src/HOL/Hahn_Banach/Subspace.thy
author wenzelm
Sun Nov 02 18:21:45 2014 +0100 (2014-11-02)
changeset 58889 5b7a9633cfa8
parent 58745 5d452cf4bce7
child 60412 285c7ff27728
permissions -rw-r--r--
modernized header uniformly as section;
wenzelm@31795
     1
(*  Title:      HOL/Hahn_Banach/Subspace.thy
wenzelm@7566
     2
    Author:     Gertrud Bauer, TU Munich
wenzelm@7566
     3
*)
wenzelm@7535
     4
wenzelm@58889
     5
section \<open>Subspaces\<close>
wenzelm@7808
     6
wenzelm@27612
     7
theory Subspace
huffman@44190
     8
imports Vector_Space "~~/src/HOL/Library/Set_Algebras"
wenzelm@27612
     9
begin
wenzelm@7535
    10
wenzelm@58744
    11
subsection \<open>Definition\<close>
wenzelm@7535
    12
wenzelm@58744
    13
text \<open>
wenzelm@10687
    14
  A non-empty subset @{text U} of a vector space @{text V} is a
wenzelm@10687
    15
  \emph{subspace} of @{text V}, iff @{text U} is closed under addition
wenzelm@10687
    16
  and scalar multiplication.
wenzelm@58744
    17
\<close>
wenzelm@7917
    18
ballarin@29234
    19
locale subspace =
ballarin@29234
    20
  fixes U :: "'a\<Colon>{minus, plus, zero, uminus} set" and V
wenzelm@13515
    21
  assumes non_empty [iff, intro]: "U \<noteq> {}"
wenzelm@13515
    22
    and subset [iff]: "U \<subseteq> V"
wenzelm@13515
    23
    and add_closed [iff]: "x \<in> U \<Longrightarrow> y \<in> U \<Longrightarrow> x + y \<in> U"
wenzelm@13515
    24
    and mult_closed [iff]: "x \<in> U \<Longrightarrow> a \<cdot> x \<in> U"
wenzelm@7535
    25
wenzelm@21210
    26
notation (symbols)
wenzelm@19736
    27
  subspace  (infix "\<unlhd>" 50)
ballarin@14254
    28
wenzelm@19736
    29
declare vectorspace.intro [intro?] subspace.intro [intro?]
wenzelm@7535
    30
wenzelm@13515
    31
lemma subspace_subset [elim]: "U \<unlhd> V \<Longrightarrow> U \<subseteq> V"
wenzelm@13515
    32
  by (rule subspace.subset)
wenzelm@7566
    33
wenzelm@13515
    34
lemma (in subspace) subsetD [iff]: "x \<in> U \<Longrightarrow> x \<in> V"
wenzelm@13515
    35
  using subset by blast
wenzelm@7566
    36
wenzelm@13515
    37
lemma subspaceD [elim]: "U \<unlhd> V \<Longrightarrow> x \<in> U \<Longrightarrow> x \<in> V"
wenzelm@13515
    38
  by (rule subspace.subsetD)
wenzelm@7535
    39
wenzelm@13515
    40
lemma rev_subspaceD [elim?]: "x \<in> U \<Longrightarrow> U \<unlhd> V \<Longrightarrow> x \<in> V"
wenzelm@13515
    41
  by (rule subspace.subsetD)
wenzelm@13515
    42
wenzelm@13547
    43
lemma (in subspace) diff_closed [iff]:
ballarin@27611
    44
  assumes "vectorspace V"
wenzelm@27612
    45
  assumes x: "x \<in> U" and y: "y \<in> U"
wenzelm@27612
    46
  shows "x - y \<in> U"
ballarin@27611
    47
proof -
ballarin@29234
    48
  interpret vectorspace V by fact
wenzelm@27612
    49
  from x y show ?thesis by (simp add: diff_eq1 negate_eq1)
ballarin@27611
    50
qed
wenzelm@7917
    51
wenzelm@58744
    52
text \<open>
wenzelm@13515
    53
  \medskip Similar as for linear spaces, the existence of the zero
wenzelm@13515
    54
  element in every subspace follows from the non-emptiness of the
wenzelm@13515
    55
  carrier set and by vector space laws.
wenzelm@58744
    56
\<close>
wenzelm@13515
    57
wenzelm@13547
    58
lemma (in subspace) zero [intro]:
ballarin@27611
    59
  assumes "vectorspace V"
wenzelm@13547
    60
  shows "0 \<in> U"
wenzelm@10687
    61
proof -
wenzelm@30729
    62
  interpret V: vectorspace V by fact
ballarin@29234
    63
  have "U \<noteq> {}" by (rule non_empty)
wenzelm@13515
    64
  then obtain x where x: "x \<in> U" by blast
wenzelm@27612
    65
  then have "x \<in> V" .. then have "0 = x - x" by simp
wenzelm@58744
    66
  also from \<open>vectorspace V\<close> x x have "\<dots> \<in> U" by (rule diff_closed)
wenzelm@13515
    67
  finally show ?thesis .
wenzelm@9035
    68
qed
wenzelm@7535
    69
wenzelm@13547
    70
lemma (in subspace) neg_closed [iff]:
ballarin@27611
    71
  assumes "vectorspace V"
wenzelm@27612
    72
  assumes x: "x \<in> U"
wenzelm@27612
    73
  shows "- x \<in> U"
ballarin@27611
    74
proof -
ballarin@29234
    75
  interpret vectorspace V by fact
wenzelm@27612
    76
  from x show ?thesis by (simp add: negate_eq1)
ballarin@27611
    77
qed
wenzelm@13515
    78
wenzelm@58744
    79
text \<open>\medskip Further derived laws: every subspace is a vector space.\<close>
wenzelm@7535
    80
wenzelm@13547
    81
lemma (in subspace) vectorspace [iff]:
ballarin@27611
    82
  assumes "vectorspace V"
wenzelm@13547
    83
  shows "vectorspace U"
ballarin@27611
    84
proof -
ballarin@29234
    85
  interpret vectorspace V by fact
wenzelm@27612
    86
  show ?thesis
wenzelm@27612
    87
  proof
ballarin@27611
    88
    show "U \<noteq> {}" ..
ballarin@27611
    89
    fix x y z assume x: "x \<in> U" and y: "y \<in> U" and z: "z \<in> U"
ballarin@27611
    90
    fix a b :: real
ballarin@27611
    91
    from x y show "x + y \<in> U" by simp
ballarin@27611
    92
    from x show "a \<cdot> x \<in> U" by simp
ballarin@27611
    93
    from x y z show "(x + y) + z = x + (y + z)" by (simp add: add_ac)
ballarin@27611
    94
    from x y show "x + y = y + x" by (simp add: add_ac)
ballarin@27611
    95
    from x show "x - x = 0" by simp
ballarin@27611
    96
    from x show "0 + x = x" by simp
ballarin@27611
    97
    from x y show "a \<cdot> (x + y) = a \<cdot> x + a \<cdot> y" by (simp add: distrib)
ballarin@27611
    98
    from x show "(a + b) \<cdot> x = a \<cdot> x + b \<cdot> x" by (simp add: distrib)
ballarin@27611
    99
    from x show "(a * b) \<cdot> x = a \<cdot> b \<cdot> x" by (simp add: mult_assoc)
ballarin@27611
   100
    from x show "1 \<cdot> x = x" by simp
ballarin@27611
   101
    from x show "- x = - 1 \<cdot> x" by (simp add: negate_eq1)
ballarin@27611
   102
    from x y show "x - y = x + - y" by (simp add: diff_eq1)
ballarin@27611
   103
  qed
wenzelm@9035
   104
qed
wenzelm@7535
   105
wenzelm@13515
   106
wenzelm@58744
   107
text \<open>The subspace relation is reflexive.\<close>
wenzelm@7917
   108
wenzelm@13515
   109
lemma (in vectorspace) subspace_refl [intro]: "V \<unlhd> V"
wenzelm@10687
   110
proof
wenzelm@13515
   111
  show "V \<noteq> {}" ..
wenzelm@10687
   112
  show "V \<subseteq> V" ..
wenzelm@44887
   113
next
wenzelm@13515
   114
  fix x y assume x: "x \<in> V" and y: "y \<in> V"
wenzelm@13515
   115
  fix a :: real
wenzelm@13515
   116
  from x y show "x + y \<in> V" by simp
wenzelm@13515
   117
  from x show "a \<cdot> x \<in> V" by simp
wenzelm@9035
   118
qed
wenzelm@7535
   119
wenzelm@58744
   120
text \<open>The subspace relation is transitive.\<close>
wenzelm@7917
   121
wenzelm@13515
   122
lemma (in vectorspace) subspace_trans [trans]:
wenzelm@13515
   123
  "U \<unlhd> V \<Longrightarrow> V \<unlhd> W \<Longrightarrow> U \<unlhd> W"
wenzelm@10687
   124
proof
wenzelm@13515
   125
  assume uv: "U \<unlhd> V" and vw: "V \<unlhd> W"
wenzelm@13515
   126
  from uv show "U \<noteq> {}" by (rule subspace.non_empty)
wenzelm@13515
   127
  show "U \<subseteq> W"
wenzelm@13515
   128
  proof -
wenzelm@13515
   129
    from uv have "U \<subseteq> V" by (rule subspace.subset)
wenzelm@13515
   130
    also from vw have "V \<subseteq> W" by (rule subspace.subset)
wenzelm@13515
   131
    finally show ?thesis .
wenzelm@9035
   132
  qed
wenzelm@13515
   133
  fix x y assume x: "x \<in> U" and y: "y \<in> U"
wenzelm@13515
   134
  from uv and x y show "x + y \<in> U" by (rule subspace.add_closed)
wenzelm@13515
   135
  from uv and x show "\<And>a. a \<cdot> x \<in> U" by (rule subspace.mult_closed)
wenzelm@9035
   136
qed
wenzelm@7535
   137
wenzelm@7535
   138
wenzelm@58744
   139
subsection \<open>Linear closure\<close>
wenzelm@7808
   140
wenzelm@58744
   141
text \<open>
wenzelm@10687
   142
  The \emph{linear closure} of a vector @{text x} is the set of all
wenzelm@10687
   143
  scalar multiples of @{text x}.
wenzelm@58744
   144
\<close>
wenzelm@7535
   145
wenzelm@58745
   146
definition lin :: "('a::{minus,plus,zero}) \<Rightarrow> 'a set"
wenzelm@44887
   147
  where "lin x = {a \<cdot> x | a. True}"
wenzelm@7535
   148
wenzelm@13515
   149
lemma linI [intro]: "y = a \<cdot> x \<Longrightarrow> y \<in> lin x"
wenzelm@27612
   150
  unfolding lin_def by blast
wenzelm@7535
   151
wenzelm@13515
   152
lemma linI' [iff]: "a \<cdot> x \<in> lin x"
wenzelm@27612
   153
  unfolding lin_def by blast
wenzelm@13515
   154
wenzelm@27612
   155
lemma linE [elim]: "x \<in> lin v \<Longrightarrow> (\<And>a::real. x = a \<cdot> v \<Longrightarrow> C) \<Longrightarrow> C"
wenzelm@27612
   156
  unfolding lin_def by blast
wenzelm@13515
   157
wenzelm@7656
   158
wenzelm@58744
   159
text \<open>Every vector is contained in its linear closure.\<close>
wenzelm@7917
   160
wenzelm@13515
   161
lemma (in vectorspace) x_lin_x [iff]: "x \<in> V \<Longrightarrow> x \<in> lin x"
wenzelm@13515
   162
proof -
wenzelm@13515
   163
  assume "x \<in> V"
wenzelm@27612
   164
  then have "x = 1 \<cdot> x" by simp
wenzelm@13515
   165
  also have "\<dots> \<in> lin x" ..
wenzelm@13515
   166
  finally show ?thesis .
wenzelm@13515
   167
qed
wenzelm@13515
   168
wenzelm@13515
   169
lemma (in vectorspace) "0_lin_x" [iff]: "x \<in> V \<Longrightarrow> 0 \<in> lin x"
wenzelm@13515
   170
proof
wenzelm@13515
   171
  assume "x \<in> V"
wenzelm@27612
   172
  then show "0 = 0 \<cdot> x" by simp
wenzelm@13515
   173
qed
wenzelm@7535
   174
wenzelm@58744
   175
text \<open>Any linear closure is a subspace.\<close>
wenzelm@7917
   176
wenzelm@13515
   177
lemma (in vectorspace) lin_subspace [intro]:
wenzelm@44887
   178
  assumes x: "x \<in> V"
wenzelm@44887
   179
  shows "lin x \<unlhd> V"
wenzelm@9035
   180
proof
wenzelm@44887
   181
  from x show "lin x \<noteq> {}" by auto
wenzelm@44887
   182
next
wenzelm@10687
   183
  show "lin x \<subseteq> V"
wenzelm@13515
   184
  proof
wenzelm@13515
   185
    fix x' assume "x' \<in> lin x"
wenzelm@13515
   186
    then obtain a where "x' = a \<cdot> x" ..
wenzelm@13515
   187
    with x show "x' \<in> V" by simp
wenzelm@9035
   188
  qed
wenzelm@44887
   189
next
wenzelm@13515
   190
  fix x' x'' assume x': "x' \<in> lin x" and x'': "x'' \<in> lin x"
wenzelm@13515
   191
  show "x' + x'' \<in> lin x"
wenzelm@13515
   192
  proof -
wenzelm@13515
   193
    from x' obtain a' where "x' = a' \<cdot> x" ..
wenzelm@13515
   194
    moreover from x'' obtain a'' where "x'' = a'' \<cdot> x" ..
wenzelm@13515
   195
    ultimately have "x' + x'' = (a' + a'') \<cdot> x"
wenzelm@13515
   196
      using x by (simp add: distrib)
wenzelm@13515
   197
    also have "\<dots> \<in> lin x" ..
wenzelm@13515
   198
    finally show ?thesis .
wenzelm@9035
   199
  qed
wenzelm@13515
   200
  fix a :: real
wenzelm@13515
   201
  show "a \<cdot> x' \<in> lin x"
wenzelm@13515
   202
  proof -
wenzelm@13515
   203
    from x' obtain a' where "x' = a' \<cdot> x" ..
wenzelm@13515
   204
    with x have "a \<cdot> x' = (a * a') \<cdot> x" by (simp add: mult_assoc)
wenzelm@13515
   205
    also have "\<dots> \<in> lin x" ..
wenzelm@13515
   206
    finally show ?thesis .
wenzelm@10687
   207
  qed
wenzelm@9035
   208
qed
wenzelm@7535
   209
wenzelm@13515
   210
wenzelm@58744
   211
text \<open>Any linear closure is a vector space.\<close>
wenzelm@7917
   212
wenzelm@13515
   213
lemma (in vectorspace) lin_vectorspace [intro]:
wenzelm@23378
   214
  assumes "x \<in> V"
wenzelm@23378
   215
  shows "vectorspace (lin x)"
wenzelm@23378
   216
proof -
wenzelm@58744
   217
  from \<open>x \<in> V\<close> have "subspace (lin x) V"
wenzelm@23378
   218
    by (rule lin_subspace)
wenzelm@26199
   219
  from this and vectorspace_axioms show ?thesis
wenzelm@23378
   220
    by (rule subspace.vectorspace)
wenzelm@23378
   221
qed
wenzelm@7808
   222
wenzelm@7808
   223
wenzelm@58744
   224
subsection \<open>Sum of two vectorspaces\<close>
wenzelm@7808
   225
wenzelm@58744
   226
text \<open>
wenzelm@10687
   227
  The \emph{sum} of two vectorspaces @{text U} and @{text V} is the
wenzelm@10687
   228
  set of all sums of elements from @{text U} and @{text V}.
wenzelm@58744
   229
\<close>
wenzelm@7535
   230
krauss@47445
   231
lemma sum_def: "U + V = {u + v | u v. u \<in> U \<and> v \<in> V}"
huffman@44190
   232
  unfolding set_plus_def by auto
wenzelm@7917
   233
wenzelm@13515
   234
lemma sumE [elim]:
krauss@47445
   235
    "x \<in> U + V \<Longrightarrow> (\<And>u v. x = u + v \<Longrightarrow> u \<in> U \<Longrightarrow> v \<in> V \<Longrightarrow> C) \<Longrightarrow> C"
wenzelm@27612
   236
  unfolding sum_def by blast
wenzelm@7535
   237
wenzelm@13515
   238
lemma sumI [intro]:
krauss@47445
   239
    "u \<in> U \<Longrightarrow> v \<in> V \<Longrightarrow> x = u + v \<Longrightarrow> x \<in> U + V"
wenzelm@27612
   240
  unfolding sum_def by blast
wenzelm@7566
   241
wenzelm@13515
   242
lemma sumI' [intro]:
krauss@47445
   243
    "u \<in> U \<Longrightarrow> v \<in> V \<Longrightarrow> u + v \<in> U + V"
wenzelm@27612
   244
  unfolding sum_def by blast
wenzelm@7917
   245
wenzelm@58744
   246
text \<open>@{text U} is a subspace of @{text "U + V"}.\<close>
wenzelm@7535
   247
wenzelm@13515
   248
lemma subspace_sum1 [iff]:
ballarin@27611
   249
  assumes "vectorspace U" "vectorspace V"
krauss@47445
   250
  shows "U \<unlhd> U + V"
ballarin@27611
   251
proof -
ballarin@29234
   252
  interpret vectorspace U by fact
ballarin@29234
   253
  interpret vectorspace V by fact
wenzelm@27612
   254
  show ?thesis
wenzelm@27612
   255
  proof
ballarin@27611
   256
    show "U \<noteq> {}" ..
krauss@47445
   257
    show "U \<subseteq> U + V"
ballarin@27611
   258
    proof
ballarin@27611
   259
      fix x assume x: "x \<in> U"
ballarin@27611
   260
      moreover have "0 \<in> V" ..
krauss@47445
   261
      ultimately have "x + 0 \<in> U + V" ..
krauss@47445
   262
      with x show "x \<in> U + V" by simp
ballarin@27611
   263
    qed
ballarin@27611
   264
    fix x y assume x: "x \<in> U" and "y \<in> U"
wenzelm@27612
   265
    then show "x + y \<in> U" by simp
ballarin@27611
   266
    from x show "\<And>a. a \<cdot> x \<in> U" by simp
wenzelm@9035
   267
  qed
wenzelm@9035
   268
qed
wenzelm@7535
   269
wenzelm@58744
   270
text \<open>The sum of two subspaces is again a subspace.\<close>
wenzelm@7917
   271
wenzelm@13515
   272
lemma sum_subspace [intro?]:
ballarin@27611
   273
  assumes "subspace U E" "vectorspace E" "subspace V E"
krauss@47445
   274
  shows "U + V \<unlhd> E"
ballarin@27611
   275
proof -
ballarin@29234
   276
  interpret subspace U E by fact
ballarin@29234
   277
  interpret vectorspace E by fact
ballarin@29234
   278
  interpret subspace V E by fact
wenzelm@27612
   279
  show ?thesis
wenzelm@27612
   280
  proof
krauss@47445
   281
    have "0 \<in> U + V"
ballarin@27611
   282
    proof
wenzelm@58744
   283
      show "0 \<in> U" using \<open>vectorspace E\<close> ..
wenzelm@58744
   284
      show "0 \<in> V" using \<open>vectorspace E\<close> ..
ballarin@27611
   285
      show "(0::'a) = 0 + 0" by simp
ballarin@27611
   286
    qed
krauss@47445
   287
    then show "U + V \<noteq> {}" by blast
krauss@47445
   288
    show "U + V \<subseteq> E"
ballarin@27611
   289
    proof
krauss@47445
   290
      fix x assume "x \<in> U + V"
ballarin@27611
   291
      then obtain u v where "x = u + v" and
wenzelm@32960
   292
        "u \<in> U" and "v \<in> V" ..
ballarin@27611
   293
      then show "x \<in> E" by simp
ballarin@27611
   294
    qed
wenzelm@44887
   295
  next
krauss@47445
   296
    fix x y assume x: "x \<in> U + V" and y: "y \<in> U + V"
krauss@47445
   297
    show "x + y \<in> U + V"
ballarin@27611
   298
    proof -
ballarin@27611
   299
      from x obtain ux vx where "x = ux + vx" and "ux \<in> U" and "vx \<in> V" ..
ballarin@27611
   300
      moreover
ballarin@27611
   301
      from y obtain uy vy where "y = uy + vy" and "uy \<in> U" and "vy \<in> V" ..
ballarin@27611
   302
      ultimately
ballarin@27611
   303
      have "ux + uy \<in> U"
wenzelm@32960
   304
        and "vx + vy \<in> V"
wenzelm@32960
   305
        and "x + y = (ux + uy) + (vx + vy)"
wenzelm@32960
   306
        using x y by (simp_all add: add_ac)
wenzelm@27612
   307
      then show ?thesis ..
ballarin@27611
   308
    qed
krauss@47445
   309
    fix a show "a \<cdot> x \<in> U + V"
ballarin@27611
   310
    proof -
ballarin@27611
   311
      from x obtain u v where "x = u + v" and "u \<in> U" and "v \<in> V" ..
wenzelm@27612
   312
      then have "a \<cdot> u \<in> U" and "a \<cdot> v \<in> V"
wenzelm@32960
   313
        and "a \<cdot> x = (a \<cdot> u) + (a \<cdot> v)" by (simp_all add: distrib)
wenzelm@27612
   314
      then show ?thesis ..
ballarin@27611
   315
    qed
wenzelm@9035
   316
  qed
wenzelm@9035
   317
qed
wenzelm@7535
   318
wenzelm@58744
   319
text\<open>The sum of two subspaces is a vectorspace.\<close>
wenzelm@7917
   320
wenzelm@13515
   321
lemma sum_vs [intro?]:
krauss@47445
   322
    "U \<unlhd> E \<Longrightarrow> V \<unlhd> E \<Longrightarrow> vectorspace E \<Longrightarrow> vectorspace (U + V)"
wenzelm@13547
   323
  by (rule subspace.vectorspace) (rule sum_subspace)
wenzelm@7535
   324
wenzelm@7808
   325
wenzelm@58744
   326
subsection \<open>Direct sums\<close>
wenzelm@7808
   327
wenzelm@58744
   328
text \<open>
wenzelm@10687
   329
  The sum of @{text U} and @{text V} is called \emph{direct}, iff the
wenzelm@10687
   330
  zero element is the only common element of @{text U} and @{text
wenzelm@10687
   331
  V}. For every element @{text x} of the direct sum of @{text U} and
wenzelm@10687
   332
  @{text V} the decomposition in @{text "x = u + v"} with
wenzelm@10687
   333
  @{text "u \<in> U"} and @{text "v \<in> V"} is unique.
wenzelm@58744
   334
\<close>
wenzelm@7808
   335
wenzelm@10687
   336
lemma decomp:
ballarin@27611
   337
  assumes "vectorspace E" "subspace U E" "subspace V E"
wenzelm@13515
   338
  assumes direct: "U \<inter> V = {0}"
wenzelm@13515
   339
    and u1: "u1 \<in> U" and u2: "u2 \<in> U"
wenzelm@13515
   340
    and v1: "v1 \<in> V" and v2: "v2 \<in> V"
wenzelm@13515
   341
    and sum: "u1 + v1 = u2 + v2"
wenzelm@13515
   342
  shows "u1 = u2 \<and> v1 = v2"
ballarin@27611
   343
proof -
ballarin@29234
   344
  interpret vectorspace E by fact
ballarin@29234
   345
  interpret subspace U E by fact
ballarin@29234
   346
  interpret subspace V E by fact
wenzelm@27612
   347
  show ?thesis
wenzelm@27612
   348
  proof
ballarin@27611
   349
    have U: "vectorspace U"  (* FIXME: use interpret *)
wenzelm@58744
   350
      using \<open>subspace U E\<close> \<open>vectorspace E\<close> by (rule subspace.vectorspace)
ballarin@27611
   351
    have V: "vectorspace V"
wenzelm@58744
   352
      using \<open>subspace V E\<close> \<open>vectorspace E\<close> by (rule subspace.vectorspace)
ballarin@27611
   353
    from u1 u2 v1 v2 and sum have eq: "u1 - u2 = v2 - v1"
ballarin@27611
   354
      by (simp add: add_diff_swap)
ballarin@27611
   355
    from u1 u2 have u: "u1 - u2 \<in> U"
ballarin@27611
   356
      by (rule vectorspace.diff_closed [OF U])
ballarin@27611
   357
    with eq have v': "v2 - v1 \<in> U" by (simp only:)
ballarin@27611
   358
    from v2 v1 have v: "v2 - v1 \<in> V"
ballarin@27611
   359
      by (rule vectorspace.diff_closed [OF V])
ballarin@27611
   360
    with eq have u': " u1 - u2 \<in> V" by (simp only:)
ballarin@27611
   361
    
ballarin@27611
   362
    show "u1 = u2"
ballarin@27611
   363
    proof (rule add_minus_eq)
ballarin@27611
   364
      from u1 show "u1 \<in> E" ..
ballarin@27611
   365
      from u2 show "u2 \<in> E" ..
ballarin@27611
   366
      from u u' and direct show "u1 - u2 = 0" by blast
ballarin@27611
   367
    qed
ballarin@27611
   368
    show "v1 = v2"
ballarin@27611
   369
    proof (rule add_minus_eq [symmetric])
ballarin@27611
   370
      from v1 show "v1 \<in> E" ..
ballarin@27611
   371
      from v2 show "v2 \<in> E" ..
ballarin@27611
   372
      from v v' and direct show "v2 - v1 = 0" by blast
ballarin@27611
   373
    qed
wenzelm@9035
   374
  qed
wenzelm@9035
   375
qed
wenzelm@7656
   376
wenzelm@58744
   377
text \<open>
wenzelm@10687
   378
  An application of the previous lemma will be used in the proof of
wenzelm@10687
   379
  the Hahn-Banach Theorem (see page \pageref{decomp-H-use}): for any
wenzelm@10687
   380
  element @{text "y + a \<cdot> x\<^sub>0"} of the direct sum of a
wenzelm@10687
   381
  vectorspace @{text H} and the linear closure of @{text "x\<^sub>0"}
wenzelm@10687
   382
  the components @{text "y \<in> H"} and @{text a} are uniquely
wenzelm@10687
   383
  determined.
wenzelm@58744
   384
\<close>
wenzelm@7917
   385
wenzelm@10687
   386
lemma decomp_H':
ballarin@27611
   387
  assumes "vectorspace E" "subspace H E"
wenzelm@13515
   388
  assumes y1: "y1 \<in> H" and y2: "y2 \<in> H"
wenzelm@13515
   389
    and x': "x' \<notin> H"  "x' \<in> E"  "x' \<noteq> 0"
wenzelm@13515
   390
    and eq: "y1 + a1 \<cdot> x' = y2 + a2 \<cdot> x'"
wenzelm@13515
   391
  shows "y1 = y2 \<and> a1 = a2"
ballarin@27611
   392
proof -
ballarin@29234
   393
  interpret vectorspace E by fact
ballarin@29234
   394
  interpret subspace H E by fact
wenzelm@27612
   395
  show ?thesis
wenzelm@27612
   396
  proof
ballarin@27611
   397
    have c: "y1 = y2 \<and> a1 \<cdot> x' = a2 \<cdot> x'"
ballarin@27611
   398
    proof (rule decomp)
ballarin@27611
   399
      show "a1 \<cdot> x' \<in> lin x'" ..
ballarin@27611
   400
      show "a2 \<cdot> x' \<in> lin x'" ..
ballarin@27611
   401
      show "H \<inter> lin x' = {0}"
wenzelm@13515
   402
      proof
wenzelm@32960
   403
        show "H \<inter> lin x' \<subseteq> {0}"
wenzelm@32960
   404
        proof
ballarin@27611
   405
          fix x assume x: "x \<in> H \<inter> lin x'"
ballarin@27611
   406
          then obtain a where xx': "x = a \<cdot> x'"
ballarin@27611
   407
            by blast
ballarin@27611
   408
          have "x = 0"
ballarin@27611
   409
          proof cases
ballarin@27611
   410
            assume "a = 0"
ballarin@27611
   411
            with xx' and x' show ?thesis by simp
ballarin@27611
   412
          next
ballarin@27611
   413
            assume a: "a \<noteq> 0"
ballarin@27611
   414
            from x have "x \<in> H" ..
ballarin@27611
   415
            with xx' have "inverse a \<cdot> a \<cdot> x' \<in> H" by simp
ballarin@27611
   416
            with a and x' have "x' \<in> H" by (simp add: mult_assoc2)
wenzelm@58744
   417
            with \<open>x' \<notin> H\<close> show ?thesis by contradiction
ballarin@27611
   418
          qed
wenzelm@27612
   419
          then show "x \<in> {0}" ..
wenzelm@32960
   420
        qed
wenzelm@32960
   421
        show "{0} \<subseteq> H \<inter> lin x'"
wenzelm@32960
   422
        proof -
wenzelm@58744
   423
          have "0 \<in> H" using \<open>vectorspace E\<close> ..
wenzelm@58744
   424
          moreover have "0 \<in> lin x'" using \<open>x' \<in> E\<close> ..
ballarin@27611
   425
          ultimately show ?thesis by blast
wenzelm@32960
   426
        qed
wenzelm@9035
   427
      qed
wenzelm@58744
   428
      show "lin x' \<unlhd> E" using \<open>x' \<in> E\<close> ..
wenzelm@58744
   429
    qed (rule \<open>vectorspace E\<close>, rule \<open>subspace H E\<close>, rule y1, rule y2, rule eq)
wenzelm@27612
   430
    then show "y1 = y2" ..
ballarin@27611
   431
    from c have "a1 \<cdot> x' = a2 \<cdot> x'" ..
ballarin@27611
   432
    with x' show "a1 = a2" by (simp add: mult_right_cancel)
ballarin@27611
   433
  qed
wenzelm@9035
   434
qed
wenzelm@7535
   435
wenzelm@58744
   436
text \<open>
wenzelm@10687
   437
  Since for any element @{text "y + a \<cdot> x'"} of the direct sum of a
wenzelm@10687
   438
  vectorspace @{text H} and the linear closure of @{text x'} the
wenzelm@10687
   439
  components @{text "y \<in> H"} and @{text a} are unique, it follows from
wenzelm@10687
   440
  @{text "y \<in> H"} that @{text "a = 0"}.
wenzelm@58744
   441
\<close>
wenzelm@7917
   442
wenzelm@10687
   443
lemma decomp_H'_H:
ballarin@27611
   444
  assumes "vectorspace E" "subspace H E"
wenzelm@13515
   445
  assumes t: "t \<in> H"
wenzelm@13515
   446
    and x': "x' \<notin> H"  "x' \<in> E"  "x' \<noteq> 0"
wenzelm@13515
   447
  shows "(SOME (y, a). t = y + a \<cdot> x' \<and> y \<in> H) = (t, 0)"
ballarin@27611
   448
proof -
ballarin@29234
   449
  interpret vectorspace E by fact
ballarin@29234
   450
  interpret subspace H E by fact
wenzelm@27612
   451
  show ?thesis
wenzelm@27612
   452
  proof (rule, simp_all only: split_paired_all split_conv)
ballarin@27611
   453
    from t x' show "t = t + 0 \<cdot> x' \<and> t \<in> H" by simp
ballarin@27611
   454
    fix y and a assume ya: "t = y + a \<cdot> x' \<and> y \<in> H"
ballarin@27611
   455
    have "y = t \<and> a = 0"
ballarin@27611
   456
    proof (rule decomp_H')
ballarin@27611
   457
      from ya x' show "y + a \<cdot> x' = t + 0 \<cdot> x'" by simp
ballarin@27611
   458
      from ya show "y \<in> H" ..
wenzelm@58744
   459
    qed (rule \<open>vectorspace E\<close>, rule \<open>subspace H E\<close>, rule t, (rule x')+)
ballarin@27611
   460
    with t x' show "(y, a) = (y + a \<cdot> x', 0)" by simp
ballarin@27611
   461
  qed
wenzelm@13515
   462
qed
wenzelm@7535
   463
wenzelm@58744
   464
text \<open>
wenzelm@10687
   465
  The components @{text "y \<in> H"} and @{text a} in @{text "y + a \<cdot> x'"}
wenzelm@10687
   466
  are unique, so the function @{text h'} defined by
wenzelm@10687
   467
  @{text "h' (y + a \<cdot> x') = h y + a \<cdot> \<xi>"} is definite.
wenzelm@58744
   468
\<close>
wenzelm@7917
   469
bauerg@9374
   470
lemma h'_definite:
ballarin@27611
   471
  fixes H
wenzelm@13515
   472
  assumes h'_def:
wenzelm@44887
   473
    "h' \<equiv> \<lambda>x.
wenzelm@44887
   474
      let (y, a) = SOME (y, a). (x = y + a \<cdot> x' \<and> y \<in> H)
wenzelm@44887
   475
      in (h y) + a * xi"
wenzelm@13515
   476
    and x: "x = y + a \<cdot> x'"
ballarin@27611
   477
  assumes "vectorspace E" "subspace H E"
wenzelm@13515
   478
  assumes y: "y \<in> H"
wenzelm@13515
   479
    and x': "x' \<notin> H"  "x' \<in> E"  "x' \<noteq> 0"
wenzelm@13515
   480
  shows "h' x = h y + a * xi"
wenzelm@10687
   481
proof -
ballarin@29234
   482
  interpret vectorspace E by fact
ballarin@29234
   483
  interpret subspace H E by fact
krauss@47445
   484
  from x y x' have "x \<in> H + lin x'" by auto
wenzelm@13515
   485
  have "\<exists>!p. (\<lambda>(y, a). x = y + a \<cdot> x' \<and> y \<in> H) p" (is "\<exists>!p. ?P p")
wenzelm@18689
   486
  proof (rule ex_ex1I)
wenzelm@13515
   487
    from x y show "\<exists>p. ?P p" by blast
wenzelm@13515
   488
    fix p q assume p: "?P p" and q: "?P q"
wenzelm@13515
   489
    show "p = q"
wenzelm@9035
   490
    proof -
wenzelm@13515
   491
      from p have xp: "x = fst p + snd p \<cdot> x' \<and> fst p \<in> H"
wenzelm@13515
   492
        by (cases p) simp
wenzelm@13515
   493
      from q have xq: "x = fst q + snd q \<cdot> x' \<and> fst q \<in> H"
wenzelm@13515
   494
        by (cases q) simp
wenzelm@13515
   495
      have "fst p = fst q \<and> snd p = snd q"
wenzelm@13515
   496
      proof (rule decomp_H')
wenzelm@13515
   497
        from xp show "fst p \<in> H" ..
wenzelm@13515
   498
        from xq show "fst q \<in> H" ..
wenzelm@13515
   499
        from xp and xq show "fst p + snd p \<cdot> x' = fst q + snd q \<cdot> x'"
wenzelm@13515
   500
          by simp
wenzelm@58744
   501
      qed (rule \<open>vectorspace E\<close>, rule \<open>subspace H E\<close>, (rule x')+)
wenzelm@27612
   502
      then show ?thesis by (cases p, cases q) simp
wenzelm@9035
   503
    qed
wenzelm@9035
   504
  qed
wenzelm@27612
   505
  then have eq: "(SOME (y, a). x = y + a \<cdot> x' \<and> y \<in> H) = (y, a)"
wenzelm@13515
   506
    by (rule some1_equality) (simp add: x y)
wenzelm@13515
   507
  with h'_def show "h' x = h y + a * xi" by (simp add: Let_def)
wenzelm@9035
   508
qed
wenzelm@7535
   509
wenzelm@10687
   510
end