src/HOL/Ring_and_Field.thy
author huffman
Thu, 17 May 2007 08:42:51 +0200
changeset 22987 550709aa8e66
parent 22842 6d2fd4e0f984
child 22990 775e9de3db48
permissions -rw-r--r--
instance division_ring < no_zero_divisors; clean up field instance proofs
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     1
(*  Title:   HOL/Ring_and_Field.thy
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     2
    ID:      $Id$
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
     3
    Author:  Gertrud Bauer, Steven Obua, Lawrence C Paulson, and Markus Wenzel,
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
     4
             with contributions by Jeremy Avigad
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     5
*)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     6
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
     7
header {* (Ordered) Rings and Fields *}
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     8
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
     9
theory Ring_and_Field
15140
322485b816ac import -> imports
nipkow
parents: 15131
diff changeset
    10
imports OrderedGroup
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15077
diff changeset
    11
begin
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    12
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    13
text {*
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    14
  The theory of partially ordered rings is taken from the books:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    15
  \begin{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    16
  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    17
  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    18
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    19
  Most of the used notions can also be looked up in 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    20
  \begin{itemize}
14770
fe9504ba63d5 removed duplicate thms;
wenzelm
parents: 14754
diff changeset
    21
  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    22
  \item \emph{Algebra I} by van der Waerden, Springer.
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    23
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    24
*}
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    25
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    26
class semiring = ab_semigroup_add + semigroup_mult +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    27
  assumes left_distrib: "(a \<^loc>+ b) \<^loc>* c = a \<^loc>* c \<^loc>+ b \<^loc>* c"
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    28
  assumes right_distrib: "a \<^loc>* (b \<^loc>+ c) = a \<^loc>* b \<^loc>+ a \<^loc>* c"
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    29
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    30
class mult_zero = times + zero +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    31
  assumes mult_zero_left [simp]: "\<^loc>0 \<^loc>* a = \<^loc>0"
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    32
  assumes mult_zero_right [simp]: "a \<^loc>* \<^loc>0 = \<^loc>0"
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    33
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    34
class semiring_0 = semiring + comm_monoid_add + mult_zero
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    35
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    36
class semiring_0_cancel = semiring + comm_monoid_add + cancel_ab_semigroup_add
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    37
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    38
instance semiring_0_cancel \<subseteq> semiring_0
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    39
proof
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    40
  fix a :: 'a
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    41
  have "0 * a + 0 * a = 0 * a + 0"
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    42
    by (simp add: left_distrib [symmetric])
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    43
  thus "0 * a = 0"
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    44
    by (simp only: add_left_cancel)
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    45
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    46
  have "a * 0 + a * 0 = a * 0 + 0"
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    47
    by (simp add: right_distrib [symmetric])
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    48
  thus "a * 0 = 0"
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    49
    by (simp only: add_left_cancel)
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    50
qed
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    51
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    52
class comm_semiring = ab_semigroup_add + ab_semigroup_mult +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    53
  assumes distrib: "(a \<^loc>+ b) \<^loc>* c = a \<^loc>* c \<^loc>+ b \<^loc>* c"
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    54
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    55
instance comm_semiring \<subseteq> semiring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    56
proof
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    57
  fix a b c :: 'a
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    58
  show "(a + b) * c = a * c + b * c" by (simp add: distrib)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    59
  have "a * (b + c) = (b + c) * a" by (simp add: mult_ac)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    60
  also have "... = b * a + c * a" by (simp only: distrib)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    61
  also have "... = a * b + a * c" by (simp add: mult_ac)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    62
  finally show "a * (b + c) = a * b + a * c" by blast
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    63
qed
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    64
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    65
class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    66
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    67
instance comm_semiring_0 \<subseteq> semiring_0 ..
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    68
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    69
class comm_semiring_0_cancel = comm_semiring + comm_monoid_add + cancel_ab_semigroup_add
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    70
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    71
instance comm_semiring_0_cancel \<subseteq> semiring_0_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    72
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    73
instance comm_semiring_0_cancel \<subseteq> comm_semiring_0 ..
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    74
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    75
class zero_neq_one = zero + one +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    76
  assumes zero_neq_one [simp]: "\<^loc>0 \<noteq> \<^loc>1"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    77
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    78
class semiring_1 = zero_neq_one + semiring_0 + monoid_mult
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    79
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    80
class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    81
  (*previously almost_semiring*)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    82
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    83
instance comm_semiring_1 \<subseteq> semiring_1 ..
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
    84
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    85
class no_zero_divisors = zero + times +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    86
  assumes no_zero_divisors: "a \<noteq> \<^loc>0 \<Longrightarrow> b \<noteq> \<^loc>0 \<Longrightarrow> a \<^loc>* b \<noteq> \<^loc>0"
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    87
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    88
class semiring_1_cancel = semiring + comm_monoid_add + zero_neq_one
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    89
  + cancel_ab_semigroup_add + monoid_mult
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    90
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    91
instance semiring_1_cancel \<subseteq> semiring_0_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    92
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    93
instance semiring_1_cancel \<subseteq> semiring_1 ..
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    94
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    95
class comm_semiring_1_cancel = comm_semiring + comm_monoid_add + comm_monoid_mult
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    96
  + zero_neq_one + cancel_ab_semigroup_add
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    97
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    98
instance comm_semiring_1_cancel \<subseteq> semiring_1_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    99
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   100
instance comm_semiring_1_cancel \<subseteq> comm_semiring_0_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   101
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   102
instance comm_semiring_1_cancel \<subseteq> comm_semiring_1 ..
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   103
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   104
class ring = semiring + ab_group_add
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   105
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   106
instance ring \<subseteq> semiring_0_cancel ..
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
   107
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   108
class comm_ring = comm_semiring + ab_group_add
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   109
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   110
instance comm_ring \<subseteq> ring ..
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
   111
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   112
instance comm_ring \<subseteq> comm_semiring_0_cancel ..
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   113
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   114
class ring_1 = ring + zero_neq_one + monoid_mult
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   115
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   116
instance ring_1 \<subseteq> semiring_1_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   117
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   118
class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   119
  (*previously ring*)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   120
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   121
instance comm_ring_1 \<subseteq> ring_1 ..
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   122
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   123
instance comm_ring_1 \<subseteq> comm_semiring_1_cancel ..
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   124
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   125
class idom = comm_ring_1 + no_zero_divisors
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   126
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   127
class division_ring = ring_1 + inverse +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   128
  assumes left_inverse [simp]:  "a \<noteq> \<^loc>0 \<Longrightarrow> inverse a \<^loc>* a = \<^loc>1"
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   129
  assumes right_inverse [simp]: "a \<noteq> \<^loc>0 \<Longrightarrow> a \<^loc>* inverse a = \<^loc>1"
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   130
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   131
instance division_ring \<subseteq> no_zero_divisors
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   132
proof
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   133
  fix a b :: 'a
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   134
  assume a: "a \<noteq> 0" and b: "b \<noteq> 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   135
  show "a * b \<noteq> 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   136
  proof
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   137
    assume ab: "a * b = 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   138
    hence "0 = inverse a * (a * b) * inverse b"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   139
      by simp
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   140
    also have "\<dots> = (inverse a * a) * (b * inverse b)"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   141
      by (simp only: mult_assoc)
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   142
    also have "\<dots> = 1"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   143
      using a b by simp
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   144
    finally show False
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   145
      by simp
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   146
  qed
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   147
qed
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   148
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   149
class field = comm_ring_1 + inverse +
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   150
  assumes field_inverse:  "a \<noteq> 0 \<Longrightarrow> inverse a \<^loc>* a = \<^loc>1"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   151
  assumes divide_inverse: "a \<^loc>/ b = a \<^loc>* inverse b"
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   152
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   153
instance field \<subseteq> division_ring
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   154
proof
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   155
  fix a :: 'a
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   156
  assume "a \<noteq> 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   157
  thus "inverse a * a = 1" by (rule field_inverse)
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   158
  thus "a * inverse a = 1" by (simp only: mult_commute)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   159
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   160
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   161
instance field \<subseteq> idom ..
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   162
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   163
class division_by_zero = zero + inverse +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   164
  assumes inverse_zero [simp]: "inverse \<^loc>0 = \<^loc>0"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   165
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   166
subsection {* Distribution rules *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   167
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   168
theorems ring_distrib = right_distrib left_distrib
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   169
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   170
text{*For the @{text combine_numerals} simproc*}
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   171
lemma combine_common_factor:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   172
     "a*e + (b*e + c) = (a+b)*e + (c::'a::semiring)"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   173
by (simp add: left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   174
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   175
lemma minus_mult_left: "- (a * b) = (-a) * (b::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   176
apply (rule equals_zero_I)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   177
apply (simp add: left_distrib [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   178
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   179
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   180
lemma minus_mult_right: "- (a * b) = a * -(b::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   181
apply (rule equals_zero_I)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   182
apply (simp add: right_distrib [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   183
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   184
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   185
lemma minus_mult_minus [simp]: "(- a) * (- b) = a * (b::'a::ring)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   186
  by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   187
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   188
lemma minus_mult_commute: "(- a) * b = a * (- b::'a::ring)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   189
  by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric])
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   190
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   191
lemma right_diff_distrib: "a * (b - c) = a * b - a * (c::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   192
by (simp add: right_distrib diff_minus 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   193
              minus_mult_left [symmetric] minus_mult_right [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   194
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   195
lemma left_diff_distrib: "(a - b) * c = a * c - b * (c::'a::ring)"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   196
by (simp add: left_distrib diff_minus 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   197
              minus_mult_left [symmetric] minus_mult_right [symmetric]) 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   198
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   199
class mult_mono = times + zero + ord +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   200
  assumes mult_left_mono: "a \<sqsubseteq> b \<Longrightarrow> \<^loc>0 \<sqsubseteq> c \<Longrightarrow> c \<^loc>* a \<sqsubseteq> c \<^loc>* b"
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   201
  assumes mult_right_mono: "a \<sqsubseteq> b \<Longrightarrow> \<^loc>0 \<sqsubseteq> c \<Longrightarrow> a \<^loc>* c \<sqsubseteq> b \<^loc>* c"
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   202
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   203
class pordered_semiring = mult_mono + semiring_0 + pordered_ab_semigroup_add 
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   204
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   205
class pordered_cancel_semiring = mult_mono + pordered_ab_semigroup_add
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   206
  + semiring + comm_monoid_add + cancel_ab_semigroup_add
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   207
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   208
instance pordered_cancel_semiring \<subseteq> semiring_0_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   209
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   210
instance pordered_cancel_semiring \<subseteq> pordered_semiring .. 
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   211
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   212
class ordered_semiring_strict = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   213
  assumes mult_strict_left_mono: "a \<sqsubset> b \<Longrightarrow> \<^loc>0 \<sqsubset> c \<Longrightarrow> c \<^loc>* a \<sqsubset> c \<^loc>* b"
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   214
  assumes mult_strict_right_mono: "a \<sqsubset> b \<Longrightarrow> \<^loc>0 \<sqsubset> c \<Longrightarrow> a \<^loc>* c \<sqsubset> b \<^loc>* c"
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   215
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   216
instance ordered_semiring_strict \<subseteq> semiring_0_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   217
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   218
instance ordered_semiring_strict \<subseteq> pordered_cancel_semiring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   219
apply intro_classes
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   220
apply (cases "a < b & 0 < c")
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   221
apply (auto simp add: mult_strict_left_mono order_less_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   222
apply (auto simp add: mult_strict_left_mono order_le_less)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   223
apply (simp add: mult_strict_right_mono)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   224
done
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   225
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   226
class mult_mono1 = times + zero + ord +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   227
  assumes mult_mono: "a \<sqsubseteq> b \<Longrightarrow> \<^loc>0 \<sqsubseteq> c \<Longrightarrow> c \<^loc>* a \<sqsubseteq> c \<^loc>* b"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   228
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   229
class pordered_comm_semiring = comm_semiring_0
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   230
  + pordered_ab_semigroup_add + mult_mono1
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   231
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   232
class pordered_cancel_comm_semiring = comm_semiring_0_cancel
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   233
  + pordered_ab_semigroup_add + mult_mono1
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   234
  
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   235
instance pordered_cancel_comm_semiring \<subseteq> pordered_comm_semiring ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   236
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   237
class ordered_comm_semiring_strict = comm_semiring_0 + ordered_cancel_ab_semigroup_add +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   238
  assumes mult_strict_mono: "a \<sqsubset> b \<Longrightarrow> \<^loc>0 \<sqsubset> c \<Longrightarrow> c \<^loc>* a \<sqsubset> c \<^loc>* b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   239
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   240
instance pordered_comm_semiring \<subseteq> pordered_semiring
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   241
proof
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   242
  fix a b c :: 'a
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   243
  assume A: "a <= b" "0 <= c"
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   244
  with mult_mono show "c * a <= c * b" .
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   245
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   246
  from mult_commute have "a * c = c * a" ..
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   247
  also from mult_mono A have "\<dots> <= c * b" .
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   248
  also from mult_commute have "c * b = b * c" ..
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   249
  finally show "a * c <= b * c" .
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   250
qed
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   251
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   252
instance pordered_cancel_comm_semiring \<subseteq> pordered_cancel_semiring ..
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   253
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   254
instance ordered_comm_semiring_strict \<subseteq> ordered_semiring_strict
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   255
by (intro_classes, insert mult_strict_mono, simp_all add: mult_commute, blast+)
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   256
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   257
instance ordered_comm_semiring_strict \<subseteq> pordered_cancel_comm_semiring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   258
apply (intro_classes)
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   259
apply (cases "a < b & 0 < c")
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   260
apply (auto simp add: mult_strict_left_mono order_less_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   261
apply (auto simp add: mult_strict_left_mono order_le_less)
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   262
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   263
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   264
class pordered_ring = ring + pordered_cancel_semiring 
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   265
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   266
instance pordered_ring \<subseteq> pordered_ab_group_add ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   267
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   268
class lordered_ring = pordered_ring + lordered_ab_group_abs
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   269
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   270
instance lordered_ring \<subseteq> lordered_ab_group_meet ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   271
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   272
instance lordered_ring \<subseteq> lordered_ab_group_join ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   273
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   274
class abs_if = minus + ord + zero +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   275
  assumes abs_if: "abs a = (if a \<sqsubset> 0 then (uminus a) else a)"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   276
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   277
class ordered_ring_strict = ring + ordered_semiring_strict + abs_if + lordered_ab_group
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   278
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   279
instance ordered_ring_strict \<subseteq> lordered_ring
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   280
  by intro_classes (simp add: abs_if sup_eq_if)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   281
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   282
class pordered_comm_ring = comm_ring + pordered_comm_semiring
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   283
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   284
class ordered_semidom = comm_semiring_1_cancel + ordered_comm_semiring_strict +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   285
  (*previously ordered_semiring*)
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   286
  assumes zero_less_one [simp]: "\<^loc>0 \<sqsubset> \<^loc>1"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   287
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   288
class ordered_idom = comm_ring_1 + ordered_comm_semiring_strict + abs_if + lordered_ab_group
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   289
  (*previously ordered_ring*)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   290
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   291
instance ordered_idom \<subseteq> ordered_ring_strict ..
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   292
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   293
class ordered_field = field + ordered_idom
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   294
15923
01d5d0c1c078 fixed lin.arith
nipkow
parents: 15769
diff changeset
   295
lemmas linorder_neqE_ordered_idom =
01d5d0c1c078 fixed lin.arith
nipkow
parents: 15769
diff changeset
   296
 linorder_neqE[where 'a = "?'b::ordered_idom"]
01d5d0c1c078 fixed lin.arith
nipkow
parents: 15769
diff changeset
   297
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   298
lemma eq_add_iff1:
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   299
     "(a*e + c = b*e + d) = ((a-b)*e + c = (d::'a::ring))"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   300
apply (simp add: diff_minus left_distrib)
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   301
apply (simp add: diff_minus left_distrib add_ac)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   302
apply (simp add: compare_rls minus_mult_left [symmetric])
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   303
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   304
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   305
lemma eq_add_iff2:
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   306
     "(a*e + c = b*e + d) = (c = (b-a)*e + (d::'a::ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   307
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   308
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   309
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   310
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   311
lemma less_add_iff1:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   312
     "(a*e + c < b*e + d) = ((a-b)*e + c < (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   313
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   314
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   315
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   316
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   317
lemma less_add_iff2:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   318
     "(a*e + c < b*e + d) = (c < (b-a)*e + (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   319
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   320
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   321
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   322
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   323
lemma le_add_iff1:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   324
     "(a*e + c \<le> b*e + d) = ((a-b)*e + c \<le> (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   325
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   326
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   327
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   328
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   329
lemma le_add_iff2:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   330
     "(a*e + c \<le> b*e + d) = (c \<le> (b-a)*e + (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   331
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   332
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   333
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   334
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   335
subsection {* Ordering Rules for Multiplication *}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   336
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   337
lemma mult_left_le_imp_le:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   338
     "[|c*a \<le> c*b; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   339
  by (force simp add: mult_strict_left_mono linorder_not_less [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   340
 
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   341
lemma mult_right_le_imp_le:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   342
     "[|a*c \<le> b*c; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   343
  by (force simp add: mult_strict_right_mono linorder_not_less [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   344
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   345
lemma mult_left_less_imp_less:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   346
     "[|c*a < c*b; 0 \<le> c|] ==> a < (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   347
  by (force simp add: mult_left_mono linorder_not_le [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   348
 
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   349
lemma mult_right_less_imp_less:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   350
     "[|a*c < b*c; 0 \<le> c|] ==> a < (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   351
  by (force simp add: mult_right_mono linorder_not_le [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   352
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   353
lemma mult_strict_left_mono_neg:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   354
     "[|b < a; c < 0|] ==> c * a < c * (b::'a::ordered_ring_strict)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   355
apply (drule mult_strict_left_mono [of _ _ "-c"])
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   356
apply (simp_all add: minus_mult_left [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   357
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   358
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   359
lemma mult_left_mono_neg:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   360
     "[|b \<le> a; c \<le> 0|] ==> c * a \<le>  c * (b::'a::pordered_ring)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   361
apply (drule mult_left_mono [of _ _ "-c"])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   362
apply (simp_all add: minus_mult_left [symmetric]) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   363
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   364
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   365
lemma mult_strict_right_mono_neg:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   366
     "[|b < a; c < 0|] ==> a * c < b * (c::'a::ordered_ring_strict)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   367
apply (drule mult_strict_right_mono [of _ _ "-c"])
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   368
apply (simp_all add: minus_mult_right [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   369
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   370
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   371
lemma mult_right_mono_neg:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   372
     "[|b \<le> a; c \<le> 0|] ==> a * c \<le>  (b::'a::pordered_ring) * c"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   373
apply (drule mult_right_mono [of _ _ "-c"])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   374
apply (simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   375
apply (simp_all add: minus_mult_right [symmetric]) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   376
done
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   377
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   378
subsection{* Products of Signs *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   379
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   380
lemma mult_pos_pos: "[| (0::'a::ordered_semiring_strict) < a; 0 < b |] ==> 0 < a*b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   381
by (drule mult_strict_left_mono [of 0 b], auto)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   382
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   383
lemma mult_nonneg_nonneg: "[| (0::'a::pordered_cancel_semiring) \<le> a; 0 \<le> b |] ==> 0 \<le> a*b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   384
by (drule mult_left_mono [of 0 b], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   385
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   386
lemma mult_pos_neg: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> a*b < 0"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   387
by (drule mult_strict_left_mono [of b 0], auto)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   388
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   389
lemma mult_nonneg_nonpos: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> a*b \<le> 0"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   390
by (drule mult_left_mono [of b 0], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   391
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   392
lemma mult_pos_neg2: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> b*a < 0" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   393
by (drule mult_strict_right_mono[of b 0], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   394
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   395
lemma mult_nonneg_nonpos2: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> b*a \<le> 0" 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   396
by (drule mult_right_mono[of b 0], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   397
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   398
lemma mult_neg_neg: "[| a < (0::'a::ordered_ring_strict); b < 0 |] ==> 0 < a*b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   399
by (drule mult_strict_right_mono_neg, auto)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   400
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   401
lemma mult_nonpos_nonpos: "[| a \<le> (0::'a::pordered_ring); b \<le> 0 |] ==> 0 \<le> a*b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   402
by (drule mult_right_mono_neg[of a 0 b ], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   403
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   404
lemma zero_less_mult_pos:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   405
     "[| 0 < a*b; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   406
apply (cases "b\<le>0") 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   407
 apply (auto simp add: order_le_less linorder_not_less)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   408
apply (drule_tac mult_pos_neg [of a b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   409
 apply (auto dest: order_less_not_sym)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   410
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   411
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   412
lemma zero_less_mult_pos2:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   413
     "[| 0 < b*a; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   414
apply (cases "b\<le>0") 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   415
 apply (auto simp add: order_le_less linorder_not_less)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   416
apply (drule_tac mult_pos_neg2 [of a b]) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   417
 apply (auto dest: order_less_not_sym)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   418
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   419
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   420
lemma zero_less_mult_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   421
     "((0::'a::ordered_ring_strict) < a*b) = (0 < a & 0 < b | a < 0 & b < 0)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   422
apply (auto simp add: order_le_less linorder_not_less mult_pos_pos 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   423
  mult_neg_neg)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   424
apply (blast dest: zero_less_mult_pos) 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   425
apply (blast dest: zero_less_mult_pos2)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   426
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   427
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   428
text{*A field has no "zero divisors", and this theorem holds without the
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   429
      assumption of an ordering.  See @{text field_mult_eq_0_iff} below.*}
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   430
lemma mult_eq_0_iff [simp]: "(a*b = (0::'a::ordered_ring_strict)) = (a = 0 | b = 0)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   431
apply (cases "a < 0")
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   432
apply (auto simp add: linorder_not_less order_le_less linorder_neq_iff)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   433
apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono)+
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   434
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   435
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   436
lemma zero_le_mult_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   437
     "((0::'a::ordered_ring_strict) \<le> a*b) = (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   438
by (auto simp add: eq_commute [of 0] order_le_less linorder_not_less
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   439
                   zero_less_mult_iff)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   440
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   441
lemma mult_less_0_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   442
     "(a*b < (0::'a::ordered_ring_strict)) = (0 < a & b < 0 | a < 0 & 0 < b)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   443
apply (insert zero_less_mult_iff [of "-a" b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   444
apply (force simp add: minus_mult_left[symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   445
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   446
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   447
lemma mult_le_0_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   448
     "(a*b \<le> (0::'a::ordered_ring_strict)) = (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   449
apply (insert zero_le_mult_iff [of "-a" b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   450
apply (force simp add: minus_mult_left[symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   451
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   452
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   453
lemma split_mult_pos_le: "(0 \<le> a & 0 \<le> b) | (a \<le> 0 & b \<le> 0) \<Longrightarrow> 0 \<le> a * (b::_::pordered_ring)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   454
by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   455
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   456
lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> (0::_::pordered_cancel_semiring)" 
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   457
by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   458
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   459
lemma zero_le_square: "(0::'a::ordered_ring_strict) \<le> a*a"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   460
by (simp add: zero_le_mult_iff linorder_linear) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   461
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   462
text{*Proving axiom @{text zero_less_one} makes all @{text ordered_semidom}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   463
      theorems available to members of @{term ordered_idom} *}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   464
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   465
instance ordered_idom \<subseteq> ordered_semidom
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   466
proof
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   467
  have "(0::'a) \<le> 1*1" by (rule zero_le_square)
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   468
  thus "(0::'a) < 1" by (simp add: order_le_less) 
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   469
qed
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   470
20609
5681da8c12ef renamed axclass_xxxx axclasses
obua
parents: 20496
diff changeset
   471
instance ordered_ring_strict \<subseteq> no_zero_divisors 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   472
by (intro_classes, simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   473
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   474
instance ordered_idom \<subseteq> idom ..
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   475
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   476
text{*All three types of comparision involving 0 and 1 are covered.*}
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   477
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
   478
lemmas one_neq_zero = zero_neq_one [THEN not_sym]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
   479
declare one_neq_zero [simp]
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   480
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   481
lemma zero_le_one [simp]: "(0::'a::ordered_semidom) \<le> 1"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   482
  by (rule zero_less_one [THEN order_less_imp_le]) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   483
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   484
lemma not_one_le_zero [simp]: "~ (1::'a::ordered_semidom) \<le> 0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   485
by (simp add: linorder_not_le) 
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   486
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   487
lemma not_one_less_zero [simp]: "~ (1::'a::ordered_semidom) < 0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   488
by (simp add: linorder_not_less) 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   489
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   490
subsection{*More Monotonicity*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   491
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   492
text{*Strict monotonicity in both arguments*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   493
lemma mult_strict_mono:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   494
     "[|a<b; c<d; 0<b; 0\<le>c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   495
apply (cases "c=0")
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   496
 apply (simp add: mult_pos_pos) 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   497
apply (erule mult_strict_right_mono [THEN order_less_trans])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   498
 apply (force simp add: order_le_less) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   499
apply (erule mult_strict_left_mono, assumption)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   500
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   501
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   502
text{*This weaker variant has more natural premises*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   503
lemma mult_strict_mono':
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   504
     "[| a<b; c<d; 0 \<le> a; 0 \<le> c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   505
apply (rule mult_strict_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   506
apply (blast intro: order_le_less_trans)+
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   507
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   508
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   509
lemma mult_mono:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   510
     "[|a \<le> b; c \<le> d; 0 \<le> b; 0 \<le> c|] 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   511
      ==> a * c  \<le>  b * (d::'a::pordered_semiring)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   512
apply (erule mult_right_mono [THEN order_trans], assumption)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   513
apply (erule mult_left_mono, assumption)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   514
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   515
21258
62f25a96f0c1 added lemma mult_mono'
huffman
parents: 21199
diff changeset
   516
lemma mult_mono':
62f25a96f0c1 added lemma mult_mono'
huffman
parents: 21199
diff changeset
   517
     "[|a \<le> b; c \<le> d; 0 \<le> a; 0 \<le> c|] 
62f25a96f0c1 added lemma mult_mono'
huffman
parents: 21199
diff changeset
   518
      ==> a * c  \<le>  b * (d::'a::pordered_semiring)"
62f25a96f0c1 added lemma mult_mono'
huffman
parents: 21199
diff changeset
   519
apply (rule mult_mono)
62f25a96f0c1 added lemma mult_mono'
huffman
parents: 21199
diff changeset
   520
apply (fast intro: order_trans)+
62f25a96f0c1 added lemma mult_mono'
huffman
parents: 21199
diff changeset
   521
done
62f25a96f0c1 added lemma mult_mono'
huffman
parents: 21199
diff changeset
   522
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   523
lemma less_1_mult: "[| 1 < m; 1 < n |] ==> 1 < m*(n::'a::ordered_semidom)"
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   524
apply (insert mult_strict_mono [of 1 m 1 n]) 
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   525
apply (simp add:  order_less_trans [OF zero_less_one]) 
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   526
done
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   527
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   528
lemma mult_less_le_imp_less: "(a::'a::ordered_semiring_strict) < b ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   529
    c <= d ==> 0 <= a ==> 0 < c ==> a * c < b * d"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   530
  apply (subgoal_tac "a * c < b * c")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   531
  apply (erule order_less_le_trans)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   532
  apply (erule mult_left_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   533
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   534
  apply (erule mult_strict_right_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   535
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   536
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   537
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   538
lemma mult_le_less_imp_less: "(a::'a::ordered_semiring_strict) <= b ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   539
    c < d ==> 0 < a ==> 0 <= c ==> a * c < b * d"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   540
  apply (subgoal_tac "a * c <= b * c")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   541
  apply (erule order_le_less_trans)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   542
  apply (erule mult_strict_left_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   543
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   544
  apply (erule mult_right_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   545
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   546
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   547
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   548
subsection{*Cancellation Laws for Relationships With a Common Factor*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   549
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   550
text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   551
   also with the relations @{text "\<le>"} and equality.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   552
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   553
text{*These ``disjunction'' versions produce two cases when the comparison is
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   554
 an assumption, but effectively four when the comparison is a goal.*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   555
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   556
lemma mult_less_cancel_right_disj:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   557
    "(a*c < b*c) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   558
apply (cases "c = 0")
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   559
apply (auto simp add: linorder_neq_iff mult_strict_right_mono 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   560
                      mult_strict_right_mono_neg)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   561
apply (auto simp add: linorder_not_less 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   562
                      linorder_not_le [symmetric, of "a*c"]
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   563
                      linorder_not_le [symmetric, of a])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   564
apply (erule_tac [!] notE)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   565
apply (auto simp add: order_less_imp_le mult_right_mono 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   566
                      mult_right_mono_neg)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   567
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   568
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   569
lemma mult_less_cancel_left_disj:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   570
    "(c*a < c*b) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   571
apply (cases "c = 0")
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   572
apply (auto simp add: linorder_neq_iff mult_strict_left_mono 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   573
                      mult_strict_left_mono_neg)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   574
apply (auto simp add: linorder_not_less 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   575
                      linorder_not_le [symmetric, of "c*a"]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   576
                      linorder_not_le [symmetric, of a])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   577
apply (erule_tac [!] notE)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   578
apply (auto simp add: order_less_imp_le mult_left_mono 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   579
                      mult_left_mono_neg)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   580
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   581
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   582
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   583
text{*The ``conjunction of implication'' lemmas produce two cases when the
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   584
comparison is a goal, but give four when the comparison is an assumption.*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   585
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   586
lemma mult_less_cancel_right:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   587
  fixes c :: "'a :: ordered_ring_strict"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   588
  shows      "(a*c < b*c) = ((0 \<le> c --> a < b) & (c \<le> 0 --> b < a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   589
by (insert mult_less_cancel_right_disj [of a c b], auto)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   590
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   591
lemma mult_less_cancel_left:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   592
  fixes c :: "'a :: ordered_ring_strict"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   593
  shows      "(c*a < c*b) = ((0 \<le> c --> a < b) & (c \<le> 0 --> b < a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   594
by (insert mult_less_cancel_left_disj [of c a b], auto)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   595
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   596
lemma mult_le_cancel_right:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   597
     "(a*c \<le> b*c) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   598
by (simp add: linorder_not_less [symmetric] mult_less_cancel_right_disj)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   599
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   600
lemma mult_le_cancel_left:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   601
     "(c*a \<le> c*b) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   602
by (simp add: linorder_not_less [symmetric] mult_less_cancel_left_disj)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   603
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   604
lemma mult_less_imp_less_left:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   605
      assumes less: "c*a < c*b" and nonneg: "0 \<le> c"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   606
      shows "a < (b::'a::ordered_semiring_strict)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   607
proof (rule ccontr)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   608
  assume "~ a < b"
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   609
  hence "b \<le> a" by (simp add: linorder_not_less)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   610
  hence "c*b \<le> c*a" by (rule mult_left_mono)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   611
  with this and less show False 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   612
    by (simp add: linorder_not_less [symmetric])
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   613
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   614
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   615
lemma mult_less_imp_less_right:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   616
  assumes less: "a*c < b*c" and nonneg: "0 <= c"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   617
  shows "a < (b::'a::ordered_semiring_strict)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   618
proof (rule ccontr)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   619
  assume "~ a < b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   620
  hence "b \<le> a" by (simp add: linorder_not_less)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   621
  hence "b*c \<le> a*c" by (rule mult_right_mono)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   622
  with this and less show False 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   623
    by (simp add: linorder_not_less [symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   624
qed  
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   625
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   626
text{*Cancellation of equalities with a common factor*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   627
lemma mult_cancel_right [simp]:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   628
     "(a*c = b*c) = (c = (0::'a::ordered_ring_strict) | a=b)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   629
apply (cut_tac linorder_less_linear [of 0 c])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   630
apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   631
             simp add: linorder_neq_iff)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   632
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   633
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   634
text{*These cancellation theorems require an ordering. Versions are proved
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   635
      below that work for fields without an ordering.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   636
lemma mult_cancel_left [simp]:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   637
     "(c*a = c*b) = (c = (0::'a::ordered_ring_strict) | a=b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   638
apply (cut_tac linorder_less_linear [of 0 c])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   639
apply (force dest: mult_strict_left_mono_neg mult_strict_left_mono
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   640
             simp add: linorder_neq_iff)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   641
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   642
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   643
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   644
subsubsection{*Special Cancellation Simprules for Multiplication*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   645
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   646
text{*These also produce two cases when the comparison is a goal.*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   647
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   648
lemma mult_le_cancel_right1:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   649
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   650
  shows "(c \<le> b*c) = ((0<c --> 1\<le>b) & (c<0 --> b \<le> 1))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   651
by (insert mult_le_cancel_right [of 1 c b], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   652
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   653
lemma mult_le_cancel_right2:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   654
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   655
  shows "(a*c \<le> c) = ((0<c --> a\<le>1) & (c<0 --> 1 \<le> a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   656
by (insert mult_le_cancel_right [of a c 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   657
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   658
lemma mult_le_cancel_left1:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   659
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   660
  shows "(c \<le> c*b) = ((0<c --> 1\<le>b) & (c<0 --> b \<le> 1))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   661
by (insert mult_le_cancel_left [of c 1 b], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   662
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   663
lemma mult_le_cancel_left2:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   664
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   665
  shows "(c*a \<le> c) = ((0<c --> a\<le>1) & (c<0 --> 1 \<le> a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   666
by (insert mult_le_cancel_left [of c a 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   667
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   668
lemma mult_less_cancel_right1:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   669
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   670
  shows "(c < b*c) = ((0 \<le> c --> 1<b) & (c \<le> 0 --> b < 1))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   671
by (insert mult_less_cancel_right [of 1 c b], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   672
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   673
lemma mult_less_cancel_right2:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   674
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   675
  shows "(a*c < c) = ((0 \<le> c --> a<1) & (c \<le> 0 --> 1 < a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   676
by (insert mult_less_cancel_right [of a c 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   677
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   678
lemma mult_less_cancel_left1:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   679
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   680
  shows "(c < c*b) = ((0 \<le> c --> 1<b) & (c \<le> 0 --> b < 1))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   681
by (insert mult_less_cancel_left [of c 1 b], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   682
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   683
lemma mult_less_cancel_left2:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   684
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   685
  shows "(c*a < c) = ((0 \<le> c --> a<1) & (c \<le> 0 --> 1 < a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   686
by (insert mult_less_cancel_left [of c a 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   687
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   688
lemma mult_cancel_right1 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   689
fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   690
  shows "(c = b*c) = (c = 0 | b=1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   691
by (insert mult_cancel_right [of 1 c b], force)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   692
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   693
lemma mult_cancel_right2 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   694
fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   695
  shows "(a*c = c) = (c = 0 | a=1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   696
by (insert mult_cancel_right [of a c 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   697
 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   698
lemma mult_cancel_left1 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   699
fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   700
  shows "(c = c*b) = (c = 0 | b=1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   701
by (insert mult_cancel_left [of c 1 b], force)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   702
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   703
lemma mult_cancel_left2 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   704
fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   705
  shows "(c*a = c) = (c = 0 | a=1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   706
by (insert mult_cancel_left [of c a 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   707
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   708
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   709
text{*Simprules for comparisons where common factors can be cancelled.*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   710
lemmas mult_compare_simps =
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   711
    mult_le_cancel_right mult_le_cancel_left
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   712
    mult_le_cancel_right1 mult_le_cancel_right2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   713
    mult_le_cancel_left1 mult_le_cancel_left2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   714
    mult_less_cancel_right mult_less_cancel_left
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   715
    mult_less_cancel_right1 mult_less_cancel_right2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   716
    mult_less_cancel_left1 mult_less_cancel_left2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   717
    mult_cancel_right mult_cancel_left
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   718
    mult_cancel_right1 mult_cancel_right2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   719
    mult_cancel_left1 mult_cancel_left2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   720
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   721
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   722
text{*This list of rewrites decides ring equalities by ordered rewriting.*}
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
   723
lemmas ring_eq_simps =  
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
   724
(*  mult_ac*)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   725
  left_distrib right_distrib left_diff_distrib right_diff_distrib
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
   726
  group_eq_simps
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
   727
(*  add_ac
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   728
  add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
   729
  diff_eq_eq eq_diff_eq *)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   730
    
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   731
subsection {* Fields *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   732
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   733
lemma right_inverse_eq: "b \<noteq> 0 ==> (a / b = 1) = (a = (b::'a::field))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   734
proof
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   735
  assume neq: "b \<noteq> 0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   736
  {
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   737
    hence "a = (a / b) * b" by (simp add: divide_inverse mult_ac)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   738
    also assume "a / b = 1"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   739
    finally show "a = b" by simp
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   740
  next
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   741
    assume "a = b"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   742
    with neq show "a / b = 1" by (simp add: divide_inverse)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   743
  }
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   744
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   745
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   746
lemma nonzero_inverse_eq_divide: "a \<noteq> 0 ==> inverse (a::'a::field) = 1/a"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   747
by (simp add: divide_inverse)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   748
15228
4d332d10fa3d revised simprules for division
paulson
parents: 15197
diff changeset
   749
lemma divide_self: "a \<noteq> 0 ==> a / (a::'a::field) = 1"
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   750
  by (simp add: divide_inverse)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   751
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   752
lemma divide_zero [simp]: "a / 0 = (0::'a::{field,division_by_zero})"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   753
by (simp add: divide_inverse)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   754
15228
4d332d10fa3d revised simprules for division
paulson
parents: 15197
diff changeset
   755
lemma divide_self_if [simp]:
4d332d10fa3d revised simprules for division
paulson
parents: 15197
diff changeset
   756
     "a / (a::'a::{field,division_by_zero}) = (if a=0 then 0 else 1)"
4d332d10fa3d revised simprules for division
paulson
parents: 15197
diff changeset
   757
  by (simp add: divide_self)
4d332d10fa3d revised simprules for division
paulson
parents: 15197
diff changeset
   758
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   759
lemma divide_zero_left [simp]: "0/a = (0::'a::field)"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   760
by (simp add: divide_inverse)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   761
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   762
lemma inverse_eq_divide: "inverse (a::'a::field) = 1/a"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   763
by (simp add: divide_inverse)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   764
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   765
lemma add_divide_distrib: "(a+b)/(c::'a::field) = a/c + b/c"
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   766
by (simp add: divide_inverse left_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   767
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   768
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   769
text{*Compared with @{text mult_eq_0_iff}, this version removes the requirement
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   770
      of an ordering.*}
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   771
lemma field_mult_eq_0_iff [simp]:
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   772
  "(a*b = (0::'a::division_ring)) = (a = 0 | b = 0)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   773
proof cases
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   774
  assume "a=0" thus ?thesis by simp
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   775
next
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   776
  assume anz [simp]: "a\<noteq>0"
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   777
  { assume "a * b = 0"
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   778
    hence "inverse a * (a * b) = 0" by simp
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   779
    hence "b = 0"  by (simp (no_asm_use) add: mult_assoc [symmetric])}
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   780
  thus ?thesis by force
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   781
qed
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   782
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   783
text{*Cancellation of equalities with a common factor*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   784
lemma field_mult_cancel_right_lemma:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   785
      assumes cnz: "c \<noteq> (0::'a::division_ring)"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   786
         and eq:  "a*c = b*c"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   787
        shows "a=b"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   788
proof -
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   789
  have "(a * c) * inverse c = (b * c) * inverse c"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   790
    by (simp add: eq)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   791
  thus "a=b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   792
    by (simp add: mult_assoc cnz)
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   793
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   794
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   795
lemma field_mult_cancel_right [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   796
     "(a*c = b*c) = (c = (0::'a::division_ring) | a=b)"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   797
proof -
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   798
  have "(a*c = b*c) = (a*c - b*c = 0)"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   799
    by simp
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   800
  also have "\<dots> = ((a - b)*c = 0)"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   801
     by (simp only: left_diff_distrib)
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   802
  also have "\<dots> = (c = 0 \<or> a = b)"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   803
     by (simp add: disj_commute)
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   804
  finally show ?thesis .
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   805
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   806
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   807
lemma field_mult_cancel_left [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   808
     "(c*a = c*b) = (c = (0::'a::division_ring) | a=b)"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   809
proof -
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   810
  have "(c*a = c*b) = (c*a - c*b = 0)"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   811
    by simp
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   812
  also have "\<dots> = (c*(a - b) = 0)"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   813
     by (simp only: right_diff_distrib)
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   814
  also have "\<dots> = (c = 0 \<or> a = b)"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   815
     by simp
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   816
  finally show ?thesis .
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   817
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   818
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   819
lemma nonzero_imp_inverse_nonzero:
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   820
  "a \<noteq> 0 ==> inverse a \<noteq> (0::'a::division_ring)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   821
proof
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   822
  assume ianz: "inverse a = 0"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   823
  assume "a \<noteq> 0"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   824
  hence "1 = a * inverse a" by simp
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   825
  also have "... = 0" by (simp add: ianz)
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   826
  finally have "1 = (0::'a::division_ring)" .
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   827
  thus False by (simp add: eq_commute)
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   828
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   829
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   830
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   831
subsection{*Basic Properties of @{term inverse}*}
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   832
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   833
lemma inverse_zero_imp_zero: "inverse a = 0 ==> a = (0::'a::division_ring)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   834
apply (rule ccontr) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   835
apply (blast dest: nonzero_imp_inverse_nonzero) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   836
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   837
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   838
lemma inverse_nonzero_imp_nonzero:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   839
   "inverse a = 0 ==> a = (0::'a::division_ring)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   840
apply (rule ccontr) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   841
apply (blast dest: nonzero_imp_inverse_nonzero) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   842
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   843
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   844
lemma inverse_nonzero_iff_nonzero [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   845
   "(inverse a = 0) = (a = (0::'a::{division_ring,division_by_zero}))"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   846
by (force dest: inverse_nonzero_imp_nonzero) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   847
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   848
lemma nonzero_inverse_minus_eq:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   849
      assumes [simp]: "a\<noteq>0"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   850
      shows "inverse(-a) = -inverse(a::'a::division_ring)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   851
proof -
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   852
  have "-a * inverse (- a) = -a * - inverse a"
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   853
    by simp
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   854
  thus ?thesis 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   855
    by (simp only: field_mult_cancel_left, simp)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   856
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   857
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   858
lemma inverse_minus_eq [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   859
   "inverse(-a) = -inverse(a::'a::{division_ring,division_by_zero})"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   860
proof cases
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   861
  assume "a=0" thus ?thesis by (simp add: inverse_zero)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   862
next
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   863
  assume "a\<noteq>0" 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   864
  thus ?thesis by (simp add: nonzero_inverse_minus_eq)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   865
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   866
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   867
lemma nonzero_inverse_eq_imp_eq:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   868
      assumes inveq: "inverse a = inverse b"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   869
	  and anz:  "a \<noteq> 0"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   870
	  and bnz:  "b \<noteq> 0"
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   871
	 shows "a = (b::'a::division_ring)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   872
proof -
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   873
  have "a * inverse b = a * inverse a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   874
    by (simp add: inveq)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   875
  hence "(a * inverse b) * b = (a * inverse a) * b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   876
    by simp
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   877
  thus "a = b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   878
    by (simp add: mult_assoc anz bnz)
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   879
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   880
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   881
lemma inverse_eq_imp_eq:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   882
  "inverse a = inverse b ==> a = (b::'a::{division_ring,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   883
apply (cases "a=0 | b=0") 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   884
 apply (force dest!: inverse_zero_imp_zero
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   885
              simp add: eq_commute [of "0::'a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   886
apply (force dest!: nonzero_inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   887
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   888
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   889
lemma inverse_eq_iff_eq [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   890
  "(inverse a = inverse b) = (a = (b::'a::{division_ring,division_by_zero}))"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   891
by (force dest!: inverse_eq_imp_eq)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   892
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   893
lemma nonzero_inverse_inverse_eq:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   894
      assumes [simp]: "a \<noteq> 0"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   895
      shows "inverse(inverse (a::'a::division_ring)) = a"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   896
  proof -
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   897
  have "(inverse (inverse a) * inverse a) * a = a" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   898
    by (simp add: nonzero_imp_inverse_nonzero)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   899
  thus ?thesis
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   900
    by (simp add: mult_assoc)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   901
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   902
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   903
lemma inverse_inverse_eq [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   904
     "inverse(inverse (a::'a::{division_ring,division_by_zero})) = a"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   905
  proof cases
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   906
    assume "a=0" thus ?thesis by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   907
  next
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   908
    assume "a\<noteq>0" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   909
    thus ?thesis by (simp add: nonzero_inverse_inverse_eq)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   910
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   911
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   912
lemma inverse_1 [simp]: "inverse 1 = (1::'a::division_ring)"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   913
  proof -
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   914
  have "inverse 1 * 1 = (1::'a::division_ring)" 
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   915
    by (rule left_inverse [OF zero_neq_one [symmetric]])
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   916
  thus ?thesis  by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   917
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   918
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   919
lemma inverse_unique: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   920
  assumes ab: "a*b = 1"
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   921
  shows "inverse a = (b::'a::division_ring)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   922
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   923
  have "a \<noteq> 0" using ab by auto
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   924
  moreover have "inverse a * (a * b) = inverse a" by (simp add: ab) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   925
  ultimately show ?thesis by (simp add: mult_assoc [symmetric]) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   926
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   927
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   928
lemma nonzero_inverse_mult_distrib: 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   929
      assumes anz: "a \<noteq> 0"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   930
          and bnz: "b \<noteq> 0"
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   931
      shows "inverse(a*b) = inverse(b) * inverse(a::'a::division_ring)"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   932
  proof -
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   933
  have "inverse(a*b) * (a * b) * inverse(b) = inverse(b)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   934
    by (simp add: field_mult_eq_0_iff anz bnz)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   935
  hence "inverse(a*b) * a = inverse(b)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   936
    by (simp add: mult_assoc bnz)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   937
  hence "inverse(a*b) * a * inverse(a) = inverse(b) * inverse(a)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   938
    by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   939
  thus ?thesis
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   940
    by (simp add: mult_assoc anz)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   941
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   942
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   943
text{*This version builds in division by zero while also re-orienting
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   944
      the right-hand side.*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   945
lemma inverse_mult_distrib [simp]:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   946
     "inverse(a*b) = inverse(a) * inverse(b::'a::{field,division_by_zero})"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   947
  proof cases
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   948
    assume "a \<noteq> 0 & b \<noteq> 0" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   949
    thus ?thesis  by (simp add: nonzero_inverse_mult_distrib mult_commute)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   950
  next
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   951
    assume "~ (a \<noteq> 0 & b \<noteq> 0)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   952
    thus ?thesis  by force
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   953
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   954
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   955
lemma division_ring_inverse_add:
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   956
  "[|(a::'a::division_ring) \<noteq> 0; b \<noteq> 0|]
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   957
   ==> inverse a + inverse b = inverse a * (a+b) * inverse b"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   958
by (simp add: right_distrib left_distrib mult_assoc)
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   959
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   960
lemma division_ring_inverse_diff:
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   961
  "[|(a::'a::division_ring) \<noteq> 0; b \<noteq> 0|]
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   962
   ==> inverse a - inverse b = inverse a * (b-a) * inverse b"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   963
by (simp add: right_diff_distrib left_diff_distrib mult_assoc)
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   964
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   965
text{*There is no slick version using division by zero.*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   966
lemma inverse_add:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   967
     "[|a \<noteq> 0;  b \<noteq> 0|]
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   968
      ==> inverse a + inverse b = (a+b) * inverse a * inverse (b::'a::field)"
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   969
by (simp add: division_ring_inverse_add mult_ac)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   970
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   971
lemma inverse_divide [simp]:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   972
      "inverse (a/b) = b / (a::'a::{field,division_by_zero})"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   973
  by (simp add: divide_inverse mult_commute)
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   974
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   975
subsection {* Calculations with fractions *}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   976
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   977
lemma nonzero_mult_divide_cancel_left:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   978
  assumes [simp]: "b\<noteq>0" and [simp]: "c\<noteq>0" 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   979
    shows "(c*a)/(c*b) = a/(b::'a::field)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   980
proof -
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   981
  have "(c*a)/(c*b) = c * a * (inverse b * inverse c)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   982
    by (simp add: field_mult_eq_0_iff divide_inverse 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   983
                  nonzero_inverse_mult_distrib)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   984
  also have "... =  a * inverse b * (inverse c * c)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   985
    by (simp only: mult_ac)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   986
  also have "... =  a * inverse b"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   987
    by simp
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   988
    finally show ?thesis 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   989
    by (simp add: divide_inverse)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   990
qed
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   991
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   992
lemma mult_divide_cancel_left:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   993
     "c\<noteq>0 ==> (c*a) / (c*b) = a / (b::'a::{field,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   994
apply (cases "b = 0")
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   995
apply (simp_all add: nonzero_mult_divide_cancel_left)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   996
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   997
14321
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   998
lemma nonzero_mult_divide_cancel_right:
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   999
     "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (b*c) = a/(b::'a::field)"
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1000
by (simp add: mult_commute [of _ c] nonzero_mult_divide_cancel_left) 
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1001
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1002
lemma mult_divide_cancel_right:
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1003
     "c\<noteq>0 ==> (a*c) / (b*c) = a / (b::'a::{field,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1004
apply (cases "b = 0")
14321
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1005
apply (simp_all add: nonzero_mult_divide_cancel_right)
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1006
done
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1007
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1008
(*For ExtractCommonTerm*)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1009
lemma mult_divide_cancel_eq_if:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1010
     "(c*a) / (c*b) = 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1011
      (if c=0 then 0 else a / (b::'a::{field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1012
  by (simp add: mult_divide_cancel_left)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1013
14284
f1abe67c448a re-organisation of Real/RealArith0.ML; more `Isar scripts
paulson
parents: 14277
diff changeset
  1014
lemma divide_1 [simp]: "a/1 = (a::'a::field)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1015
  by (simp add: divide_inverse)
14284
f1abe67c448a re-organisation of Real/RealArith0.ML; more `Isar scripts
paulson
parents: 14277
diff changeset
  1016
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1017
lemma times_divide_eq_right: "a * (b/c) = (a*b) / (c::'a::field)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1018
by (simp add: divide_inverse mult_assoc)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1019
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1020
lemma times_divide_eq_left: "(b/c) * a = (b*a) / (c::'a::field)"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1021
by (simp add: divide_inverse mult_ac)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1022
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1023
lemma divide_divide_eq_right [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1024
     "a / (b/c) = (a*c) / (b::'a::{field,division_by_zero})"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1025
by (simp add: divide_inverse mult_ac)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1026
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1027
lemma divide_divide_eq_left [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1028
     "(a / b) / (c::'a::{field,division_by_zero}) = a / (b*c)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1029
by (simp add: divide_inverse mult_assoc)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1030
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1031
lemma add_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1032
    x / y + w / z = (x * z + w * y) / (y * z)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1033
  apply (subgoal_tac "x / y = (x * z) / (y * z)")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1034
  apply (erule ssubst)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1035
  apply (subgoal_tac "w / z = (w * y) / (y * z)")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1036
  apply (erule ssubst)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1037
  apply (rule add_divide_distrib [THEN sym])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1038
  apply (subst mult_commute)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1039
  apply (erule nonzero_mult_divide_cancel_left [THEN sym])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1040
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1041
  apply (erule nonzero_mult_divide_cancel_right [THEN sym])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1042
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1043
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1044
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1045
subsubsection{*Special Cancellation Simprules for Division*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1046
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1047
lemma mult_divide_cancel_left_if [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1048
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1049
  shows "(c*a) / (c*b) = (if c=0 then 0 else a/b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1050
by (simp add: mult_divide_cancel_left)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1051
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1052
lemma mult_divide_cancel_right_if [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1053
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1054
  shows "(a*c) / (b*c) = (if c=0 then 0 else a/b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1055
by (simp add: mult_divide_cancel_right)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1056
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1057
lemma mult_divide_cancel_left_if1 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1058
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1059
  shows "c / (c*b) = (if c=0 then 0 else 1/b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1060
apply (insert mult_divide_cancel_left_if [of c 1 b]) 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1061
apply (simp del: mult_divide_cancel_left_if)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1062
done
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1063
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1064
lemma mult_divide_cancel_left_if2 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1065
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1066
  shows "(c*a) / c = (if c=0 then 0 else a)" 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1067
apply (insert mult_divide_cancel_left_if [of c a 1]) 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1068
apply (simp del: mult_divide_cancel_left_if)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1069
done
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1070
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1071
lemma mult_divide_cancel_right_if1 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1072
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1073
  shows "c / (b*c) = (if c=0 then 0 else 1/b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1074
apply (insert mult_divide_cancel_right_if [of 1 c b]) 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1075
apply (simp del: mult_divide_cancel_right_if)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1076
done
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1077
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1078
lemma mult_divide_cancel_right_if2 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1079
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1080
  shows "(a*c) / c = (if c=0 then 0 else a)" 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1081
apply (insert mult_divide_cancel_right_if [of a c 1]) 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1082
apply (simp del: mult_divide_cancel_right_if)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1083
done
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1084
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1085
text{*Two lemmas for cancelling the denominator*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1086
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1087
lemma times_divide_self_right [simp]: 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1088
  fixes a :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1089
  shows "a * (b/a) = (if a=0 then 0 else b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1090
by (simp add: times_divide_eq_right)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1091
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1092
lemma times_divide_self_left [simp]: 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1093
  fixes a :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1094
  shows "(b/a) * a = (if a=0 then 0 else b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1095
by (simp add: times_divide_eq_left)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1096
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1097
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1098
subsection {* Division and Unary Minus *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1099
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1100
lemma nonzero_minus_divide_left: "b \<noteq> 0 ==> - (a/b) = (-a) / (b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1101
by (simp add: divide_inverse minus_mult_left)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1102
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1103
lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a/b) = a / -(b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1104
by (simp add: divide_inverse nonzero_inverse_minus_eq minus_mult_right)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1105
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1106
lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a)/(-b) = a / (b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1107
by (simp add: divide_inverse nonzero_inverse_minus_eq)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1108
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1109
lemma minus_divide_left: "- (a/b) = (-a) / (b::'a::field)"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1110
by (simp add: divide_inverse minus_mult_left [symmetric])
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1111
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1112
lemma minus_divide_right: "- (a/b) = a / -(b::'a::{field,division_by_zero})"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1113
by (simp add: divide_inverse minus_mult_right [symmetric])
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1114
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1115
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1116
text{*The effect is to extract signs from divisions*}
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1117
lemmas divide_minus_left = minus_divide_left [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1118
lemmas divide_minus_right = minus_divide_right [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1119
declare divide_minus_left [simp]   divide_minus_right [simp]
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1120
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1121
text{*Also, extract signs from products*}
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1122
lemmas mult_minus_left = minus_mult_left [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1123
lemmas mult_minus_right = minus_mult_right [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1124
declare mult_minus_left [simp]   mult_minus_right [simp]
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1125
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1126
lemma minus_divide_divide [simp]:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1127
     "(-a)/(-b) = a / (b::'a::{field,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1128
apply (cases "b=0", simp) 
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1129
apply (simp add: nonzero_minus_divide_divide) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1130
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1131
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1132
lemma diff_divide_distrib: "(a-b)/(c::'a::field) = a/c - b/c"
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1133
by (simp add: diff_minus add_divide_distrib) 
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1134
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1135
lemma diff_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1136
    x / y - w / z = (x * z - w * y) / (y * z)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1137
  apply (subst diff_def)+
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1138
  apply (subst minus_divide_left)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1139
  apply (subst add_frac_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1140
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1141
done
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1142
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1143
subsection {* Ordered Fields *}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1144
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1145
lemma positive_imp_inverse_positive: 
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1146
      assumes a_gt_0: "0 < a"  shows "0 < inverse (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1147
  proof -
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1148
  have "0 < a * inverse a" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1149
    by (simp add: a_gt_0 [THEN order_less_imp_not_eq2] zero_less_one)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1150
  thus "0 < inverse a" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1151
    by (simp add: a_gt_0 [THEN order_less_not_sym] zero_less_mult_iff)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1152
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1153
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1154
lemma negative_imp_inverse_negative:
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1155
     "a < 0 ==> inverse a < (0::'a::ordered_field)"
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1156
  by (insert positive_imp_inverse_positive [of "-a"], 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1157
      simp add: nonzero_inverse_minus_eq order_less_imp_not_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1158
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1159
lemma inverse_le_imp_le:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1160
      assumes invle: "inverse a \<le> inverse b"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1161
	  and apos:  "0 < a"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1162
	 shows "b \<le> (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1163
  proof (rule classical)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1164
  assume "~ b \<le> a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1165
  hence "a < b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1166
    by (simp add: linorder_not_le)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1167
  hence bpos: "0 < b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1168
    by (blast intro: apos order_less_trans)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1169
  hence "a * inverse a \<le> a * inverse b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1170
    by (simp add: apos invle order_less_imp_le mult_left_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1171
  hence "(a * inverse a) * b \<le> (a * inverse b) * b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1172
    by (simp add: bpos order_less_imp_le mult_right_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1173
  thus "b \<le> a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1174
    by (simp add: mult_assoc apos bpos order_less_imp_not_eq2)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1175
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1176
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1177
lemma inverse_positive_imp_positive:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1178
      assumes inv_gt_0: "0 < inverse a"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1179
          and [simp]:   "a \<noteq> 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1180
        shows "0 < (a::'a::ordered_field)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1181
  proof -
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1182
  have "0 < inverse (inverse a)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1183
    by (rule positive_imp_inverse_positive)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1184
  thus "0 < a"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1185
    by (simp add: nonzero_inverse_inverse_eq)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1186
  qed
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1187
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1188
lemma inverse_positive_iff_positive [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1189
      "(0 < inverse a) = (0 < (a::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1190
apply (cases "a = 0", simp)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1191
apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1192
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1193
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1194
lemma inverse_negative_imp_negative:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1195
      assumes inv_less_0: "inverse a < 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1196
          and [simp]:   "a \<noteq> 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1197
        shows "a < (0::'a::ordered_field)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1198
  proof -
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1199
  have "inverse (inverse a) < 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1200
    by (rule negative_imp_inverse_negative)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1201
  thus "a < 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1202
    by (simp add: nonzero_inverse_inverse_eq)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1203
  qed
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1204
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1205
lemma inverse_negative_iff_negative [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1206
      "(inverse a < 0) = (a < (0::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1207
apply (cases "a = 0", simp)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1208
apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1209
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1210
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1211
lemma inverse_nonnegative_iff_nonnegative [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1212
      "(0 \<le> inverse a) = (0 \<le> (a::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1213
by (simp add: linorder_not_less [symmetric])
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1214
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1215
lemma inverse_nonpositive_iff_nonpositive [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1216
      "(inverse a \<le> 0) = (a \<le> (0::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1217
by (simp add: linorder_not_less [symmetric])
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1218
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1219
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1220
subsection{*Anti-Monotonicity of @{term inverse}*}
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1221
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1222
lemma less_imp_inverse_less:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1223
      assumes less: "a < b"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1224
	  and apos:  "0 < a"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1225
	shows "inverse b < inverse (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1226
  proof (rule ccontr)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1227
  assume "~ inverse b < inverse a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1228
  hence "inverse a \<le> inverse b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1229
    by (simp add: linorder_not_less)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1230
  hence "~ (a < b)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1231
    by (simp add: linorder_not_less inverse_le_imp_le [OF _ apos])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1232
  thus False
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1233
    by (rule notE [OF _ less])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1234
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1235
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1236
lemma inverse_less_imp_less:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1237
   "[|inverse a < inverse b; 0 < a|] ==> b < (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1238
apply (simp add: order_less_le [of "inverse a"] order_less_le [of "b"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1239
apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1240
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1241
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1242
text{*Both premises are essential. Consider -1 and 1.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1243
lemma inverse_less_iff_less [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1244
     "[|0 < a; 0 < b|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1245
      ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1246
by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1247
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1248
lemma le_imp_inverse_le:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1249
   "[|a \<le> b; 0 < a|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1250
  by (force simp add: order_le_less less_imp_inverse_less)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1251
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1252
lemma inverse_le_iff_le [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1253
     "[|0 < a; 0 < b|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1254
      ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1255
by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1256
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1257
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1258
text{*These results refer to both operands being negative.  The opposite-sign
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1259
case is trivial, since inverse preserves signs.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1260
lemma inverse_le_imp_le_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1261
   "[|inverse a \<le> inverse b; b < 0|] ==> b \<le> (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1262
  apply (rule classical) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1263
  apply (subgoal_tac "a < 0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1264
   prefer 2 apply (force simp add: linorder_not_le intro: order_less_trans) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1265
  apply (insert inverse_le_imp_le [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1266
  apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1267
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1269
lemma less_imp_inverse_less_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1270
   "[|a < b; b < 0|] ==> inverse b < inverse (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1271
  apply (subgoal_tac "a < 0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1272
   prefer 2 apply (blast intro: order_less_trans) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1273
  apply (insert less_imp_inverse_less [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1274
  apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1275
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1276
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1277
lemma inverse_less_imp_less_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1278
   "[|inverse a < inverse b; b < 0|] ==> b < (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1279
  apply (rule classical) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1280
  apply (subgoal_tac "a < 0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1281
   prefer 2
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1282
   apply (force simp add: linorder_not_less intro: order_le_less_trans) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1283
  apply (insert inverse_less_imp_less [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1284
  apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1285
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1286
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1287
lemma inverse_less_iff_less_neg [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1288
     "[|a < 0; b < 0|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1289
      ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1290
  apply (insert inverse_less_iff_less [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1291
  apply (simp del: inverse_less_iff_less 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1292
	      add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1293
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1294
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1295
lemma le_imp_inverse_le_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1296
   "[|a \<le> b; b < 0|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1297
  by (force simp add: order_le_less less_imp_inverse_less_neg)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1298
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1299
lemma inverse_le_iff_le_neg [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1300
     "[|a < 0; b < 0|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1301
      ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1302
by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1303
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1304
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1305
subsection{*Inverses and the Number One*}
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1306
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1307
lemma one_less_inverse_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1308
    "(1 < inverse x) = (0 < x & x < (1::'a::{ordered_field,division_by_zero}))"proof cases
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1309
  assume "0 < x"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1310
    with inverse_less_iff_less [OF zero_less_one, of x]
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1311
    show ?thesis by simp
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1312
next
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1313
  assume notless: "~ (0 < x)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1314
  have "~ (1 < inverse x)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1315
  proof
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1316
    assume "1 < inverse x"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1317
    also with notless have "... \<le> 0" by (simp add: linorder_not_less)
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1318
    also have "... < 1" by (rule zero_less_one) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1319
    finally show False by auto
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1320
  qed
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1321
  with notless show ?thesis by simp
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1322
qed
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1323
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1324
lemma inverse_eq_1_iff [simp]:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1325
    "(inverse x = 1) = (x = (1::'a::{field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1326
by (insert inverse_eq_iff_eq [of x 1], simp) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1327
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1328
lemma one_le_inverse_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1329
   "(1 \<le> inverse x) = (0 < x & x \<le> (1::'a::{ordered_field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1330
by (force simp add: order_le_less one_less_inverse_iff zero_less_one 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1331
                    eq_commute [of 1]) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1332
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1333
lemma inverse_less_1_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1334
   "(inverse x < 1) = (x \<le> 0 | 1 < (x::'a::{ordered_field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1335
by (simp add: linorder_not_le [symmetric] one_le_inverse_iff) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1336
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1337
lemma inverse_le_1_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1338
   "(inverse x \<le> 1) = (x \<le> 0 | 1 \<le> (x::'a::{ordered_field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1339
by (simp add: linorder_not_less [symmetric] one_less_inverse_iff) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1340
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1341
subsection{*Simplification of Inequalities Involving Literal Divisors*}
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1342
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1343
lemma pos_le_divide_eq: "0 < (c::'a::ordered_field) ==> (a \<le> b/c) = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1344
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1345
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1346
  hence "(a \<le> b/c) = (a*c \<le> (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1347
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1348
  also have "... = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1349
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1350
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1351
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1352
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1353
lemma neg_le_divide_eq: "c < (0::'a::ordered_field) ==> (a \<le> b/c) = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1354
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1355
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1356
  hence "(a \<le> b/c) = ((b/c)*c \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1357
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1358
  also have "... = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1359
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1360
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1361
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1362
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1363
lemma le_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1364
  "(a \<le> b/c) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1365
   (if 0 < c then a*c \<le> b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1366
             else if c < 0 then b \<le> a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1367
             else  a \<le> (0::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1368
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1369
apply (force simp add: pos_le_divide_eq neg_le_divide_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1370
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1371
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1372
lemma pos_divide_le_eq: "0 < (c::'a::ordered_field) ==> (b/c \<le> a) = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1373
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1374
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1375
  hence "(b/c \<le> a) = ((b/c)*c \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1376
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1377
  also have "... = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1378
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1379
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1380
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1381
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1382
lemma neg_divide_le_eq: "c < (0::'a::ordered_field) ==> (b/c \<le> a) = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1383
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1384
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1385
  hence "(b/c \<le> a) = (a*c \<le> (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1386
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1387
  also have "... = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1388
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1389
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1390
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1391
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1392
lemma divide_le_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1393
  "(b/c \<le> a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1394
   (if 0 < c then b \<le> a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1395
             else if c < 0 then a*c \<le> b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1396
             else 0 \<le> (a::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1397
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1398
apply (force simp add: pos_divide_le_eq neg_divide_le_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1399
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1400
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1401
lemma pos_less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1402
     "0 < (c::'a::ordered_field) ==> (a < b/c) = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1403
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1404
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1405
  hence "(a < b/c) = (a*c < (b/c)*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1406
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1407
  also have "... = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1408
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1409
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1410
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1411
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1412
lemma neg_less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1413
 "c < (0::'a::ordered_field) ==> (a < b/c) = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1414
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1415
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1416
  hence "(a < b/c) = ((b/c)*c < a*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1417
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1418
  also have "... = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1419
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1420
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1421
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1422
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1423
lemma less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1424
  "(a < b/c) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1425
   (if 0 < c then a*c < b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1426
             else if c < 0 then b < a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1427
             else  a < (0::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1428
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1429
apply (force simp add: pos_less_divide_eq neg_less_divide_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1430
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1431
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1432
lemma pos_divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1433
     "0 < (c::'a::ordered_field) ==> (b/c < a) = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1434
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1435
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1436
  hence "(b/c < a) = ((b/c)*c < a*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1437
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1438
  also have "... = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1439
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1440
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1441
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1442
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1443
lemma neg_divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1444
 "c < (0::'a::ordered_field) ==> (b/c < a) = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1445
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1446
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1447
  hence "(b/c < a) = (a*c < (b/c)*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1448
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1449
  also have "... = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1450
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1451
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1452
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1453
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1454
lemma divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1455
  "(b/c < a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1456
   (if 0 < c then b < a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1457
             else if c < 0 then a*c < b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1458
             else 0 < (a::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1459
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1460
apply (force simp add: pos_divide_less_eq neg_divide_less_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1461
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1462
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1463
lemma nonzero_eq_divide_eq: "c\<noteq>0 ==> ((a::'a::field) = b/c) = (a*c = b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1464
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1465
  assume [simp]: "c\<noteq>0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1466
  have "(a = b/c) = (a*c = (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1467
    by (simp add: field_mult_cancel_right)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1468
  also have "... = (a*c = b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1469
    by (simp add: divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1470
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1471
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1472
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1473
lemma eq_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1474
  "((a::'a::{field,division_by_zero}) = b/c) = (if c\<noteq>0 then a*c = b else a=0)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1475
by (simp add: nonzero_eq_divide_eq) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1476
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1477
lemma nonzero_divide_eq_eq: "c\<noteq>0 ==> (b/c = (a::'a::field)) = (b = a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1478
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1479
  assume [simp]: "c\<noteq>0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1480
  have "(b/c = a) = ((b/c)*c = a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1481
    by (simp add: field_mult_cancel_right)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1482
  also have "... = (b = a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1483
    by (simp add: divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1484
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1485
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1486
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1487
lemma divide_eq_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1488
  "(b/c = (a::'a::{field,division_by_zero})) = (if c\<noteq>0 then b = a*c else a=0)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1489
by (force simp add: nonzero_divide_eq_eq) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1490
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1491
lemma divide_eq_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1492
    b = a * c ==> b / c = a"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1493
  by (subst divide_eq_eq, simp)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1494
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1495
lemma eq_divide_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1496
    a * c = b ==> a = b / c"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1497
  by (subst eq_divide_eq, simp)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1498
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1499
lemma frac_eq_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1500
    (x / y = w / z) = (x * z = w * y)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1501
  apply (subst nonzero_eq_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1502
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1503
  apply (subst times_divide_eq_left)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1504
  apply (erule nonzero_divide_eq_eq) 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1505
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1506
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1507
subsection{*Division and Signs*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1508
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1509
lemma zero_less_divide_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1510
     "((0::'a::{ordered_field,division_by_zero}) < a/b) = (0 < a & 0 < b | a < 0 & b < 0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1511
by (simp add: divide_inverse zero_less_mult_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1512
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1513
lemma divide_less_0_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1514
     "(a/b < (0::'a::{ordered_field,division_by_zero})) = 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1515
      (0 < a & b < 0 | a < 0 & 0 < b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1516
by (simp add: divide_inverse mult_less_0_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1517
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1518
lemma zero_le_divide_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1519
     "((0::'a::{ordered_field,division_by_zero}) \<le> a/b) =
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1520
      (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1521
by (simp add: divide_inverse zero_le_mult_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1522
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1523
lemma divide_le_0_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1524
     "(a/b \<le> (0::'a::{ordered_field,division_by_zero})) =
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1525
      (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1526
by (simp add: divide_inverse mult_le_0_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1527
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1528
lemma divide_eq_0_iff [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1529
     "(a/b = 0) = (a=0 | b=(0::'a::{field,division_by_zero}))"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1530
by (simp add: divide_inverse field_mult_eq_0_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1531
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1532
lemma divide_pos_pos: "0 < (x::'a::ordered_field) ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1533
    0 < y ==> 0 < x / y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1534
  apply (subst pos_less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1535
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1536
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1537
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1538
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1539
lemma divide_nonneg_pos: "0 <= (x::'a::ordered_field) ==> 0 < y ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1540
    0 <= x / y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1541
  apply (subst pos_le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1542
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1543
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1544
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1545
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1546
lemma divide_neg_pos: "(x::'a::ordered_field) < 0 ==> 0 < y ==> x / y < 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1547
  apply (subst pos_divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1548
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1549
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1550
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1551
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1552
lemma divide_nonpos_pos: "(x::'a::ordered_field) <= 0 ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1553
    0 < y ==> x / y <= 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1554
  apply (subst pos_divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1555
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1556
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1557
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1558
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1559
lemma divide_pos_neg: "0 < (x::'a::ordered_field) ==> y < 0 ==> x / y < 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1560
  apply (subst neg_divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1561
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1562
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1563
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1564
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1565
lemma divide_nonneg_neg: "0 <= (x::'a::ordered_field) ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1566
    y < 0 ==> x / y <= 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1567
  apply (subst neg_divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1568
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1569
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1570
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1571
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1572
lemma divide_neg_neg: "(x::'a::ordered_field) < 0 ==> y < 0 ==> 0 < x / y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1573
  apply (subst neg_less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1574
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1575
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1576
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1577
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1578
lemma divide_nonpos_neg: "(x::'a::ordered_field) <= 0 ==> y < 0 ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1579
    0 <= x / y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1580
  apply (subst neg_le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1581
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1582
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1583
done
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1584
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1585
subsection{*Cancellation Laws for Division*}
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1586
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1587
lemma divide_cancel_right [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1588
     "(a/c = b/c) = (c = 0 | a = (b::'a::{field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1589
apply (cases "c=0", simp) 
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1590
apply (simp add: divide_inverse field_mult_cancel_right) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1591
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1592
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1593
lemma divide_cancel_left [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1594
     "(c/a = c/b) = (c = 0 | a = (b::'a::{field,division_by_zero}))" 
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1595
apply (cases "c=0", simp) 
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1596
apply (simp add: divide_inverse field_mult_cancel_left) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1597
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1598
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1599
subsection {* Division and the Number One *}
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1600
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1601
text{*Simplify expressions equated with 1*}
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1602
lemma divide_eq_1_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1603
     "(a/b = 1) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1604
apply (cases "b=0", simp) 
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1605
apply (simp add: right_inverse_eq) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1606
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1607
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1608
lemma one_eq_divide_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1609
     "(1 = a/b) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1610
by (simp add: eq_commute [of 1])  
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1611
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1612
lemma zero_eq_1_divide_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1613
     "((0::'a::{ordered_field,division_by_zero}) = 1/a) = (a = 0)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1614
apply (cases "a=0", simp) 
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1615
apply (auto simp add: nonzero_eq_divide_eq) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1616
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1617
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1618
lemma one_divide_eq_0_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1619
     "(1/a = (0::'a::{ordered_field,division_by_zero})) = (a = 0)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1620
apply (cases "a=0", simp) 
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1621
apply (insert zero_neq_one [THEN not_sym]) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1622
apply (auto simp add: nonzero_divide_eq_eq) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1623
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1624
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1625
text{*Simplify expressions such as @{text "0 < 1/x"} to @{text "0 < x"}*}
18623
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1626
lemmas zero_less_divide_1_iff = zero_less_divide_iff [of 1, simplified]
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1627
lemmas divide_less_0_1_iff = divide_less_0_iff [of 1, simplified]
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1628
lemmas zero_le_divide_1_iff = zero_le_divide_iff [of 1, simplified]
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1629
lemmas divide_le_0_1_iff = divide_le_0_iff [of 1, simplified]
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1630
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1631
declare zero_less_divide_1_iff [simp]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1632
declare divide_less_0_1_iff [simp]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1633
declare zero_le_divide_1_iff [simp]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1634
declare divide_le_0_1_iff [simp]
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1635
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1636
subsection {* Ordering Rules for Division *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1637
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1638
lemma divide_strict_right_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1639
     "[|a < b; 0 < c|] ==> a / c < b / (c::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1640
by (simp add: order_less_imp_not_eq2 divide_inverse mult_strict_right_mono 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1641
              positive_imp_inverse_positive) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1642
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1643
lemma divide_right_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1644
     "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/(c::'a::{ordered_field,division_by_zero})"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1645
  by (force simp add: divide_strict_right_mono order_le_less) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1646
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1647
lemma divide_right_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1648
    ==> c <= 0 ==> b / c <= a / c"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1649
  apply (drule divide_right_mono [of _ _ "- c"])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1650
  apply auto
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1651
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1652
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1653
lemma divide_strict_right_mono_neg:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1654
     "[|b < a; c < 0|] ==> a / c < b / (c::'a::ordered_field)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1655
apply (drule divide_strict_right_mono [of _ _ "-c"], simp) 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1656
apply (simp add: order_less_imp_not_eq nonzero_minus_divide_right [symmetric]) 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1657
done
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1658
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1659
text{*The last premise ensures that @{term a} and @{term b} 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1660
      have the same sign*}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1661
lemma divide_strict_left_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1662
       "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1663
by (force simp add: zero_less_mult_iff divide_inverse mult_strict_left_mono 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1664
      order_less_imp_not_eq order_less_imp_not_eq2  
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1665
      less_imp_inverse_less less_imp_inverse_less_neg) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1666
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1667
lemma divide_left_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1668
     "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / (b::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1669
  apply (subgoal_tac "a \<noteq> 0 & b \<noteq> 0") 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1670
   prefer 2 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1671
   apply (force simp add: zero_less_mult_iff order_less_imp_not_eq) 
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1672
  apply (cases "c=0", simp add: divide_inverse)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1673
  apply (force simp add: divide_strict_left_mono order_le_less) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1674
  done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1675
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1676
lemma divide_left_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1677
    ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1678
  apply (drule divide_left_mono [of _ _ "- c"])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1679
  apply (auto simp add: mult_commute)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1680
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1681
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1682
lemma divide_strict_left_mono_neg:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1683
     "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1684
  apply (subgoal_tac "a \<noteq> 0 & b \<noteq> 0") 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1685
   prefer 2 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1686
   apply (force simp add: zero_less_mult_iff order_less_imp_not_eq) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1687
  apply (drule divide_strict_left_mono [of _ _ "-c"]) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1688
   apply (simp_all add: mult_commute nonzero_minus_divide_left [symmetric]) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1689
  done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1690
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1691
text{*Simplify quotients that are compared with the value 1.*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1692
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1693
lemma le_divide_eq_1:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1694
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1695
  shows "(1 \<le> b / a) = ((0 < a & a \<le> b) | (a < 0 & b \<le> a))"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1696
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1697
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1698
lemma divide_le_eq_1:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1699
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1700
  shows "(b / a \<le> 1) = ((0 < a & b \<le> a) | (a < 0 & a \<le> b) | a=0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1701
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1702
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1703
lemma less_divide_eq_1:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1704
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1705
  shows "(1 < b / a) = ((0 < a & a < b) | (a < 0 & b < a))"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1706
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1707
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1708
lemma divide_less_eq_1:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1709
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1710
  shows "(b / a < 1) = ((0 < a & b < a) | (a < 0 & a < b) | a=0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1711
by (auto simp add: divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1712
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1713
subsection{*Conditional Simplification Rules: No Case Splits*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1714
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1715
lemma le_divide_eq_1_pos [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1716
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1717
  shows "0 < a \<Longrightarrow> (1 \<le> b/a) = (a \<le> b)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1718
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1719
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1720
lemma le_divide_eq_1_neg [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1721
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1722
  shows "a < 0 \<Longrightarrow> (1 \<le> b/a) = (b \<le> a)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1723
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1724
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1725
lemma divide_le_eq_1_pos [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1726
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1727
  shows "0 < a \<Longrightarrow> (b/a \<le> 1) = (b \<le> a)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1728
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1729
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1730
lemma divide_le_eq_1_neg [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1731
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1732
  shows "a < 0 \<Longrightarrow> (b/a \<le> 1) = (a \<le> b)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1733
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1734
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1735
lemma less_divide_eq_1_pos [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1736
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1737
  shows "0 < a \<Longrightarrow> (1 < b/a) = (a < b)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1738
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1739
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1740
lemma less_divide_eq_1_neg [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1741
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1742
  shows "a < 0 \<Longrightarrow> (1 < b/a) = (b < a)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1743
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1744
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1745
lemma divide_less_eq_1_pos [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1746
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1747
  shows "0 < a \<Longrightarrow> (b/a < 1) = (b < a)"
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1748
by (auto simp add: divide_less_eq)
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1749
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1750
lemma divide_less_eq_1_neg [simp]:
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1751
  fixes a :: "'a :: {ordered_field,division_by_zero}"
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1752
  shows "a < 0 \<Longrightarrow> b/a < 1 <-> a < b"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1753
by (auto simp add: divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1754
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1755
lemma eq_divide_eq_1 [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1756
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1757
  shows "(1 = b/a) = ((a \<noteq> 0 & a = b))"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1758
by (auto simp add: eq_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1759
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1760
lemma divide_eq_eq_1 [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1761
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1762
  shows "(b/a = 1) = ((a \<noteq> 0 & a = b))"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1763
by (auto simp add: divide_eq_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1764
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1765
subsection {* Reasoning about inequalities with division *}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1766
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1767
lemma mult_right_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1768
    ==> x * y <= x"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1769
  by (auto simp add: mult_compare_simps);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1770
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1771
lemma mult_left_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1772
    ==> y * x <= x"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1773
  by (auto simp add: mult_compare_simps);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1774
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1775
lemma mult_imp_div_pos_le: "0 < (y::'a::ordered_field) ==> x <= z * y ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1776
    x / y <= z";
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1777
  by (subst pos_divide_le_eq, assumption+);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1778
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1779
lemma mult_imp_le_div_pos: "0 < (y::'a::ordered_field) ==> z * y <= x ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1780
    z <= x / y";
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1781
  by (subst pos_le_divide_eq, assumption+)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1782
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1783
lemma mult_imp_div_pos_less: "0 < (y::'a::ordered_field) ==> x < z * y ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1784
    x / y < z"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1785
  by (subst pos_divide_less_eq, assumption+)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1786
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1787
lemma mult_imp_less_div_pos: "0 < (y::'a::ordered_field) ==> z * y < x ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1788
    z < x / y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1789
  by (subst pos_less_divide_eq, assumption+)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1790
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1791
lemma frac_le: "(0::'a::ordered_field) <= x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1792
    x <= y ==> 0 < w ==> w <= z  ==> x / z <= y / w"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1793
  apply (rule mult_imp_div_pos_le)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1794
  apply simp;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1795
  apply (subst times_divide_eq_left);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1796
  apply (rule mult_imp_le_div_pos, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1797
  apply (rule mult_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1798
  apply simp_all
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1799
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1800
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1801
lemma frac_less: "(0::'a::ordered_field) <= x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1802
    x < y ==> 0 < w ==> w <= z  ==> x / z < y / w"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1803
  apply (rule mult_imp_div_pos_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1804
  apply simp;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1805
  apply (subst times_divide_eq_left);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1806
  apply (rule mult_imp_less_div_pos, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1807
  apply (erule mult_less_le_imp_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1808
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1809
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1810
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1811
lemma frac_less2: "(0::'a::ordered_field) < x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1812
    x <= y ==> 0 < w ==> w < z  ==> x / z < y / w"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1813
  apply (rule mult_imp_div_pos_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1814
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1815
  apply (subst times_divide_eq_left);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1816
  apply (rule mult_imp_less_div_pos, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1817
  apply (erule mult_le_less_imp_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1818
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1819
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1820
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1821
lemmas times_divide_eq = times_divide_eq_right times_divide_eq_left
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1822
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1823
text{*It's not obvious whether these should be simprules or not. 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1824
  Their effect is to gather terms into one big fraction, like
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1825
  a*b*c / x*y*z. The rationale for that is unclear, but many proofs 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1826
  seem to need them.*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1827
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1828
declare times_divide_eq [simp]
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1829
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1830
subsection {* Ordered Fields are Dense *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1831
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1832
lemma less_add_one: "a < (a+1::'a::ordered_semidom)"
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1833
proof -
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1834
  have "a+0 < (a+1::'a::ordered_semidom)"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1835
    by (blast intro: zero_less_one add_strict_left_mono) 
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1836
  thus ?thesis by simp
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1837
qed
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1838
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1839
lemma zero_less_two: "0 < (1+1::'a::ordered_semidom)"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1840
  by (blast intro: order_less_trans zero_less_one less_add_one) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1841
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1842
lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1843
by (simp add: zero_less_two pos_less_divide_eq right_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1844
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1845
lemma gt_half_sum: "a < b ==> (a+b)/(1+1::'a::ordered_field) < b"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1846
by (simp add: zero_less_two pos_divide_less_eq right_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1847
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1848
lemma dense: "a < b ==> \<exists>r::'a::ordered_field. a < r & r < b"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1849
by (blast intro!: less_half_sum gt_half_sum)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1850
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1851
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1852
subsection {* Absolute Value *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1853
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1854
lemma abs_one [simp]: "abs 1 = (1::'a::ordered_idom)"
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1855
  by (simp add: abs_if zero_less_one [THEN order_less_not_sym]) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1856
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1857
lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lordered_ring))" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1858
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1859
  let ?x = "pprt a * pprt b - pprt a * nprt b - nprt a * pprt b + nprt a * nprt b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1860
  let ?y = "pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1861
  have a: "(abs a) * (abs b) = ?x"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1862
    by (simp only: abs_prts[of a] abs_prts[of b] ring_eq_simps)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1863
  {
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1864
    fix u v :: 'a
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
  1865
    have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow> 
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
  1866
              u * v = pprt a * pprt b + pprt a * nprt b + 
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
  1867
                      nprt a * pprt b + nprt a * nprt b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1868
      apply (subst prts[of u], subst prts[of v])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1869
      apply (simp add: left_distrib right_distrib add_ac) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1870
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1871
  }
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1872
  note b = this[OF refl[of a] refl[of b]]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1873
  note addm = add_mono[of "0::'a" _ "0::'a", simplified]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1874
  note addm2 = add_mono[of _ "0::'a" _ "0::'a", simplified]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1875
  have xy: "- ?x <= ?y"
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1876
    apply (simp)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1877
    apply (rule_tac y="0::'a" in order_trans)
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  1878
    apply (rule addm2)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1879
    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  1880
    apply (rule addm)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1881
    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1882
    done
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1883
  have yx: "?y <= ?x"
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  1884
    apply (simp add:diff_def)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1885
    apply (rule_tac y=0 in order_trans)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1886
    apply (rule addm2, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1887
    apply (rule addm, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1888
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1889
  have i1: "a*b <= abs a * abs b" by (simp only: a b yx)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1890
  have i2: "- (abs a * abs b) <= a*b" by (simp only: a b xy)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1891
  show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1892
    apply (rule abs_leI)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1893
    apply (simp add: i1)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1894
    apply (simp add: i2[simplified minus_le_iff])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1895
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1896
qed
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1897
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1898
lemma abs_eq_mult: 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1899
  assumes "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1900
  shows "abs (a*b) = abs a * abs (b::'a::lordered_ring)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1901
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1902
  have s: "(0 <= a*b) | (a*b <= 0)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1903
    apply (auto)    
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1904
    apply (rule_tac split_mult_pos_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1905
    apply (rule_tac contrapos_np[of "a*b <= 0"])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1906
    apply (simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1907
    apply (rule_tac split_mult_neg_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1908
    apply (insert prems)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1909
    apply (blast)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1910
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1911
  have mulprts: "a * b = (pprt a + nprt a) * (pprt b + nprt b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1912
    by (simp add: prts[symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1913
  show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1914
  proof cases
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1915
    assume "0 <= a * b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1916
    then show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1917
      apply (simp_all add: mulprts abs_prts)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1918
      apply (insert prems)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1919
      apply (auto simp add: 
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1920
	ring_eq_simps 
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1921
	iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_zero_pprt]
15197
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15178
diff changeset
  1922
	iff2imp[OF le_zero_iff_pprt_id] iff2imp[OF zero_le_iff_nprt_id])
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1923
	apply(drule (1) mult_nonneg_nonpos[of a b], simp)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1924
	apply(drule (1) mult_nonneg_nonpos2[of b a], simp)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1925
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1926
  next
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1927
    assume "~(0 <= a*b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1928
    with s have "a*b <= 0" by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1929
    then show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1930
      apply (simp_all add: mulprts abs_prts)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1931
      apply (insert prems)
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  1932
      apply (auto simp add: ring_eq_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1933
      apply(drule (1) mult_nonneg_nonneg[of a b],simp)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1934
      apply(drule (1) mult_nonpos_nonpos[of a b],simp)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1935
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1936
  qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1937
qed
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1938
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1939
lemma abs_mult: "abs (a * b) = abs a * abs (b::'a::ordered_idom)" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1940
by (simp add: abs_eq_mult linorder_linear)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1941
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1942
lemma abs_mult_self: "abs a * abs a = a * (a::'a::ordered_idom)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1943
by (simp add: abs_if) 
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1944
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1945
lemma nonzero_abs_inverse:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1946
     "a \<noteq> 0 ==> abs (inverse (a::'a::ordered_field)) = inverse (abs a)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1947
apply (auto simp add: linorder_neq_iff abs_if nonzero_inverse_minus_eq 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1948
                      negative_imp_inverse_negative)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1949
apply (blast intro: positive_imp_inverse_positive elim: order_less_asym) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1950
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1951
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1952
lemma abs_inverse [simp]:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1953
     "abs (inverse (a::'a::{ordered_field,division_by_zero})) = 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1954
      inverse (abs a)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1955
apply (cases "a=0", simp) 
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1956
apply (simp add: nonzero_abs_inverse) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1957
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1958
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1959
lemma nonzero_abs_divide:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1960
     "b \<noteq> 0 ==> abs (a / (b::'a::ordered_field)) = abs a / abs b"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1961
by (simp add: divide_inverse abs_mult nonzero_abs_inverse) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1962
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1963
lemma abs_divide [simp]:
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1964
     "abs (a / (b::'a::{ordered_field,division_by_zero})) = abs a / abs b"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1965
apply (cases "b=0", simp) 
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1966
apply (simp add: nonzero_abs_divide) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1967
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1968
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1969
lemma abs_mult_less:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1970
     "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_idom)"
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1971
proof -
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1972
  assume ac: "abs a < c"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1973
  hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1974
  assume "abs b < d"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1975
  thus ?thesis by (simp add: ac cpos mult_strict_mono) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1976
qed
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1977
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1978
lemma eq_minus_self_iff: "(a = -a) = (a = (0::'a::ordered_idom))"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1979
by (force simp add: order_eq_iff le_minus_self_iff minus_le_self_iff)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1980
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1981
lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_idom))"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1982
by (simp add: order_less_le le_minus_self_iff eq_minus_self_iff)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1983
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1984
lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_idom))" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1985
apply (simp add: order_less_le abs_le_iff)  
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1986
apply (auto simp add: abs_if minus_le_self_iff eq_minus_self_iff)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1987
apply (simp add: le_minus_self_iff linorder_neq_iff) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1988
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1989
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1990
lemma abs_mult_pos: "(0::'a::ordered_idom) <= x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1991
    (abs y) * x = abs (y * x)";
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1992
  apply (subst abs_mult);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1993
  apply simp;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1994
done;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1995
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1996
lemma abs_div_pos: "(0::'a::{division_by_zero,ordered_field}) < y ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1997
    abs x / y = abs (x / y)";
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1998
  apply (subst abs_divide);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1999
  apply (simp add: order_less_imp_le);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2000
done;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2001
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2002
subsection {* Bounds of products via negative and positive Part *}
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2003
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2004
lemma mult_le_prts:
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2005
  assumes
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2006
  "a1 <= (a::'a::lordered_ring)"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2007
  "a <= a2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2008
  "b1 <= b"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2009
  "b <= b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2010
  shows
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2011
  "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2012
proof - 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2013
  have "a * b = (pprt a + nprt a) * (pprt b + nprt b)" 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2014
    apply (subst prts[symmetric])+
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2015
    apply simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2016
    done
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2017
  then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2018
    by (simp add: ring_eq_simps)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2019
  moreover have "pprt a * pprt b <= pprt a2 * pprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2020
    by (simp_all add: prems mult_mono)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2021
  moreover have "pprt a * nprt b <= pprt a1 * nprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2022
  proof -
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2023
    have "pprt a * nprt b <= pprt a * nprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2024
      by (simp add: mult_left_mono prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2025
    moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2026
      by (simp add: mult_right_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2027
    ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2028
      by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2029
  qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2030
  moreover have "nprt a * pprt b <= nprt a2 * pprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2031
  proof - 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2032
    have "nprt a * pprt b <= nprt a2 * pprt b"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2033
      by (simp add: mult_right_mono prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2034
    moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2035
      by (simp add: mult_left_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2036
    ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2037
      by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2038
  qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2039
  moreover have "nprt a * nprt b <= nprt a1 * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2040
  proof -
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2041
    have "nprt a * nprt b <= nprt a * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2042
      by (simp add: mult_left_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2043
    moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2044
      by (simp add: mult_right_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2045
    ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2046
      by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2047
  qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2048
  ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2049
    by - (rule add_mono | simp)+
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2050
qed
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2051
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2052
lemma mult_ge_prts:
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2053
  assumes
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2054
  "a1 <= (a::'a::lordered_ring)"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2055
  "a <= a2"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2056
  "b1 <= b"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2057
  "b <= b2"
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2058
  shows
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2059
  "a * b >= nprt a1 * pprt b2 + nprt a2 * nprt b2 + pprt a1 * pprt b1 + pprt a2 * nprt b1"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2060
proof - 
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2061
  from prems have a1:"- a2 <= -a" by auto
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2062
  from prems have a2: "-a <= -a1" by auto
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2063
  from mult_le_prts[of "-a2" "-a" "-a1" "b1" b "b2", OF a1 a2 prems(3) prems(4), simplified nprt_neg pprt_neg] 
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2064
  have le: "- (a * b) <= - nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1" by simp  
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2065
  then have "-(- nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1) <= a * b"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2066
    by (simp only: minus_le_iff)
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2067
  then show ?thesis by simp
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2068
qed
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2069
22842
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2070
subsection {* Theorems for proof tools *}
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2071
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2072
lemma add_mono_thms_ordered_semiring:
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2073
  fixes i j k :: "'a\<Colon>pordered_ab_semigroup_add"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2074
  shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2075
    and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2076
    and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2077
    and "i = j \<and> k = l \<Longrightarrow> i + k = j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2078
by (rule add_mono, clarify+)+
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2079
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2080
lemma add_mono_thms_ordered_field:
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2081
  fixes i j k :: "'a\<Colon>pordered_cancel_ab_semigroup_add"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2082
  shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2083
    and "i = j \<and> k < l \<Longrightarrow> i + k < j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2084
    and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2085
    and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2086
    and "i < j \<and> k < l \<Longrightarrow> i + k < j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2087
by (auto intro: add_strict_right_mono add_strict_left_mono
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2088
  add_less_le_mono add_le_less_mono add_strict_mono)
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2089
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2090
end