author | nipkow |
Wed, 23 Feb 2005 10:23:22 +0100 | |
changeset 15546 | 5188ce7316b7 |
parent 15544 | 5f3ef1ddda1f |
child 15561 | 045a07ac35a7 |
permissions | -rw-r--r-- |
12196 | 1 |
(* Title : Transcendental.thy |
2 |
Author : Jacques D. Fleuriot |
|
3 |
Copyright : 1998,1999 University of Cambridge |
|
13958
c1c67582c9b5
New material on integration, etc. Moving Hyperreal/ex
paulson
parents:
12196
diff
changeset
|
4 |
1999,2001 University of Edinburgh |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
5 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2004 |
12196 | 6 |
*) |
7 |
||
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
8 |
header{*Power Series, Transcendental Functions etc.*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
9 |
|
15131 | 10 |
theory Transcendental |
15140 | 11 |
imports NthRoot Fact HSeries EvenOdd Lim |
15131 | 12 |
begin |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
13 |
|
12196 | 14 |
constdefs |
15013 | 15 |
root :: "[nat,real] => real" |
12196 | 16 |
"root n x == (@u. ((0::real) < x --> 0 < u) & (u ^ n = x))" |
17 |
||
15013 | 18 |
sqrt :: "real => real" |
12196 | 19 |
"sqrt x == root 2 x" |
20 |
||
15013 | 21 |
exp :: "real => real" |
15546 | 22 |
"exp x == \<Sum>n. inverse(real (fact n)) * (x ^ n)" |
12196 | 23 |
|
15013 | 24 |
sin :: "real => real" |
15546 | 25 |
"sin x == \<Sum>n. (if even(n) then 0 else |
26 |
((- 1) ^ ((n - Suc 0) div 2))/(real (fact n))) * x ^ n" |
|
12196 | 27 |
|
15013 | 28 |
diffs :: "(nat => real) => nat => real" |
12196 | 29 |
"diffs c == (%n. real (Suc n) * c(Suc n))" |
30 |
||
15013 | 31 |
cos :: "real => real" |
15546 | 32 |
"cos x == \<Sum>n. (if even(n) then ((- 1) ^ (n div 2))/(real (fact n)) |
33 |
else 0) * x ^ n" |
|
12196 | 34 |
|
15013 | 35 |
ln :: "real => real" |
12196 | 36 |
"ln x == (@u. exp u = x)" |
37 |
||
15013 | 38 |
pi :: "real" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
39 |
"pi == 2 * (@x. 0 \<le> (x::real) & x \<le> 2 & cos x = 0)" |
12196 | 40 |
|
15013 | 41 |
tan :: "real => real" |
12196 | 42 |
"tan x == (sin x)/(cos x)" |
43 |
||
15013 | 44 |
arcsin :: "real => real" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
45 |
"arcsin y == (@x. -(pi/2) \<le> x & x \<le> pi/2 & sin x = y)" |
12196 | 46 |
|
15013 | 47 |
arcos :: "real => real" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
48 |
"arcos y == (@x. 0 \<le> x & x \<le> pi & cos x = y)" |
12196 | 49 |
|
15013 | 50 |
arctan :: "real => real" |
12196 | 51 |
"arctan y == (@x. -(pi/2) < x & x < pi/2 & tan x = y)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
52 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
53 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
54 |
lemma real_root_zero [simp]: "root (Suc n) 0 = 0" |
15229 | 55 |
apply (simp add: root_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
56 |
apply (safe intro!: some_equality power_0_Suc elim!: realpow_zero_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
57 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
58 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
59 |
lemma real_root_pow_pos: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
60 |
"0 < x ==> (root(Suc n) x) ^ (Suc n) = x" |
15229 | 61 |
apply (simp add: root_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
62 |
apply (drule_tac n = n in realpow_pos_nth2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
63 |
apply (auto intro: someI2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
64 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
65 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
66 |
lemma real_root_pow_pos2: "0 \<le> x ==> (root(Suc n) x) ^ (Suc n) = x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
67 |
by (auto dest!: real_le_imp_less_or_eq dest: real_root_pow_pos) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
68 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
69 |
lemma real_root_pos: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
70 |
"0 < x ==> root(Suc n) (x ^ (Suc n)) = x" |
15229 | 71 |
apply (simp add: root_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
72 |
apply (rule some_equality) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
73 |
apply (frule_tac [2] n = n in zero_less_power) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
74 |
apply (auto simp add: zero_less_mult_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
75 |
apply (rule_tac x = u and y = x in linorder_cases) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
76 |
apply (drule_tac n1 = n and x = u in zero_less_Suc [THEN [3] realpow_less]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
77 |
apply (drule_tac [4] n1 = n and x = x in zero_less_Suc [THEN [3] realpow_less]) |
15539 | 78 |
apply (auto) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
79 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
80 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
81 |
lemma real_root_pos2: "0 \<le> x ==> root(Suc n) (x ^ (Suc n)) = x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
82 |
by (auto dest!: real_le_imp_less_or_eq real_root_pos) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
83 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
84 |
lemma real_root_pos_pos: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
85 |
"0 < x ==> 0 \<le> root(Suc n) x" |
15229 | 86 |
apply (simp add: root_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
87 |
apply (drule_tac n = n in realpow_pos_nth2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
88 |
apply (safe, rule someI2) |
15229 | 89 |
apply (auto intro!: order_less_imp_le dest: zero_less_power |
90 |
simp add: zero_less_mult_iff) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
91 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
92 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
93 |
lemma real_root_pos_pos_le: "0 \<le> x ==> 0 \<le> root(Suc n) x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
94 |
by (auto dest!: real_le_imp_less_or_eq dest: real_root_pos_pos) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
95 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
96 |
lemma real_root_one [simp]: "root (Suc n) 1 = 1" |
15229 | 97 |
apply (simp add: root_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
98 |
apply (rule some_equality, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
99 |
apply (rule ccontr) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
100 |
apply (rule_tac x = u and y = 1 in linorder_cases) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
101 |
apply (drule_tac n = n in realpow_Suc_less_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
102 |
apply (drule_tac [4] n = n in power_gt1_lemma) |
15539 | 103 |
apply (auto) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
104 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
105 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
106 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
107 |
subsection{*Square Root*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
108 |
|
15229 | 109 |
text{*needed because 2 is a binary numeral!*} |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
110 |
lemma root_2_eq [simp]: "root 2 = root (Suc (Suc 0))" |
15229 | 111 |
by (simp del: nat_numeral_0_eq_0 nat_numeral_1_eq_1 |
112 |
add: nat_numeral_0_eq_0 [symmetric]) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
113 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
114 |
lemma real_sqrt_zero [simp]: "sqrt 0 = 0" |
15229 | 115 |
by (simp add: sqrt_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
116 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
117 |
lemma real_sqrt_one [simp]: "sqrt 1 = 1" |
15229 | 118 |
by (simp add: sqrt_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
119 |
|
15539 | 120 |
lemma real_sqrt_pow2_iff [iff]: "((sqrt x)\<twosuperior> = x) = (0 \<le> x)" |
15229 | 121 |
apply (simp add: sqrt_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
122 |
apply (rule iffI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
123 |
apply (cut_tac r = "root 2 x" in realpow_two_le) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
124 |
apply (simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
125 |
apply (subst numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
126 |
apply (erule real_root_pow_pos2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
127 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
128 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
129 |
lemma [simp]: "(sqrt(u2\<twosuperior> + v2\<twosuperior>))\<twosuperior> = u2\<twosuperior> + v2\<twosuperior>" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
130 |
by (rule realpow_two_le_add_order [THEN real_sqrt_pow2_iff [THEN iffD2]]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
131 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
132 |
lemma real_sqrt_pow2 [simp]: "0 \<le> x ==> (sqrt x)\<twosuperior> = x" |
15539 | 133 |
by (simp) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
134 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
135 |
lemma real_sqrt_abs_abs [simp]: "sqrt\<bar>x\<bar> ^ 2 = \<bar>x\<bar>" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
136 |
by (rule real_sqrt_pow2_iff [THEN iffD2], arith) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
137 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
138 |
lemma real_pow_sqrt_eq_sqrt_pow: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
139 |
"0 \<le> x ==> (sqrt x)\<twosuperior> = sqrt(x\<twosuperior>)" |
15229 | 140 |
apply (simp add: sqrt_def) |
15481 | 141 |
apply (simp only: numeral_2_eq_2 real_root_pow_pos2 real_root_pos2) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
142 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
143 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
144 |
lemma real_pow_sqrt_eq_sqrt_abs_pow2: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
145 |
"0 \<le> x ==> (sqrt x)\<twosuperior> = sqrt(\<bar>x\<bar> ^ 2)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
146 |
by (simp add: real_pow_sqrt_eq_sqrt_pow [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
147 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
148 |
lemma real_sqrt_pow_abs: "0 \<le> x ==> (sqrt x)\<twosuperior> = \<bar>x\<bar>" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
149 |
apply (rule real_sqrt_abs_abs [THEN subst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
150 |
apply (rule_tac x1 = x in real_pow_sqrt_eq_sqrt_abs_pow2 [THEN ssubst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
151 |
apply (rule_tac [2] real_pow_sqrt_eq_sqrt_pow [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
152 |
apply (assumption, arith) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
153 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
154 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
155 |
lemma not_real_square_gt_zero [simp]: "(~ (0::real) < x*x) = (x = 0)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
156 |
apply auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
157 |
apply (cut_tac x = x and y = 0 in linorder_less_linear) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
158 |
apply (simp add: zero_less_mult_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
159 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
160 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
161 |
lemma real_sqrt_gt_zero: "0 < x ==> 0 < sqrt(x)" |
15229 | 162 |
apply (simp add: sqrt_def root_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
163 |
apply (drule realpow_pos_nth2 [where n=1], safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
164 |
apply (rule someI2, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
165 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
166 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
167 |
lemma real_sqrt_ge_zero: "0 \<le> x ==> 0 \<le> sqrt(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
168 |
by (auto intro: real_sqrt_gt_zero simp add: order_le_less) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
169 |
|
15228 | 170 |
lemma real_sqrt_mult_self_sum_ge_zero [simp]: "0 \<le> sqrt(x*x + y*y)" |
171 |
by (rule real_sqrt_ge_zero [OF real_mult_self_sum_ge_zero]) |
|
172 |
||
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
173 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
174 |
(*we need to prove something like this: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
175 |
lemma "[|r ^ n = a; 0<n; 0 < a \<longrightarrow> 0 < r|] ==> root n a = r" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
176 |
apply (case_tac n, simp) |
15229 | 177 |
apply (simp add: root_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
178 |
apply (rule someI2 [of _ r], safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
179 |
apply (auto simp del: realpow_Suc dest: power_inject_base) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
180 |
*) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
181 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
182 |
lemma sqrt_eqI: "[|r\<twosuperior> = a; 0 \<le> r|] ==> sqrt a = r" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
183 |
apply (unfold sqrt_def root_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
184 |
apply (rule someI2 [of _ r], auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
185 |
apply (auto simp add: numeral_2_eq_2 simp del: realpow_Suc |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
186 |
dest: power_inject_base) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
187 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
188 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
189 |
lemma real_sqrt_mult_distrib: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
190 |
"[| 0 \<le> x; 0 \<le> y |] ==> sqrt(x*y) = sqrt(x) * sqrt(y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
191 |
apply (rule sqrt_eqI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
192 |
apply (simp add: power_mult_distrib) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
193 |
apply (simp add: zero_le_mult_iff real_sqrt_ge_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
194 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
195 |
|
15229 | 196 |
lemma real_sqrt_mult_distrib2: |
197 |
"[|0\<le>x; 0\<le>y |] ==> sqrt(x*y) = sqrt(x) * sqrt(y)" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
198 |
by (auto intro: real_sqrt_mult_distrib simp add: order_le_less) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
199 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
200 |
lemma real_sqrt_sum_squares_ge_zero [simp]: "0 \<le> sqrt (x\<twosuperior> + y\<twosuperior>)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
201 |
by (auto intro!: real_sqrt_ge_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
202 |
|
15229 | 203 |
lemma real_sqrt_sum_squares_mult_ge_zero [simp]: |
204 |
"0 \<le> sqrt ((x\<twosuperior> + y\<twosuperior>)*(xa\<twosuperior> + ya\<twosuperior>))" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
205 |
by (auto intro!: real_sqrt_ge_zero simp add: zero_le_mult_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
206 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
207 |
lemma real_sqrt_sum_squares_mult_squared_eq [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
208 |
"sqrt ((x\<twosuperior> + y\<twosuperior>) * (xa\<twosuperior> + ya\<twosuperior>)) ^ 2 = (x\<twosuperior> + y\<twosuperior>) * (xa\<twosuperior> + ya\<twosuperior>)" |
15539 | 209 |
by (auto simp add: zero_le_mult_iff simp del: realpow_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
210 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
211 |
lemma real_sqrt_abs [simp]: "sqrt(x\<twosuperior>) = \<bar>x\<bar>" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
212 |
apply (rule abs_realpow_two [THEN subst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
213 |
apply (rule real_sqrt_abs_abs [THEN subst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
214 |
apply (subst real_pow_sqrt_eq_sqrt_pow) |
15539 | 215 |
apply (auto simp add: numeral_2_eq_2) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
216 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
217 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
218 |
lemma real_sqrt_abs2 [simp]: "sqrt(x*x) = \<bar>x\<bar>" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
219 |
apply (rule realpow_two [THEN subst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
220 |
apply (subst numeral_2_eq_2 [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
221 |
apply (rule real_sqrt_abs) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
222 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
223 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
224 |
lemma real_sqrt_pow2_gt_zero: "0 < x ==> 0 < (sqrt x)\<twosuperior>" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
225 |
by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
226 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
227 |
lemma real_sqrt_not_eq_zero: "0 < x ==> sqrt x \<noteq> 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
228 |
apply (frule real_sqrt_pow2_gt_zero) |
15539 | 229 |
apply (auto simp add: numeral_2_eq_2) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
230 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
231 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
232 |
lemma real_inv_sqrt_pow2: "0 < x ==> inverse (sqrt(x)) ^ 2 = inverse x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
233 |
by (cut_tac n1 = 2 and a1 = "sqrt x" in power_inverse [symmetric], auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
234 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
235 |
lemma real_sqrt_eq_zero_cancel: "[| 0 \<le> x; sqrt(x) = 0|] ==> x = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
236 |
apply (drule real_le_imp_less_or_eq) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
237 |
apply (auto dest: real_sqrt_not_eq_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
238 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
239 |
|
15229 | 240 |
lemma real_sqrt_eq_zero_cancel_iff [simp]: "0 \<le> x ==> ((sqrt x = 0) = (x=0))" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
241 |
by (auto simp add: real_sqrt_eq_zero_cancel) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
242 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
243 |
lemma real_sqrt_sum_squares_ge1 [simp]: "x \<le> sqrt(x\<twosuperior> + y\<twosuperior>)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
244 |
apply (subgoal_tac "x \<le> 0 | 0 \<le> x", safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
245 |
apply (rule real_le_trans) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
246 |
apply (auto simp del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
247 |
apply (rule_tac n = 1 in realpow_increasing) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
248 |
apply (auto simp add: numeral_2_eq_2 [symmetric] simp del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
249 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
250 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
251 |
lemma real_sqrt_sum_squares_ge2 [simp]: "y \<le> sqrt(z\<twosuperior> + y\<twosuperior>)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
252 |
apply (simp (no_asm) add: real_add_commute del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
253 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
254 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
255 |
lemma real_sqrt_ge_one: "1 \<le> x ==> 1 \<le> sqrt x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
256 |
apply (rule_tac n = 1 in realpow_increasing) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
257 |
apply (auto simp add: numeral_2_eq_2 [symmetric] real_sqrt_ge_zero simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
258 |
del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
259 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
260 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
261 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
262 |
subsection{*Exponential Function*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
263 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
264 |
lemma summable_exp: "summable (%n. inverse (real (fact n)) * x ^ n)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
265 |
apply (cut_tac 'a = real in zero_less_one [THEN dense], safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
266 |
apply (cut_tac x = r in reals_Archimedean3, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
267 |
apply (drule_tac x = "\<bar>x\<bar>" in spec, safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
268 |
apply (rule_tac N = n and c = r in ratio_test) |
15539 | 269 |
apply (auto simp add: mult_assoc [symmetric] simp del: fact_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
270 |
apply (rule mult_right_mono) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
271 |
apply (rule_tac b1 = "\<bar>x\<bar>" in mult_commute [THEN ssubst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
272 |
apply (subst fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
273 |
apply (subst real_of_nat_mult) |
15539 | 274 |
apply (auto) |
15229 | 275 |
apply (auto simp add: mult_assoc [symmetric] positive_imp_inverse_positive) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
276 |
apply (rule order_less_imp_le) |
15229 | 277 |
apply (rule_tac z1 = "real (Suc na)" in real_mult_less_iff1 [THEN iffD1]) |
15539 | 278 |
apply (auto simp add: real_not_refl2 [THEN not_sym] mult_assoc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
279 |
apply (erule order_less_trans) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
280 |
apply (auto simp add: mult_less_cancel_left mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
281 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
282 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
283 |
lemma summable_sin: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
284 |
"summable (%n. |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
285 |
(if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
286 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
287 |
x ^ n)" |
15229 | 288 |
apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
289 |
apply (rule_tac [2] summable_exp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
290 |
apply (rule_tac x = 0 in exI) |
15229 | 291 |
apply (auto simp add: divide_inverse power_abs [symmetric] zero_le_mult_iff) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
292 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
293 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
294 |
lemma summable_cos: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
295 |
"summable (%n. |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
296 |
(if even n then |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
297 |
(- 1) ^ (n div 2)/(real (fact n)) else 0) * x ^ n)" |
15229 | 298 |
apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
299 |
apply (rule_tac [2] summable_exp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
300 |
apply (rule_tac x = 0 in exI) |
15229 | 301 |
apply (auto simp add: divide_inverse power_abs [symmetric] zero_le_mult_iff) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
302 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
303 |
|
15229 | 304 |
lemma lemma_STAR_sin [simp]: |
305 |
"(if even n then 0 |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
306 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * 0 ^ n = 0" |
15251 | 307 |
by (induct "n", auto) |
15229 | 308 |
|
309 |
lemma lemma_STAR_cos [simp]: |
|
310 |
"0 < n --> |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
311 |
(- 1) ^ (n div 2)/(real (fact n)) * 0 ^ n = 0" |
15251 | 312 |
by (induct "n", auto) |
15229 | 313 |
|
314 |
lemma lemma_STAR_cos1 [simp]: |
|
315 |
"0 < n --> |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
316 |
(-1) ^ (n div 2)/(real (fact n)) * 0 ^ n = 0" |
15251 | 317 |
by (induct "n", auto) |
15229 | 318 |
|
319 |
lemma lemma_STAR_cos2 [simp]: |
|
15539 | 320 |
"(\<Sum>n=1..<n. if even n then (- 1) ^ (n div 2)/(real (fact n)) * 0 ^ n |
321 |
else 0) = 0" |
|
15251 | 322 |
apply (induct "n") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
323 |
apply (case_tac [2] "n", auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
324 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
325 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
326 |
lemma exp_converges: "(%n. inverse (real (fact n)) * x ^ n) sums exp(x)" |
15229 | 327 |
apply (simp add: exp_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
328 |
apply (rule summable_exp [THEN summable_sums]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
329 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
330 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
331 |
lemma sin_converges: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
332 |
"(%n. (if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
333 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
334 |
x ^ n) sums sin(x)" |
15229 | 335 |
apply (simp add: sin_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
336 |
apply (rule summable_sin [THEN summable_sums]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
337 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
338 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
339 |
lemma cos_converges: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
340 |
"(%n. (if even n then |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
341 |
(- 1) ^ (n div 2)/(real (fact n)) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
342 |
else 0) * x ^ n) sums cos(x)" |
15229 | 343 |
apply (simp add: cos_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
344 |
apply (rule summable_cos [THEN summable_sums]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
345 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
346 |
|
15229 | 347 |
lemma lemma_realpow_diff [rule_format (no_asm)]: |
348 |
"p \<le> n --> y ^ (Suc n - p) = ((y::real) ^ (n - p)) * y" |
|
15251 | 349 |
apply (induct "n", auto) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
350 |
apply (subgoal_tac "p = Suc n") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
351 |
apply (simp (no_asm_simp), auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
352 |
apply (drule sym) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
353 |
apply (simp add: Suc_diff_le mult_commute realpow_Suc [symmetric] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
354 |
del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
355 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
356 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
357 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
358 |
subsection{*Properties of Power Series*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
359 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
360 |
lemma lemma_realpow_diff_sumr: |
15539 | 361 |
"(\<Sum>p=0..<Suc n. (x ^ p) * y ^ ((Suc n) - p)) = |
362 |
y * (\<Sum>p=0..<Suc n. (x ^ p) * (y ^ (n - p))::real)" |
|
363 |
apply (auto simp add: setsum_mult simp del: setsum_Suc) |
|
364 |
apply (rule setsum_cong[OF refl]) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
365 |
apply (subst lemma_realpow_diff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
366 |
apply (auto simp add: mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
367 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
368 |
|
15229 | 369 |
lemma lemma_realpow_diff_sumr2: |
370 |
"x ^ (Suc n) - y ^ (Suc n) = |
|
15539 | 371 |
(x - y) * (\<Sum>p=0..<Suc n. (x ^ p) * (y ^(n - p))::real)" |
15251 | 372 |
apply (induct "n", simp) |
15539 | 373 |
apply (auto simp del: setsum_Suc) |
374 |
apply (subst setsum_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
375 |
apply (drule sym) |
15539 | 376 |
apply (auto simp add: lemma_realpow_diff_sumr right_distrib diff_minus mult_ac simp del: setsum_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
377 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
378 |
|
15229 | 379 |
lemma lemma_realpow_rev_sumr: |
15539 | 380 |
"(\<Sum>p=0..<Suc n. (x ^ p) * (y ^ (n - p))) = |
381 |
(\<Sum>p=0..<Suc n. (x ^ (n - p)) * (y ^ p)::real)" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
382 |
apply (case_tac "x = y") |
15539 | 383 |
apply (auto simp add: mult_commute power_add [symmetric] simp del: setsum_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
384 |
apply (rule_tac c1 = "x - y" in real_mult_left_cancel [THEN iffD1]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
385 |
apply (rule_tac [2] minus_minus [THEN subst], simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
386 |
apply (subst minus_mult_left) |
15539 | 387 |
apply (simp add: lemma_realpow_diff_sumr2 [symmetric] del: setsum_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
388 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
389 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
390 |
text{*Power series has a `circle` of convergence, i.e. if it sums for @{term |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
391 |
x}, then it sums absolutely for @{term z} with @{term "\<bar>z\<bar> < \<bar>x\<bar>"}.*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
392 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
393 |
lemma powser_insidea: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
394 |
"[| summable (%n. f(n) * (x ^ n)); \<bar>z\<bar> < \<bar>x\<bar> |] |
15081 | 395 |
==> summable (%n. \<bar>f(n)\<bar> * (z ^ n))" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
396 |
apply (drule summable_LIMSEQ_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
397 |
apply (drule convergentI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
398 |
apply (simp add: Cauchy_convergent_iff [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
399 |
apply (drule Cauchy_Bseq) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
400 |
apply (simp add: Bseq_def, safe) |
15081 | 401 |
apply (rule_tac g = "%n. K * \<bar>z ^ n\<bar> * inverse (\<bar>x ^ n\<bar>)" in summable_comparison_test) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
402 |
apply (rule_tac x = 0 in exI, safe) |
15081 | 403 |
apply (subgoal_tac "0 < \<bar>x ^ n\<bar> ") |
404 |
apply (rule_tac c="\<bar>x ^ n\<bar>" in mult_right_le_imp_le) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
405 |
apply (auto simp add: mult_assoc power_abs) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
406 |
prefer 2 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
407 |
apply (drule_tac x = 0 in spec, force) |
15539 | 408 |
apply (auto simp add: power_abs mult_ac) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
409 |
apply (rule_tac a2 = "z ^ n" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
410 |
in abs_ge_zero [THEN real_le_imp_less_or_eq, THEN disjE]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
411 |
apply (auto intro!: mult_right_mono simp add: mult_assoc [symmetric] power_abs summable_def power_0_left) |
15229 | 412 |
apply (rule_tac x = "K * inverse (1 - (\<bar>z\<bar> * inverse (\<bar>x\<bar>)))" in exI) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
413 |
apply (auto intro!: sums_mult simp add: mult_assoc) |
15081 | 414 |
apply (subgoal_tac "\<bar>z ^ n\<bar> * inverse (\<bar>x\<bar> ^ n) = (\<bar>z\<bar> * inverse (\<bar>x\<bar>)) ^ n") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
415 |
apply (auto simp add: power_abs [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
416 |
apply (subgoal_tac "x \<noteq> 0") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
417 |
apply (subgoal_tac [3] "x \<noteq> 0") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
418 |
apply (auto simp del: abs_inverse abs_mult simp add: abs_inverse [symmetric] realpow_not_zero abs_mult [symmetric] power_inverse power_mult_distrib [symmetric]) |
15539 | 419 |
apply (auto intro!: geometric_sums simp add: power_abs inverse_eq_divide) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
420 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
421 |
|
15229 | 422 |
lemma powser_inside: |
423 |
"[| summable (%n. f(n) * (x ^ n)); \<bar>z\<bar> < \<bar>x\<bar> |] |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
424 |
==> summable (%n. f(n) * (z ^ n))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
425 |
apply (drule_tac z = "\<bar>z\<bar>" in powser_insidea) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
426 |
apply (auto intro: summable_rabs_cancel simp add: power_abs [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
427 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
428 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
429 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
430 |
subsection{*Differentiation of Power Series*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
431 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
432 |
text{*Lemma about distributing negation over it*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
433 |
lemma diffs_minus: "diffs (%n. - c n) = (%n. - diffs c n)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
434 |
by (simp add: diffs_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
435 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
436 |
text{*Show that we can shift the terms down one*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
437 |
lemma lemma_diffs: |
15539 | 438 |
"(\<Sum>n=0..<n. (diffs c)(n) * (x ^ n)) = |
439 |
(\<Sum>n=0..<n. real n * c(n) * (x ^ (n - Suc 0))) + |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
440 |
(real n * c(n) * x ^ (n - Suc 0))" |
15251 | 441 |
apply (induct "n") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
442 |
apply (auto simp add: mult_assoc add_assoc [symmetric] diffs_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
443 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
444 |
|
15229 | 445 |
lemma lemma_diffs2: |
15539 | 446 |
"(\<Sum>n=0..<n. real n * c(n) * (x ^ (n - Suc 0))) = |
447 |
(\<Sum>n=0..<n. (diffs c)(n) * (x ^ n)) - |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
448 |
(real n * c(n) * x ^ (n - Suc 0))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
449 |
by (auto simp add: lemma_diffs) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
450 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
451 |
|
15229 | 452 |
lemma diffs_equiv: |
453 |
"summable (%n. (diffs c)(n) * (x ^ n)) ==> |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
454 |
(%n. real n * c(n) * (x ^ (n - Suc 0))) sums |
15546 | 455 |
(\<Sum>n. (diffs c)(n) * (x ^ n))" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
456 |
apply (subgoal_tac " (%n. real n * c (n) * (x ^ (n - Suc 0))) ----> 0") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
457 |
apply (rule_tac [2] LIMSEQ_imp_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
458 |
apply (drule summable_sums) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
459 |
apply (auto simp add: sums_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
460 |
apply (drule_tac X="(\<lambda>n. \<Sum>n = 0..<n. diffs c n * x ^ n)" in LIMSEQ_diff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
461 |
apply (auto simp add: lemma_diffs2 [symmetric] diffs_def [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
462 |
apply (simp add: diffs_def summable_LIMSEQ_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
463 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
464 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
465 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
466 |
subsection{*Term-by-Term Differentiability of Power Series*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
467 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
468 |
lemma lemma_termdiff1: |
15539 | 469 |
"(\<Sum>p=0..<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) = |
470 |
(\<Sum>p=0..<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p)))::real)" |
|
471 |
apply (rule setsum_cong[OF refl]) |
|
15229 | 472 |
apply (auto simp add: right_distrib diff_minus power_add [symmetric] mult_ac) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
473 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
474 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
475 |
lemma less_add_one: "m < n ==> (\<exists>d. n = m + d + Suc 0)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
476 |
by (simp add: less_iff_Suc_add) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
477 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
478 |
lemma sumdiff: "a + b - (c + d) = a - c + b - (d::real)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
479 |
by arith |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
480 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
481 |
|
15229 | 482 |
lemma lemma_termdiff2: |
15539 | 483 |
"h \<noteq> 0 ==> |
484 |
(((z + h) ^ n) - (z ^ n)) * inverse h - real n * (z ^ (n - Suc 0)) = |
|
485 |
h * (\<Sum>p=0..< n - Suc 0. (z ^ p) * |
|
486 |
(\<Sum>q=0..< (n - Suc 0) - p. ((z + h) ^ q) * (z ^ (((n - 2) - p) - q))))" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
487 |
apply (rule real_mult_left_cancel [THEN iffD1], simp (no_asm_simp)) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
488 |
apply (simp add: right_diff_distrib mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
489 |
apply (simp add: mult_assoc [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
490 |
apply (case_tac "n") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
491 |
apply (auto simp add: lemma_realpow_diff_sumr2 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
492 |
right_diff_distrib [symmetric] mult_assoc |
15539 | 493 |
simp del: realpow_Suc setsum_Suc) |
494 |
apply (auto simp add: lemma_realpow_rev_sumr simp del: setsum_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
495 |
apply (auto simp add: real_of_nat_Suc sumr_diff_mult_const left_distrib |
15536 | 496 |
sumdiff lemma_termdiff1 setsum_mult) |
15539 | 497 |
apply (auto intro!: setsum_cong[OF refl] simp add: diff_minus real_add_assoc) |
498 |
apply (simp add: diff_minus [symmetric] less_iff_Suc_add) |
|
15536 | 499 |
apply (auto simp add: setsum_mult lemma_realpow_diff_sumr2 mult_ac simp |
15539 | 500 |
del: setsum_Suc realpow_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
501 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
502 |
|
15229 | 503 |
lemma lemma_termdiff3: |
504 |
"[| h \<noteq> 0; \<bar>z\<bar> \<le> K; \<bar>z + h\<bar> \<le> K |] |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
505 |
==> abs (((z + h) ^ n - z ^ n) * inverse h - real n * z ^ (n - Suc 0)) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
506 |
\<le> real n * real (n - Suc 0) * K ^ (n - 2) * \<bar>h\<bar>" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
507 |
apply (subst lemma_termdiff2, assumption) |
15539 | 508 |
apply (simp add: mult_commute) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
509 |
apply (simp add: mult_commute [of _ "K ^ (n - 2)"]) |
15536 | 510 |
apply (rule setsum_abs [THEN real_le_trans]) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
511 |
apply (simp add: mult_assoc [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
512 |
apply (simp add: mult_commute [of _ "real (n - Suc 0)"]) |
15542 | 513 |
apply (auto intro!: real_setsum_nat_ivl_bounded) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
514 |
apply (case_tac "n", auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
515 |
apply (drule less_add_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
516 |
(*CLAIM_SIMP " (a * b * c = a * (c * (b::real))" mult_ac]*) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
517 |
apply clarify |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
518 |
apply (subgoal_tac "K ^ p * K ^ d * real (Suc (Suc (p + d))) = |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
519 |
K ^ p * (real (Suc (Suc (p + d))) * K ^ d)") |
15539 | 520 |
apply (simp (no_asm_simp) add: power_add del: setsum_Suc) |
521 |
apply (auto intro!: mult_mono simp del: setsum_Suc) |
|
522 |
apply (auto intro!: power_mono simp add: power_abs simp del: setsum_Suc) |
|
15229 | 523 |
apply (rule_tac j = "real (Suc d) * (K ^ d)" in real_le_trans) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
524 |
apply (subgoal_tac [2] "0 \<le> K") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
525 |
apply (drule_tac [2] n = d in zero_le_power) |
15539 | 526 |
apply (auto simp del: setsum_Suc) |
15536 | 527 |
apply (rule setsum_abs [THEN real_le_trans]) |
15542 | 528 |
apply (rule real_setsum_nat_ivl_bounded, auto dest!: less_add_one intro!: mult_mono simp add: power_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
529 |
apply (auto intro!: power_mono zero_le_power simp add: power_abs, arith+) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
530 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
531 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
532 |
lemma lemma_termdiff4: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
533 |
"[| 0 < k; |
15081 | 534 |
(\<forall>h. 0 < \<bar>h\<bar> & \<bar>h\<bar> < k --> \<bar>f h\<bar> \<le> K * \<bar>h\<bar>) |] |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
535 |
==> f -- 0 --> 0" |
15229 | 536 |
apply (simp add: LIM_def, auto) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
537 |
apply (subgoal_tac "0 \<le> K") |
15229 | 538 |
prefer 2 |
539 |
apply (drule_tac x = "k/2" in spec) |
|
540 |
apply (simp add: ); |
|
541 |
apply (subgoal_tac "0 \<le> K*k", simp add: zero_le_mult_iff) |
|
542 |
apply (force intro: order_trans [of _ "\<bar>f (k / 2)\<bar> * 2"]) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
543 |
apply (drule real_le_imp_less_or_eq, auto) |
15229 | 544 |
apply (subgoal_tac "0 < (r * inverse K) / 2") |
545 |
apply (drule_tac ?d1.0 = "(r * inverse K) / 2" and ?d2.0 = k in real_lbound_gt_zero) |
|
546 |
apply (auto simp add: positive_imp_inverse_positive zero_less_mult_iff zero_less_divide_iff) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
547 |
apply (rule_tac x = e in exI, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
548 |
apply (rule_tac y = "K * \<bar>x\<bar>" in order_le_less_trans) |
15229 | 549 |
apply (force ); |
550 |
apply (rule_tac y = "K * e" in order_less_trans) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
551 |
apply (simp add: mult_less_cancel_left) |
15229 | 552 |
apply (rule_tac c = "inverse K" in mult_right_less_imp_less) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
553 |
apply (auto simp add: mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
554 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
555 |
|
15229 | 556 |
lemma lemma_termdiff5: |
557 |
"[| 0 < k; |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
558 |
summable f; |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
559 |
\<forall>h. 0 < \<bar>h\<bar> & \<bar>h\<bar> < k --> |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
560 |
(\<forall>n. abs(g(h) (n::nat)) \<le> (f(n) * \<bar>h\<bar>)) |] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
561 |
==> (%h. suminf(g h)) -- 0 --> 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
562 |
apply (drule summable_sums) |
15081 | 563 |
apply (subgoal_tac "\<forall>h. 0 < \<bar>h\<bar> & \<bar>h\<bar> < k --> \<bar>suminf (g h)\<bar> \<le> suminf f * \<bar>h\<bar>") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
564 |
apply (auto intro!: lemma_termdiff4 simp add: sums_summable [THEN suminf_mult, symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
565 |
apply (subgoal_tac "summable (%n. f n * \<bar>h\<bar>) ") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
566 |
prefer 2 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
567 |
apply (simp add: summable_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
568 |
apply (rule_tac x = "suminf f * \<bar>h\<bar>" in exI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
569 |
apply (drule_tac c = "\<bar>h\<bar>" in sums_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
570 |
apply (simp add: mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
571 |
apply (subgoal_tac "summable (%n. abs (g (h::real) (n::nat))) ") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
572 |
apply (rule_tac [2] g = "%n. f n * \<bar>h\<bar>" in summable_comparison_test) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
573 |
apply (rule_tac [2] x = 0 in exI, auto) |
15546 | 574 |
apply (rule_tac j = "\<Sum>n. \<bar>g h n\<bar>" in real_le_trans) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
575 |
apply (auto intro: summable_rabs summable_le simp add: sums_summable [THEN suminf_mult]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
576 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
577 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
578 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
579 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
580 |
text{* FIXME: Long proofs*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
581 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
582 |
lemma termdiffs_aux: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
583 |
"[|summable (\<lambda>n. diffs (diffs c) n * K ^ n); \<bar>x\<bar> < \<bar>K\<bar> |] |
15546 | 584 |
==> (\<lambda>h. \<Sum>n. c n * |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
585 |
(((x + h) ^ n - x ^ n) * inverse h - |
15546 | 586 |
real n * x ^ (n - Suc 0))) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
587 |
-- 0 --> 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
588 |
apply (drule dense, safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
589 |
apply (frule real_less_sum_gt_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
590 |
apply (drule_tac |
15081 | 591 |
f = "%n. \<bar>c n\<bar> * real n * real (n - Suc 0) * (r ^ (n - 2))" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
592 |
and g = "%h n. c (n) * ((( ((x + h) ^ n) - (x ^ n)) * inverse h) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
593 |
- (real n * (x ^ (n - Suc 0))))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
594 |
in lemma_termdiff5) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
595 |
apply (auto simp add: add_commute) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
596 |
apply (subgoal_tac "summable (%n. \<bar>diffs (diffs c) n\<bar> * (r ^ n))") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
597 |
apply (rule_tac [2] x = K in powser_insidea, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
598 |
apply (subgoal_tac [2] "\<bar>r\<bar> = r", auto) |
15229 | 599 |
apply (rule_tac [2] y1 = "\<bar>x\<bar>" in order_trans [THEN abs_eq], auto) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
600 |
apply (simp add: diffs_def mult_assoc [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
601 |
apply (subgoal_tac |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
602 |
"\<forall>n. real (Suc n) * real (Suc (Suc n)) * \<bar>c (Suc (Suc n))\<bar> * (r ^ n) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
603 |
= diffs (diffs (%n. \<bar>c n\<bar>)) n * (r ^ n) ") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
604 |
apply auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
605 |
apply (drule diffs_equiv) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
606 |
apply (drule sums_summable) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
607 |
apply (simp_all add: diffs_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
608 |
apply (simp add: diffs_def mult_ac) |
15081 | 609 |
apply (subgoal_tac " (%n. real n * (real (Suc n) * (\<bar>c (Suc n)\<bar> * (r ^ (n - Suc 0))))) = (%n. diffs (%m. real (m - Suc 0) * \<bar>c m\<bar> * inverse r) n * (r ^ n))") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
610 |
apply auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
611 |
prefer 2 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
612 |
apply (rule ext) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
613 |
apply (simp add: diffs_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
614 |
apply (case_tac "n", auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
615 |
txt{*23*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
616 |
apply (drule abs_ge_zero [THEN order_le_less_trans]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
617 |
apply (simp add: mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
618 |
apply (drule abs_ge_zero [THEN order_le_less_trans]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
619 |
apply (simp add: mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
620 |
apply (drule diffs_equiv) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
621 |
apply (drule sums_summable) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
622 |
apply (subgoal_tac |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
623 |
"summable |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
624 |
(\<lambda>n. real n * (real (n - Suc 0) * \<bar>c n\<bar> * inverse r) * |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
625 |
r ^ (n - Suc 0)) = |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
626 |
summable |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
627 |
(\<lambda>n. real n * (\<bar>c n\<bar> * (real (n - Suc 0) * r ^ (n - 2))))") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
628 |
apply simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
629 |
apply (rule_tac f = summable in arg_cong, rule ext) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
630 |
txt{*33*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
631 |
apply (case_tac "n", auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
632 |
apply (case_tac "nat", auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
633 |
apply (drule abs_ge_zero [THEN order_le_less_trans], auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
634 |
apply (drule abs_ge_zero [THEN order_le_less_trans]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
635 |
apply (simp add: mult_assoc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
636 |
apply (rule mult_left_mono) |
15229 | 637 |
prefer 2 apply arith |
638 |
apply (subst add_commute) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
639 |
apply (simp (no_asm) add: mult_assoc [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
640 |
apply (rule lemma_termdiff3) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
641 |
apply (auto intro: abs_triangle_ineq [THEN order_trans], arith) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
642 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
643 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
644 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
645 |
lemma termdiffs: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
646 |
"[| summable(%n. c(n) * (K ^ n)); |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
647 |
summable(%n. (diffs c)(n) * (K ^ n)); |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
648 |
summable(%n. (diffs(diffs c))(n) * (K ^ n)); |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
649 |
\<bar>x\<bar> < \<bar>K\<bar> |] |
15546 | 650 |
==> DERIV (%x. \<Sum>n. c(n) * (x ^ n)) x :> |
651 |
(\<Sum>n. (diffs c)(n) * (x ^ n))" |
|
15229 | 652 |
apply (simp add: deriv_def) |
15546 | 653 |
apply (rule_tac g = "%h. \<Sum>n. ((c (n) * ( (x + h) ^ n)) - (c (n) * (x ^ n))) * inverse h" in LIM_trans) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
654 |
apply (simp add: LIM_def, safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
655 |
apply (rule_tac x = "\<bar>K\<bar> - \<bar>x\<bar>" in exI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
656 |
apply (auto simp add: less_diff_eq) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
657 |
apply (drule abs_triangle_ineq [THEN order_le_less_trans]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
658 |
apply (rule_tac y = 0 in order_le_less_trans, auto) |
15546 | 659 |
apply (subgoal_tac " (%n. (c n) * (x ^ n)) sums (\<Sum>n. (c n) * (x ^ n)) & (%n. (c n) * ((x + xa) ^ n)) sums (\<Sum>n. (c n) * ( (x + xa) ^ n))") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
660 |
apply (auto intro!: summable_sums) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
661 |
apply (rule_tac [2] powser_inside, rule_tac [4] powser_inside) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
662 |
apply (auto simp add: add_commute) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
663 |
apply (drule_tac x="(\<lambda>n. c n * (xa + x) ^ n)" in sums_diff, assumption) |
15229 | 664 |
apply (drule_tac x = "(%n. c n * (xa + x) ^ n - c n * x ^ n) " and c = "inverse xa" in sums_mult) |
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
665 |
apply (rule sums_unique) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
15077
diff
changeset
|
666 |
apply (simp add: diff_def divide_inverse add_ac mult_ac) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
667 |
apply (rule LIM_zero_cancel) |
15546 | 668 |
apply (rule_tac g = "%h. \<Sum>n. c (n) * ((( ((x + h) ^ n) - (x ^ n)) * inverse h) - (real n * (x ^ (n - Suc 0))))" in LIM_trans) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
669 |
prefer 2 apply (blast intro: termdiffs_aux) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
670 |
apply (simp add: LIM_def, safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
671 |
apply (rule_tac x = "\<bar>K\<bar> - \<bar>x\<bar>" in exI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
672 |
apply (auto simp add: less_diff_eq) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
673 |
apply (drule abs_triangle_ineq [THEN order_le_less_trans]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
674 |
apply (rule_tac y = 0 in order_le_less_trans, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
675 |
apply (subgoal_tac "summable (%n. (diffs c) (n) * (x ^ n))") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
676 |
apply (rule_tac [2] powser_inside, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
677 |
apply (drule_tac c = c and x = x in diffs_equiv) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
678 |
apply (frule sums_unique, auto) |
15546 | 679 |
apply (subgoal_tac " (%n. (c n) * (x ^ n)) sums (\<Sum>n. (c n) * (x ^ n)) & (%n. (c n) * ((x + xa) ^ n)) sums (\<Sum>n. (c n) * ( (x + xa) ^ n))") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
680 |
apply safe |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
681 |
apply (auto intro!: summable_sums) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
682 |
apply (rule_tac [2] powser_inside, rule_tac [4] powser_inside) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
683 |
apply (auto simp add: add_commute) |
15229 | 684 |
apply (frule_tac x = "(%n. c n * (xa + x) ^ n) " and y = "(%n. c n * x ^ n)" in sums_diff, assumption) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
685 |
apply (simp add: suminf_diff [OF sums_summable sums_summable] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
686 |
right_diff_distrib [symmetric]) |
15229 | 687 |
apply (frule_tac x = "(%n. c n * ((xa + x) ^ n - x ^ n))" and c = "inverse xa" in sums_mult) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
688 |
apply (simp add: sums_summable [THEN suminf_mult2]) |
15229 | 689 |
apply (frule_tac x = "(%n. inverse xa * (c n * ((xa + x) ^ n - x ^ n))) " and y = "(%n. real n * c n * x ^ (n - Suc 0))" in sums_diff) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
690 |
apply assumption |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
691 |
apply (simp add: suminf_diff [OF sums_summable sums_summable] add_ac mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
692 |
apply (rule_tac f = suminf in arg_cong) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
693 |
apply (rule ext) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
694 |
apply (simp add: diff_def right_distrib add_ac mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
695 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
696 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
697 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
698 |
subsection{*Formal Derivatives of Exp, Sin, and Cos Series*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
699 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
700 |
lemma exp_fdiffs: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
701 |
"diffs (%n. inverse(real (fact n))) = (%n. inverse(real (fact n)))" |
15229 | 702 |
by (simp add: diffs_def mult_assoc [symmetric] del: mult_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
703 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
704 |
lemma sin_fdiffs: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
705 |
"diffs(%n. if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
706 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
707 |
= (%n. if even n then |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
708 |
(- 1) ^ (n div 2)/(real (fact n)) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
709 |
else 0)" |
15229 | 710 |
by (auto intro!: ext |
711 |
simp add: diffs_def divide_inverse simp del: mult_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
712 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
713 |
lemma sin_fdiffs2: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
714 |
"diffs(%n. if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
715 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) n |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
716 |
= (if even n then |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
717 |
(- 1) ^ (n div 2)/(real (fact n)) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
718 |
else 0)" |
15229 | 719 |
by (auto intro!: ext |
720 |
simp add: diffs_def divide_inverse simp del: mult_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
721 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
722 |
lemma cos_fdiffs: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
723 |
"diffs(%n. if even n then |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
724 |
(- 1) ^ (n div 2)/(real (fact n)) else 0) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
725 |
= (%n. - (if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
726 |
else (- 1) ^ ((n - Suc 0)div 2)/(real (fact n))))" |
15229 | 727 |
by (auto intro!: ext |
728 |
simp add: diffs_def divide_inverse odd_Suc_mult_two_ex |
|
729 |
simp del: mult_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
730 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
731 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
732 |
lemma cos_fdiffs2: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
733 |
"diffs(%n. if even n then |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
734 |
(- 1) ^ (n div 2)/(real (fact n)) else 0) n |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
735 |
= - (if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
736 |
else (- 1) ^ ((n - Suc 0)div 2)/(real (fact n)))" |
15229 | 737 |
by (auto intro!: ext |
738 |
simp add: diffs_def divide_inverse odd_Suc_mult_two_ex |
|
739 |
simp del: mult_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
740 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
741 |
text{*Now at last we can get the derivatives of exp, sin and cos*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
742 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
743 |
lemma lemma_sin_minus: |
15546 | 744 |
"- sin x = (\<Sum>n. - ((if even n then 0 |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
745 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * x ^ n))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
746 |
by (auto intro!: sums_unique sums_minus sin_converges) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
747 |
|
15546 | 748 |
lemma lemma_exp_ext: "exp = (%x. \<Sum>n. inverse (real (fact n)) * x ^ n)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
749 |
by (auto intro!: ext simp add: exp_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
750 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
751 |
lemma DERIV_exp [simp]: "DERIV exp x :> exp(x)" |
15229 | 752 |
apply (simp add: exp_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
753 |
apply (subst lemma_exp_ext) |
15546 | 754 |
apply (subgoal_tac "DERIV (%u. \<Sum>n. inverse (real (fact n)) * u ^ n) x :> (\<Sum>n. diffs (%n. inverse (real (fact n))) n * x ^ n)") |
15229 | 755 |
apply (rule_tac [2] K = "1 + \<bar>x\<bar>" in termdiffs) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
756 |
apply (auto intro: exp_converges [THEN sums_summable] simp add: exp_fdiffs, arith) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
757 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
758 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
759 |
lemma lemma_sin_ext: |
15546 | 760 |
"sin = (%x. \<Sum>n. |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
761 |
(if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
762 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * |
15546 | 763 |
x ^ n)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
764 |
by (auto intro!: ext simp add: sin_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
765 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
766 |
lemma lemma_cos_ext: |
15546 | 767 |
"cos = (%x. \<Sum>n. |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
768 |
(if even n then (- 1) ^ (n div 2)/(real (fact n)) else 0) * |
15546 | 769 |
x ^ n)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
770 |
by (auto intro!: ext simp add: cos_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
771 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
772 |
lemma DERIV_sin [simp]: "DERIV sin x :> cos(x)" |
15229 | 773 |
apply (simp add: cos_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
774 |
apply (subst lemma_sin_ext) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
775 |
apply (auto simp add: sin_fdiffs2 [symmetric]) |
15229 | 776 |
apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
777 |
apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs, arith) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
778 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
779 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
780 |
lemma DERIV_cos [simp]: "DERIV cos x :> -sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
781 |
apply (subst lemma_cos_ext) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
782 |
apply (auto simp add: lemma_sin_minus cos_fdiffs2 [symmetric] minus_mult_left) |
15229 | 783 |
apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
784 |
apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs diffs_minus, arith) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
785 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
786 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
787 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
788 |
subsection{*Properties of the Exponential Function*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
789 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
790 |
lemma exp_zero [simp]: "exp 0 = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
791 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
792 |
have "(\<Sum>n = 0..<1. inverse (real (fact n)) * 0 ^ n) = |
15546 | 793 |
(\<Sum>n. inverse (real (fact n)) * 0 ^ n)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
794 |
by (rule series_zero [rule_format, THEN sums_unique], |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
795 |
case_tac "m", auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
796 |
thus ?thesis by (simp add: exp_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
797 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
798 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
799 |
lemma exp_ge_add_one_self [simp]: "0 \<le> x ==> (1 + x) \<le> exp(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
800 |
apply (drule real_le_imp_less_or_eq, auto) |
15229 | 801 |
apply (simp add: exp_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
802 |
apply (rule real_le_trans) |
15229 | 803 |
apply (rule_tac [2] n = 2 and f = "(%n. inverse (real (fact n)) * x ^ n)" in series_pos_le) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
804 |
apply (auto intro: summable_exp simp add: numeral_2_eq_2 zero_le_power zero_le_mult_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
805 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
806 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
807 |
lemma exp_gt_one [simp]: "0 < x ==> 1 < exp x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
808 |
apply (rule order_less_le_trans) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
809 |
apply (rule_tac [2] exp_ge_add_one_self, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
810 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
811 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
812 |
lemma DERIV_exp_add_const: "DERIV (%x. exp (x + y)) x :> exp(x + y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
813 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
814 |
have "DERIV (exp \<circ> (\<lambda>x. x + y)) x :> exp (x + y) * (1+0)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
815 |
by (fast intro: DERIV_chain DERIV_add DERIV_exp DERIV_Id DERIV_const) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
816 |
thus ?thesis by (simp add: o_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
817 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
818 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
819 |
lemma DERIV_exp_minus [simp]: "DERIV (%x. exp (-x)) x :> - exp(-x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
820 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
821 |
have "DERIV (exp \<circ> uminus) x :> exp (- x) * - 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
822 |
by (fast intro: DERIV_chain DERIV_minus DERIV_exp DERIV_Id) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
823 |
thus ?thesis by (simp add: o_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
824 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
825 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
826 |
lemma DERIV_exp_exp_zero [simp]: "DERIV (%x. exp (x + y) * exp (- x)) x :> 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
827 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
828 |
have "DERIV (\<lambda>x. exp (x + y) * exp (- x)) x |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
829 |
:> exp (x + y) * exp (- x) + - exp (- x) * exp (x + y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
830 |
by (fast intro: DERIV_exp_add_const DERIV_exp_minus DERIV_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
831 |
thus ?thesis by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
832 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
833 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
834 |
lemma exp_add_mult_minus [simp]: "exp(x + y)*exp(-x) = exp(y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
835 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
836 |
have "\<forall>x. DERIV (%x. exp (x + y) * exp (- x)) x :> 0" by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
837 |
hence "exp (x + y) * exp (- x) = exp (0 + y) * exp (- 0)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
838 |
by (rule DERIV_isconst_all) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
839 |
thus ?thesis by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
840 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
841 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
842 |
lemma exp_mult_minus [simp]: "exp x * exp(-x) = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
843 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
844 |
have "exp (x + 0) * exp (- x) = exp 0" by (rule exp_add_mult_minus) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
845 |
thus ?thesis by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
846 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
847 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
848 |
lemma exp_mult_minus2 [simp]: "exp(-x)*exp(x) = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
849 |
by (simp add: mult_commute) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
850 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
851 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
852 |
lemma exp_minus: "exp(-x) = inverse(exp(x))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
853 |
by (auto intro: inverse_unique [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
854 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
855 |
lemma exp_add: "exp(x + y) = exp(x) * exp(y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
856 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
857 |
have "exp x * exp y = exp x * (exp (x + y) * exp (- x))" by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
858 |
thus ?thesis by (simp (no_asm_simp) add: mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
859 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
860 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
861 |
text{*Proof: because every exponential can be seen as a square.*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
862 |
lemma exp_ge_zero [simp]: "0 \<le> exp x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
863 |
apply (rule_tac t = x in real_sum_of_halves [THEN subst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
864 |
apply (subst exp_add, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
865 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
866 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
867 |
lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
868 |
apply (cut_tac x = x in exp_mult_minus2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
869 |
apply (auto simp del: exp_mult_minus2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
870 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
871 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
872 |
lemma exp_gt_zero [simp]: "0 < exp x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
873 |
by (simp add: order_less_le) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
874 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
875 |
lemma inv_exp_gt_zero [simp]: "0 < inverse(exp x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
876 |
by (auto intro: positive_imp_inverse_positive) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
877 |
|
15081 | 878 |
lemma abs_exp_cancel [simp]: "\<bar>exp x\<bar> = exp x" |
15229 | 879 |
by auto |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
880 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
881 |
lemma exp_real_of_nat_mult: "exp(real n * x) = exp(x) ^ n" |
15251 | 882 |
apply (induct "n") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
883 |
apply (auto simp add: real_of_nat_Suc right_distrib exp_add mult_commute) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
884 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
885 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
886 |
lemma exp_diff: "exp(x - y) = exp(x)/(exp y)" |
15229 | 887 |
apply (simp add: diff_minus divide_inverse) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
888 |
apply (simp (no_asm) add: exp_add exp_minus) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
889 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
890 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
891 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
892 |
lemma exp_less_mono: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
893 |
assumes xy: "x < y" shows "exp x < exp y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
894 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
895 |
have "1 < exp (y + - x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
896 |
by (rule real_less_sum_gt_zero [THEN exp_gt_one]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
897 |
hence "exp x * inverse (exp x) < exp y * inverse (exp x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
898 |
by (auto simp add: exp_add exp_minus) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
899 |
thus ?thesis |
15539 | 900 |
by (simp add: divide_inverse [symmetric] pos_less_divide_eq |
15228 | 901 |
del: divide_self_if) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
902 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
903 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
904 |
lemma exp_less_cancel: "exp x < exp y ==> x < y" |
15228 | 905 |
apply (simp add: linorder_not_le [symmetric]) |
906 |
apply (auto simp add: order_le_less exp_less_mono) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
907 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
908 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
909 |
lemma exp_less_cancel_iff [iff]: "(exp(x) < exp(y)) = (x < y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
910 |
by (auto intro: exp_less_mono exp_less_cancel) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
911 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
912 |
lemma exp_le_cancel_iff [iff]: "(exp(x) \<le> exp(y)) = (x \<le> y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
913 |
by (auto simp add: linorder_not_less [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
914 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
915 |
lemma exp_inj_iff [iff]: "(exp x = exp y) = (x = y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
916 |
by (simp add: order_eq_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
917 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
918 |
lemma lemma_exp_total: "1 \<le> y ==> \<exists>x. 0 \<le> x & x \<le> y - 1 & exp(x) = y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
919 |
apply (rule IVT) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
920 |
apply (auto intro: DERIV_exp [THEN DERIV_isCont] simp add: le_diff_eq) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
921 |
apply (subgoal_tac "1 + (y - 1) \<le> exp (y - 1)") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
922 |
apply simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
923 |
apply (rule exp_ge_add_one_self, simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
924 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
925 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
926 |
lemma exp_total: "0 < y ==> \<exists>x. exp x = y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
927 |
apply (rule_tac x = 1 and y = y in linorder_cases) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
928 |
apply (drule order_less_imp_le [THEN lemma_exp_total]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
929 |
apply (rule_tac [2] x = 0 in exI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
930 |
apply (frule_tac [3] real_inverse_gt_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
931 |
apply (drule_tac [4] order_less_imp_le [THEN lemma_exp_total], auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
932 |
apply (rule_tac x = "-x" in exI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
933 |
apply (simp add: exp_minus) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
934 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
935 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
936 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
937 |
subsection{*Properties of the Logarithmic Function*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
938 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
939 |
lemma ln_exp[simp]: "ln(exp x) = x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
940 |
by (simp add: ln_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
941 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
942 |
lemma exp_ln_iff[simp]: "(exp(ln x) = x) = (0 < x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
943 |
apply (auto dest: exp_total) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
944 |
apply (erule subst, simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
945 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
946 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
947 |
lemma ln_mult: "[| 0 < x; 0 < y |] ==> ln(x * y) = ln(x) + ln(y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
948 |
apply (rule exp_inj_iff [THEN iffD1]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
949 |
apply (frule real_mult_order) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
950 |
apply (auto simp add: exp_add exp_ln_iff [symmetric] simp del: exp_inj_iff exp_ln_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
951 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
952 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
953 |
lemma ln_inj_iff[simp]: "[| 0 < x; 0 < y |] ==> (ln x = ln y) = (x = y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
954 |
apply (simp only: exp_ln_iff [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
955 |
apply (erule subst)+ |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
956 |
apply simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
957 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
958 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
959 |
lemma ln_one[simp]: "ln 1 = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
960 |
by (rule exp_inj_iff [THEN iffD1], auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
961 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
962 |
lemma ln_inverse: "0 < x ==> ln(inverse x) = - ln x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
963 |
apply (rule_tac a1 = "ln x" in add_left_cancel [THEN iffD1]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
964 |
apply (auto simp add: positive_imp_inverse_positive ln_mult [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
965 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
966 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
967 |
lemma ln_div: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
968 |
"[|0 < x; 0 < y|] ==> ln(x/y) = ln x - ln y" |
15229 | 969 |
apply (simp add: divide_inverse) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
970 |
apply (auto simp add: positive_imp_inverse_positive ln_mult ln_inverse) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
971 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
972 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
973 |
lemma ln_less_cancel_iff[simp]: "[| 0 < x; 0 < y|] ==> (ln x < ln y) = (x < y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
974 |
apply (simp only: exp_ln_iff [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
975 |
apply (erule subst)+ |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
976 |
apply simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
977 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
978 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
979 |
lemma ln_le_cancel_iff[simp]: "[| 0 < x; 0 < y|] ==> (ln x \<le> ln y) = (x \<le> y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
980 |
by (auto simp add: linorder_not_less [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
981 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
982 |
lemma ln_realpow: "0 < x ==> ln(x ^ n) = real n * ln(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
983 |
by (auto dest!: exp_total simp add: exp_real_of_nat_mult [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
984 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
985 |
lemma ln_add_one_self_le_self [simp]: "0 \<le> x ==> ln(1 + x) \<le> x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
986 |
apply (rule ln_exp [THEN subst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
987 |
apply (rule ln_le_cancel_iff [THEN iffD2], auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
988 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
989 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
990 |
lemma ln_less_self [simp]: "0 < x ==> ln x < x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
991 |
apply (rule order_less_le_trans) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
992 |
apply (rule_tac [2] ln_add_one_self_le_self) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
993 |
apply (rule ln_less_cancel_iff [THEN iffD2], auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
994 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
995 |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
996 |
lemma ln_ge_zero [simp]: |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
997 |
assumes x: "1 \<le> x" shows "0 \<le> ln x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
998 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
999 |
have "0 < x" using x by arith |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1000 |
hence "exp 0 \<le> exp (ln x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1001 |
by (simp add: x exp_ln_iff [symmetric] del: exp_ln_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1002 |
thus ?thesis by (simp only: exp_le_cancel_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1003 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1004 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1005 |
lemma ln_ge_zero_imp_ge_one: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1006 |
assumes ln: "0 \<le> ln x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1007 |
and x: "0 < x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1008 |
shows "1 \<le> x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1009 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1010 |
from ln have "ln 1 \<le> ln x" by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1011 |
thus ?thesis by (simp add: x del: ln_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1012 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1013 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1014 |
lemma ln_ge_zero_iff [simp]: "0 < x ==> (0 \<le> ln x) = (1 \<le> x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1015 |
by (blast intro: ln_ge_zero ln_ge_zero_imp_ge_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1016 |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1017 |
lemma ln_less_zero_iff [simp]: "0 < x ==> (ln x < 0) = (x < 1)" |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1018 |
by (insert ln_ge_zero_iff [of x], arith) |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1019 |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1020 |
lemma ln_gt_zero: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1021 |
assumes x: "1 < x" shows "0 < ln x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1022 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1023 |
have "0 < x" using x by arith |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1024 |
hence "exp 0 < exp (ln x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1025 |
by (simp add: x exp_ln_iff [symmetric] del: exp_ln_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1026 |
thus ?thesis by (simp only: exp_less_cancel_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1027 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1028 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1029 |
lemma ln_gt_zero_imp_gt_one: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1030 |
assumes ln: "0 < ln x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1031 |
and x: "0 < x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1032 |
shows "1 < x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1033 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1034 |
from ln have "ln 1 < ln x" by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1035 |
thus ?thesis by (simp add: x del: ln_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1036 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1037 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1038 |
lemma ln_gt_zero_iff [simp]: "0 < x ==> (0 < ln x) = (1 < x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1039 |
by (blast intro: ln_gt_zero ln_gt_zero_imp_gt_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1040 |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1041 |
lemma ln_eq_zero_iff [simp]: "0 < x ==> (ln x = 0) = (x = 1)" |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1042 |
by (insert ln_less_zero_iff [of x] ln_gt_zero_iff [of x], arith) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1043 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1044 |
lemma ln_less_zero: "[| 0 < x; x < 1 |] ==> ln x < 0" |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1045 |
by simp |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1046 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1047 |
lemma exp_ln_eq: "exp u = x ==> ln x = u" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1048 |
by auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1049 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1050 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1051 |
subsection{*Basic Properties of the Trigonometric Functions*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1052 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1053 |
lemma sin_zero [simp]: "sin 0 = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1054 |
by (auto intro!: sums_unique [symmetric] LIMSEQ_const |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1055 |
simp add: sin_def sums_def simp del: power_0_left) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1056 |
|
15539 | 1057 |
lemma lemma_series_zero2: |
1058 |
"(\<forall>m. n \<le> m --> f m = 0) --> f sums setsum f {0..<n}" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1059 |
by (auto intro: series_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1060 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1061 |
lemma cos_zero [simp]: "cos 0 = 1" |
15229 | 1062 |
apply (simp add: cos_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1063 |
apply (rule sums_unique [symmetric]) |
15229 | 1064 |
apply (cut_tac n = 1 and f = "(%n. (if even n then (- 1) ^ (n div 2) / (real (fact n)) else 0) * 0 ^ n)" in lemma_series_zero2) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1065 |
apply auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1066 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1067 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1068 |
lemma DERIV_sin_sin_mult [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1069 |
"DERIV (%x. sin(x)*sin(x)) x :> cos(x) * sin(x) + cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1070 |
by (rule DERIV_mult, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1071 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1072 |
lemma DERIV_sin_sin_mult2 [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1073 |
"DERIV (%x. sin(x)*sin(x)) x :> 2 * cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1074 |
apply (cut_tac x = x in DERIV_sin_sin_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1075 |
apply (auto simp add: mult_assoc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1076 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1077 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1078 |
lemma DERIV_sin_realpow2 [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1079 |
"DERIV (%x. (sin x)\<twosuperior>) x :> cos(x) * sin(x) + cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1080 |
by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1081 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1082 |
lemma DERIV_sin_realpow2a [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1083 |
"DERIV (%x. (sin x)\<twosuperior>) x :> 2 * cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1084 |
by (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1085 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1086 |
lemma DERIV_cos_cos_mult [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1087 |
"DERIV (%x. cos(x)*cos(x)) x :> -sin(x) * cos(x) + -sin(x) * cos(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1088 |
by (rule DERIV_mult, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1089 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1090 |
lemma DERIV_cos_cos_mult2 [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1091 |
"DERIV (%x. cos(x)*cos(x)) x :> -2 * cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1092 |
apply (cut_tac x = x in DERIV_cos_cos_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1093 |
apply (auto simp add: mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1094 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1095 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1096 |
lemma DERIV_cos_realpow2 [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1097 |
"DERIV (%x. (cos x)\<twosuperior>) x :> -sin(x) * cos(x) + -sin(x) * cos(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1098 |
by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1099 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1100 |
lemma DERIV_cos_realpow2a [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1101 |
"DERIV (%x. (cos x)\<twosuperior>) x :> -2 * cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1102 |
by (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1103 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1104 |
lemma lemma_DERIV_subst: "[| DERIV f x :> D; D = E |] ==> DERIV f x :> E" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1105 |
by auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1106 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1107 |
lemma DERIV_cos_realpow2b: "DERIV (%x. (cos x)\<twosuperior>) x :> -(2 * cos(x) * sin(x))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1108 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1109 |
apply (rule DERIV_cos_realpow2a, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1110 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1111 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1112 |
(* most useful *) |
15229 | 1113 |
lemma DERIV_cos_cos_mult3 [simp]: |
1114 |
"DERIV (%x. cos(x)*cos(x)) x :> -(2 * cos(x) * sin(x))" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1115 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1116 |
apply (rule DERIV_cos_cos_mult2, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1117 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1118 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1119 |
lemma DERIV_sin_circle_all: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1120 |
"\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :> |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1121 |
(2*cos(x)*sin(x) - 2*cos(x)*sin(x))" |
15229 | 1122 |
apply (simp only: diff_minus, safe) |
1123 |
apply (rule DERIV_add) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1124 |
apply (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1125 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1126 |
|
15229 | 1127 |
lemma DERIV_sin_circle_all_zero [simp]: |
1128 |
"\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :> 0" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1129 |
by (cut_tac DERIV_sin_circle_all, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1130 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1131 |
lemma sin_cos_squared_add [simp]: "((sin x)\<twosuperior>) + ((cos x)\<twosuperior>) = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1132 |
apply (cut_tac x = x and y = 0 in DERIV_sin_circle_all_zero [THEN DERIV_isconst_all]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1133 |
apply (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1134 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1135 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1136 |
lemma sin_cos_squared_add2 [simp]: "((cos x)\<twosuperior>) + ((sin x)\<twosuperior>) = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1137 |
apply (subst real_add_commute) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1138 |
apply (simp (no_asm) del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1139 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1140 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1141 |
lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1142 |
apply (cut_tac x = x in sin_cos_squared_add2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1143 |
apply (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1144 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1145 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1146 |
lemma sin_squared_eq: "(sin x)\<twosuperior> = 1 - (cos x)\<twosuperior>" |
15229 | 1147 |
apply (rule_tac a1 = "(cos x)\<twosuperior>" in add_right_cancel [THEN iffD1]) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1148 |
apply (simp del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1149 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1150 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1151 |
lemma cos_squared_eq: "(cos x)\<twosuperior> = 1 - (sin x)\<twosuperior>" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1152 |
apply (rule_tac a1 = "(sin x)\<twosuperior>" in add_right_cancel [THEN iffD1]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1153 |
apply (simp del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1154 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1155 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1156 |
lemma real_gt_one_ge_zero_add_less: "[| 1 < x; 0 \<le> y |] ==> 1 < x + (y::real)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1157 |
by arith |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1158 |
|
15081 | 1159 |
lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1160 |
apply (auto simp add: linorder_not_less [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1161 |
apply (drule_tac n = "Suc 0" in power_gt1) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1162 |
apply (auto simp del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1163 |
apply (drule_tac r1 = "cos x" in realpow_two_le [THEN [2] real_gt_one_ge_zero_add_less]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1164 |
apply (simp add: numeral_2_eq_2 [symmetric] del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1165 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1166 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1167 |
lemma sin_ge_minus_one [simp]: "-1 \<le> sin x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1168 |
apply (insert abs_sin_le_one [of x]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1169 |
apply (simp add: abs_le_interval_iff del: abs_sin_le_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1170 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1171 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1172 |
lemma sin_le_one [simp]: "sin x \<le> 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1173 |
apply (insert abs_sin_le_one [of x]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1174 |
apply (simp add: abs_le_interval_iff del: abs_sin_le_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1175 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1176 |
|
15081 | 1177 |
lemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1178 |
apply (auto simp add: linorder_not_less [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1179 |
apply (drule_tac n = "Suc 0" in power_gt1) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1180 |
apply (auto simp del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1181 |
apply (drule_tac r1 = "sin x" in realpow_two_le [THEN [2] real_gt_one_ge_zero_add_less]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1182 |
apply (simp add: numeral_2_eq_2 [symmetric] del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1183 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1184 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1185 |
lemma cos_ge_minus_one [simp]: "-1 \<le> cos x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1186 |
apply (insert abs_cos_le_one [of x]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1187 |
apply (simp add: abs_le_interval_iff del: abs_cos_le_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1188 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1189 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1190 |
lemma cos_le_one [simp]: "cos x \<le> 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1191 |
apply (insert abs_cos_le_one [of x]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1192 |
apply (simp add: abs_le_interval_iff del: abs_cos_le_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1193 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1194 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1195 |
lemma DERIV_fun_pow: "DERIV g x :> m ==> |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1196 |
DERIV (%x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1197 |
apply (rule lemma_DERIV_subst) |
15229 | 1198 |
apply (rule_tac f = "(%x. x ^ n)" in DERIV_chain2) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1199 |
apply (rule DERIV_pow, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1200 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1201 |
|
15229 | 1202 |
lemma DERIV_fun_exp: |
1203 |
"DERIV g x :> m ==> DERIV (%x. exp(g x)) x :> exp(g x) * m" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1204 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1205 |
apply (rule_tac f = exp in DERIV_chain2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1206 |
apply (rule DERIV_exp, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1207 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1208 |
|
15229 | 1209 |
lemma DERIV_fun_sin: |
1210 |
"DERIV g x :> m ==> DERIV (%x. sin(g x)) x :> cos(g x) * m" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1211 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1212 |
apply (rule_tac f = sin in DERIV_chain2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1213 |
apply (rule DERIV_sin, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1214 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1215 |
|
15229 | 1216 |
lemma DERIV_fun_cos: |
1217 |
"DERIV g x :> m ==> DERIV (%x. cos(g x)) x :> -sin(g x) * m" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1218 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1219 |
apply (rule_tac f = cos in DERIV_chain2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1220 |
apply (rule DERIV_cos, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1221 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1222 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1223 |
lemmas DERIV_intros = DERIV_Id DERIV_const DERIV_cos DERIV_cmult |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1224 |
DERIV_sin DERIV_exp DERIV_inverse DERIV_pow |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1225 |
DERIV_add DERIV_diff DERIV_mult DERIV_minus |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1226 |
DERIV_inverse_fun DERIV_quotient DERIV_fun_pow |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1227 |
DERIV_fun_exp DERIV_fun_sin DERIV_fun_cos |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1228 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1229 |
(* lemma *) |
15229 |