| author | nipkow |
| Thu, 06 Dec 2007 19:58:21 +0100 | |
| changeset 25564 | 4ca31a3706a4 |
| parent 25507 | d13468d40131 |
| child 25571 | c9e39eafc7a0 |
| permissions | -rw-r--r-- |
| 10249 | 1 |
(* Title: HOL/Library/Multiset.thy |
2 |
ID: $Id$ |
|
| 15072 | 3 |
Author: Tobias Nipkow, Markus Wenzel, Lawrence C Paulson, Norbert Voelker |
| 10249 | 4 |
*) |
5 |
||
| 14706 | 6 |
header {* Multisets *}
|
| 10249 | 7 |
|
| 15131 | 8 |
theory Multiset |
|
19564
d3e2f532459a
First usable version of the new function definition package (HOL/function_packake/...).
krauss
parents:
19363
diff
changeset
|
9 |
imports Main |
| 15131 | 10 |
begin |
| 10249 | 11 |
|
12 |
subsection {* The type of multisets *}
|
|
13 |
||
| 25162 | 14 |
typedef 'a multiset = "{f::'a => nat. finite {x . f x > 0}}"
|
| 10249 | 15 |
proof |
| 11464 | 16 |
show "(\<lambda>x. 0::nat) \<in> ?multiset" by simp |
| 10249 | 17 |
qed |
18 |
||
19 |
lemmas multiset_typedef [simp] = |
|
| 10277 | 20 |
Abs_multiset_inverse Rep_multiset_inverse Rep_multiset |
21 |
and [simp] = Rep_multiset_inject [symmetric] |
|
| 10249 | 22 |
|
| 19086 | 23 |
definition |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21214
diff
changeset
|
24 |
Mempty :: "'a multiset" ("{#}") where
|
| 19086 | 25 |
"{#} = Abs_multiset (\<lambda>a. 0)"
|
| 10249 | 26 |
|
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21214
diff
changeset
|
27 |
definition |
| 25507 | 28 |
single :: "'a => 'a multiset" where |
29 |
"single a = Abs_multiset (\<lambda>b. if b = a then 1 else 0)" |
|
| 10249 | 30 |
|
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21214
diff
changeset
|
31 |
definition |
|
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21214
diff
changeset
|
32 |
count :: "'a multiset => 'a => nat" where |
| 19086 | 33 |
"count = Rep_multiset" |
| 10249 | 34 |
|
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21214
diff
changeset
|
35 |
definition |
|
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21214
diff
changeset
|
36 |
MCollect :: "'a multiset => ('a => bool) => 'a multiset" where
|
| 19086 | 37 |
"MCollect M P = Abs_multiset (\<lambda>x. if P x then Rep_multiset M x else 0)" |
38 |
||
| 19363 | 39 |
abbreviation |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21214
diff
changeset
|
40 |
Melem :: "'a => 'a multiset => bool" ("(_/ :# _)" [50, 51] 50) where
|
| 25162 | 41 |
"a :# M == count M a > 0" |
| 10249 | 42 |
|
43 |
syntax |
|
44 |
"_MCollect" :: "pttrn => 'a multiset => bool => 'a multiset" ("(1{# _ : _./ _#})")
|
|
45 |
translations |
|
| 20770 | 46 |
"{#x:M. P#}" == "CONST MCollect M (\<lambda>x. P)"
|
| 10249 | 47 |
|
| 19086 | 48 |
definition |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21214
diff
changeset
|
49 |
set_of :: "'a multiset => 'a set" where |
| 19086 | 50 |
"set_of M = {x. x :# M}"
|
| 10249 | 51 |
|
| 21417 | 52 |
instance multiset :: (type) "{plus, minus, zero, size}"
|
| 11464 | 53 |
union_def: "M + N == Abs_multiset (\<lambda>a. Rep_multiset M a + Rep_multiset N a)" |
54 |
diff_def: "M - N == Abs_multiset (\<lambda>a. Rep_multiset M a - Rep_multiset N a)" |
|
|
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
55 |
Zero_multiset_def [simp]: "0 == {#}"
|
| 21417 | 56 |
size_def: "size M == setsum (count M) (set_of M)" .. |
| 10249 | 57 |
|
| 19086 | 58 |
definition |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21214
diff
changeset
|
59 |
multiset_inter :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" (infixl "#\<inter>" 70) where |
| 19086 | 60 |
"multiset_inter A B = A - (A - B)" |
| 15869 | 61 |
|
| 25507 | 62 |
syntax -- "Multiset Enumeration" |
63 |
"@multiset" :: "args => 'a multiset" ("{#(_)#}")
|
|
64 |
||
65 |
translations |
|
66 |
"{#x, xs#}" == "{#x#} + {#xs#}"
|
|
67 |
"{#x#}" == "CONST single x"
|
|
68 |
||
| 10249 | 69 |
|
70 |
text {*
|
|
71 |
\medskip Preservation of the representing set @{term multiset}.
|
|
72 |
*} |
|
73 |
||
| 11464 | 74 |
lemma const0_in_multiset [simp]: "(\<lambda>a. 0) \<in> multiset" |
| 17161 | 75 |
by (simp add: multiset_def) |
| 10249 | 76 |
|
|
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
77 |
lemma only1_in_multiset [simp]: "(\<lambda>b. if b = a then 1 else 0) \<in> multiset" |
| 17161 | 78 |
by (simp add: multiset_def) |
| 10249 | 79 |
|
80 |
lemma union_preserves_multiset [simp]: |
|
| 11464 | 81 |
"M \<in> multiset ==> N \<in> multiset ==> (\<lambda>a. M a + N a) \<in> multiset" |
| 17161 | 82 |
apply (simp add: multiset_def) |
83 |
apply (drule (1) finite_UnI) |
|
| 10249 | 84 |
apply (simp del: finite_Un add: Un_def) |
85 |
done |
|
86 |
||
87 |
lemma diff_preserves_multiset [simp]: |
|
| 11464 | 88 |
"M \<in> multiset ==> (\<lambda>a. M a - N a) \<in> multiset" |
| 17161 | 89 |
apply (simp add: multiset_def) |
| 10249 | 90 |
apply (rule finite_subset) |
| 17161 | 91 |
apply auto |
| 10249 | 92 |
done |
93 |
||
94 |
||
95 |
subsection {* Algebraic properties of multisets *}
|
|
96 |
||
97 |
subsubsection {* Union *}
|
|
98 |
||
| 17161 | 99 |
lemma union_empty [simp]: "M + {#} = M \<and> {#} + M = M"
|
100 |
by (simp add: union_def Mempty_def) |
|
| 10249 | 101 |
|
| 17161 | 102 |
lemma union_commute: "M + N = N + (M::'a multiset)" |
103 |
by (simp add: union_def add_ac) |
|
104 |
||
105 |
lemma union_assoc: "(M + N) + K = M + (N + (K::'a multiset))" |
|
106 |
by (simp add: union_def add_ac) |
|
| 10249 | 107 |
|
| 17161 | 108 |
lemma union_lcomm: "M + (N + K) = N + (M + (K::'a multiset))" |
109 |
proof - |
|
110 |
have "M + (N + K) = (N + K) + M" |
|
111 |
by (rule union_commute) |
|
112 |
also have "\<dots> = N + (K + M)" |
|
113 |
by (rule union_assoc) |
|
114 |
also have "K + M = M + K" |
|
115 |
by (rule union_commute) |
|
116 |
finally show ?thesis . |
|
117 |
qed |
|
| 10249 | 118 |
|
| 17161 | 119 |
lemmas union_ac = union_assoc union_commute union_lcomm |
| 10249 | 120 |
|
| 14738 | 121 |
instance multiset :: (type) comm_monoid_add |
| 17200 | 122 |
proof |
|
14722
8e739a6eaf11
replaced apply-style proof for instance Multiset :: plus_ac0 by recommended Isar proof style
obua
parents:
14706
diff
changeset
|
123 |
fix a b c :: "'a multiset" |
|
8e739a6eaf11
replaced apply-style proof for instance Multiset :: plus_ac0 by recommended Isar proof style
obua
parents:
14706
diff
changeset
|
124 |
show "(a + b) + c = a + (b + c)" by (rule union_assoc) |
|
8e739a6eaf11
replaced apply-style proof for instance Multiset :: plus_ac0 by recommended Isar proof style
obua
parents:
14706
diff
changeset
|
125 |
show "a + b = b + a" by (rule union_commute) |
|
8e739a6eaf11
replaced apply-style proof for instance Multiset :: plus_ac0 by recommended Isar proof style
obua
parents:
14706
diff
changeset
|
126 |
show "0 + a = a" by simp |
|
8e739a6eaf11
replaced apply-style proof for instance Multiset :: plus_ac0 by recommended Isar proof style
obua
parents:
14706
diff
changeset
|
127 |
qed |
| 10277 | 128 |
|
| 10249 | 129 |
|
130 |
subsubsection {* Difference *}
|
|
131 |
||
| 17161 | 132 |
lemma diff_empty [simp]: "M - {#} = M \<and> {#} - M = {#}"
|
133 |
by (simp add: Mempty_def diff_def) |
|
| 10249 | 134 |
|
| 17161 | 135 |
lemma diff_union_inverse2 [simp]: "M + {#a#} - {#a#} = M"
|
136 |
by (simp add: union_def diff_def) |
|
| 10249 | 137 |
|
138 |
||
139 |
subsubsection {* Count of elements *}
|
|
140 |
||
| 17161 | 141 |
lemma count_empty [simp]: "count {#} a = 0"
|
142 |
by (simp add: count_def Mempty_def) |
|
| 10249 | 143 |
|
| 17161 | 144 |
lemma count_single [simp]: "count {#b#} a = (if b = a then 1 else 0)"
|
145 |
by (simp add: count_def single_def) |
|
| 10249 | 146 |
|
| 17161 | 147 |
lemma count_union [simp]: "count (M + N) a = count M a + count N a" |
148 |
by (simp add: count_def union_def) |
|
| 10249 | 149 |
|
| 17161 | 150 |
lemma count_diff [simp]: "count (M - N) a = count M a - count N a" |
151 |
by (simp add: count_def diff_def) |
|
| 10249 | 152 |
|
153 |
||
154 |
subsubsection {* Set of elements *}
|
|
155 |
||
| 17161 | 156 |
lemma set_of_empty [simp]: "set_of {#} = {}"
|
157 |
by (simp add: set_of_def) |
|
| 10249 | 158 |
|
| 17161 | 159 |
lemma set_of_single [simp]: "set_of {#b#} = {b}"
|
160 |
by (simp add: set_of_def) |
|
| 10249 | 161 |
|
| 17161 | 162 |
lemma set_of_union [simp]: "set_of (M + N) = set_of M \<union> set_of N" |
163 |
by (auto simp add: set_of_def) |
|
| 10249 | 164 |
|
| 17161 | 165 |
lemma set_of_eq_empty_iff [simp]: "(set_of M = {}) = (M = {#})"
|
166 |
by (auto simp add: set_of_def Mempty_def count_def expand_fun_eq) |
|
| 10249 | 167 |
|
| 17161 | 168 |
lemma mem_set_of_iff [simp]: "(x \<in> set_of M) = (x :# M)" |
169 |
by (auto simp add: set_of_def) |
|
| 10249 | 170 |
|
171 |
||
172 |
subsubsection {* Size *}
|
|
173 |
||
| 17161 | 174 |
lemma size_empty [simp]: "size {#} = 0"
|
175 |
by (simp add: size_def) |
|
| 10249 | 176 |
|
| 17161 | 177 |
lemma size_single [simp]: "size {#b#} = 1"
|
178 |
by (simp add: size_def) |
|
| 10249 | 179 |
|
| 17161 | 180 |
lemma finite_set_of [iff]: "finite (set_of M)" |
181 |
using Rep_multiset [of M] |
|
182 |
by (simp add: multiset_def set_of_def count_def) |
|
| 10249 | 183 |
|
| 17161 | 184 |
lemma setsum_count_Int: |
| 11464 | 185 |
"finite A ==> setsum (count N) (A \<inter> set_of N) = setsum (count N) A" |
| 18258 | 186 |
apply (induct rule: finite_induct) |
| 17161 | 187 |
apply simp |
| 10249 | 188 |
apply (simp add: Int_insert_left set_of_def) |
189 |
done |
|
190 |
||
| 17161 | 191 |
lemma size_union [simp]: "size (M + N::'a multiset) = size M + size N" |
| 10249 | 192 |
apply (unfold size_def) |
| 11464 | 193 |
apply (subgoal_tac "count (M + N) = (\<lambda>a. count M a + count N a)") |
| 10249 | 194 |
prefer 2 |
| 15072 | 195 |
apply (rule ext, simp) |
| 15402 | 196 |
apply (simp (no_asm_simp) add: setsum_Un_nat setsum_addf setsum_count_Int) |
| 10249 | 197 |
apply (subst Int_commute) |
198 |
apply (simp (no_asm_simp) add: setsum_count_Int) |
|
199 |
done |
|
200 |
||
| 17161 | 201 |
lemma size_eq_0_iff_empty [iff]: "(size M = 0) = (M = {#})"
|
| 15072 | 202 |
apply (unfold size_def Mempty_def count_def, auto) |
| 10249 | 203 |
apply (simp add: set_of_def count_def expand_fun_eq) |
204 |
done |
|
205 |
||
| 17161 | 206 |
lemma size_eq_Suc_imp_elem: "size M = Suc n ==> \<exists>a. a :# M" |
| 10249 | 207 |
apply (unfold size_def) |
| 15072 | 208 |
apply (drule setsum_SucD, auto) |
| 10249 | 209 |
done |
210 |
||
211 |
||
212 |
subsubsection {* Equality of multisets *}
|
|
213 |
||
| 17161 | 214 |
lemma multiset_eq_conv_count_eq: "(M = N) = (\<forall>a. count M a = count N a)" |
215 |
by (simp add: count_def expand_fun_eq) |
|
| 10249 | 216 |
|
| 17161 | 217 |
lemma single_not_empty [simp]: "{#a#} \<noteq> {#} \<and> {#} \<noteq> {#a#}"
|
218 |
by (simp add: single_def Mempty_def expand_fun_eq) |
|
| 10249 | 219 |
|
| 17161 | 220 |
lemma single_eq_single [simp]: "({#a#} = {#b#}) = (a = b)"
|
221 |
by (auto simp add: single_def expand_fun_eq) |
|
| 10249 | 222 |
|
| 17161 | 223 |
lemma union_eq_empty [iff]: "(M + N = {#}) = (M = {#} \<and> N = {#})"
|
224 |
by (auto simp add: union_def Mempty_def expand_fun_eq) |
|
| 10249 | 225 |
|
| 17161 | 226 |
lemma empty_eq_union [iff]: "({#} = M + N) = (M = {#} \<and> N = {#})"
|
227 |
by (auto simp add: union_def Mempty_def expand_fun_eq) |
|
| 10249 | 228 |
|
| 17161 | 229 |
lemma union_right_cancel [simp]: "(M + K = N + K) = (M = (N::'a multiset))" |
230 |
by (simp add: union_def expand_fun_eq) |
|
| 10249 | 231 |
|
| 17161 | 232 |
lemma union_left_cancel [simp]: "(K + M = K + N) = (M = (N::'a multiset))" |
233 |
by (simp add: union_def expand_fun_eq) |
|
| 10249 | 234 |
|
| 17161 | 235 |
lemma union_is_single: |
| 11464 | 236 |
"(M + N = {#a#}) = (M = {#a#} \<and> N={#} \<or> M = {#} \<and> N = {#a#})"
|
| 15072 | 237 |
apply (simp add: Mempty_def single_def union_def add_is_1 expand_fun_eq) |
| 10249 | 238 |
apply blast |
239 |
done |
|
240 |
||
| 17161 | 241 |
lemma single_is_union: |
| 15072 | 242 |
"({#a#} = M + N) = ({#a#} = M \<and> N = {#} \<or> M = {#} \<and> {#a#} = N)"
|
| 10249 | 243 |
apply (unfold Mempty_def single_def union_def) |
| 11464 | 244 |
apply (simp add: add_is_1 one_is_add expand_fun_eq) |
| 10249 | 245 |
apply (blast dest: sym) |
246 |
done |
|
247 |
||
| 17161 | 248 |
lemma add_eq_conv_diff: |
| 10249 | 249 |
"(M + {#a#} = N + {#b#}) =
|
| 15072 | 250 |
(M = N \<and> a = b \<or> M = N - {#a#} + {#b#} \<and> N = M - {#b#} + {#a#})"
|
| 24035 | 251 |
using [[simproc del: neq]] |
| 10249 | 252 |
apply (unfold single_def union_def diff_def) |
253 |
apply (simp (no_asm) add: expand_fun_eq) |
|
| 15072 | 254 |
apply (rule conjI, force, safe, simp_all) |
| 13601 | 255 |
apply (simp add: eq_sym_conv) |
| 10249 | 256 |
done |
257 |
||
| 15869 | 258 |
declare Rep_multiset_inject [symmetric, simp del] |
259 |
||
| 23611 | 260 |
instance multiset :: (type) cancel_ab_semigroup_add |
261 |
proof |
|
262 |
fix a b c :: "'a multiset" |
|
263 |
show "a + b = a + c \<Longrightarrow> b = c" by simp |
|
264 |
qed |
|
| 15869 | 265 |
|
266 |
subsubsection {* Intersection *}
|
|
267 |
||
268 |
lemma multiset_inter_count: |
|
| 17161 | 269 |
"count (A #\<inter> B) x = min (count A x) (count B x)" |
270 |
by (simp add: multiset_inter_def min_def) |
|
| 15869 | 271 |
|
272 |
lemma multiset_inter_commute: "A #\<inter> B = B #\<inter> A" |
|
| 17200 | 273 |
by (simp add: multiset_eq_conv_count_eq multiset_inter_count |
|
21214
a91bab12b2bd
adjusted two lemma names due to name change in interpretation
haftmann
parents:
20770
diff
changeset
|
274 |
min_max.inf_commute) |
| 15869 | 275 |
|
276 |
lemma multiset_inter_assoc: "A #\<inter> (B #\<inter> C) = A #\<inter> B #\<inter> C" |
|
| 17200 | 277 |
by (simp add: multiset_eq_conv_count_eq multiset_inter_count |
|
21214
a91bab12b2bd
adjusted two lemma names due to name change in interpretation
haftmann
parents:
20770
diff
changeset
|
278 |
min_max.inf_assoc) |
| 15869 | 279 |
|
280 |
lemma multiset_inter_left_commute: "A #\<inter> (B #\<inter> C) = B #\<inter> (A #\<inter> C)" |
|
281 |
by (simp add: multiset_eq_conv_count_eq multiset_inter_count min_def) |
|
282 |
||
| 17161 | 283 |
lemmas multiset_inter_ac = |
284 |
multiset_inter_commute |
|
285 |
multiset_inter_assoc |
|
286 |
multiset_inter_left_commute |
|
| 15869 | 287 |
|
288 |
lemma multiset_union_diff_commute: "B #\<inter> C = {#} \<Longrightarrow> A + B - C = A - C + B"
|
|
| 17200 | 289 |
apply (simp add: multiset_eq_conv_count_eq multiset_inter_count min_def |
| 17161 | 290 |
split: split_if_asm) |
| 15869 | 291 |
apply clarsimp |
| 17161 | 292 |
apply (erule_tac x = a in allE) |
| 15869 | 293 |
apply auto |
294 |
done |
|
295 |
||
| 10249 | 296 |
|
297 |
subsection {* Induction over multisets *}
|
|
298 |
||
299 |
lemma setsum_decr: |
|
|
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
300 |
"finite F ==> (0::nat) < f a ==> |
| 15072 | 301 |
setsum (f (a := f a - 1)) F = (if a\<in>F then setsum f F - 1 else setsum f F)" |
| 18258 | 302 |
apply (induct rule: finite_induct) |
303 |
apply auto |
|
| 15072 | 304 |
apply (drule_tac a = a in mk_disjoint_insert, auto) |
| 10249 | 305 |
done |
306 |
||
| 10313 | 307 |
lemma rep_multiset_induct_aux: |
| 18730 | 308 |
assumes 1: "P (\<lambda>a. (0::nat))" |
309 |
and 2: "!!f b. f \<in> multiset ==> P f ==> P (f (b := f b + 1))" |
|
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
24035
diff
changeset
|
310 |
shows "\<forall>f. f \<in> multiset --> setsum f {x. f x \<noteq> 0} = n --> P f"
|
| 18730 | 311 |
apply (unfold multiset_def) |
312 |
apply (induct_tac n, simp, clarify) |
|
313 |
apply (subgoal_tac "f = (\<lambda>a.0)") |
|
314 |
apply simp |
|
315 |
apply (rule 1) |
|
316 |
apply (rule ext, force, clarify) |
|
317 |
apply (frule setsum_SucD, clarify) |
|
318 |
apply (rename_tac a) |
|
| 25162 | 319 |
apply (subgoal_tac "finite {x. (f (a := f a - 1)) x > 0}")
|
| 18730 | 320 |
prefer 2 |
321 |
apply (rule finite_subset) |
|
322 |
prefer 2 |
|
323 |
apply assumption |
|
324 |
apply simp |
|
325 |
apply blast |
|
326 |
apply (subgoal_tac "f = (f (a := f a - 1))(a := (f (a := f a - 1)) a + 1)") |
|
327 |
prefer 2 |
|
328 |
apply (rule ext) |
|
329 |
apply (simp (no_asm_simp)) |
|
330 |
apply (erule ssubst, rule 2 [unfolded multiset_def], blast) |
|
331 |
apply (erule allE, erule impE, erule_tac [2] mp, blast) |
|
332 |
apply (simp (no_asm_simp) add: setsum_decr del: fun_upd_apply One_nat_def) |
|
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
24035
diff
changeset
|
333 |
apply (subgoal_tac "{x. x \<noteq> a --> f x \<noteq> 0} = {x. f x \<noteq> 0}")
|
| 18730 | 334 |
prefer 2 |
335 |
apply blast |
|
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
24035
diff
changeset
|
336 |
apply (subgoal_tac "{x. x \<noteq> a \<and> f x \<noteq> 0} = {x. f x \<noteq> 0} - {a}")
|
| 18730 | 337 |
prefer 2 |
338 |
apply blast |
|
339 |
apply (simp add: le_imp_diff_is_add setsum_diff1_nat cong: conj_cong) |
|
340 |
done |
|
| 10249 | 341 |
|
| 10313 | 342 |
theorem rep_multiset_induct: |
| 11464 | 343 |
"f \<in> multiset ==> P (\<lambda>a. 0) ==> |
|
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
344 |
(!!f b. f \<in> multiset ==> P f ==> P (f (b := f b + 1))) ==> P f" |
| 17161 | 345 |
using rep_multiset_induct_aux by blast |
| 10249 | 346 |
|
| 18258 | 347 |
theorem multiset_induct [case_names empty add, induct type: multiset]: |
348 |
assumes empty: "P {#}"
|
|
349 |
and add: "!!M x. P M ==> P (M + {#x#})"
|
|
| 17161 | 350 |
shows "P M" |
| 10249 | 351 |
proof - |
352 |
note defns = union_def single_def Mempty_def |
|
353 |
show ?thesis |
|
354 |
apply (rule Rep_multiset_inverse [THEN subst]) |
|
| 10313 | 355 |
apply (rule Rep_multiset [THEN rep_multiset_induct]) |
| 18258 | 356 |
apply (rule empty [unfolded defns]) |
| 15072 | 357 |
apply (subgoal_tac "f(b := f b + 1) = (\<lambda>a. f a + (if a=b then 1 else 0))") |
| 10249 | 358 |
prefer 2 |
359 |
apply (simp add: expand_fun_eq) |
|
360 |
apply (erule ssubst) |
|
| 17200 | 361 |
apply (erule Abs_multiset_inverse [THEN subst]) |
| 18258 | 362 |
apply (erule add [unfolded defns, simplified]) |
| 10249 | 363 |
done |
364 |
qed |
|
365 |
||
366 |
lemma MCollect_preserves_multiset: |
|
| 11464 | 367 |
"M \<in> multiset ==> (\<lambda>x. if P x then M x else 0) \<in> multiset" |
| 10249 | 368 |
apply (simp add: multiset_def) |
| 15072 | 369 |
apply (rule finite_subset, auto) |
| 10249 | 370 |
done |
371 |
||
| 17161 | 372 |
lemma count_MCollect [simp]: |
| 10249 | 373 |
"count {# x:M. P x #} a = (if P a then count M a else 0)"
|
| 15072 | 374 |
by (simp add: count_def MCollect_def MCollect_preserves_multiset) |
| 10249 | 375 |
|
| 17161 | 376 |
lemma set_of_MCollect [simp]: "set_of {# x:M. P x #} = set_of M \<inter> {x. P x}"
|
377 |
by (auto simp add: set_of_def) |
|
| 10249 | 378 |
|
| 17161 | 379 |
lemma multiset_partition: "M = {# x:M. P x #} + {# x:M. \<not> P x #}"
|
380 |
by (subst multiset_eq_conv_count_eq, auto) |
|
| 10249 | 381 |
|
| 17161 | 382 |
lemma add_eq_conv_ex: |
383 |
"(M + {#a#} = N + {#b#}) =
|
|
384 |
(M = N \<and> a = b \<or> (\<exists>K. M = K + {#b#} \<and> N = K + {#a#}))"
|
|
| 15072 | 385 |
by (auto simp add: add_eq_conv_diff) |
| 10249 | 386 |
|
| 15869 | 387 |
declare multiset_typedef [simp del] |
| 10249 | 388 |
|
| 17161 | 389 |
|
| 10249 | 390 |
subsection {* Multiset orderings *}
|
391 |
||
392 |
subsubsection {* Well-foundedness *}
|
|
393 |
||
| 19086 | 394 |
definition |
| 23751 | 395 |
mult1 :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set" where
|
| 19086 | 396 |
"mult1 r = |
| 23751 | 397 |
{(N, M). \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and>
|
398 |
(\<forall>b. b :# K --> (b, a) \<in> r)}" |
|
| 10249 | 399 |
|
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21214
diff
changeset
|
400 |
definition |
| 23751 | 401 |
mult :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set" where
|
402 |
"mult r = (mult1 r)\<^sup>+" |
|
| 10249 | 403 |
|
| 23751 | 404 |
lemma not_less_empty [iff]: "(M, {#}) \<notin> mult1 r"
|
| 10277 | 405 |
by (simp add: mult1_def) |
| 10249 | 406 |
|
| 23751 | 407 |
lemma less_add: "(N, M0 + {#a#}) \<in> mult1 r ==>
|
408 |
(\<exists>M. (M, M0) \<in> mult1 r \<and> N = M + {#a#}) \<or>
|
|
409 |
(\<exists>K. (\<forall>b. b :# K --> (b, a) \<in> r) \<and> N = M0 + K)" |
|
| 19582 | 410 |
(is "_ \<Longrightarrow> ?case1 (mult1 r) \<or> ?case2") |
| 10249 | 411 |
proof (unfold mult1_def) |
| 23751 | 412 |
let ?r = "\<lambda>K a. \<forall>b. b :# K --> (b, a) \<in> r" |
| 11464 | 413 |
let ?R = "\<lambda>N M. \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and> ?r K a"
|
| 23751 | 414 |
let ?case1 = "?case1 {(N, M). ?R N M}"
|
| 10249 | 415 |
|
| 23751 | 416 |
assume "(N, M0 + {#a#}) \<in> {(N, M). ?R N M}"
|
| 18258 | 417 |
then have "\<exists>a' M0' K. |
| 11464 | 418 |
M0 + {#a#} = M0' + {#a'#} \<and> N = M0' + K \<and> ?r K a'" by simp
|
| 18258 | 419 |
then show "?case1 \<or> ?case2" |
| 10249 | 420 |
proof (elim exE conjE) |
421 |
fix a' M0' K |
|
422 |
assume N: "N = M0' + K" and r: "?r K a'" |
|
423 |
assume "M0 + {#a#} = M0' + {#a'#}"
|
|
| 18258 | 424 |
then have "M0 = M0' \<and> a = a' \<or> |
| 11464 | 425 |
(\<exists>K'. M0 = K' + {#a'#} \<and> M0' = K' + {#a#})"
|
| 10249 | 426 |
by (simp only: add_eq_conv_ex) |
| 18258 | 427 |
then show ?thesis |
| 10249 | 428 |
proof (elim disjE conjE exE) |
429 |
assume "M0 = M0'" "a = a'" |
|
| 11464 | 430 |
with N r have "?r K a \<and> N = M0 + K" by simp |
| 18258 | 431 |
then have ?case2 .. then show ?thesis .. |
| 10249 | 432 |
next |
433 |
fix K' |
|
434 |
assume "M0' = K' + {#a#}"
|
|
435 |
with N have n: "N = K' + K + {#a#}" by (simp add: union_ac)
|
|
436 |
||
437 |
assume "M0 = K' + {#a'#}"
|
|
438 |
with r have "?R (K' + K) M0" by blast |
|
| 18258 | 439 |
with n have ?case1 by simp then show ?thesis .. |
| 10249 | 440 |
qed |
441 |
qed |
|
442 |
qed |
|
443 |
||
| 23751 | 444 |
lemma all_accessible: "wf r ==> \<forall>M. M \<in> acc (mult1 r)" |
| 10249 | 445 |
proof |
446 |
let ?R = "mult1 r" |
|
447 |
let ?W = "acc ?R" |
|
448 |
{
|
|
449 |
fix M M0 a |
|
| 23751 | 450 |
assume M0: "M0 \<in> ?W" |
451 |
and wf_hyp: "!!b. (b, a) \<in> r ==> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)"
|
|
452 |
and acc_hyp: "\<forall>M. (M, M0) \<in> ?R --> M + {#a#} \<in> ?W"
|
|
453 |
have "M0 + {#a#} \<in> ?W"
|
|
454 |
proof (rule accI [of "M0 + {#a#}"])
|
|
| 10249 | 455 |
fix N |
| 23751 | 456 |
assume "(N, M0 + {#a#}) \<in> ?R"
|
457 |
then have "((\<exists>M. (M, M0) \<in> ?R \<and> N = M + {#a#}) \<or>
|
|
458 |
(\<exists>K. (\<forall>b. b :# K --> (b, a) \<in> r) \<and> N = M0 + K))" |
|
| 10249 | 459 |
by (rule less_add) |
| 23751 | 460 |
then show "N \<in> ?W" |
| 10249 | 461 |
proof (elim exE disjE conjE) |
| 23751 | 462 |
fix M assume "(M, M0) \<in> ?R" and N: "N = M + {#a#}"
|
463 |
from acc_hyp have "(M, M0) \<in> ?R --> M + {#a#} \<in> ?W" ..
|
|
464 |
from this and `(M, M0) \<in> ?R` have "M + {#a#} \<in> ?W" ..
|
|
465 |
then show "N \<in> ?W" by (simp only: N) |
|
| 10249 | 466 |
next |
467 |
fix K |
|
468 |
assume N: "N = M0 + K" |
|
| 23751 | 469 |
assume "\<forall>b. b :# K --> (b, a) \<in> r" |
470 |
then have "M0 + K \<in> ?W" |
|
| 10249 | 471 |
proof (induct K) |
| 18730 | 472 |
case empty |
| 23751 | 473 |
from M0 show "M0 + {#} \<in> ?W" by simp
|
| 18730 | 474 |
next |
475 |
case (add K x) |
|
| 23751 | 476 |
from add.prems have "(x, a) \<in> r" by simp |
477 |
with wf_hyp have "\<forall>M \<in> ?W. M + {#x#} \<in> ?W" by blast
|
|
478 |
moreover from add have "M0 + K \<in> ?W" by simp |
|
479 |
ultimately have "(M0 + K) + {#x#} \<in> ?W" ..
|
|
480 |
then show "M0 + (K + {#x#}) \<in> ?W" by (simp only: union_assoc)
|
|
| 10249 | 481 |
qed |
| 23751 | 482 |
then show "N \<in> ?W" by (simp only: N) |
| 10249 | 483 |
qed |
484 |
qed |
|
485 |
} note tedious_reasoning = this |
|
486 |
||
| 23751 | 487 |
assume wf: "wf r" |
| 10249 | 488 |
fix M |
| 23751 | 489 |
show "M \<in> ?W" |
| 10249 | 490 |
proof (induct M) |
| 23751 | 491 |
show "{#} \<in> ?W"
|
| 10249 | 492 |
proof (rule accI) |
| 23751 | 493 |
fix b assume "(b, {#}) \<in> ?R"
|
494 |
with not_less_empty show "b \<in> ?W" by contradiction |
|
| 10249 | 495 |
qed |
496 |
||
| 23751 | 497 |
fix M a assume "M \<in> ?W" |
498 |
from wf have "\<forall>M \<in> ?W. M + {#a#} \<in> ?W"
|
|
| 10249 | 499 |
proof induct |
500 |
fix a |
|
| 23751 | 501 |
assume r: "!!b. (b, a) \<in> r ==> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)"
|
502 |
show "\<forall>M \<in> ?W. M + {#a#} \<in> ?W"
|
|
| 10249 | 503 |
proof |
| 23751 | 504 |
fix M assume "M \<in> ?W" |
505 |
then show "M + {#a#} \<in> ?W"
|
|
| 23373 | 506 |
by (rule acc_induct) (rule tedious_reasoning [OF _ r]) |
| 10249 | 507 |
qed |
508 |
qed |
|
| 23751 | 509 |
from this and `M \<in> ?W` show "M + {#a#} \<in> ?W" ..
|
| 10249 | 510 |
qed |
511 |
qed |
|
512 |
||
| 23751 | 513 |
theorem wf_mult1: "wf r ==> wf (mult1 r)" |
| 23373 | 514 |
by (rule acc_wfI) (rule all_accessible) |
| 10249 | 515 |
|
| 23751 | 516 |
theorem wf_mult: "wf r ==> wf (mult r)" |
517 |
unfolding mult_def by (rule wf_trancl) (rule wf_mult1) |
|
| 10249 | 518 |
|
519 |
||
520 |
subsubsection {* Closure-free presentation *}
|
|
521 |
||
522 |
(*Badly needed: a linear arithmetic procedure for multisets*) |
|
523 |
||
524 |
lemma diff_union_single_conv: "a :# J ==> I + J - {#a#} = I + (J - {#a#})"
|
|
| 23373 | 525 |
by (simp add: multiset_eq_conv_count_eq) |
| 10249 | 526 |
|
527 |
text {* One direction. *}
|
|
528 |
||
529 |
lemma mult_implies_one_step: |
|
| 23751 | 530 |
"trans r ==> (M, N) \<in> mult r ==> |
| 11464 | 531 |
\<exists>I J K. N = I + J \<and> M = I + K \<and> J \<noteq> {#} \<and>
|
| 23751 | 532 |
(\<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r)" |
| 10249 | 533 |
apply (unfold mult_def mult1_def set_of_def) |
| 23751 | 534 |
apply (erule converse_trancl_induct, clarify) |
| 15072 | 535 |
apply (rule_tac x = M0 in exI, simp, clarify) |
| 23751 | 536 |
apply (case_tac "a :# K") |
| 10249 | 537 |
apply (rule_tac x = I in exI) |
538 |
apply (simp (no_asm)) |
|
| 23751 | 539 |
apply (rule_tac x = "(K - {#a#}) + Ka" in exI)
|
| 10249 | 540 |
apply (simp (no_asm_simp) add: union_assoc [symmetric]) |
| 11464 | 541 |
apply (drule_tac f = "\<lambda>M. M - {#a#}" in arg_cong)
|
| 10249 | 542 |
apply (simp add: diff_union_single_conv) |
543 |
apply (simp (no_asm_use) add: trans_def) |
|
544 |
apply blast |
|
545 |
apply (subgoal_tac "a :# I") |
|
546 |
apply (rule_tac x = "I - {#a#}" in exI)
|
|
547 |
apply (rule_tac x = "J + {#a#}" in exI)
|
|
548 |
apply (rule_tac x = "K + Ka" in exI) |
|
549 |
apply (rule conjI) |
|
550 |
apply (simp add: multiset_eq_conv_count_eq split: nat_diff_split) |
|
551 |
apply (rule conjI) |
|
| 15072 | 552 |
apply (drule_tac f = "\<lambda>M. M - {#a#}" in arg_cong, simp)
|
| 10249 | 553 |
apply (simp add: multiset_eq_conv_count_eq split: nat_diff_split) |
554 |
apply (simp (no_asm_use) add: trans_def) |
|
555 |
apply blast |
|
| 10277 | 556 |
apply (subgoal_tac "a :# (M0 + {#a#})")
|
| 10249 | 557 |
apply simp |
558 |
apply (simp (no_asm)) |
|
559 |
done |
|
560 |
||
561 |
lemma elem_imp_eq_diff_union: "a :# M ==> M = M - {#a#} + {#a#}"
|
|
| 23373 | 562 |
by (simp add: multiset_eq_conv_count_eq) |
| 10249 | 563 |
|
| 11464 | 564 |
lemma size_eq_Suc_imp_eq_union: "size M = Suc n ==> \<exists>a N. M = N + {#a#}"
|
| 10249 | 565 |
apply (erule size_eq_Suc_imp_elem [THEN exE]) |
| 15072 | 566 |
apply (drule elem_imp_eq_diff_union, auto) |
| 10249 | 567 |
done |
568 |
||
569 |
lemma one_step_implies_mult_aux: |
|
| 23751 | 570 |
"trans r ==> |
571 |
\<forall>I J K. (size J = n \<and> J \<noteq> {#} \<and> (\<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r))
|
|
572 |
--> (I + K, I + J) \<in> mult r" |
|
| 15072 | 573 |
apply (induct_tac n, auto) |
574 |
apply (frule size_eq_Suc_imp_eq_union, clarify) |
|
575 |
apply (rename_tac "J'", simp) |
|
576 |
apply (erule notE, auto) |
|
| 10249 | 577 |
apply (case_tac "J' = {#}")
|
578 |
apply (simp add: mult_def) |
|
| 23751 | 579 |
apply (rule r_into_trancl) |
| 15072 | 580 |
apply (simp add: mult1_def set_of_def, blast) |
| 11464 | 581 |
txt {* Now we know @{term "J' \<noteq> {#}"}. *}
|
| 23751 | 582 |
apply (cut_tac M = K and P = "\<lambda>x. (x, a) \<in> r" in multiset_partition) |
| 11464 | 583 |
apply (erule_tac P = "\<forall>k \<in> set_of K. ?P k" in rev_mp) |
| 10249 | 584 |
apply (erule ssubst) |
| 15072 | 585 |
apply (simp add: Ball_def, auto) |
| 10249 | 586 |
apply (subgoal_tac |
| 23751 | 587 |
"((I + {# x : K. (x, a) \<in> r #}) + {# x : K. (x, a) \<notin> r #},
|
588 |
(I + {# x : K. (x, a) \<in> r #}) + J') \<in> mult r")
|
|
| 10249 | 589 |
prefer 2 |
590 |
apply force |
|
591 |
apply (simp (no_asm_use) add: union_assoc [symmetric] mult_def) |
|
| 23751 | 592 |
apply (erule trancl_trans) |
593 |
apply (rule r_into_trancl) |
|
| 10249 | 594 |
apply (simp add: mult1_def set_of_def) |
595 |
apply (rule_tac x = a in exI) |
|
596 |
apply (rule_tac x = "I + J'" in exI) |
|
597 |
apply (simp add: union_ac) |
|
598 |
done |
|
599 |
||
| 17161 | 600 |
lemma one_step_implies_mult: |
| 23751 | 601 |
"trans r ==> J \<noteq> {#} ==> \<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r
|
602 |
==> (I + K, I + J) \<in> mult r" |
|
| 23373 | 603 |
using one_step_implies_mult_aux by blast |
| 10249 | 604 |
|
605 |
||
606 |
subsubsection {* Partial-order properties *}
|
|
607 |
||
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11868
diff
changeset
|
608 |
instance multiset :: (type) ord .. |
| 10249 | 609 |
|
610 |
defs (overloaded) |
|
| 23751 | 611 |
less_multiset_def: "M' < M == (M', M) \<in> mult {(x', x). x' < x}"
|
| 11464 | 612 |
le_multiset_def: "M' <= M == M' = M \<or> M' < (M::'a multiset)" |
| 10249 | 613 |
|
| 23751 | 614 |
lemma trans_base_order: "trans {(x', x). x' < (x::'a::order)}"
|
| 18730 | 615 |
unfolding trans_def by (blast intro: order_less_trans) |
| 10249 | 616 |
|
617 |
text {*
|
|
618 |
\medskip Irreflexivity. |
|
619 |
*} |
|
620 |
||
621 |
lemma mult_irrefl_aux: |
|
| 18258 | 622 |
"finite A ==> (\<forall>x \<in> A. \<exists>y \<in> A. x < (y::'a::order)) \<Longrightarrow> A = {}"
|
| 23373 | 623 |
by (induct rule: finite_induct) (auto intro: order_less_trans) |
| 10249 | 624 |
|
| 17161 | 625 |
lemma mult_less_not_refl: "\<not> M < (M::'a::order multiset)" |
| 15072 | 626 |
apply (unfold less_multiset_def, auto) |
627 |
apply (drule trans_base_order [THEN mult_implies_one_step], auto) |
|
| 10249 | 628 |
apply (drule finite_set_of [THEN mult_irrefl_aux [rule_format (no_asm)]]) |
629 |
apply (simp add: set_of_eq_empty_iff) |
|
630 |
done |
|
631 |
||
632 |
lemma mult_less_irrefl [elim!]: "M < (M::'a::order multiset) ==> R" |
|
| 23373 | 633 |
using insert mult_less_not_refl by fast |
| 10249 | 634 |
|
635 |
||
636 |
text {* Transitivity. *}
|
|
637 |
||
638 |
theorem mult_less_trans: "K < M ==> M < N ==> K < (N::'a::order multiset)" |
|
| 23751 | 639 |
unfolding less_multiset_def mult_def by (blast intro: trancl_trans) |
| 10249 | 640 |
|
641 |
text {* Asymmetry. *}
|
|
642 |
||
| 11464 | 643 |
theorem mult_less_not_sym: "M < N ==> \<not> N < (M::'a::order multiset)" |
| 10249 | 644 |
apply auto |
645 |
apply (rule mult_less_not_refl [THEN notE]) |
|
| 15072 | 646 |
apply (erule mult_less_trans, assumption) |
| 10249 | 647 |
done |
648 |
||
649 |
theorem mult_less_asym: |
|
| 11464 | 650 |
"M < N ==> (\<not> P ==> N < (M::'a::order multiset)) ==> P" |
| 15072 | 651 |
by (insert mult_less_not_sym, blast) |
| 10249 | 652 |
|
653 |
theorem mult_le_refl [iff]: "M <= (M::'a::order multiset)" |
|
| 18730 | 654 |
unfolding le_multiset_def by auto |
| 10249 | 655 |
|
656 |
text {* Anti-symmetry. *}
|
|
657 |
||
658 |
theorem mult_le_antisym: |
|
659 |
"M <= N ==> N <= M ==> M = (N::'a::order multiset)" |
|
| 18730 | 660 |
unfolding le_multiset_def by (blast dest: mult_less_not_sym) |
| 10249 | 661 |
|
662 |
text {* Transitivity. *}
|
|
663 |
||
664 |
theorem mult_le_trans: |
|
665 |
"K <= M ==> M <= N ==> K <= (N::'a::order multiset)" |
|
| 18730 | 666 |
unfolding le_multiset_def by (blast intro: mult_less_trans) |
| 10249 | 667 |
|
| 11655 | 668 |
theorem mult_less_le: "(M < N) = (M <= N \<and> M \<noteq> (N::'a::order multiset))" |
| 18730 | 669 |
unfolding le_multiset_def by auto |
| 10249 | 670 |
|
| 10277 | 671 |
text {* Partial order. *}
|
672 |
||
673 |
instance multiset :: (order) order |
|
674 |
apply intro_classes |
|
| 23751 | 675 |
apply (rule mult_less_le) |
676 |
apply (rule mult_le_refl) |
|
677 |
apply (erule mult_le_trans, assumption) |
|
678 |
apply (erule mult_le_antisym, assumption) |
|
| 10277 | 679 |
done |
680 |
||
| 10249 | 681 |
|
682 |
subsubsection {* Monotonicity of multiset union *}
|
|
683 |
||
| 17161 | 684 |
lemma mult1_union: |
| 23751 | 685 |
"(B, D) \<in> mult1 r ==> trans r ==> (C + B, C + D) \<in> mult1 r" |
| 15072 | 686 |
apply (unfold mult1_def, auto) |
| 10249 | 687 |
apply (rule_tac x = a in exI) |
688 |
apply (rule_tac x = "C + M0" in exI) |
|
689 |
apply (simp add: union_assoc) |
|
690 |
done |
|
691 |
||
692 |
lemma union_less_mono2: "B < D ==> C + B < C + (D::'a::order multiset)" |
|
693 |
apply (unfold less_multiset_def mult_def) |
|
| 23751 | 694 |
apply (erule trancl_induct) |
695 |
apply (blast intro: mult1_union transI order_less_trans r_into_trancl) |
|
696 |
apply (blast intro: mult1_union transI order_less_trans r_into_trancl trancl_trans) |
|
| 10249 | 697 |
done |
698 |
||
699 |
lemma union_less_mono1: "B < D ==> B + C < D + (C::'a::order multiset)" |
|
700 |
apply (subst union_commute [of B C]) |
|
701 |
apply (subst union_commute [of D C]) |
|
702 |
apply (erule union_less_mono2) |
|
703 |
done |
|
704 |
||
| 17161 | 705 |
lemma union_less_mono: |
| 10249 | 706 |
"A < C ==> B < D ==> A + B < C + (D::'a::order multiset)" |
707 |
apply (blast intro!: union_less_mono1 union_less_mono2 mult_less_trans) |
|
708 |
done |
|
709 |
||
| 17161 | 710 |
lemma union_le_mono: |
| 10249 | 711 |
"A <= C ==> B <= D ==> A + B <= C + (D::'a::order multiset)" |
| 18730 | 712 |
unfolding le_multiset_def |
713 |
by (blast intro: union_less_mono union_less_mono1 union_less_mono2) |
|
| 10249 | 714 |
|
| 17161 | 715 |
lemma empty_leI [iff]: "{#} <= (M::'a::order multiset)"
|
| 10249 | 716 |
apply (unfold le_multiset_def less_multiset_def) |
717 |
apply (case_tac "M = {#}")
|
|
718 |
prefer 2 |
|
| 23751 | 719 |
apply (subgoal_tac "({#} + {#}, {#} + M) \<in> mult (Collect (split op <))")
|
| 10249 | 720 |
prefer 2 |
721 |
apply (rule one_step_implies_mult) |
|
| 23751 | 722 |
apply (simp only: trans_def, auto) |
| 10249 | 723 |
done |
724 |
||
| 17161 | 725 |
lemma union_upper1: "A <= A + (B::'a::order multiset)" |
| 15072 | 726 |
proof - |
| 17200 | 727 |
have "A + {#} <= A + B" by (blast intro: union_le_mono)
|
| 18258 | 728 |
then show ?thesis by simp |
| 15072 | 729 |
qed |
730 |
||
| 17161 | 731 |
lemma union_upper2: "B <= A + (B::'a::order multiset)" |
| 18258 | 732 |
by (subst union_commute) (rule union_upper1) |
| 15072 | 733 |
|
| 23611 | 734 |
instance multiset :: (order) pordered_ab_semigroup_add |
735 |
apply intro_classes |
|
736 |
apply(erule union_le_mono[OF mult_le_refl]) |
|
737 |
done |
|
| 15072 | 738 |
|
| 17200 | 739 |
subsection {* Link with lists *}
|
| 15072 | 740 |
|
| 17200 | 741 |
consts |
| 15072 | 742 |
multiset_of :: "'a list \<Rightarrow> 'a multiset" |
743 |
primrec |
|
744 |
"multiset_of [] = {#}"
|
|
745 |
"multiset_of (a # x) = multiset_of x + {# a #}"
|
|
746 |
||
747 |
lemma multiset_of_zero_iff[simp]: "(multiset_of x = {#}) = (x = [])"
|
|
| 18258 | 748 |
by (induct x) auto |
| 15072 | 749 |
|
750 |
lemma multiset_of_zero_iff_right[simp]: "({#} = multiset_of x) = (x = [])"
|
|
| 18258 | 751 |
by (induct x) auto |
| 15072 | 752 |
|
753 |
lemma set_of_multiset_of[simp]: "set_of(multiset_of x) = set x" |
|
| 18258 | 754 |
by (induct x) auto |
| 15867 | 755 |
|
756 |
lemma mem_set_multiset_eq: "x \<in> set xs = (x :# multiset_of xs)" |
|
757 |
by (induct xs) auto |
|
| 15072 | 758 |
|
| 18258 | 759 |
lemma multiset_of_append [simp]: |
760 |
"multiset_of (xs @ ys) = multiset_of xs + multiset_of ys" |
|
| 20503 | 761 |
by (induct xs arbitrary: ys) (auto simp: union_ac) |
| 18730 | 762 |
|
| 15072 | 763 |
lemma surj_multiset_of: "surj multiset_of" |
| 17200 | 764 |
apply (unfold surj_def, rule allI) |
765 |
apply (rule_tac M=y in multiset_induct, auto) |
|
766 |
apply (rule_tac x = "x # xa" in exI, auto) |
|
| 10249 | 767 |
done |
768 |
||
| 25162 | 769 |
lemma set_count_greater_0: "set x = {a. count (multiset_of x) a > 0}"
|
| 18258 | 770 |
by (induct x) auto |
| 15072 | 771 |
|
| 17200 | 772 |
lemma distinct_count_atmost_1: |
| 15072 | 773 |
"distinct x = (! a. count (multiset_of x) a = (if a \<in> set x then 1 else 0))" |
| 18258 | 774 |
apply (induct x, simp, rule iffI, simp_all) |
| 17200 | 775 |
apply (rule conjI) |
776 |
apply (simp_all add: set_of_multiset_of [THEN sym] del: set_of_multiset_of) |
|
| 15072 | 777 |
apply (erule_tac x=a in allE, simp, clarify) |
| 17200 | 778 |
apply (erule_tac x=aa in allE, simp) |
| 15072 | 779 |
done |
780 |
||
| 17200 | 781 |
lemma multiset_of_eq_setD: |
| 15867 | 782 |
"multiset_of xs = multiset_of ys \<Longrightarrow> set xs = set ys" |
783 |
by (rule) (auto simp add:multiset_eq_conv_count_eq set_count_greater_0) |
|
784 |
||
| 17200 | 785 |
lemma set_eq_iff_multiset_of_eq_distinct: |
786 |
"\<lbrakk>distinct x; distinct y\<rbrakk> |
|
| 15072 | 787 |
\<Longrightarrow> (set x = set y) = (multiset_of x = multiset_of y)" |
| 17200 | 788 |
by (auto simp: multiset_eq_conv_count_eq distinct_count_atmost_1) |
| 15072 | 789 |
|
| 17200 | 790 |
lemma set_eq_iff_multiset_of_remdups_eq: |
| 15072 | 791 |
"(set x = set y) = (multiset_of (remdups x) = multiset_of (remdups y))" |
| 17200 | 792 |
apply (rule iffI) |
793 |
apply (simp add: set_eq_iff_multiset_of_eq_distinct[THEN iffD1]) |
|
794 |
apply (drule distinct_remdups[THEN distinct_remdups |
|
795 |
[THEN set_eq_iff_multiset_of_eq_distinct[THEN iffD2]]]) |
|
| 15072 | 796 |
apply simp |
| 10249 | 797 |
done |
798 |
||
| 18258 | 799 |
lemma multiset_of_compl_union [simp]: |
| 23281 | 800 |
"multiset_of [x\<leftarrow>xs. P x] + multiset_of [x\<leftarrow>xs. \<not>P x] = multiset_of xs" |
| 15630 | 801 |
by (induct xs) (auto simp: union_ac) |
| 15072 | 802 |
|
| 17200 | 803 |
lemma count_filter: |
| 23281 | 804 |
"count (multiset_of xs) x = length [y \<leftarrow> xs. y = x]" |
| 18258 | 805 |
by (induct xs) auto |
| 15867 | 806 |
|
807 |
||
| 15072 | 808 |
subsection {* Pointwise ordering induced by count *}
|
809 |
||
| 19086 | 810 |
definition |
| 23611 | 811 |
mset_le :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "\<le>#" 50) where |
812 |
"(A \<le># B) = (\<forall>a. count A a \<le> count B a)" |
|
813 |
definition |
|
814 |
mset_less :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "<#" 50) where |
|
815 |
"(A <# B) = (A \<le># B \<and> A \<noteq> B)" |
|
| 15072 | 816 |
|
| 23611 | 817 |
lemma mset_le_refl[simp]: "A \<le># A" |
| 18730 | 818 |
unfolding mset_le_def by auto |
| 15072 | 819 |
|
| 23611 | 820 |
lemma mset_le_trans: "\<lbrakk> A \<le># B; B \<le># C \<rbrakk> \<Longrightarrow> A \<le># C" |
| 18730 | 821 |
unfolding mset_le_def by (fast intro: order_trans) |
| 15072 | 822 |
|
| 23611 | 823 |
lemma mset_le_antisym: "\<lbrakk> A \<le># B; B \<le># A \<rbrakk> \<Longrightarrow> A = B" |
| 17200 | 824 |
apply (unfold mset_le_def) |
825 |
apply (rule multiset_eq_conv_count_eq[THEN iffD2]) |
|
| 15072 | 826 |
apply (blast intro: order_antisym) |
827 |
done |
|
828 |
||
| 17200 | 829 |
lemma mset_le_exists_conv: |
| 23611 | 830 |
"(A \<le># B) = (\<exists>C. B = A + C)" |
831 |
apply (unfold mset_le_def, rule iffI, rule_tac x = "B - A" in exI) |
|
| 15072 | 832 |
apply (auto intro: multiset_eq_conv_count_eq [THEN iffD2]) |
833 |
done |
|
834 |
||
| 23611 | 835 |
lemma mset_le_mono_add_right_cancel[simp]: "(A + C \<le># B + C) = (A \<le># B)" |
| 18730 | 836 |
unfolding mset_le_def by auto |
| 15072 | 837 |
|
| 23611 | 838 |
lemma mset_le_mono_add_left_cancel[simp]: "(C + A \<le># C + B) = (A \<le># B)" |
| 18730 | 839 |
unfolding mset_le_def by auto |
| 15072 | 840 |
|
| 23611 | 841 |
lemma mset_le_mono_add: "\<lbrakk> A \<le># B; C \<le># D \<rbrakk> \<Longrightarrow> A + C \<le># B + D" |
| 17200 | 842 |
apply (unfold mset_le_def) |
843 |
apply auto |
|
| 15072 | 844 |
apply (erule_tac x=a in allE)+ |
845 |
apply auto |
|
846 |
done |
|
847 |
||
| 23611 | 848 |
lemma mset_le_add_left[simp]: "A \<le># A + B" |
| 18730 | 849 |
unfolding mset_le_def by auto |
| 15072 | 850 |
|
| 23611 | 851 |
lemma mset_le_add_right[simp]: "B \<le># A + B" |
| 18730 | 852 |
unfolding mset_le_def by auto |
| 15072 | 853 |
|
| 23611 | 854 |
lemma multiset_of_remdups_le: "multiset_of (remdups xs) \<le># multiset_of xs" |
855 |
apply (induct xs) |
|
856 |
apply auto |
|
857 |
apply (rule mset_le_trans) |
|
858 |
apply auto |
|
859 |
done |
|
860 |
||
| 25208 | 861 |
interpretation mset_order: |
862 |
order ["op \<le>#" "op <#"] |
|
863 |
by (auto intro: order.intro mset_le_refl mset_le_antisym |
|
864 |
mset_le_trans simp: mset_less_def) |
|
| 23611 | 865 |
|
866 |
interpretation mset_order_cancel_semigroup: |
|
| 25208 | 867 |
pordered_cancel_ab_semigroup_add ["op \<le>#" "op <#" "op +"] |
868 |
by unfold_locales (erule mset_le_mono_add [OF mset_le_refl]) |
|
| 23611 | 869 |
|
870 |
interpretation mset_order_semigroup_cancel: |
|
| 25208 | 871 |
pordered_ab_semigroup_add_imp_le ["op \<le>#" "op <#" "op +"] |
872 |
by (unfold_locales) simp |
|
| 15072 | 873 |
|
| 10249 | 874 |
end |