<sigma> x" using k3 by force


162 
hence l2: "\<forall>x. P ((c, \<tau>)#(pi\<bullet>\<Gamma>)) (([(c,pi\<bullet>a)]@pi)\<bullet>t) \<sigma> x" using f1 l1


163 
by (force simp add: pt2[OF pt_name_inst] at_calc[OF at_name_inst] split: if_splits)


164 
have "(([(c,pi\<bullet>a)]@pi)\<bullet>((a,\<tau>)#\<Gamma>)) \<turnstile> (([(c,pi\<bullet>a)]@pi)\<bullet>t) : \<sigma>" using k2 by (rule eqvt_typing)


165 
hence l3: "((c, \<tau>)#(pi\<bullet>\<Gamma>)) \<turnstile> (([(c,pi\<bullet>a)]@pi)\<bullet>t) : \<sigma>" using l1 f1


166 
by (force simp add: pt2[OF pt_name_inst] at_calc[OF at_name_inst] split: if_splits)


167 
have l4: "P (pi\<bullet>\<Gamma>) (Lam [c].(([(c,pi\<bullet>a)]@pi)\<bullet>t)) (\<tau> \<rightarrow> \<sigma>) x" using f2 f4 l2 l3 a3 by auto


168 
have alpha: "(Lam [c].([(c,pi\<bullet>a)]\<bullet>(pi\<bullet>t))) = (Lam [(pi\<bullet>a)].(pi\<bullet>t))" using f1 f3


169 
by (simp add: lam.inject alpha)


170 
show "P (pi\<bullet>\<Gamma>) (Lam [(pi\<bullet>a)].(pi\<bullet>t)) (\<tau> \<rightarrow> \<sigma>) x" using l4 alpha


171 
by (simp only: pt2[OF pt_name_inst])


172 
qed


173 
qed


174 


175 
lemma typing_induct[case_names t1 t2 t3]:


176 
fixes P :: "(name\<times>ty) list \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow>'a::fs_name\<Rightarrow>bool"


177 
and \<Gamma> :: "(name\<times>ty) list"


178 
and t :: "lam"


179 
and \<tau> :: "ty"


180 
and x :: "'a::fs_name"


181 
assumes a: "\<Gamma> \<turnstile> t : \<tau>"


182 
and a1: "\<And>x \<Gamma> (a::name) \<tau>. valid \<Gamma> \<Longrightarrow> (a,\<tau>) \<in> set \<Gamma> \<Longrightarrow> P \<Gamma> (Var a) \<tau> x"


183 
and a2: "\<And>x \<Gamma> \<tau> \<sigma> t1 t2.


184 
\<Gamma> \<turnstile> t1 : \<tau>\<rightarrow>\<sigma> \<Longrightarrow> (\<forall>z. P \<Gamma> t1 (\<tau>\<rightarrow>\<sigma>) z) \<Longrightarrow> \<Gamma> \<turnstile> t2 : \<tau> \<Longrightarrow> (\<forall>z. P \<Gamma> t2 \<tau> z)


185 
\<Longrightarrow> P \<Gamma> (App t1 t2) \<sigma> x"


186 
and a3: "\<And>x (a::name) \<Gamma> \<tau> \<sigma> t.


187 
a\<sharp>x \<Longrightarrow> a\<sharp>\<Gamma> \<Longrightarrow> ((a,\<tau>) # \<Gamma>) \<turnstile> t : \<sigma> \<Longrightarrow> (\<forall>z. P ((a,\<tau>)#\<Gamma>) t \<sigma> z)


188 
\<Longrightarrow> P \<Gamma> (Lam [a].t) (\<tau>\<rightarrow>\<sigma>) x"


189 
shows "P \<Gamma> t \<tau> x"


190 
using a a1 a2 a3 typing_induct_aux[of "\<Gamma>" "t" "\<tau>" "P" "[]" "x", simplified] by force


191 


192 


193 
(* Now it comes: The Weakening Lemma *)


194 


195 
constdefs


196 
"sub" :: "(name\<times>ty) list \<Rightarrow> (name\<times>ty) list \<Rightarrow> bool" (" _ \<lless> _ " [80,80] 80)


197 
"\<Gamma>1 \<lless> \<Gamma>2 \<equiv> \<forall>a \<sigma>. (a,\<sigma>)\<in>set \<Gamma>1 \<longrightarrow> (a,\<sigma>)\<in>set \<Gamma>2"


198 


199 
lemma weakening_version1[rule_format]:


200 
assumes a: "\<Gamma>1 \<turnstile> t : \<sigma>"


201 
shows "valid \<Gamma>2 \<longrightarrow> \<Gamma>1 \<lless> \<Gamma>2 \<longrightarrow> \<Gamma>2 \<turnstile> t:\<sigma>"


202 
using a


203 
apply(nominal_induct \<Gamma>1 t \<sigma> rule: typing_induct)


204 
apply(auto simp add: sub_def)


205 
done


206 


207 
lemma weakening_version2[rule_format]:


208 
fixes \<Gamma>1::"(name\<times>ty) list"


209 
and t ::"lam"


210 
and \<tau> ::"ty"


211 
assumes a: "\<Gamma>1 \<turnstile> t:\<sigma>"


212 
shows "valid \<Gamma>2 \<longrightarrow> \<Gamma>1 \<lless> \<Gamma>2 \<longrightarrow> \<Gamma>2 \<turnstile> t:\<sigma>"


213 
using a


214 
proof (nominal_induct \<Gamma>1 t \<sigma> rule: typing_induct, auto)


215 
case (t1 \<Gamma>2 \<Gamma>1 a \<tau>) (* variable case *)


216 
assume "\<Gamma>1 \<lless> \<Gamma>2"


217 
and "valid \<Gamma>2"


218 
and "(a,\<tau>)\<in> set \<Gamma>1"


219 
thus "\<Gamma>2 \<turnstile> Var a : \<tau>" by (force simp add: sub_def)


220 
next


221 
case (t3 \<Gamma>2 a \<Gamma>1 \<tau> \<sigma> t) (* lambda case *)


222 
assume a1: "\<Gamma>1 \<lless> \<Gamma>2"


223 
and a2: "valid \<Gamma>2"


224 
and a3: "a\<sharp>\<Gamma>2"


225 
have i: "\<forall>\<Gamma>3. valid \<Gamma>3 \<longrightarrow> ((a,\<tau>)#\<Gamma>1) \<lless> \<Gamma>3 \<longrightarrow> \<Gamma>3 \<turnstile> t:\<sigma>" by fact


226 
have "((a,\<tau>)#\<Gamma>1) \<lless> ((a,\<tau>)#\<Gamma>2)" using a1 by (simp add: sub_def)


227 
moreover


228 
have "valid ((a,\<tau>)#\<Gamma>2)" using a2 a3 v2 by force


229 
ultimately have "((a,\<tau>)#\<Gamma>2) \<turnstile> t:\<sigma>" using i by force


230 
with a3 show "\<Gamma>2 \<turnstile> (Lam [a].t) : \<tau> \<rightarrow> \<sigma>" by force


231 
qed


232 


233 
lemma weakening_version3[rule_format]:


234 
fixes \<Gamma>1::"(name\<times>ty) list"


235 
and t ::"lam"


236 
and \<tau> ::"ty"


237 
assumes a: "\<Gamma>1 \<turnstile> t:\<sigma>"


238 
shows "valid \<Gamma>2 \<longrightarrow> \<Gamma>1 \<lless> \<Gamma>2 \<longrightarrow> \<Gamma>2 \<turnstile> t:\<sigma>"


239 
using a


240 
proof (nominal_induct \<Gamma>1 t \<sigma> rule: typing_induct)


241 
case (t1 \<Gamma>2 \<Gamma>1 a \<tau>) (* variable case *)


242 
thus "valid \<Gamma>2 \<longrightarrow> \<Gamma>1 \<lless> \<Gamma>2 \<longrightarrow> \<Gamma>2 \<turnstile> Var a : \<tau>" by (force simp add: sub_def)


243 
next


244 
case (t2 \<Gamma>2 \<Gamma>1 \<tau> \<sigma> t1 t2) (* variable case *)


245 
thus "valid \<Gamma>2 \<longrightarrow> \<Gamma>1 \<lless> \<Gamma>2 \<longrightarrow> \<Gamma>2 \<turnstile> App t1 t2 : \<sigma>" by force


246 
next


247 
case (t3 \<Gamma>2 a \<Gamma>1 \<tau> \<sigma> t) (* lambda case *)


248 
have a3: "a\<sharp>\<Gamma>2"


249 
and i: "\<forall>\<Gamma>3. valid \<Gamma>3 \<longrightarrow> ((a,\<tau>)#\<Gamma>1) \<lless> \<Gamma>3 \<longrightarrow> \<Gamma>3 \<turnstile> t:\<sigma>" by fact


250 
show "valid \<Gamma>2 \<longrightarrow> \<Gamma>1 \<lless> \<Gamma>2 \<longrightarrow> \<Gamma>2 \<turnstile> (Lam [a].t) : \<tau> \<rightarrow> \<sigma>"


251 
proof (intro strip)


252 
assume a1: "\<Gamma>1 \<lless> \<Gamma>2"


253 
and a2: "valid \<Gamma>2"


254 
have "((a,\<tau>)#\<Gamma>1) \<lless> ((a,\<tau>)#\<Gamma>2)" using a1 by (simp add: sub_def)


255 
moreover


256 
have "valid ((a,\<tau>)#\<Gamma>2)" using a2 a3 v2 by force


257 
ultimately have "((a,\<tau>)#\<Gamma>2) \<turnstile> t:\<sigma>" using i by force


258 
with a3 show "\<Gamma>2 \<turnstile> (Lam [a].t) : \<tau> \<rightarrow> \<sigma>" by force


259 
qed


260 
qed


261 


262 
lemma weakening_version4[rule_format]:


263 
assumes a: "\<Gamma>1 \<turnstile> t:\<sigma>"


264 
shows "valid \<Gamma>2 \<longrightarrow> \<Gamma>1 \<lless> \<Gamma>2 \<longrightarrow> \<Gamma>2 \<turnstile> t:\<sigma>"


265 
using a


266 
proof (nominal_induct \<Gamma>1 t \<sigma> rule: typing_induct)


267 
case (t3 \<Gamma>2 a \<Gamma>1 \<tau> \<sigma> t) (* lambda case *)


268 
have fc: "a\<sharp>\<Gamma>2"


269 
and ih: "\<forall>\<Gamma>3. valid \<Gamma>3 \<longrightarrow> ((a,\<tau>)#\<Gamma>1) \<lless> \<Gamma>3 \<longrightarrow> \<Gamma>3 \<turnstile> t:\<sigma>" by fact


270 
show "valid \<Gamma>2 \<longrightarrow> \<Gamma>1 \<lless> \<Gamma>2 \<longrightarrow> \<Gamma>2 \<turnstile> (Lam [a].t) : \<tau> \<rightarrow> \<sigma>"


271 
proof (intro strip)


272 
assume a1: "\<Gamma>1 \<lless> \<Gamma>2"


273 
and a2: "valid \<Gamma>2"


274 
have "((a,\<tau>)#\<Gamma>1) \<lless> ((a,\<tau>)#\<Gamma>2)" using a1 sub_def by simp


275 
moreover


276 
have "valid ((a,\<tau>)#\<Gamma>2)" using a2 fc by force


277 
ultimately have "((a,\<tau>)#\<Gamma>2) \<turnstile> t:\<sigma>" using ih by force


278 
with fc show "\<Gamma>2 \<turnstile> (Lam [a].t) : \<tau> \<rightarrow> \<sigma>" by force


279 
qed


280 
qed (auto simp add: sub_def) (* lam and var case *)


281 


282 


283 
(* original induction principle is not strong *)


284 
(* enough  so the simple proof fails *)


285 
lemma weakening_too_weak[rule_format]:


286 
assumes a: "\<Gamma>1 \<turnstile> t:\<sigma>"


287 
shows "valid \<Gamma>2 \<longrightarrow> \<Gamma>1 \<lless> \<Gamma>2 \<longrightarrow> \<Gamma>2 \<turnstile> t:\<sigma>"


288 
using a


289 
proof (nominal_induct \<Gamma>1 t \<sigma> rule: typing_induct_weak, auto)


290 
case (t1 \<Gamma>2 \<Gamma>1 a \<tau>) (* variable case *)


291 
assume "\<Gamma>1 \<lless> \<Gamma>2"


292 
and "valid \<Gamma>2"


293 
and "(a,\<tau>)\<in> set \<Gamma>1"


294 
thus "\<Gamma>2 \<turnstile> Var a : \<tau>" by (force simp add: sub_def)


295 
next


296 
case (t3 \<Gamma>2 a \<Gamma>1 \<tau> \<sigma> t) (* lambda case *)


297 
assume a1: "\<Gamma>1 \<lless> \<Gamma>2"


298 
and a2: "valid \<Gamma>2"


299 
and i: "\<forall>\<Gamma>3. valid \<Gamma>3 \<longrightarrow> ((a,\<tau>)#\<Gamma>1) \<lless> \<Gamma>3 \<longrightarrow> \<Gamma>3 \<turnstile> t:\<sigma>"


300 
have "((a,\<tau>)#\<Gamma>1) \<lless> ((a,\<tau>)#\<Gamma>2)" using a1 by (simp add: sub_def)


301 
moreover


302 
have "valid ((a,\<tau>)#\<Gamma>2)" using v2 (* fails *)


303 


304 


305 
