src/Pure/net.ML
author wenzelm
Thu Jul 14 19:28:24 2005 +0200 (2005-07-14)
changeset 16842 5979c46853d1
parent 16808 644fc45c7292
child 16938 04bdd18e0ad1
permissions -rw-r--r--
tuned;
wenzelm@12319
     1
(*  Title:      Pure/net.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@12319
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Discrimination nets: a data structure for indexing items
clasohm@0
     7
wenzelm@12319
     8
From the book
wenzelm@12319
     9
    E. Charniak, C. K. Riesbeck, D. V. McDermott.
clasohm@0
    10
    Artificial Intelligence Programming.
clasohm@0
    11
    (Lawrence Erlbaum Associates, 1980).  [Chapter 14]
nipkow@225
    12
wenzelm@12319
    13
match_term no longer treats abstractions as wildcards; instead they match
nipkow@228
    14
only wildcards in patterns.  Requires operands to be beta-eta-normal.
clasohm@0
    15
*)
clasohm@0
    16
wenzelm@12319
    17
signature NET =
wenzelm@16808
    18
sig
clasohm@0
    19
  type key
wenzelm@16808
    20
  val key_of_term: term -> key list
clasohm@0
    21
  type 'a net
clasohm@0
    22
  val empty: 'a net
wenzelm@16808
    23
  exception INSERT
wenzelm@16808
    24
  val insert: ('a * 'a -> bool) -> key list * 'a -> 'a net -> 'a net
wenzelm@16808
    25
  val insert_term: ('a * 'a -> bool) -> term * 'a -> 'a net -> 'a net
wenzelm@16808
    26
  exception DELETE
wenzelm@16808
    27
  val delete: ('b * 'a -> bool) -> key list * 'b -> 'a net -> 'a net
wenzelm@16808
    28
  val delete_term: ('b * 'a -> bool) -> term * 'b -> 'a net -> 'a net
wenzelm@16808
    29
  val lookup: 'a net -> key list -> 'a list
clasohm@0
    30
  val match_term: 'a net -> term -> 'a list
clasohm@0
    31
  val unify_term: 'a net -> term -> 'a list
wenzelm@16808
    32
  val entries: 'a net -> 'a list
wenzelm@16808
    33
  val subtract: ('b * 'a -> bool) -> 'a net -> 'b net -> 'b list
wenzelm@16808
    34
  val merge: ('a * 'a -> bool) -> 'a net * 'a net -> 'a net
wenzelm@16808
    35
end;
clasohm@0
    36
wenzelm@16808
    37
structure Net: NET =
clasohm@0
    38
struct
clasohm@0
    39
clasohm@0
    40
datatype key = CombK | VarK | AtomK of string;
clasohm@0
    41
nipkow@225
    42
(*Bound variables*)
oheimb@7943
    43
fun string_of_bound i = "*B*" ^ chr (i div 256) ^ chr (i mod 256);
clasohm@0
    44
nipkow@228
    45
(*Keys are preorder lists of symbols -- Combinations, Vars, Atoms.
nipkow@225
    46
  Any term whose head is a Var is regarded entirely as a Var.
nipkow@228
    47
  Abstractions are also regarded as Vars;  this covers eta-conversion
nipkow@228
    48
    and "near" eta-conversions such as %x.?P(?f(x)).
clasohm@0
    49
*)
wenzelm@12319
    50
fun add_key_of_terms (t, cs) =
clasohm@0
    51
  let fun rands (f$t, cs) = CombK :: rands (f, add_key_of_terms(t, cs))
wenzelm@12319
    52
        | rands (Const(c,_), cs) = AtomK c :: cs
wenzelm@12319
    53
        | rands (Free(c,_),  cs) = AtomK c :: cs
wenzelm@12319
    54
        | rands (Bound i,  cs)   = AtomK (string_of_bound i) :: cs
clasohm@0
    55
  in case (head_of t) of
nipkow@225
    56
      Var _ => VarK :: cs
nipkow@228
    57
    | Abs _ => VarK :: cs
nipkow@225
    58
    | _     => rands(t,cs)
clasohm@0
    59
  end;
clasohm@0
    60
nipkow@225
    61
(*convert a term to a list of keys*)
clasohm@0
    62
fun key_of_term t = add_key_of_terms (t, []);
clasohm@0
    63
clasohm@0
    64
clasohm@0
    65
(*Trees indexed by key lists: each arc is labelled by a key.
clasohm@0
    66
  Each node contains a list of items, and arcs to children.
clasohm@0
    67
  The empty key addresses the entire net.
clasohm@0
    68
  Lookup functions preserve order in items stored at same level.
clasohm@0
    69
*)
clasohm@0
    70
datatype 'a net = Leaf of 'a list
wenzelm@12319
    71
                | Net of {comb: 'a net,
wenzelm@12319
    72
                          var: 'a net,
wenzelm@16708
    73
                          atoms: 'a net Symtab.table};
clasohm@0
    74
clasohm@0
    75
val empty = Leaf[];
wenzelm@16708
    76
fun is_empty (Leaf []) = true | is_empty _ = false;
wenzelm@16708
    77
val emptynet = Net{comb=empty, var=empty, atoms=Symtab.empty};
clasohm@0
    78
clasohm@0
    79
clasohm@0
    80
(*** Insertion into a discrimination net ***)
clasohm@0
    81
wenzelm@12319
    82
exception INSERT;       (*duplicate item in the net*)
clasohm@0
    83
clasohm@0
    84
clasohm@0
    85
(*Adds item x to the list at the node addressed by the keys.
clasohm@0
    86
  Creates node if not already present.
wenzelm@12319
    87
  eq is the equality test for items.
clasohm@0
    88
  The empty list of keys generates a Leaf node, others a Net node.
clasohm@0
    89
*)
wenzelm@16808
    90
fun insert eq (keys,x) net =
wenzelm@12319
    91
  let fun ins1 ([], Leaf xs) =
wenzelm@16686
    92
            if member eq xs x then  raise INSERT  else Leaf(x::xs)
clasohm@0
    93
        | ins1 (keys, Leaf[]) = ins1 (keys, emptynet)   (*expand empty...*)
wenzelm@16708
    94
        | ins1 (CombK :: keys, Net{comb,var,atoms}) =
wenzelm@16708
    95
            Net{comb=ins1(keys,comb), var=var, atoms=atoms}
wenzelm@16708
    96
        | ins1 (VarK :: keys, Net{comb,var,atoms}) =
wenzelm@16708
    97
            Net{comb=comb, var=ins1(keys,var), atoms=atoms}
wenzelm@16708
    98
        | ins1 (AtomK a :: keys, Net{comb,var,atoms}) =
wenzelm@16708
    99
            let
wenzelm@16708
   100
              val net' = if_none (Symtab.lookup (atoms, a)) empty;
wenzelm@16708
   101
              val atoms' = Symtab.update ((a, ins1(keys,net')), atoms);
wenzelm@16708
   102
            in  Net{comb=comb, var=var, atoms=atoms'}  end
clasohm@0
   103
  in  ins1 (keys,net)  end;
clasohm@0
   104
wenzelm@16808
   105
fun insert_safe eq entry net = insert eq entry net handle INSERT => net;
wenzelm@16808
   106
fun insert_term eq (t, x) = insert eq (key_of_term t, x);
wenzelm@16808
   107
clasohm@0
   108
clasohm@0
   109
(*** Deletion from a discrimination net ***)
clasohm@0
   110
wenzelm@12319
   111
exception DELETE;       (*missing item in the net*)
clasohm@0
   112
clasohm@0
   113
(*Create a new Net node if it would be nonempty*)
wenzelm@16708
   114
fun newnet (args as {comb,var,atoms}) =
wenzelm@16708
   115
  if is_empty comb andalso is_empty var andalso Symtab.is_empty atoms
wenzelm@16708
   116
  then empty else Net args;
clasohm@0
   117
clasohm@0
   118
(*Deletes item x from the list at the node addressed by the keys.
clasohm@0
   119
  Raises DELETE if absent.  Collapses the net if possible.
clasohm@0
   120
  eq is the equality test for items. *)
wenzelm@16808
   121
fun delete eq (keys, x) net =
clasohm@0
   122
  let fun del1 ([], Leaf xs) =
wenzelm@16686
   123
            if member eq xs x then Leaf (remove eq x xs)
clasohm@0
   124
            else raise DELETE
wenzelm@12319
   125
        | del1 (keys, Leaf[]) = raise DELETE
wenzelm@16708
   126
        | del1 (CombK :: keys, Net{comb,var,atoms}) =
wenzelm@16708
   127
            newnet{comb=del1(keys,comb), var=var, atoms=atoms}
wenzelm@16708
   128
        | del1 (VarK :: keys, Net{comb,var,atoms}) =
wenzelm@16708
   129
            newnet{comb=comb, var=del1(keys,var), atoms=atoms}
wenzelm@16708
   130
        | del1 (AtomK a :: keys, Net{comb,var,atoms}) =
wenzelm@16708
   131
            let val atoms' =
wenzelm@16708
   132
              (case Symtab.lookup (atoms, a) of
wenzelm@16708
   133
                NONE => raise DELETE
wenzelm@16708
   134
              | SOME net' =>
wenzelm@16708
   135
                  (case del1 (keys, net') of
wenzelm@16708
   136
                    Leaf [] => Symtab.delete a atoms
wenzelm@16708
   137
                  | net'' => Symtab.update ((a, net''), atoms)))
wenzelm@16708
   138
            in  newnet{comb=comb, var=var, atoms=atoms'}  end
clasohm@0
   139
  in  del1 (keys,net)  end;
clasohm@0
   140
wenzelm@16808
   141
fun delete_term eq (t, x) = delete eq (key_of_term t, x);
clasohm@0
   142
wenzelm@16677
   143
clasohm@0
   144
(*** Retrieval functions for discrimination nets ***)
clasohm@0
   145
wenzelm@16708
   146
exception ABSENT;
clasohm@0
   147
wenzelm@16708
   148
fun the_atom atoms a =
wenzelm@16708
   149
  (case Symtab.lookup (atoms, a) of
wenzelm@16708
   150
    NONE => raise ABSENT
wenzelm@16708
   151
  | SOME net => net);
clasohm@0
   152
clasohm@0
   153
(*Return the list of items at the given node, [] if no such node*)
wenzelm@16808
   154
fun lookup (Leaf xs) [] = xs
wenzelm@16808
   155
  | lookup (Leaf _) (_ :: _) = []  (*non-empty keys and empty net*)
wenzelm@16808
   156
  | lookup (Net {comb, var, atoms}) (CombK :: keys) = lookup comb keys
wenzelm@16808
   157
  | lookup (Net {comb, var, atoms}) (VarK :: keys) = lookup var keys
wenzelm@16808
   158
  | lookup (Net {comb, var, atoms}) (AtomK a :: keys) =
wenzelm@16808
   159
      lookup (the_atom atoms a) keys handle ABSENT => [];
clasohm@0
   160
clasohm@0
   161
clasohm@0
   162
(*Skipping a term in a net.  Recursively skip 2 levels if a combination*)
clasohm@0
   163
fun net_skip (Leaf _, nets) = nets
wenzelm@16708
   164
  | net_skip (Net{comb,var,atoms}, nets) =
wenzelm@16708
   165
      foldr net_skip (Symtab.fold (cons o #2) atoms (var::nets)) (net_skip (comb,[]));
clasohm@0
   166
wenzelm@16808
   167
wenzelm@16808
   168
(** Matching and Unification **)
clasohm@0
   169
clasohm@0
   170
(*conses the linked net, if present, to nets*)
wenzelm@16708
   171
fun look1 (atoms, a) nets =
wenzelm@16708
   172
  the_atom atoms a :: nets handle ABSENT => nets;
clasohm@0
   173
wenzelm@12319
   174
(*Return the nodes accessible from the term (cons them before nets)
clasohm@0
   175
  "unif" signifies retrieval for unification rather than matching.
clasohm@0
   176
  Var in net matches any term.
wenzelm@12319
   177
  Abs or Var in object: if "unif", regarded as wildcard,
nipkow@225
   178
                                   else matches only a variable in net.
nipkow@225
   179
*)
clasohm@0
   180
fun matching unif t (net,nets) =
clasohm@0
   181
  let fun rands _ (Leaf _, nets) = nets
wenzelm@16708
   182
        | rands t (Net{comb,atoms,...}, nets) =
wenzelm@12319
   183
            case t of
skalberg@15574
   184
                f$t => foldr (matching unif t) nets (rands f (comb,[]))
wenzelm@16708
   185
              | Const(c,_) => look1 (atoms, c) nets
wenzelm@16708
   186
              | Free(c,_)  => look1 (atoms, c) nets
wenzelm@16708
   187
              | Bound i    => look1 (atoms, string_of_bound i) nets
wenzelm@12319
   188
              | _          => nets
wenzelm@12319
   189
  in
clasohm@0
   190
     case net of
wenzelm@12319
   191
         Leaf _ => nets
clasohm@0
   192
       | Net{var,...} =>
wenzelm@12319
   193
             case head_of t of
wenzelm@12319
   194
                 Var _ => if unif then net_skip (net,nets)
wenzelm@12319
   195
                          else var::nets           (*only matches Var in net*)
paulson@2836
   196
  (*If "unif" then a var instantiation in the abstraction could allow
paulson@2836
   197
    an eta-reduction, so regard the abstraction as a wildcard.*)
wenzelm@12319
   198
               | Abs _ => if unif then net_skip (net,nets)
wenzelm@12319
   199
                          else var::nets           (*only a Var can match*)
wenzelm@12319
   200
               | _ => rands t (net, var::nets)  (*var could match also*)
clasohm@0
   201
  end;
clasohm@0
   202
paulson@2672
   203
fun extract_leaves l = List.concat (map (fn Leaf(xs) => xs) l);
clasohm@0
   204
nipkow@225
   205
(*return items whose key could match t, WHICH MUST BE BETA-ETA NORMAL*)
wenzelm@12319
   206
fun match_term net t =
clasohm@0
   207
    extract_leaves (matching false t (net,[]));
clasohm@0
   208
clasohm@0
   209
(*return items whose key could unify with t*)
wenzelm@12319
   210
fun unify_term net t =
clasohm@0
   211
    extract_leaves (matching true t (net,[]));
clasohm@0
   212
wenzelm@3548
   213
wenzelm@16808
   214
(** operations on nets **)
wenzelm@16808
   215
wenzelm@16808
   216
(*subtraction: collect entries of second net that are NOT present in first net*)
wenzelm@16808
   217
fun subtract eq net1 net2 =
wenzelm@16808
   218
  let
wenzelm@16808
   219
    fun subtr (Net _) (Leaf ys) = append ys
wenzelm@16808
   220
      | subtr (Leaf xs) (Leaf ys) =
wenzelm@16808
   221
          fold_rev (fn y => if member eq xs y then I else cons y) ys
wenzelm@16808
   222
      | subtr (Leaf _) (net as Net _) = subtr emptynet net
wenzelm@16808
   223
      | subtr (Net {comb = comb1, var = var1, atoms = atoms1})
wenzelm@16808
   224
            (Net {comb = comb2, var = var2, atoms = atoms2}) =
wenzelm@16842
   225
          subtr comb1 comb2
wenzelm@16842
   226
          #> subtr var1 var2
wenzelm@16842
   227
          #> Symtab.fold (fn (a, net) =>
wenzelm@16842
   228
            subtr (if_none (Symtab.lookup (atoms1, a)) emptynet) net) atoms2
wenzelm@16808
   229
  in subtr net1 net2 [] end;
wenzelm@16808
   230
wenzelm@16808
   231
fun entries net = subtract (K false) empty net;
wenzelm@16808
   232
wenzelm@16808
   233
wenzelm@16808
   234
(* merge *)
wenzelm@3548
   235
wenzelm@3548
   236
fun cons_fst x (xs, y) = (x :: xs, y);
wenzelm@3548
   237
wenzelm@3548
   238
fun dest (Leaf xs) = map (pair []) xs
wenzelm@16708
   239
  | dest (Net {comb, var, atoms}) =
wenzelm@3560
   240
      map (cons_fst CombK) (dest comb) @
wenzelm@3560
   241
      map (cons_fst VarK) (dest var) @
wenzelm@16808
   242
      List.concat (map (fn (a, net) => map (cons_fst (AtomK a)) (dest net)) (Symtab.dest atoms));
wenzelm@3548
   243
wenzelm@16808
   244
fun merge eq (net1, net2) = fold (insert_safe eq) (dest net2) net1;
wenzelm@3548
   245
clasohm@0
   246
end;