author  haftmann 
Fri, 17 Apr 2009 14:29:55 +0200  
changeset 30946  585c3f2622ea 
parent 28952  15a4b2cf8c34 
child 31062  878e00798148 
permissions  rwrr 
30946  1 
(* Authors: Klaus Aehlig, Tobias Nipkow *) 
19829  2 

30946  3 
header {* Testing implementation of normalization by evaluation *} 
19829  4 

5 
theory NormalForm 

28952
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
haftmann
parents:
28709
diff
changeset

6 
imports Main Rational 
19829  7 
begin 
8 

21117  9 
lemma "True" by normalization 
19971  10 
lemma "p \<longrightarrow> True" by normalization 
28350  11 
declare disj_assoc [code nbe] 
12 
lemma "((P  Q)  R) = (P  (Q  R))" by normalization 

28562  13 
declare disj_assoc [code del] 
28350  14 
lemma "0 + (n::nat) = n" by normalization 
15 
lemma "0 + Suc n = Suc n" by normalization 

16 
lemma "Suc n + Suc m = n + Suc (Suc m)" by normalization 

19971  17 
lemma "~((0::nat) < (0::nat))" by normalization 
18 

19829  19 
datatype n = Z  S n 
28350  20 

30946  21 
primrec add :: "n \<Rightarrow> n \<Rightarrow> n" where 
22 
"add Z = id" 

23 
 "add (S m) = S o add m" 

24 

25 
primrec add2 :: "n \<Rightarrow> n \<Rightarrow> n" where 

26 
"add2 Z n = n" 

27 
 "add2 (S m) n = S(add2 m n)" 

19829  28 

28143  29 
declare add2.simps [code] 
28709  30 
lemma [code nbe]: "add2 (add2 n m) k = add2 n (add2 m k)" 
28143  31 
by (induct n) auto 
20842  32 
lemma [code]: "add2 n (S m) = S (add2 n m)" 
33 
by(induct n) auto 

19829  34 
lemma [code]: "add2 n Z = n" 
20842  35 
by(induct n) auto 
19971  36 

28350  37 
lemma "add2 (add2 n m) k = add2 n (add2 m k)" by normalization 
38 
lemma "add2 (add2 (S n) (S m)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization 

39 
lemma "add2 (add2 (S n) (add2 (S m) Z)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization 

19829  40 

30946  41 
primrec mul :: "n \<Rightarrow> n \<Rightarrow> n" where 
42 
"mul Z = (%n. Z)" 

43 
 "mul (S m) = (%n. add (mul m n) n)" 

44 

45 
primrec mul2 :: "n \<Rightarrow> n \<Rightarrow> n" where 

46 
"mul2 Z n = Z" 

47 
 "mul2 (S m) n = add2 n (mul2 m n)" 

48 

49 
primrec exp :: "n \<Rightarrow> n \<Rightarrow> n" where 

50 
"exp m Z = S Z" 

51 
 "exp m (S n) = mul (exp m n) m" 

19829  52 

19971  53 
lemma "mul2 (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization 
54 
lemma "mul (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization 

55 
lemma "exp (S(S Z)) (S(S(S(S Z)))) = exp (S(S(S(S Z)))) (S(S Z))" by normalization 

56 

57 
lemma "(let ((x,y),(u,v)) = ((Z,Z),(Z,Z)) in add (add x y) (add u v)) = Z" by normalization 

28350  58 
lemma "split (%x y. x) (a, b) = a" by normalization 
19971  59 
lemma "(%((x,y),(u,v)). add (add x y) (add u v)) ((Z,Z),(Z,Z)) = Z" by normalization 
60 

61 
lemma "case Z of Z \<Rightarrow> True  S x \<Rightarrow> False" by normalization 

19829  62 

20842  63 
lemma "[] @ [] = []" by normalization 
28350  64 
lemma "map f [x,y,z::'x] = [f x, f y, f z]" by normalization 
65 
lemma "[a, b, c] @ xs = a # b # c # xs" by normalization 

66 
lemma "[] @ xs = xs" by normalization 

67 
lemma "map (%f. f True) [id, g, Not] = [True, g True, False]" by normalization 

68 

28422  69 
lemma "map (%f. f True) ([id, g, Not] @ fs) = [True, g True, False] @ map (%f. f True) fs" 
70 
by normalization rule+ 

28350  71 
lemma "rev [a, b, c] = [c, b, a]" by normalization 
26739  72 
normal_form "rev (a#b#cs) = rev cs @ [b, a]" 
19829  73 
normal_form "map (%F. F [a,b,c::'x]) (map map [f,g,h])" 
74 
normal_form "map (%F. F ([a,b,c] @ ds)) (map map ([f,g,h]@fs))" 

75 
normal_form "map (%F. F [Z,S Z,S(S Z)]) (map map [S,add (S Z),mul (S(S Z)),id])" 

25934  76 
lemma "map (%x. case x of None \<Rightarrow> False  Some y \<Rightarrow> True) [None, Some ()] = [False, True]" 
77 
by normalization 

19829  78 
normal_form "case xs of [] \<Rightarrow> True  x#xs \<Rightarrow> False" 
25934  79 
normal_form "map (%x. case x of None \<Rightarrow> False  Some y \<Rightarrow> True) xs = P" 
28350  80 
lemma "let x = y in [x, x] = [y, y]" by normalization 
81 
lemma "Let y (%x. [x,x]) = [y, y]" by normalization 

19829  82 
normal_form "case n of Z \<Rightarrow> True  S x \<Rightarrow> False" 
28350  83 
lemma "(%(x,y). add x y) (S z,S z) = S (add z (S z))" by normalization 
19829  84 
normal_form "filter (%x. x) ([True,False,x]@xs)" 
85 
normal_form "filter Not ([True,False,x]@xs)" 

86 

28350  87 
lemma "[x,y,z] @ [a,b,c] = [x, y, z, a, b, c]" by normalization 
88 
lemma "(%(xs, ys). xs @ ys) ([a, b, c], [d, e, f]) = [a, b, c, d, e, f]" by normalization 

25100  89 
lemma "map (%x. case x of None \<Rightarrow> False  Some y \<Rightarrow> True) [None, Some ()] = [False, True]" by normalization 
19829  90 

28350  91 
lemma "last [a, b, c] = c" by normalization 
92 
lemma "last ([a, b, c] @ xs) = last (c # xs)" by normalization 

19829  93 

28350  94 
lemma "(2::int) + 3  1 + ( k) * 2 = 4 +  k * 2" by normalization 
20842  95 
lemma "(4::int) * 2 = 8" by normalization 
96 
lemma "abs ((4::int) + 2 * 1) = 2" by normalization 

97 
lemma "(2::int) + 3 = 5" by normalization 

98 
lemma "(2::int) + 3 * ( 4) * ( 1) = 14" by normalization 

99 
lemma "(2::int) + 3 * ( 4) * 1 + 0 = 10" by normalization 

100 
lemma "(2::int) < 3" by normalization 

101 
lemma "(2::int) <= 3" by normalization 

102 
lemma "abs ((4::int) + 2 * 1) = 2" by normalization 

103 
lemma "4  42 * abs (3 + (7\<Colon>int)) = 164" by normalization 

104 
lemma "(if (0\<Colon>nat) \<le> (x\<Colon>nat) then 0\<Colon>nat else x) = 0" by normalization 

22394  105 
lemma "4 = Suc (Suc (Suc (Suc 0)))" by normalization 
106 
lemma "nat 4 = Suc (Suc (Suc (Suc 0)))" by normalization 

25100  107 
lemma "[Suc 0, 0] = [Suc 0, 0]" by normalization 
108 
lemma "max (Suc 0) 0 = Suc 0" by normalization 

25187  109 
lemma "(42::rat) / 1704 = 1 / 284 + 3 / 142" by normalization 
21059  110 
normal_form "Suc 0 \<in> set ms" 
20922  111 

28350  112 
lemma "f = f" by normalization 
113 
lemma "f x = f x" by normalization 

114 
lemma "(f o g) x = f (g x)" by normalization 

115 
lemma "(f o id) x = f x" by normalization 

25934  116 
normal_form "(\<lambda>x. x)" 
21987  117 

23396  118 
(* Church numerals: *) 
119 

120 
normal_form "(%m n f x. m f (n f x)) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))" 

121 
normal_form "(%m n f x. m (n f) x) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))" 

122 
normal_form "(%m n. n m) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))" 

123 

19829  124 
end 