|
58023
|
1 |
(* Author: Manuel Eberl *)
|
|
|
2 |
|
|
58889
|
3 |
section {* Abstract euclidean algorithm *}
|
|
58023
|
4 |
|
|
|
5 |
theory Euclidean_Algorithm
|
|
|
6 |
imports Complex_Main
|
|
|
7 |
begin
|
|
|
8 |
|
|
|
9 |
lemma finite_int_set_iff_bounded_le:
|
|
|
10 |
"finite (N::int set) = (\<exists>m\<ge>0. \<forall>n\<in>N. abs n \<le> m)"
|
|
|
11 |
proof
|
|
|
12 |
assume "finite (N::int set)"
|
|
|
13 |
hence "finite (nat ` abs ` N)" by (intro finite_imageI)
|
|
|
14 |
hence "\<exists>m. \<forall>n\<in>nat`abs`N. n \<le> m" by (simp add: finite_nat_set_iff_bounded_le)
|
|
|
15 |
then obtain m :: nat where "\<forall>n\<in>N. nat (abs n) \<le> nat (int m)" by auto
|
|
|
16 |
then show "\<exists>m\<ge>0. \<forall>n\<in>N. abs n \<le> m" by (intro exI[of _ "int m"]) (auto simp: nat_le_eq_zle)
|
|
|
17 |
next
|
|
|
18 |
assume "\<exists>m\<ge>0. \<forall>n\<in>N. abs n \<le> m"
|
|
|
19 |
then obtain m where "m \<ge> 0" and "\<forall>n\<in>N. abs n \<le> m" by blast
|
|
|
20 |
hence "\<forall>n\<in>N. nat (abs n) \<le> nat m" by (auto simp: nat_le_eq_zle)
|
|
|
21 |
hence "\<forall>n\<in>nat`abs`N. n \<le> nat m" by (auto simp: nat_le_eq_zle)
|
|
|
22 |
hence A: "finite ((nat \<circ> abs)`N)" unfolding o_def
|
|
|
23 |
by (subst finite_nat_set_iff_bounded_le) blast
|
|
|
24 |
{
|
|
|
25 |
assume "\<not>finite N"
|
|
|
26 |
from pigeonhole_infinite[OF this A] obtain x
|
|
|
27 |
where "x \<in> N" and B: "~finite {a\<in>N. nat (abs a) = nat (abs x)}"
|
|
|
28 |
unfolding o_def by blast
|
|
|
29 |
have "{a\<in>N. nat (abs a) = nat (abs x)} \<subseteq> {x, -x}" by auto
|
|
|
30 |
hence "finite {a\<in>N. nat (abs a) = nat (abs x)}" by (rule finite_subset) simp
|
|
|
31 |
with B have False by contradiction
|
|
|
32 |
}
|
|
|
33 |
then show "finite N" by blast
|
|
|
34 |
qed
|
|
|
35 |
|
|
|
36 |
context semiring_div
|
|
|
37 |
begin
|
|
|
38 |
|
|
|
39 |
lemma dvd_setprod [intro]:
|
|
|
40 |
assumes "finite A" and "x \<in> A"
|
|
|
41 |
shows "f x dvd setprod f A"
|
|
|
42 |
proof
|
|
|
43 |
from `finite A` have "setprod f (insert x (A - {x})) = f x * setprod f (A - {x})"
|
|
|
44 |
by (intro setprod.insert) auto
|
|
|
45 |
also from `x \<in> A` have "insert x (A - {x}) = A" by blast
|
|
|
46 |
finally show "setprod f A = f x * setprod f (A - {x})" .
|
|
|
47 |
qed
|
|
|
48 |
|
|
|
49 |
lemma dvd_mult_cancel_left:
|
|
|
50 |
assumes "a \<noteq> 0" and "a * b dvd a * c"
|
|
|
51 |
shows "b dvd c"
|
|
|
52 |
proof-
|
|
|
53 |
from assms(2) obtain k where "a * c = a * b * k" unfolding dvd_def by blast
|
|
|
54 |
hence "c * a = b * k * a" by (simp add: ac_simps)
|
|
|
55 |
hence "c * (a div a) = b * k * (a div a)" by (simp add: div_mult_swap)
|
|
|
56 |
also from `a \<noteq> 0` have "a div a = 1" by simp
|
|
|
57 |
finally show ?thesis by simp
|
|
|
58 |
qed
|
|
|
59 |
|
|
|
60 |
lemma dvd_mult_cancel_right:
|
|
|
61 |
"a \<noteq> 0 \<Longrightarrow> b * a dvd c * a \<Longrightarrow> b dvd c"
|
|
|
62 |
by (subst (asm) (1 2) ac_simps, rule dvd_mult_cancel_left)
|
|
|
63 |
|
|
|
64 |
lemma nonzero_pow_nonzero:
|
|
|
65 |
"a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0"
|
|
|
66 |
by (induct n) (simp_all add: no_zero_divisors)
|
|
|
67 |
|
|
|
68 |
lemma zero_pow_zero: "n \<noteq> 0 \<Longrightarrow> 0 ^ n = 0"
|
|
|
69 |
by (cases n, simp_all)
|
|
|
70 |
|
|
|
71 |
lemma pow_zero_iff:
|
|
|
72 |
"n \<noteq> 0 \<Longrightarrow> a^n = 0 \<longleftrightarrow> a = 0"
|
|
|
73 |
using nonzero_pow_nonzero zero_pow_zero by auto
|
|
|
74 |
|
|
|
75 |
end
|
|
|
76 |
|
|
|
77 |
context semiring_div
|
|
|
78 |
begin
|
|
|
79 |
|
|
|
80 |
definition ring_inv :: "'a \<Rightarrow> 'a"
|
|
|
81 |
where
|
|
|
82 |
"ring_inv x = 1 div x"
|
|
|
83 |
|
|
|
84 |
definition is_unit :: "'a \<Rightarrow> bool"
|
|
|
85 |
where
|
|
|
86 |
"is_unit x \<longleftrightarrow> x dvd 1"
|
|
|
87 |
|
|
|
88 |
definition associated :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
|
|
|
89 |
where
|
|
|
90 |
"associated x y \<longleftrightarrow> x dvd y \<and> y dvd x"
|
|
|
91 |
|
|
|
92 |
lemma unit_prod [intro]:
|
|
|
93 |
"is_unit x \<Longrightarrow> is_unit y \<Longrightarrow> is_unit (x * y)"
|
|
|
94 |
unfolding is_unit_def by (subst mult_1_left [of 1, symmetric], rule mult_dvd_mono)
|
|
|
95 |
|
|
|
96 |
lemma unit_ring_inv:
|
|
|
97 |
"is_unit y \<Longrightarrow> x div y = x * ring_inv y"
|
|
|
98 |
by (simp add: div_mult_swap ring_inv_def is_unit_def)
|
|
|
99 |
|
|
|
100 |
lemma unit_ring_inv_ring_inv [simp]:
|
|
|
101 |
"is_unit x \<Longrightarrow> ring_inv (ring_inv x) = x"
|
|
|
102 |
unfolding is_unit_def ring_inv_def
|
|
|
103 |
by (metis div_mult_mult1_if div_mult_self1_is_id dvd_mult_div_cancel mult_1_right)
|
|
|
104 |
|
|
|
105 |
lemma inv_imp_eq_ring_inv:
|
|
|
106 |
"a * b = 1 \<Longrightarrow> ring_inv a = b"
|
|
|
107 |
by (metis dvd_mult_div_cancel dvd_mult_right mult_1_right mult.left_commute one_dvd ring_inv_def)
|
|
|
108 |
|
|
|
109 |
lemma ring_inv_is_inv1 [simp]:
|
|
|
110 |
"is_unit a \<Longrightarrow> a * ring_inv a = 1"
|
|
|
111 |
unfolding is_unit_def ring_inv_def by (simp add: dvd_mult_div_cancel)
|
|
|
112 |
|
|
|
113 |
lemma ring_inv_is_inv2 [simp]:
|
|
|
114 |
"is_unit a \<Longrightarrow> ring_inv a * a = 1"
|
|
|
115 |
by (simp add: ac_simps)
|
|
|
116 |
|
|
|
117 |
lemma unit_ring_inv_unit [simp, intro]:
|
|
|
118 |
assumes "is_unit x"
|
|
|
119 |
shows "is_unit (ring_inv x)"
|
|
|
120 |
proof -
|
|
|
121 |
from assms have "1 = ring_inv x * x" by simp
|
|
|
122 |
then show "is_unit (ring_inv x)" unfolding is_unit_def by (rule dvdI)
|
|
|
123 |
qed
|
|
|
124 |
|
|
|
125 |
lemma mult_unit_dvd_iff:
|
|
|
126 |
"is_unit y \<Longrightarrow> x * y dvd z \<longleftrightarrow> x dvd z"
|
|
|
127 |
proof
|
|
|
128 |
assume "is_unit y" "x * y dvd z"
|
|
|
129 |
then show "x dvd z" by (simp add: dvd_mult_left)
|
|
|
130 |
next
|
|
|
131 |
assume "is_unit y" "x dvd z"
|
|
|
132 |
then obtain k where "z = x * k" unfolding dvd_def by blast
|
|
|
133 |
with `is_unit y` have "z = (x * y) * (ring_inv y * k)"
|
|
|
134 |
by (simp add: mult_ac)
|
|
|
135 |
then show "x * y dvd z" by (rule dvdI)
|
|
|
136 |
qed
|
|
|
137 |
|
|
|
138 |
lemma div_unit_dvd_iff:
|
|
|
139 |
"is_unit y \<Longrightarrow> x div y dvd z \<longleftrightarrow> x dvd z"
|
|
|
140 |
by (subst unit_ring_inv) (assumption, simp add: mult_unit_dvd_iff)
|
|
|
141 |
|
|
|
142 |
lemma dvd_mult_unit_iff:
|
|
|
143 |
"is_unit y \<Longrightarrow> x dvd z * y \<longleftrightarrow> x dvd z"
|
|
|
144 |
proof
|
|
|
145 |
assume "is_unit y" and "x dvd z * y"
|
|
|
146 |
have "z * y dvd z * (y * ring_inv y)" by (subst mult_assoc [symmetric]) simp
|
|
|
147 |
also from `is_unit y` have "y * ring_inv y = 1" by simp
|
|
|
148 |
finally have "z * y dvd z" by simp
|
|
|
149 |
with `x dvd z * y` show "x dvd z" by (rule dvd_trans)
|
|
|
150 |
next
|
|
|
151 |
assume "x dvd z"
|
|
|
152 |
then show "x dvd z * y" by simp
|
|
|
153 |
qed
|
|
|
154 |
|
|
|
155 |
lemma dvd_div_unit_iff:
|
|
|
156 |
"is_unit y \<Longrightarrow> x dvd z div y \<longleftrightarrow> x dvd z"
|
|
|
157 |
by (subst unit_ring_inv) (assumption, simp add: dvd_mult_unit_iff)
|
|
|
158 |
|
|
|
159 |
lemmas unit_dvd_iff = mult_unit_dvd_iff div_unit_dvd_iff dvd_mult_unit_iff dvd_div_unit_iff
|
|
|
160 |
|
|
|
161 |
lemma unit_div [intro]:
|
|
|
162 |
"is_unit x \<Longrightarrow> is_unit y \<Longrightarrow> is_unit (x div y)"
|
|
|
163 |
by (subst unit_ring_inv) (assumption, rule unit_prod, simp_all)
|
|
|
164 |
|
|
|
165 |
lemma unit_div_mult_swap:
|
|
|
166 |
"is_unit z \<Longrightarrow> x * (y div z) = x * y div z"
|
|
|
167 |
by (simp only: unit_ring_inv [of _ y] unit_ring_inv [of _ "x*y"] ac_simps)
|
|
|
168 |
|
|
|
169 |
lemma unit_div_commute:
|
|
|
170 |
"is_unit y \<Longrightarrow> x div y * z = x * z div y"
|
|
|
171 |
by (simp only: unit_ring_inv [of _ x] unit_ring_inv [of _ "x*z"] ac_simps)
|
|
|
172 |
|
|
|
173 |
lemma unit_imp_dvd [dest]:
|
|
|
174 |
"is_unit y \<Longrightarrow> y dvd x"
|
|
|
175 |
by (rule dvd_trans [of _ 1]) (simp_all add: is_unit_def)
|
|
|
176 |
|
|
|
177 |
lemma dvd_unit_imp_unit:
|
|
|
178 |
"is_unit y \<Longrightarrow> x dvd y \<Longrightarrow> is_unit x"
|
|
|
179 |
by (unfold is_unit_def) (rule dvd_trans)
|
|
|
180 |
|
|
|
181 |
lemma ring_inv_0 [simp]:
|
|
|
182 |
"ring_inv 0 = 0"
|
|
|
183 |
unfolding ring_inv_def by simp
|
|
|
184 |
|
|
|
185 |
lemma unit_ring_inv'1:
|
|
|
186 |
assumes "is_unit y"
|
|
|
187 |
shows "x div (y * z) = x * ring_inv y div z"
|
|
|
188 |
proof -
|
|
|
189 |
from assms have "x div (y * z) = x * (ring_inv y * y) div (y * z)"
|
|
|
190 |
by simp
|
|
|
191 |
also have "... = y * (x * ring_inv y) div (y * z)"
|
|
|
192 |
by (simp only: mult_ac)
|
|
|
193 |
also have "... = x * ring_inv y div z"
|
|
|
194 |
by (cases "y = 0", simp, rule div_mult_mult1)
|
|
|
195 |
finally show ?thesis .
|
|
|
196 |
qed
|
|
|
197 |
|
|
|
198 |
lemma associated_comm:
|
|
|
199 |
"associated x y \<Longrightarrow> associated y x"
|
|
|
200 |
by (simp add: associated_def)
|
|
|
201 |
|
|
|
202 |
lemma associated_0 [simp]:
|
|
|
203 |
"associated 0 b \<longleftrightarrow> b = 0"
|
|
|
204 |
"associated a 0 \<longleftrightarrow> a = 0"
|
|
|
205 |
unfolding associated_def by simp_all
|
|
|
206 |
|
|
|
207 |
lemma associated_unit:
|
|
|
208 |
"is_unit x \<Longrightarrow> associated x y \<Longrightarrow> is_unit y"
|
|
|
209 |
unfolding associated_def by (fast dest: dvd_unit_imp_unit)
|
|
|
210 |
|
|
|
211 |
lemma is_unit_1 [simp]:
|
|
|
212 |
"is_unit 1"
|
|
|
213 |
unfolding is_unit_def by simp
|
|
|
214 |
|
|
|
215 |
lemma not_is_unit_0 [simp]:
|
|
|
216 |
"\<not> is_unit 0"
|
|
|
217 |
unfolding is_unit_def by auto
|
|
|
218 |
|
|
|
219 |
lemma unit_mult_left_cancel:
|
|
|
220 |
assumes "is_unit x"
|
|
|
221 |
shows "(x * y) = (x * z) \<longleftrightarrow> y = z"
|
|
|
222 |
proof -
|
|
|
223 |
from assms have "x \<noteq> 0" by auto
|
|
|
224 |
then show ?thesis by (metis div_mult_self1_is_id)
|
|
|
225 |
qed
|
|
|
226 |
|
|
|
227 |
lemma unit_mult_right_cancel:
|
|
|
228 |
"is_unit x \<Longrightarrow> (y * x) = (z * x) \<longleftrightarrow> y = z"
|
|
|
229 |
by (simp add: ac_simps unit_mult_left_cancel)
|
|
|
230 |
|
|
|
231 |
lemma unit_div_cancel:
|
|
|
232 |
"is_unit x \<Longrightarrow> (y div x) = (z div x) \<longleftrightarrow> y = z"
|
|
|
233 |
apply (subst unit_ring_inv[of _ y], assumption)
|
|
|
234 |
apply (subst unit_ring_inv[of _ z], assumption)
|
|
|
235 |
apply (rule unit_mult_right_cancel, erule unit_ring_inv_unit)
|
|
|
236 |
done
|
|
|
237 |
|
|
|
238 |
lemma unit_eq_div1:
|
|
|
239 |
"is_unit y \<Longrightarrow> x div y = z \<longleftrightarrow> x = z * y"
|
|
|
240 |
apply (subst unit_ring_inv, assumption)
|
|
|
241 |
apply (subst unit_mult_right_cancel[symmetric], assumption)
|
|
|
242 |
apply (subst mult_assoc, subst ring_inv_is_inv2, assumption, simp)
|
|
|
243 |
done
|
|
|
244 |
|
|
|
245 |
lemma unit_eq_div2:
|
|
|
246 |
"is_unit y \<Longrightarrow> x = z div y \<longleftrightarrow> x * y = z"
|
|
|
247 |
by (subst (1 2) eq_commute, simp add: unit_eq_div1, subst eq_commute, rule refl)
|
|
|
248 |
|
|
|
249 |
lemma associated_iff_div_unit:
|
|
|
250 |
"associated x y \<longleftrightarrow> (\<exists>z. is_unit z \<and> x = z * y)"
|
|
|
251 |
proof
|
|
|
252 |
assume "associated x y"
|
|
|
253 |
show "\<exists>z. is_unit z \<and> x = z * y"
|
|
|
254 |
proof (cases "x = 0")
|
|
|
255 |
assume "x = 0"
|
|
|
256 |
then show "\<exists>z. is_unit z \<and> x = z * y" using `associated x y`
|
|
|
257 |
by (intro exI[of _ 1], simp add: associated_def)
|
|
|
258 |
next
|
|
|
259 |
assume [simp]: "x \<noteq> 0"
|
|
|
260 |
hence [simp]: "x dvd y" "y dvd x" using `associated x y`
|
|
|
261 |
unfolding associated_def by simp_all
|
|
|
262 |
hence "1 = x div y * (y div x)"
|
|
|
263 |
by (simp add: div_mult_swap dvd_div_mult_self)
|
|
|
264 |
hence "is_unit (x div y)" unfolding is_unit_def by (rule dvdI)
|
|
|
265 |
moreover have "x = (x div y) * y" by (simp add: dvd_div_mult_self)
|
|
|
266 |
ultimately show ?thesis by blast
|
|
|
267 |
qed
|
|
|
268 |
next
|
|
|
269 |
assume "\<exists>z. is_unit z \<and> x = z * y"
|
|
|
270 |
then obtain z where "is_unit z" and "x = z * y" by blast
|
|
|
271 |
hence "y = x * ring_inv z" by (simp add: algebra_simps)
|
|
|
272 |
hence "x dvd y" by simp
|
|
|
273 |
moreover from `x = z * y` have "y dvd x" by simp
|
|
|
274 |
ultimately show "associated x y" unfolding associated_def by simp
|
|
|
275 |
qed
|
|
|
276 |
|
|
|
277 |
lemmas unit_simps = mult_unit_dvd_iff div_unit_dvd_iff dvd_mult_unit_iff
|
|
|
278 |
dvd_div_unit_iff unit_div_mult_swap unit_div_commute
|
|
|
279 |
unit_mult_left_cancel unit_mult_right_cancel unit_div_cancel
|
|
|
280 |
unit_eq_div1 unit_eq_div2
|
|
|
281 |
|
|
|
282 |
end
|
|
|
283 |
|
|
|
284 |
context ring_div
|
|
|
285 |
begin
|
|
|
286 |
|
|
|
287 |
lemma is_unit_neg [simp]:
|
|
|
288 |
"is_unit (- x) \<Longrightarrow> is_unit x"
|
|
|
289 |
unfolding is_unit_def by simp
|
|
|
290 |
|
|
|
291 |
lemma is_unit_neg_1 [simp]:
|
|
|
292 |
"is_unit (-1)"
|
|
|
293 |
unfolding is_unit_def by simp
|
|
|
294 |
|
|
|
295 |
end
|
|
|
296 |
|
|
|
297 |
lemma is_unit_nat [simp]:
|
|
|
298 |
"is_unit (x::nat) \<longleftrightarrow> x = 1"
|
|
|
299 |
unfolding is_unit_def by simp
|
|
|
300 |
|
|
|
301 |
lemma is_unit_int:
|
|
|
302 |
"is_unit (x::int) \<longleftrightarrow> x = 1 \<or> x = -1"
|
|
|
303 |
unfolding is_unit_def by auto
|
|
|
304 |
|
|
|
305 |
text {*
|
|
|
306 |
A Euclidean semiring is a semiring upon which the Euclidean algorithm can be
|
|
|
307 |
implemented. It must provide:
|
|
|
308 |
\begin{itemize}
|
|
|
309 |
\item division with remainder
|
|
|
310 |
\item a size function such that @{term "size (a mod b) < size b"}
|
|
|
311 |
for any @{term "b \<noteq> 0"}
|
|
|
312 |
\item a normalisation factor such that two associated numbers are equal iff
|
|
|
313 |
they are the same when divided by their normalisation factors.
|
|
|
314 |
\end{itemize}
|
|
|
315 |
The existence of these functions makes it possible to derive gcd and lcm functions
|
|
|
316 |
for any Euclidean semiring.
|
|
|
317 |
*}
|
|
|
318 |
class euclidean_semiring = semiring_div +
|
|
|
319 |
fixes euclidean_size :: "'a \<Rightarrow> nat"
|
|
|
320 |
fixes normalisation_factor :: "'a \<Rightarrow> 'a"
|
|
|
321 |
assumes mod_size_less [simp]:
|
|
|
322 |
"b \<noteq> 0 \<Longrightarrow> euclidean_size (a mod b) < euclidean_size b"
|
|
|
323 |
assumes size_mult_mono:
|
|
|
324 |
"b \<noteq> 0 \<Longrightarrow> euclidean_size (a * b) \<ge> euclidean_size a"
|
|
|
325 |
assumes normalisation_factor_is_unit [intro,simp]:
|
|
|
326 |
"a \<noteq> 0 \<Longrightarrow> is_unit (normalisation_factor a)"
|
|
|
327 |
assumes normalisation_factor_mult: "normalisation_factor (a * b) =
|
|
|
328 |
normalisation_factor a * normalisation_factor b"
|
|
|
329 |
assumes normalisation_factor_unit: "is_unit x \<Longrightarrow> normalisation_factor x = x"
|
|
|
330 |
assumes normalisation_factor_0 [simp]: "normalisation_factor 0 = 0"
|
|
|
331 |
begin
|
|
|
332 |
|
|
|
333 |
lemma normalisation_factor_dvd [simp]:
|
|
|
334 |
"a \<noteq> 0 \<Longrightarrow> normalisation_factor a dvd b"
|
|
|
335 |
by (rule unit_imp_dvd, simp)
|
|
|
336 |
|
|
|
337 |
lemma normalisation_factor_1 [simp]:
|
|
|
338 |
"normalisation_factor 1 = 1"
|
|
|
339 |
by (simp add: normalisation_factor_unit)
|
|
|
340 |
|
|
|
341 |
lemma normalisation_factor_0_iff [simp]:
|
|
|
342 |
"normalisation_factor x = 0 \<longleftrightarrow> x = 0"
|
|
|
343 |
proof
|
|
|
344 |
assume "normalisation_factor x = 0"
|
|
|
345 |
hence "\<not> is_unit (normalisation_factor x)"
|
|
|
346 |
by (metis not_is_unit_0)
|
|
|
347 |
then show "x = 0" by force
|
|
|
348 |
next
|
|
|
349 |
assume "x = 0"
|
|
|
350 |
then show "normalisation_factor x = 0" by simp
|
|
|
351 |
qed
|
|
|
352 |
|
|
|
353 |
lemma normalisation_factor_pow:
|
|
|
354 |
"normalisation_factor (x ^ n) = normalisation_factor x ^ n"
|
|
|
355 |
by (induct n) (simp_all add: normalisation_factor_mult power_Suc2)
|
|
|
356 |
|
|
|
357 |
lemma normalisation_correct [simp]:
|
|
|
358 |
"normalisation_factor (x div normalisation_factor x) = (if x = 0 then 0 else 1)"
|
|
|
359 |
proof (cases "x = 0", simp)
|
|
|
360 |
assume "x \<noteq> 0"
|
|
|
361 |
let ?nf = "normalisation_factor"
|
|
|
362 |
from normalisation_factor_is_unit[OF `x \<noteq> 0`] have "?nf x \<noteq> 0"
|
|
|
363 |
by (metis not_is_unit_0)
|
|
|
364 |
have "?nf (x div ?nf x) * ?nf (?nf x) = ?nf (x div ?nf x * ?nf x)"
|
|
|
365 |
by (simp add: normalisation_factor_mult)
|
|
|
366 |
also have "x div ?nf x * ?nf x = x" using `x \<noteq> 0`
|
|
|
367 |
by (simp add: dvd_div_mult_self)
|
|
|
368 |
also have "?nf (?nf x) = ?nf x" using `x \<noteq> 0`
|
|
|
369 |
normalisation_factor_is_unit normalisation_factor_unit by simp
|
|
|
370 |
finally show ?thesis using `x \<noteq> 0` and `?nf x \<noteq> 0`
|
|
|
371 |
by (metis div_mult_self2_is_id div_self)
|
|
|
372 |
qed
|
|
|
373 |
|
|
|
374 |
lemma normalisation_0_iff [simp]:
|
|
|
375 |
"x div normalisation_factor x = 0 \<longleftrightarrow> x = 0"
|
|
|
376 |
by (cases "x = 0", simp, subst unit_eq_div1, blast, simp)
|
|
|
377 |
|
|
|
378 |
lemma associated_iff_normed_eq:
|
|
|
379 |
"associated a b \<longleftrightarrow> a div normalisation_factor a = b div normalisation_factor b"
|
|
|
380 |
proof (cases "b = 0", simp, cases "a = 0", metis associated_0(1) normalisation_0_iff, rule iffI)
|
|
|
381 |
let ?nf = normalisation_factor
|
|
|
382 |
assume "a \<noteq> 0" "b \<noteq> 0" "a div ?nf a = b div ?nf b"
|
|
|
383 |
hence "a = b * (?nf a div ?nf b)"
|
|
|
384 |
apply (subst (asm) unit_eq_div1, blast, subst (asm) unit_div_commute, blast)
|
|
|
385 |
apply (subst div_mult_swap, simp, simp)
|
|
|
386 |
done
|
|
|
387 |
with `a \<noteq> 0` `b \<noteq> 0` have "\<exists>z. is_unit z \<and> a = z * b"
|
|
|
388 |
by (intro exI[of _ "?nf a div ?nf b"], force simp: mult_ac)
|
|
|
389 |
with associated_iff_div_unit show "associated a b" by simp
|
|
|
390 |
next
|
|
|
391 |
let ?nf = normalisation_factor
|
|
|
392 |
assume "a \<noteq> 0" "b \<noteq> 0" "associated a b"
|
|
|
393 |
with associated_iff_div_unit obtain z where "is_unit z" and "a = z * b" by blast
|
|
|
394 |
then show "a div ?nf a = b div ?nf b"
|
|
|
395 |
apply (simp only: `a = z * b` normalisation_factor_mult normalisation_factor_unit)
|
|
|
396 |
apply (rule div_mult_mult1, force)
|
|
|
397 |
done
|
|
|
398 |
qed
|
|
|
399 |
|
|
|
400 |
lemma normed_associated_imp_eq:
|
|
|
401 |
"associated a b \<Longrightarrow> normalisation_factor a \<in> {0, 1} \<Longrightarrow> normalisation_factor b \<in> {0, 1} \<Longrightarrow> a = b"
|
|
|
402 |
by (simp add: associated_iff_normed_eq, elim disjE, simp_all)
|
|
|
403 |
|
|
|
404 |
lemmas normalisation_factor_dvd_iff [simp] =
|
|
|
405 |
unit_dvd_iff [OF normalisation_factor_is_unit]
|
|
|
406 |
|
|
|
407 |
lemma euclidean_division:
|
|
|
408 |
fixes a :: 'a and b :: 'a
|
|
|
409 |
assumes "b \<noteq> 0"
|
|
|
410 |
obtains s and t where "a = s * b + t"
|
|
|
411 |
and "euclidean_size t < euclidean_size b"
|
|
|
412 |
proof -
|
|
|
413 |
from div_mod_equality[of a b 0]
|
|
|
414 |
have "a = a div b * b + a mod b" by simp
|
|
|
415 |
with that and assms show ?thesis by force
|
|
|
416 |
qed
|
|
|
417 |
|
|
|
418 |
lemma dvd_euclidean_size_eq_imp_dvd:
|
|
|
419 |
assumes "a \<noteq> 0" and b_dvd_a: "b dvd a" and size_eq: "euclidean_size a = euclidean_size b"
|
|
|
420 |
shows "a dvd b"
|
|
|
421 |
proof (subst dvd_eq_mod_eq_0, rule ccontr)
|
|
|
422 |
assume "b mod a \<noteq> 0"
|
|
|
423 |
from b_dvd_a have b_dvd_mod: "b dvd b mod a" by (simp add: dvd_mod_iff)
|
|
|
424 |
from b_dvd_mod obtain c where "b mod a = b * c" unfolding dvd_def by blast
|
|
|
425 |
with `b mod a \<noteq> 0` have "c \<noteq> 0" by auto
|
|
|
426 |
with `b mod a = b * c` have "euclidean_size (b mod a) \<ge> euclidean_size b"
|
|
|
427 |
using size_mult_mono by force
|
|
|
428 |
moreover from `a \<noteq> 0` have "euclidean_size (b mod a) < euclidean_size a"
|
|
|
429 |
using mod_size_less by blast
|
|
|
430 |
ultimately show False using size_eq by simp
|
|
|
431 |
qed
|
|
|
432 |
|
|
|
433 |
function gcd_eucl :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
|
|
|
434 |
where
|
|
|
435 |
"gcd_eucl a b = (if b = 0 then a div normalisation_factor a else gcd_eucl b (a mod b))"
|
|
|
436 |
by (pat_completeness, simp)
|
|
|
437 |
termination by (relation "measure (euclidean_size \<circ> snd)", simp_all)
|
|
|
438 |
|
|
|
439 |
declare gcd_eucl.simps [simp del]
|
|
|
440 |
|
|
|
441 |
lemma gcd_induct: "\<lbrakk>\<And>b. P b 0; \<And>a b. 0 \<noteq> b \<Longrightarrow> P b (a mod b) \<Longrightarrow> P a b\<rbrakk> \<Longrightarrow> P a b"
|
|
|
442 |
proof (induct a b rule: gcd_eucl.induct)
|
|
|
443 |
case ("1" m n)
|
|
|
444 |
then show ?case by (cases "n = 0") auto
|
|
|
445 |
qed
|
|
|
446 |
|
|
|
447 |
definition lcm_eucl :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
|
|
|
448 |
where
|
|
|
449 |
"lcm_eucl a b = a * b div (gcd_eucl a b * normalisation_factor (a * b))"
|
|
|
450 |
|
|
|
451 |
(* Somewhat complicated definition of Lcm that has the advantage of working
|
|
|
452 |
for infinite sets as well *)
|
|
|
453 |
|
|
|
454 |
definition Lcm_eucl :: "'a set \<Rightarrow> 'a"
|
|
|
455 |
where
|
|
|
456 |
"Lcm_eucl A = (if \<exists>l. l \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l) then
|
|
|
457 |
let l = SOME l. l \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l) \<and> euclidean_size l =
|
|
|
458 |
(LEAST n. \<exists>l. l \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l) \<and> euclidean_size l = n)
|
|
|
459 |
in l div normalisation_factor l
|
|
|
460 |
else 0)"
|
|
|
461 |
|
|
|
462 |
definition Gcd_eucl :: "'a set \<Rightarrow> 'a"
|
|
|
463 |
where
|
|
|
464 |
"Gcd_eucl A = Lcm_eucl {d. \<forall>a\<in>A. d dvd a}"
|
|
|
465 |
|
|
|
466 |
end
|
|
|
467 |
|
|
|
468 |
class euclidean_semiring_gcd = euclidean_semiring + gcd + Gcd +
|
|
|
469 |
assumes gcd_gcd_eucl: "gcd = gcd_eucl" and lcm_lcm_eucl: "lcm = lcm_eucl"
|
|
|
470 |
assumes Gcd_Gcd_eucl: "Gcd = Gcd_eucl" and Lcm_Lcm_eucl: "Lcm = Lcm_eucl"
|
|
|
471 |
begin
|
|
|
472 |
|
|
|
473 |
lemma gcd_red:
|
|
|
474 |
"gcd x y = gcd y (x mod y)"
|
|
|
475 |
by (metis gcd_eucl.simps mod_0 mod_by_0 gcd_gcd_eucl)
|
|
|
476 |
|
|
|
477 |
lemma gcd_non_0:
|
|
|
478 |
"y \<noteq> 0 \<Longrightarrow> gcd x y = gcd y (x mod y)"
|
|
|
479 |
by (rule gcd_red)
|
|
|
480 |
|
|
|
481 |
lemma gcd_0_left:
|
|
|
482 |
"gcd 0 x = x div normalisation_factor x"
|
|
|
483 |
by (simp only: gcd_gcd_eucl, subst gcd_eucl.simps, subst gcd_eucl.simps, simp add: Let_def)
|
|
|
484 |
|
|
|
485 |
lemma gcd_0:
|
|
|
486 |
"gcd x 0 = x div normalisation_factor x"
|
|
|
487 |
by (simp only: gcd_gcd_eucl, subst gcd_eucl.simps, simp add: Let_def)
|
|
|
488 |
|
|
|
489 |
lemma gcd_dvd1 [iff]: "gcd x y dvd x"
|
|
|
490 |
and gcd_dvd2 [iff]: "gcd x y dvd y"
|
|
|
491 |
proof (induct x y rule: gcd_eucl.induct)
|
|
|
492 |
fix x y :: 'a
|
|
|
493 |
assume IH1: "y \<noteq> 0 \<Longrightarrow> gcd y (x mod y) dvd y"
|
|
|
494 |
assume IH2: "y \<noteq> 0 \<Longrightarrow> gcd y (x mod y) dvd (x mod y)"
|
|
|
495 |
|
|
|
496 |
have "gcd x y dvd x \<and> gcd x y dvd y"
|
|
|
497 |
proof (cases "y = 0")
|
|
|
498 |
case True
|
|
|
499 |
then show ?thesis by (cases "x = 0", simp_all add: gcd_0)
|
|
|
500 |
next
|
|
|
501 |
case False
|
|
|
502 |
with IH1 and IH2 show ?thesis by (simp add: gcd_non_0 dvd_mod_iff)
|
|
|
503 |
qed
|
|
|
504 |
then show "gcd x y dvd x" "gcd x y dvd y" by simp_all
|
|
|
505 |
qed
|
|
|
506 |
|
|
|
507 |
lemma dvd_gcd_D1: "k dvd gcd m n \<Longrightarrow> k dvd m"
|
|
|
508 |
by (rule dvd_trans, assumption, rule gcd_dvd1)
|
|
|
509 |
|
|
|
510 |
lemma dvd_gcd_D2: "k dvd gcd m n \<Longrightarrow> k dvd n"
|
|
|
511 |
by (rule dvd_trans, assumption, rule gcd_dvd2)
|
|
|
512 |
|
|
|
513 |
lemma gcd_greatest:
|
|
|
514 |
fixes k x y :: 'a
|
|
|
515 |
shows "k dvd x \<Longrightarrow> k dvd y \<Longrightarrow> k dvd gcd x y"
|
|
|
516 |
proof (induct x y rule: gcd_eucl.induct)
|
|
|
517 |
case (1 x y)
|
|
|
518 |
show ?case
|
|
|
519 |
proof (cases "y = 0")
|
|
|
520 |
assume "y = 0"
|
|
|
521 |
with 1 show ?thesis by (cases "x = 0", simp_all add: gcd_0)
|
|
|
522 |
next
|
|
|
523 |
assume "y \<noteq> 0"
|
|
|
524 |
with 1 show ?thesis by (simp add: gcd_non_0 dvd_mod_iff)
|
|
|
525 |
qed
|
|
|
526 |
qed
|
|
|
527 |
|
|
|
528 |
lemma dvd_gcd_iff:
|
|
|
529 |
"k dvd gcd x y \<longleftrightarrow> k dvd x \<and> k dvd y"
|
|
|
530 |
by (blast intro!: gcd_greatest intro: dvd_trans)
|
|
|
531 |
|
|
|
532 |
lemmas gcd_greatest_iff = dvd_gcd_iff
|
|
|
533 |
|
|
|
534 |
lemma gcd_zero [simp]:
|
|
|
535 |
"gcd x y = 0 \<longleftrightarrow> x = 0 \<and> y = 0"
|
|
|
536 |
by (metis dvd_0_left dvd_refl gcd_dvd1 gcd_dvd2 gcd_greatest)+
|
|
|
537 |
|
|
|
538 |
lemma normalisation_factor_gcd [simp]:
|
|
|
539 |
"normalisation_factor (gcd x y) = (if x = 0 \<and> y = 0 then 0 else 1)" (is "?f x y = ?g x y")
|
|
|
540 |
proof (induct x y rule: gcd_eucl.induct)
|
|
|
541 |
fix x y :: 'a
|
|
|
542 |
assume IH: "y \<noteq> 0 \<Longrightarrow> ?f y (x mod y) = ?g y (x mod y)"
|
|
|
543 |
then show "?f x y = ?g x y" by (cases "y = 0", auto simp: gcd_non_0 gcd_0)
|
|
|
544 |
qed
|
|
|
545 |
|
|
|
546 |
lemma gcdI:
|
|
|
547 |
"k dvd x \<Longrightarrow> k dvd y \<Longrightarrow> (\<And>l. l dvd x \<Longrightarrow> l dvd y \<Longrightarrow> l dvd k)
|
|
|
548 |
\<Longrightarrow> normalisation_factor k = (if k = 0 then 0 else 1) \<Longrightarrow> k = gcd x y"
|
|
|
549 |
by (intro normed_associated_imp_eq) (auto simp: associated_def intro: gcd_greatest)
|
|
|
550 |
|
|
|
551 |
sublocale gcd!: abel_semigroup gcd
|
|
|
552 |
proof
|
|
|
553 |
fix x y z
|
|
|
554 |
show "gcd (gcd x y) z = gcd x (gcd y z)"
|
|
|
555 |
proof (rule gcdI)
|
|
|
556 |
have "gcd (gcd x y) z dvd gcd x y" "gcd x y dvd x" by simp_all
|
|
|
557 |
then show "gcd (gcd x y) z dvd x" by (rule dvd_trans)
|
|
|
558 |
have "gcd (gcd x y) z dvd gcd x y" "gcd x y dvd y" by simp_all
|
|
|
559 |
hence "gcd (gcd x y) z dvd y" by (rule dvd_trans)
|
|
|
560 |
moreover have "gcd (gcd x y) z dvd z" by simp
|
|
|
561 |
ultimately show "gcd (gcd x y) z dvd gcd y z"
|
|
|
562 |
by (rule gcd_greatest)
|
|
|
563 |
show "normalisation_factor (gcd (gcd x y) z) = (if gcd (gcd x y) z = 0 then 0 else 1)"
|
|
|
564 |
by auto
|
|
|
565 |
fix l assume "l dvd x" and "l dvd gcd y z"
|
|
|
566 |
with dvd_trans[OF _ gcd_dvd1] and dvd_trans[OF _ gcd_dvd2]
|
|
|
567 |
have "l dvd y" and "l dvd z" by blast+
|
|
|
568 |
with `l dvd x` show "l dvd gcd (gcd x y) z"
|
|
|
569 |
by (intro gcd_greatest)
|
|
|
570 |
qed
|
|
|
571 |
next
|
|
|
572 |
fix x y
|
|
|
573 |
show "gcd x y = gcd y x"
|
|
|
574 |
by (rule gcdI) (simp_all add: gcd_greatest)
|
|
|
575 |
qed
|
|
|
576 |
|
|
|
577 |
lemma gcd_unique: "d dvd a \<and> d dvd b \<and>
|
|
|
578 |
normalisation_factor d = (if d = 0 then 0 else 1) \<and>
|
|
|
579 |
(\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
|
|
|
580 |
by (rule, auto intro: gcdI simp: gcd_greatest)
|
|
|
581 |
|
|
|
582 |
lemma gcd_dvd_prod: "gcd a b dvd k * b"
|
|
|
583 |
using mult_dvd_mono [of 1] by auto
|
|
|
584 |
|
|
|
585 |
lemma gcd_1_left [simp]: "gcd 1 x = 1"
|
|
|
586 |
by (rule sym, rule gcdI, simp_all)
|
|
|
587 |
|
|
|
588 |
lemma gcd_1 [simp]: "gcd x 1 = 1"
|
|
|
589 |
by (rule sym, rule gcdI, simp_all)
|
|
|
590 |
|
|
|
591 |
lemma gcd_proj2_if_dvd:
|
|
|
592 |
"y dvd x \<Longrightarrow> gcd x y = y div normalisation_factor y"
|
|
|
593 |
by (cases "y = 0", simp_all add: dvd_eq_mod_eq_0 gcd_non_0 gcd_0)
|
|
|
594 |
|
|
|
595 |
lemma gcd_proj1_if_dvd:
|
|
|
596 |
"x dvd y \<Longrightarrow> gcd x y = x div normalisation_factor x"
|
|
|
597 |
by (subst gcd.commute, simp add: gcd_proj2_if_dvd)
|
|
|
598 |
|
|
|
599 |
lemma gcd_proj1_iff: "gcd m n = m div normalisation_factor m \<longleftrightarrow> m dvd n"
|
|
|
600 |
proof
|
|
|
601 |
assume A: "gcd m n = m div normalisation_factor m"
|
|
|
602 |
show "m dvd n"
|
|
|
603 |
proof (cases "m = 0")
|
|
|
604 |
assume [simp]: "m \<noteq> 0"
|
|
|
605 |
from A have B: "m = gcd m n * normalisation_factor m"
|
|
|
606 |
by (simp add: unit_eq_div2)
|
|
|
607 |
show ?thesis by (subst B, simp add: mult_unit_dvd_iff)
|
|
|
608 |
qed (insert A, simp)
|
|
|
609 |
next
|
|
|
610 |
assume "m dvd n"
|
|
|
611 |
then show "gcd m n = m div normalisation_factor m" by (rule gcd_proj1_if_dvd)
|
|
|
612 |
qed
|
|
|
613 |
|
|
|
614 |
lemma gcd_proj2_iff: "gcd m n = n div normalisation_factor n \<longleftrightarrow> n dvd m"
|
|
|
615 |
by (subst gcd.commute, simp add: gcd_proj1_iff)
|
|
|
616 |
|
|
|
617 |
lemma gcd_mod1 [simp]:
|
|
|
618 |
"gcd (x mod y) y = gcd x y"
|
|
|
619 |
by (rule gcdI, metis dvd_mod_iff gcd_dvd1 gcd_dvd2, simp_all add: gcd_greatest dvd_mod_iff)
|
|
|
620 |
|
|
|
621 |
lemma gcd_mod2 [simp]:
|
|
|
622 |
"gcd x (y mod x) = gcd x y"
|
|
|
623 |
by (rule gcdI, simp, metis dvd_mod_iff gcd_dvd1 gcd_dvd2, simp_all add: gcd_greatest dvd_mod_iff)
|
|
|
624 |
|
|
|
625 |
lemma normalisation_factor_dvd' [simp]:
|
|
|
626 |
"normalisation_factor x dvd x"
|
|
|
627 |
by (cases "x = 0", simp_all)
|
|
|
628 |
|
|
|
629 |
lemma gcd_mult_distrib':
|
|
|
630 |
"k div normalisation_factor k * gcd x y = gcd (k*x) (k*y)"
|
|
|
631 |
proof (induct x y rule: gcd_eucl.induct)
|
|
|
632 |
case (1 x y)
|
|
|
633 |
show ?case
|
|
|
634 |
proof (cases "y = 0")
|
|
|
635 |
case True
|
|
|
636 |
then show ?thesis by (simp add: normalisation_factor_mult gcd_0 algebra_simps div_mult_div_if_dvd)
|
|
|
637 |
next
|
|
|
638 |
case False
|
|
|
639 |
hence "k div normalisation_factor k * gcd x y = gcd (k * y) (k * (x mod y))"
|
|
|
640 |
using 1 by (subst gcd_red, simp)
|
|
|
641 |
also have "... = gcd (k * x) (k * y)"
|
|
|
642 |
by (simp add: mult_mod_right gcd.commute)
|
|
|
643 |
finally show ?thesis .
|
|
|
644 |
qed
|
|
|
645 |
qed
|
|
|
646 |
|
|
|
647 |
lemma gcd_mult_distrib:
|
|
|
648 |
"k * gcd x y = gcd (k*x) (k*y) * normalisation_factor k"
|
|
|
649 |
proof-
|
|
|
650 |
let ?nf = "normalisation_factor"
|
|
|
651 |
from gcd_mult_distrib'
|
|
|
652 |
have "gcd (k*x) (k*y) = k div ?nf k * gcd x y" ..
|
|
|
653 |
also have "... = k * gcd x y div ?nf k"
|
|
|
654 |
by (metis dvd_div_mult dvd_eq_mod_eq_0 mod_0 normalisation_factor_dvd)
|
|
|
655 |
finally show ?thesis
|
|
|
656 |
by (simp add: ac_simps dvd_mult_div_cancel)
|
|
|
657 |
qed
|
|
|
658 |
|
|
|
659 |
lemma euclidean_size_gcd_le1 [simp]:
|
|
|
660 |
assumes "a \<noteq> 0"
|
|
|
661 |
shows "euclidean_size (gcd a b) \<le> euclidean_size a"
|
|
|
662 |
proof -
|
|
|
663 |
have "gcd a b dvd a" by (rule gcd_dvd1)
|
|
|
664 |
then obtain c where A: "a = gcd a b * c" unfolding dvd_def by blast
|
|
|
665 |
with `a \<noteq> 0` show ?thesis by (subst (2) A, intro size_mult_mono) auto
|
|
|
666 |
qed
|
|
|
667 |
|
|
|
668 |
lemma euclidean_size_gcd_le2 [simp]:
|
|
|
669 |
"b \<noteq> 0 \<Longrightarrow> euclidean_size (gcd a b) \<le> euclidean_size b"
|
|
|
670 |
by (subst gcd.commute, rule euclidean_size_gcd_le1)
|
|
|
671 |
|
|
|
672 |
lemma euclidean_size_gcd_less1:
|
|
|
673 |
assumes "a \<noteq> 0" and "\<not>a dvd b"
|
|
|
674 |
shows "euclidean_size (gcd a b) < euclidean_size a"
|
|
|
675 |
proof (rule ccontr)
|
|
|
676 |
assume "\<not>euclidean_size (gcd a b) < euclidean_size a"
|
|
|
677 |
with `a \<noteq> 0` have "euclidean_size (gcd a b) = euclidean_size a"
|
|
|
678 |
by (intro le_antisym, simp_all)
|
|
|
679 |
with assms have "a dvd gcd a b" by (auto intro: dvd_euclidean_size_eq_imp_dvd)
|
|
|
680 |
hence "a dvd b" using dvd_gcd_D2 by blast
|
|
|
681 |
with `\<not>a dvd b` show False by contradiction
|
|
|
682 |
qed
|
|
|
683 |
|
|
|
684 |
lemma euclidean_size_gcd_less2:
|
|
|
685 |
assumes "b \<noteq> 0" and "\<not>b dvd a"
|
|
|
686 |
shows "euclidean_size (gcd a b) < euclidean_size b"
|
|
|
687 |
using assms by (subst gcd.commute, rule euclidean_size_gcd_less1)
|
|
|
688 |
|
|
|
689 |
lemma gcd_mult_unit1: "is_unit a \<Longrightarrow> gcd (x*a) y = gcd x y"
|
|
|
690 |
apply (rule gcdI)
|
|
|
691 |
apply (rule dvd_trans, rule gcd_dvd1, simp add: unit_simps)
|
|
|
692 |
apply (rule gcd_dvd2)
|
|
|
693 |
apply (rule gcd_greatest, simp add: unit_simps, assumption)
|
|
|
694 |
apply (subst normalisation_factor_gcd, simp add: gcd_0)
|
|
|
695 |
done
|
|
|
696 |
|
|
|
697 |
lemma gcd_mult_unit2: "is_unit a \<Longrightarrow> gcd x (y*a) = gcd x y"
|
|
|
698 |
by (subst gcd.commute, subst gcd_mult_unit1, assumption, rule gcd.commute)
|
|
|
699 |
|
|
|
700 |
lemma gcd_div_unit1: "is_unit a \<Longrightarrow> gcd (x div a) y = gcd x y"
|
|
|
701 |
by (simp add: unit_ring_inv gcd_mult_unit1)
|
|
|
702 |
|
|
|
703 |
lemma gcd_div_unit2: "is_unit a \<Longrightarrow> gcd x (y div a) = gcd x y"
|
|
|
704 |
by (simp add: unit_ring_inv gcd_mult_unit2)
|
|
|
705 |
|
|
|
706 |
lemma gcd_idem: "gcd x x = x div normalisation_factor x"
|
|
|
707 |
by (cases "x = 0") (simp add: gcd_0_left, rule sym, rule gcdI, simp_all)
|
|
|
708 |
|
|
|
709 |
lemma gcd_right_idem: "gcd (gcd p q) q = gcd p q"
|
|
|
710 |
apply (rule gcdI)
|
|
|
711 |
apply (simp add: ac_simps)
|
|
|
712 |
apply (rule gcd_dvd2)
|
|
|
713 |
apply (rule gcd_greatest, erule (1) gcd_greatest, assumption)
|
|
|
714 |
apply (simp add: gcd_zero)
|
|
|
715 |
done
|
|
|
716 |
|
|
|
717 |
lemma gcd_left_idem: "gcd p (gcd p q) = gcd p q"
|
|
|
718 |
apply (rule gcdI)
|
|
|
719 |
apply simp
|
|
|
720 |
apply (rule dvd_trans, rule gcd_dvd2, rule gcd_dvd2)
|
|
|
721 |
apply (rule gcd_greatest, assumption, erule gcd_greatest, assumption)
|
|
|
722 |
apply (simp add: gcd_zero)
|
|
|
723 |
done
|
|
|
724 |
|
|
|
725 |
lemma comp_fun_idem_gcd: "comp_fun_idem gcd"
|
|
|
726 |
proof
|
|
|
727 |
fix a b show "gcd a \<circ> gcd b = gcd b \<circ> gcd a"
|
|
|
728 |
by (simp add: fun_eq_iff ac_simps)
|
|
|
729 |
next
|
|
|
730 |
fix a show "gcd a \<circ> gcd a = gcd a"
|
|
|
731 |
by (simp add: fun_eq_iff gcd_left_idem)
|
|
|
732 |
qed
|
|
|
733 |
|
|
|
734 |
lemma coprime_dvd_mult:
|
|
|
735 |
assumes "gcd k n = 1" and "k dvd m * n"
|
|
|
736 |
shows "k dvd m"
|
|
|
737 |
proof -
|
|
|
738 |
let ?nf = "normalisation_factor"
|
|
|
739 |
from assms gcd_mult_distrib [of m k n]
|
|
|
740 |
have A: "m = gcd (m * k) (m * n) * ?nf m" by simp
|
|
|
741 |
from `k dvd m * n` show ?thesis by (subst A, simp_all add: gcd_greatest)
|
|
|
742 |
qed
|
|
|
743 |
|
|
|
744 |
lemma coprime_dvd_mult_iff:
|
|
|
745 |
"gcd k n = 1 \<Longrightarrow> (k dvd m * n) = (k dvd m)"
|
|
|
746 |
by (rule, rule coprime_dvd_mult, simp_all)
|
|
|
747 |
|
|
|
748 |
lemma gcd_dvd_antisym:
|
|
|
749 |
"gcd a b dvd gcd c d \<Longrightarrow> gcd c d dvd gcd a b \<Longrightarrow> gcd a b = gcd c d"
|
|
|
750 |
proof (rule gcdI)
|
|
|
751 |
assume A: "gcd a b dvd gcd c d" and B: "gcd c d dvd gcd a b"
|
|
|
752 |
have "gcd c d dvd c" by simp
|
|
|
753 |
with A show "gcd a b dvd c" by (rule dvd_trans)
|
|
|
754 |
have "gcd c d dvd d" by simp
|
|
|
755 |
with A show "gcd a b dvd d" by (rule dvd_trans)
|
|
|
756 |
show "normalisation_factor (gcd a b) = (if gcd a b = 0 then 0 else 1)"
|
|
|
757 |
by (simp add: gcd_zero)
|
|
|
758 |
fix l assume "l dvd c" and "l dvd d"
|
|
|
759 |
hence "l dvd gcd c d" by (rule gcd_greatest)
|
|
|
760 |
from this and B show "l dvd gcd a b" by (rule dvd_trans)
|
|
|
761 |
qed
|
|
|
762 |
|
|
|
763 |
lemma gcd_mult_cancel:
|
|
|
764 |
assumes "gcd k n = 1"
|
|
|
765 |
shows "gcd (k * m) n = gcd m n"
|
|
|
766 |
proof (rule gcd_dvd_antisym)
|
|
|
767 |
have "gcd (gcd (k * m) n) k = gcd (gcd k n) (k * m)" by (simp add: ac_simps)
|
|
|
768 |
also note `gcd k n = 1`
|
|
|
769 |
finally have "gcd (gcd (k * m) n) k = 1" by simp
|
|
|
770 |
hence "gcd (k * m) n dvd m" by (rule coprime_dvd_mult, simp add: ac_simps)
|
|
|
771 |
moreover have "gcd (k * m) n dvd n" by simp
|
|
|
772 |
ultimately show "gcd (k * m) n dvd gcd m n" by (rule gcd_greatest)
|
|
|
773 |
have "gcd m n dvd (k * m)" and "gcd m n dvd n" by simp_all
|
|
|
774 |
then show "gcd m n dvd gcd (k * m) n" by (rule gcd_greatest)
|
|
|
775 |
qed
|
|
|
776 |
|
|
|
777 |
lemma coprime_crossproduct:
|
|
|
778 |
assumes [simp]: "gcd a d = 1" "gcd b c = 1"
|
|
|
779 |
shows "associated (a * c) (b * d) \<longleftrightarrow> associated a b \<and> associated c d" (is "?lhs \<longleftrightarrow> ?rhs")
|
|
|
780 |
proof
|
|
|
781 |
assume ?rhs then show ?lhs unfolding associated_def by (fast intro: mult_dvd_mono)
|
|
|
782 |
next
|
|
|
783 |
assume ?lhs
|
|
|
784 |
from `?lhs` have "a dvd b * d" unfolding associated_def by (metis dvd_mult_left)
|
|
|
785 |
hence "a dvd b" by (simp add: coprime_dvd_mult_iff)
|
|
|
786 |
moreover from `?lhs` have "b dvd a * c" unfolding associated_def by (metis dvd_mult_left)
|
|
|
787 |
hence "b dvd a" by (simp add: coprime_dvd_mult_iff)
|
|
|
788 |
moreover from `?lhs` have "c dvd d * b"
|
|
|
789 |
unfolding associated_def by (metis dvd_mult_right ac_simps)
|
|
|
790 |
hence "c dvd d" by (simp add: coprime_dvd_mult_iff gcd.commute)
|
|
|
791 |
moreover from `?lhs` have "d dvd c * a"
|
|
|
792 |
unfolding associated_def by (metis dvd_mult_right ac_simps)
|
|
|
793 |
hence "d dvd c" by (simp add: coprime_dvd_mult_iff gcd.commute)
|
|
|
794 |
ultimately show ?rhs unfolding associated_def by simp
|
|
|
795 |
qed
|
|
|
796 |
|
|
|
797 |
lemma gcd_add1 [simp]:
|
|
|
798 |
"gcd (m + n) n = gcd m n"
|
|
|
799 |
by (cases "n = 0", simp_all add: gcd_non_0)
|
|
|
800 |
|
|
|
801 |
lemma gcd_add2 [simp]:
|
|
|
802 |
"gcd m (m + n) = gcd m n"
|
|
|
803 |
using gcd_add1 [of n m] by (simp add: ac_simps)
|
|
|
804 |
|
|
|
805 |
lemma gcd_add_mult: "gcd m (k * m + n) = gcd m n"
|
|
|
806 |
by (subst gcd.commute, subst gcd_red, simp)
|
|
|
807 |
|
|
|
808 |
lemma coprimeI: "(\<And>l. \<lbrakk>l dvd x; l dvd y\<rbrakk> \<Longrightarrow> l dvd 1) \<Longrightarrow> gcd x y = 1"
|
|
|
809 |
by (rule sym, rule gcdI, simp_all)
|
|
|
810 |
|
|
|
811 |
lemma coprime: "gcd a b = 1 \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> is_unit d)"
|
|
|
812 |
by (auto simp: is_unit_def intro: coprimeI gcd_greatest dvd_gcd_D1 dvd_gcd_D2)
|
|
|
813 |
|
|
|
814 |
lemma div_gcd_coprime:
|
|
|
815 |
assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0"
|
|
|
816 |
defines [simp]: "d \<equiv> gcd a b"
|
|
|
817 |
defines [simp]: "a' \<equiv> a div d" and [simp]: "b' \<equiv> b div d"
|
|
|
818 |
shows "gcd a' b' = 1"
|
|
|
819 |
proof (rule coprimeI)
|
|
|
820 |
fix l assume "l dvd a'" "l dvd b'"
|
|
|
821 |
then obtain s t where "a' = l * s" "b' = l * t" unfolding dvd_def by blast
|
|
|
822 |
moreover have "a = a' * d" "b = b' * d" by (simp_all add: dvd_div_mult_self)
|
|
|
823 |
ultimately have "a = (l * d) * s" "b = (l * d) * t"
|
|
|
824 |
by (metis ac_simps)+
|
|
|
825 |
hence "l*d dvd a" and "l*d dvd b" by (simp_all only: dvd_triv_left)
|
|
|
826 |
hence "l*d dvd d" by (simp add: gcd_greatest)
|
|
|
827 |
then obtain u where "u * l * d = d" unfolding dvd_def
|
|
|
828 |
by (metis ac_simps mult_assoc)
|
|
|
829 |
moreover from nz have "d \<noteq> 0" by (simp add: gcd_zero)
|
|
|
830 |
ultimately have "u * l = 1"
|
|
|
831 |
by (metis div_mult_self1_is_id div_self ac_simps)
|
|
|
832 |
then show "l dvd 1" by force
|
|
|
833 |
qed
|
|
|
834 |
|
|
|
835 |
lemma coprime_mult:
|
|
|
836 |
assumes da: "gcd d a = 1" and db: "gcd d b = 1"
|
|
|
837 |
shows "gcd d (a * b) = 1"
|
|
|
838 |
apply (subst gcd.commute)
|
|
|
839 |
using da apply (subst gcd_mult_cancel)
|
|
|
840 |
apply (subst gcd.commute, assumption)
|
|
|
841 |
apply (subst gcd.commute, rule db)
|
|
|
842 |
done
|
|
|
843 |
|
|
|
844 |
lemma coprime_lmult:
|
|
|
845 |
assumes dab: "gcd d (a * b) = 1"
|
|
|
846 |
shows "gcd d a = 1"
|
|
|
847 |
proof (rule coprimeI)
|
|
|
848 |
fix l assume "l dvd d" and "l dvd a"
|
|
|
849 |
hence "l dvd a * b" by simp
|
|
|
850 |
with `l dvd d` and dab show "l dvd 1" by (auto intro: gcd_greatest)
|
|
|
851 |
qed
|
|
|
852 |
|
|
|
853 |
lemma coprime_rmult:
|
|
|
854 |
assumes dab: "gcd d (a * b) = 1"
|
|
|
855 |
shows "gcd d b = 1"
|
|
|
856 |
proof (rule coprimeI)
|
|
|
857 |
fix l assume "l dvd d" and "l dvd b"
|
|
|
858 |
hence "l dvd a * b" by simp
|
|
|
859 |
with `l dvd d` and dab show "l dvd 1" by (auto intro: gcd_greatest)
|
|
|
860 |
qed
|
|
|
861 |
|
|
|
862 |
lemma coprime_mul_eq: "gcd d (a * b) = 1 \<longleftrightarrow> gcd d a = 1 \<and> gcd d b = 1"
|
|
|
863 |
using coprime_rmult[of d a b] coprime_lmult[of d a b] coprime_mult[of d a b] by blast
|
|
|
864 |
|
|
|
865 |
lemma gcd_coprime:
|
|
|
866 |
assumes z: "gcd a b \<noteq> 0" and a: "a = a' * gcd a b" and b: "b = b' * gcd a b"
|
|
|
867 |
shows "gcd a' b' = 1"
|
|
|
868 |
proof -
|
|
|
869 |
from z have "a \<noteq> 0 \<or> b \<noteq> 0" by (simp add: gcd_zero)
|
|
|
870 |
with div_gcd_coprime have "gcd (a div gcd a b) (b div gcd a b) = 1" .
|
|
|
871 |
also from assms have "a div gcd a b = a'" by (metis div_mult_self2_is_id)+
|
|
|
872 |
also from assms have "b div gcd a b = b'" by (metis div_mult_self2_is_id)+
|
|
|
873 |
finally show ?thesis .
|
|
|
874 |
qed
|
|
|
875 |
|
|
|
876 |
lemma coprime_power:
|
|
|
877 |
assumes "0 < n"
|
|
|
878 |
shows "gcd a (b ^ n) = 1 \<longleftrightarrow> gcd a b = 1"
|
|
|
879 |
using assms proof (induct n)
|
|
|
880 |
case (Suc n) then show ?case
|
|
|
881 |
by (cases n) (simp_all add: coprime_mul_eq)
|
|
|
882 |
qed simp
|
|
|
883 |
|
|
|
884 |
lemma gcd_coprime_exists:
|
|
|
885 |
assumes nz: "gcd a b \<noteq> 0"
|
|
|
886 |
shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> gcd a' b' = 1"
|
|
|
887 |
apply (rule_tac x = "a div gcd a b" in exI)
|
|
|
888 |
apply (rule_tac x = "b div gcd a b" in exI)
|
|
|
889 |
apply (insert nz, auto simp add: dvd_div_mult gcd_0_left gcd_zero intro: div_gcd_coprime)
|
|
|
890 |
done
|
|
|
891 |
|
|
|
892 |
lemma coprime_exp:
|
|
|
893 |
"gcd d a = 1 \<Longrightarrow> gcd d (a^n) = 1"
|
|
|
894 |
by (induct n, simp_all add: coprime_mult)
|
|
|
895 |
|
|
|
896 |
lemma coprime_exp2 [intro]:
|
|
|
897 |
"gcd a b = 1 \<Longrightarrow> gcd (a^n) (b^m) = 1"
|
|
|
898 |
apply (rule coprime_exp)
|
|
|
899 |
apply (subst gcd.commute)
|
|
|
900 |
apply (rule coprime_exp)
|
|
|
901 |
apply (subst gcd.commute)
|
|
|
902 |
apply assumption
|
|
|
903 |
done
|
|
|
904 |
|
|
|
905 |
lemma gcd_exp:
|
|
|
906 |
"gcd (a^n) (b^n) = (gcd a b) ^ n"
|
|
|
907 |
proof (cases "a = 0 \<and> b = 0")
|
|
|
908 |
assume "a = 0 \<and> b = 0"
|
|
|
909 |
then show ?thesis by (cases n, simp_all add: gcd_0_left)
|
|
|
910 |
next
|
|
|
911 |
assume A: "\<not>(a = 0 \<and> b = 0)"
|
|
|
912 |
hence "1 = gcd ((a div gcd a b)^n) ((b div gcd a b)^n)"
|
|
|
913 |
using div_gcd_coprime by (subst sym, auto simp: div_gcd_coprime)
|
|
|
914 |
hence "(gcd a b) ^ n = (gcd a b) ^ n * ..." by simp
|
|
|
915 |
also note gcd_mult_distrib
|
|
|
916 |
also have "normalisation_factor ((gcd a b)^n) = 1"
|
|
|
917 |
by (simp add: normalisation_factor_pow A)
|
|
|
918 |
also have "(gcd a b)^n * (a div gcd a b)^n = a^n"
|
|
|
919 |
by (subst ac_simps, subst div_power, simp, rule dvd_div_mult_self, rule dvd_power_same, simp)
|
|
|
920 |
also have "(gcd a b)^n * (b div gcd a b)^n = b^n"
|
|
|
921 |
by (subst ac_simps, subst div_power, simp, rule dvd_div_mult_self, rule dvd_power_same, simp)
|
|
|
922 |
finally show ?thesis by simp
|
|
|
923 |
qed
|
|
|
924 |
|
|
|
925 |
lemma coprime_common_divisor:
|
|
|
926 |
"gcd a b = 1 \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> is_unit x"
|
|
|
927 |
apply (subgoal_tac "x dvd gcd a b")
|
|
|
928 |
apply (simp add: is_unit_def)
|
|
|
929 |
apply (erule (1) gcd_greatest)
|
|
|
930 |
done
|
|
|
931 |
|
|
|
932 |
lemma division_decomp:
|
|
|
933 |
assumes dc: "a dvd b * c"
|
|
|
934 |
shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c"
|
|
|
935 |
proof (cases "gcd a b = 0")
|
|
|
936 |
assume "gcd a b = 0"
|
|
|
937 |
hence "a = 0 \<and> b = 0" by (simp add: gcd_zero)
|
|
|
938 |
hence "a = 0 * c \<and> 0 dvd b \<and> c dvd c" by simp
|
|
|
939 |
then show ?thesis by blast
|
|
|
940 |
next
|
|
|
941 |
let ?d = "gcd a b"
|
|
|
942 |
assume "?d \<noteq> 0"
|
|
|
943 |
from gcd_coprime_exists[OF this]
|
|
|
944 |
obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "gcd a' b' = 1"
|
|
|
945 |
by blast
|
|
|
946 |
from ab'(1) have "a' dvd a" unfolding dvd_def by blast
|
|
|
947 |
with dc have "a' dvd b*c" using dvd_trans[of a' a "b*c"] by simp
|
|
|
948 |
from dc ab'(1,2) have "a'*?d dvd (b'*?d) * c" by simp
|
|
|
949 |
hence "?d * a' dvd ?d * (b' * c)" by (simp add: mult_ac)
|
|
|
950 |
with `?d \<noteq> 0` have "a' dvd b' * c" by (rule dvd_mult_cancel_left)
|
|
|
951 |
with coprime_dvd_mult[OF ab'(3)]
|
|
|
952 |
have "a' dvd c" by (subst (asm) ac_simps, blast)
|
|
|
953 |
with ab'(1) have "a = ?d * a' \<and> ?d dvd b \<and> a' dvd c" by (simp add: mult_ac)
|
|
|
954 |
then show ?thesis by blast
|
|
|
955 |
qed
|
|
|
956 |
|
|
|
957 |
lemma pow_divides_pow:
|
|
|
958 |
assumes ab: "a ^ n dvd b ^ n" and n: "n \<noteq> 0"
|
|
|
959 |
shows "a dvd b"
|
|
|
960 |
proof (cases "gcd a b = 0")
|
|
|
961 |
assume "gcd a b = 0"
|
|
|
962 |
then show ?thesis by (simp add: gcd_zero)
|
|
|
963 |
next
|
|
|
964 |
let ?d = "gcd a b"
|
|
|
965 |
assume "?d \<noteq> 0"
|
|
|
966 |
from n obtain m where m: "n = Suc m" by (cases n, simp_all)
|
|
|
967 |
from `?d \<noteq> 0` have zn: "?d ^ n \<noteq> 0" by (rule nonzero_pow_nonzero)
|
|
|
968 |
from gcd_coprime_exists[OF `?d \<noteq> 0`]
|
|
|
969 |
obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "gcd a' b' = 1"
|
|
|
970 |
by blast
|
|
|
971 |
from ab have "(a' * ?d) ^ n dvd (b' * ?d) ^ n"
|
|
|
972 |
by (simp add: ab'(1,2)[symmetric])
|
|
|
973 |
hence "?d^n * a'^n dvd ?d^n * b'^n"
|
|
|
974 |
by (simp only: power_mult_distrib ac_simps)
|
|
|
975 |
with zn have "a'^n dvd b'^n" by (rule dvd_mult_cancel_left)
|
|
|
976 |
hence "a' dvd b'^n" using dvd_trans[of a' "a'^n" "b'^n"] by (simp add: m)
|
|
|
977 |
hence "a' dvd b'^m * b'" by (simp add: m ac_simps)
|
|
|
978 |
with coprime_dvd_mult[OF coprime_exp[OF ab'(3), of m]]
|
|
|
979 |
have "a' dvd b'" by (subst (asm) ac_simps, blast)
|
|
|
980 |
hence "a'*?d dvd b'*?d" by (rule mult_dvd_mono, simp)
|
|
|
981 |
with ab'(1,2) show ?thesis by simp
|
|
|
982 |
qed
|
|
|
983 |
|
|
|
984 |
lemma pow_divides_eq [simp]:
|
|
|
985 |
"n \<noteq> 0 \<Longrightarrow> a ^ n dvd b ^ n \<longleftrightarrow> a dvd b"
|
|
|
986 |
by (auto intro: pow_divides_pow dvd_power_same)
|
|
|
987 |
|
|
|
988 |
lemma divides_mult:
|
|
|
989 |
assumes mr: "m dvd r" and nr: "n dvd r" and mn: "gcd m n = 1"
|
|
|
990 |
shows "m * n dvd r"
|
|
|
991 |
proof -
|
|
|
992 |
from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'"
|
|
|
993 |
unfolding dvd_def by blast
|
|
|
994 |
from mr n' have "m dvd n'*n" by (simp add: ac_simps)
|
|
|
995 |
hence "m dvd n'" using coprime_dvd_mult_iff[OF mn] by simp
|
|
|
996 |
then obtain k where k: "n' = m*k" unfolding dvd_def by blast
|
|
|
997 |
with n' have "r = m * n * k" by (simp add: mult_ac)
|
|
|
998 |
then show ?thesis unfolding dvd_def by blast
|
|
|
999 |
qed
|
|
|
1000 |
|
|
|
1001 |
lemma coprime_plus_one [simp]: "gcd (n + 1) n = 1"
|
|
|
1002 |
by (subst add_commute, simp)
|
|
|
1003 |
|
|
|
1004 |
lemma setprod_coprime [rule_format]:
|
|
|
1005 |
"(\<forall>i\<in>A. gcd (f i) x = 1) \<longrightarrow> gcd (\<Prod>i\<in>A. f i) x = 1"
|
|
|
1006 |
apply (cases "finite A")
|
|
|
1007 |
apply (induct set: finite)
|
|
|
1008 |
apply (auto simp add: gcd_mult_cancel)
|
|
|
1009 |
done
|
|
|
1010 |
|
|
|
1011 |
lemma coprime_divisors:
|
|
|
1012 |
assumes "d dvd a" "e dvd b" "gcd a b = 1"
|
|
|
1013 |
shows "gcd d e = 1"
|
|
|
1014 |
proof -
|
|
|
1015 |
from assms obtain k l where "a = d * k" "b = e * l"
|
|
|
1016 |
unfolding dvd_def by blast
|
|
|
1017 |
with assms have "gcd (d * k) (e * l) = 1" by simp
|
|
|
1018 |
hence "gcd (d * k) e = 1" by (rule coprime_lmult)
|
|
|
1019 |
also have "gcd (d * k) e = gcd e (d * k)" by (simp add: ac_simps)
|
|
|
1020 |
finally have "gcd e d = 1" by (rule coprime_lmult)
|
|
|
1021 |
then show ?thesis by (simp add: ac_simps)
|
|
|
1022 |
qed
|
|
|
1023 |
|
|
|
1024 |
lemma invertible_coprime:
|
|
|
1025 |
"x * y mod m = 1 \<Longrightarrow> gcd x m = 1"
|
|
|
1026 |
by (metis coprime_lmult gcd_1 ac_simps gcd_red)
|
|
|
1027 |
|
|
|
1028 |
lemma lcm_gcd:
|
|
|
1029 |
"lcm a b = a * b div (gcd a b * normalisation_factor (a*b))"
|
|
|
1030 |
by (simp only: lcm_lcm_eucl gcd_gcd_eucl lcm_eucl_def)
|
|
|
1031 |
|
|
|
1032 |
lemma lcm_gcd_prod:
|
|
|
1033 |
"lcm a b * gcd a b = a * b div normalisation_factor (a*b)"
|
|
|
1034 |
proof (cases "a * b = 0")
|
|
|
1035 |
let ?nf = normalisation_factor
|
|
|
1036 |
assume "a * b \<noteq> 0"
|
|
|
1037 |
hence "gcd a b \<noteq> 0" by (auto simp add: gcd_zero)
|
|
|
1038 |
from lcm_gcd have "lcm a b * gcd a b = gcd a b * (a * b div (?nf (a*b) * gcd a b))"
|
|
|
1039 |
by (simp add: mult_ac)
|
|
|
1040 |
also from `a * b \<noteq> 0` have "... = a * b div ?nf (a*b)"
|
|
|
1041 |
by (simp_all add: unit_ring_inv'1 dvd_mult_div_cancel unit_ring_inv)
|
|
|
1042 |
finally show ?thesis .
|
|
|
1043 |
qed (simp add: lcm_gcd)
|
|
|
1044 |
|
|
|
1045 |
lemma lcm_dvd1 [iff]:
|
|
|
1046 |
"x dvd lcm x y"
|
|
|
1047 |
proof (cases "x*y = 0")
|
|
|
1048 |
assume "x * y \<noteq> 0"
|
|
|
1049 |
hence "gcd x y \<noteq> 0" by (auto simp: gcd_zero)
|
|
|
1050 |
let ?c = "ring_inv (normalisation_factor (x*y))"
|
|
|
1051 |
from `x * y \<noteq> 0` have [simp]: "is_unit (normalisation_factor (x*y))" by simp
|
|
|
1052 |
from lcm_gcd_prod[of x y] have "lcm x y * gcd x y = x * ?c * y"
|
|
|
1053 |
by (simp add: mult_ac unit_ring_inv)
|
|
|
1054 |
hence "lcm x y * gcd x y div gcd x y = x * ?c * y div gcd x y" by simp
|
|
|
1055 |
with `gcd x y \<noteq> 0` have "lcm x y = x * ?c * y div gcd x y"
|
|
|
1056 |
by (subst (asm) div_mult_self2_is_id, simp_all)
|
|
|
1057 |
also have "... = x * (?c * y div gcd x y)"
|
|
|
1058 |
by (metis div_mult_swap gcd_dvd2 mult_assoc)
|
|
|
1059 |
finally show ?thesis by (rule dvdI)
|
|
|
1060 |
qed (simp add: lcm_gcd)
|
|
|
1061 |
|
|
|
1062 |
lemma lcm_least:
|
|
|
1063 |
"\<lbrakk>a dvd k; b dvd k\<rbrakk> \<Longrightarrow> lcm a b dvd k"
|
|
|
1064 |
proof (cases "k = 0")
|
|
|
1065 |
let ?nf = normalisation_factor
|
|
|
1066 |
assume "k \<noteq> 0"
|
|
|
1067 |
hence "is_unit (?nf k)" by simp
|
|
|
1068 |
hence "?nf k \<noteq> 0" by (metis not_is_unit_0)
|
|
|
1069 |
assume A: "a dvd k" "b dvd k"
|
|
|
1070 |
hence "gcd a b \<noteq> 0" using `k \<noteq> 0` by (auto simp add: gcd_zero)
|
|
|
1071 |
from A obtain r s where ar: "k = a * r" and bs: "k = b * s"
|
|
|
1072 |
unfolding dvd_def by blast
|
|
|
1073 |
with `k \<noteq> 0` have "r * s \<noteq> 0"
|
|
|
1074 |
by (intro notI) (drule divisors_zero, elim disjE, simp_all)
|
|
|
1075 |
hence "is_unit (?nf (r * s))" by simp
|
|
|
1076 |
let ?c = "?nf k div ?nf (r*s)"
|
|
|
1077 |
from `is_unit (?nf k)` and `is_unit (?nf (r * s))` have "is_unit ?c" by (rule unit_div)
|
|
|
1078 |
hence "?c \<noteq> 0" using not_is_unit_0 by fast
|
|
|
1079 |
from ar bs have "k * k * gcd s r = ?nf k * k * gcd (k * s) (k * r)"
|
|
|
1080 |
by (subst mult_assoc, subst gcd_mult_distrib[of k s r], simp only: ac_simps mult_assoc)
|
|
|
1081 |
also have "... = ?nf k * k * gcd ((r*s) * a) ((r*s) * b)"
|
|
|
1082 |
by (subst (3) `k = a * r`, subst (3) `k = b * s`, simp add: algebra_simps)
|
|
|
1083 |
also have "... = ?c * r*s * k * gcd a b" using `r * s \<noteq> 0`
|
|
|
1084 |
by (subst gcd_mult_distrib'[symmetric], simp add: algebra_simps unit_simps)
|
|
|
1085 |
finally have "(a*r) * (b*s) * gcd s r = ?c * k * r * s * gcd a b"
|
|
|
1086 |
by (subst ar[symmetric], subst bs[symmetric], simp add: mult_ac)
|
|
|
1087 |
hence "a * b * gcd s r * (r * s) = ?c * k * gcd a b * (r * s)"
|
|
|
1088 |
by (simp add: algebra_simps)
|
|
|
1089 |
hence "?c * k * gcd a b = a * b * gcd s r" using `r * s \<noteq> 0`
|
|
|
1090 |
by (metis div_mult_self2_is_id)
|
|
|
1091 |
also have "... = lcm a b * gcd a b * gcd s r * ?nf (a*b)"
|
|
|
1092 |
by (subst lcm_gcd_prod[of a b], metis gcd_mult_distrib gcd_mult_distrib')
|
|
|
1093 |
also have "... = lcm a b * gcd s r * ?nf (a*b) * gcd a b"
|
|
|
1094 |
by (simp add: algebra_simps)
|
|
|
1095 |
finally have "k * ?c = lcm a b * gcd s r * ?nf (a*b)" using `gcd a b \<noteq> 0`
|
|
|
1096 |
by (metis mult.commute div_mult_self2_is_id)
|
|
|
1097 |
hence "k = lcm a b * (gcd s r * ?nf (a*b)) div ?c" using `?c \<noteq> 0`
|
|
|
1098 |
by (metis div_mult_self2_is_id mult_assoc)
|
|
|
1099 |
also have "... = lcm a b * (gcd s r * ?nf (a*b) div ?c)" using `is_unit ?c`
|
|
|
1100 |
by (simp add: unit_simps)
|
|
|
1101 |
finally show ?thesis by (rule dvdI)
|
|
|
1102 |
qed simp
|
|
|
1103 |
|
|
|
1104 |
lemma lcm_zero:
|
|
|
1105 |
"lcm a b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"
|
|
|
1106 |
proof -
|
|
|
1107 |
let ?nf = normalisation_factor
|
|
|
1108 |
{
|
|
|
1109 |
assume "a \<noteq> 0" "b \<noteq> 0"
|
|
|
1110 |
hence "a * b div ?nf (a * b) \<noteq> 0" by (simp add: no_zero_divisors)
|
|
|
1111 |
moreover from `a \<noteq> 0` and `b \<noteq> 0` have "gcd a b \<noteq> 0" by (simp add: gcd_zero)
|
|
|
1112 |
ultimately have "lcm a b \<noteq> 0" using lcm_gcd_prod[of a b] by (intro notI, simp)
|
|
|
1113 |
} moreover {
|
|
|
1114 |
assume "a = 0 \<or> b = 0"
|
|
|
1115 |
hence "lcm a b = 0" by (elim disjE, simp_all add: lcm_gcd)
|
|
|
1116 |
}
|
|
|
1117 |
ultimately show ?thesis by blast
|
|
|
1118 |
qed
|
|
|
1119 |
|
|
|
1120 |
lemmas lcm_0_iff = lcm_zero
|
|
|
1121 |
|
|
|
1122 |
lemma gcd_lcm:
|
|
|
1123 |
assumes "lcm a b \<noteq> 0"
|
|
|
1124 |
shows "gcd a b = a * b div (lcm a b * normalisation_factor (a * b))"
|
|
|
1125 |
proof-
|
|
|
1126 |
from assms have "gcd a b \<noteq> 0" by (simp add: gcd_zero lcm_zero)
|
|
|
1127 |
let ?c = "normalisation_factor (a*b)"
|
|
|
1128 |
from `lcm a b \<noteq> 0` have "?c \<noteq> 0" by (intro notI, simp add: lcm_zero no_zero_divisors)
|
|
|
1129 |
hence "is_unit ?c" by simp
|
|
|
1130 |
from lcm_gcd_prod [of a b] have "gcd a b = a * b div ?c div lcm a b"
|
|
|
1131 |
by (subst (2) div_mult_self2_is_id[OF `lcm a b \<noteq> 0`, symmetric], simp add: mult_ac)
|
|
|
1132 |
also from `is_unit ?c` have "... = a * b div (?c * lcm a b)"
|
|
|
1133 |
by (simp only: unit_ring_inv'1 unit_ring_inv)
|
|
|
1134 |
finally show ?thesis by (simp only: ac_simps)
|
|
|
1135 |
qed
|
|
|
1136 |
|
|
|
1137 |
lemma normalisation_factor_lcm [simp]:
|
|
|
1138 |
"normalisation_factor (lcm a b) = (if a = 0 \<or> b = 0 then 0 else 1)"
|
|
|
1139 |
proof (cases "a = 0 \<or> b = 0")
|
|
|
1140 |
case True then show ?thesis
|
|
|
1141 |
by (simp add: lcm_gcd) (metis div_0 ac_simps mult_zero_left normalisation_factor_0)
|
|
|
1142 |
next
|
|
|
1143 |
case False
|
|
|
1144 |
let ?nf = normalisation_factor
|
|
|
1145 |
from lcm_gcd_prod[of a b]
|
|
|
1146 |
have "?nf (lcm a b) * ?nf (gcd a b) = ?nf (a*b) div ?nf (a*b)"
|
|
|
1147 |
by (metis div_by_0 div_self normalisation_correct normalisation_factor_0 normalisation_factor_mult)
|
|
|
1148 |
also have "... = (if a*b = 0 then 0 else 1)"
|
|
|
1149 |
by (cases "a*b = 0", simp, subst div_self, metis dvd_0_left normalisation_factor_dvd, simp)
|
|
|
1150 |
finally show ?thesis using False by (simp add: no_zero_divisors)
|
|
|
1151 |
qed
|
|
|
1152 |
|
|
|
1153 |
lemma lcm_dvd2 [iff]: "y dvd lcm x y"
|
|
|
1154 |
using lcm_dvd1 [of y x] by (simp add: lcm_gcd ac_simps)
|
|
|
1155 |
|
|
|
1156 |
lemma lcmI:
|
|
|
1157 |
"\<lbrakk>x dvd k; y dvd k; \<And>l. x dvd l \<Longrightarrow> y dvd l \<Longrightarrow> k dvd l;
|
|
|
1158 |
normalisation_factor k = (if k = 0 then 0 else 1)\<rbrakk> \<Longrightarrow> k = lcm x y"
|
|
|
1159 |
by (intro normed_associated_imp_eq) (auto simp: associated_def intro: lcm_least)
|
|
|
1160 |
|
|
|
1161 |
sublocale lcm!: abel_semigroup lcm
|
|
|
1162 |
proof
|
|
|
1163 |
fix x y z
|
|
|
1164 |
show "lcm (lcm x y) z = lcm x (lcm y z)"
|
|
|
1165 |
proof (rule lcmI)
|
|
|
1166 |
have "x dvd lcm x y" and "lcm x y dvd lcm (lcm x y) z" by simp_all
|
|
|
1167 |
then show "x dvd lcm (lcm x y) z" by (rule dvd_trans)
|
|
|
1168 |
|
|
|
1169 |
have "y dvd lcm x y" and "lcm x y dvd lcm (lcm x y) z" by simp_all
|
|
|
1170 |
hence "y dvd lcm (lcm x y) z" by (rule dvd_trans)
|
|
|
1171 |
moreover have "z dvd lcm (lcm x y) z" by simp
|
|
|
1172 |
ultimately show "lcm y z dvd lcm (lcm x y) z" by (rule lcm_least)
|
|
|
1173 |
|
|
|
1174 |
fix l assume "x dvd l" and "lcm y z dvd l"
|
|
|
1175 |
have "y dvd lcm y z" by simp
|
|
|
1176 |
from this and `lcm y z dvd l` have "y dvd l" by (rule dvd_trans)
|
|
|
1177 |
have "z dvd lcm y z" by simp
|
|
|
1178 |
from this and `lcm y z dvd l` have "z dvd l" by (rule dvd_trans)
|
|
|
1179 |
from `x dvd l` and `y dvd l` have "lcm x y dvd l" by (rule lcm_least)
|
|
|
1180 |
from this and `z dvd l` show "lcm (lcm x y) z dvd l" by (rule lcm_least)
|
|
|
1181 |
qed (simp add: lcm_zero)
|
|
|
1182 |
next
|
|
|
1183 |
fix x y
|
|
|
1184 |
show "lcm x y = lcm y x"
|
|
|
1185 |
by (simp add: lcm_gcd ac_simps)
|
|
|
1186 |
qed
|
|
|
1187 |
|
|
|
1188 |
lemma dvd_lcm_D1:
|
|
|
1189 |
"lcm m n dvd k \<Longrightarrow> m dvd k"
|
|
|
1190 |
by (rule dvd_trans, rule lcm_dvd1, assumption)
|
|
|
1191 |
|
|
|
1192 |
lemma dvd_lcm_D2:
|
|
|
1193 |
"lcm m n dvd k \<Longrightarrow> n dvd k"
|
|
|
1194 |
by (rule dvd_trans, rule lcm_dvd2, assumption)
|
|
|
1195 |
|
|
|
1196 |
lemma gcd_dvd_lcm [simp]:
|
|
|
1197 |
"gcd a b dvd lcm a b"
|
|
|
1198 |
by (metis dvd_trans gcd_dvd2 lcm_dvd2)
|
|
|
1199 |
|
|
|
1200 |
lemma lcm_1_iff:
|
|
|
1201 |
"lcm a b = 1 \<longleftrightarrow> is_unit a \<and> is_unit b"
|
|
|
1202 |
proof
|
|
|
1203 |
assume "lcm a b = 1"
|
|
|
1204 |
then show "is_unit a \<and> is_unit b" unfolding is_unit_def by auto
|
|
|
1205 |
next
|
|
|
1206 |
assume "is_unit a \<and> is_unit b"
|
|
|
1207 |
hence "a dvd 1" and "b dvd 1" unfolding is_unit_def by simp_all
|
|
|
1208 |
hence "is_unit (lcm a b)" unfolding is_unit_def by (rule lcm_least)
|
|
|
1209 |
hence "lcm a b = normalisation_factor (lcm a b)"
|
|
|
1210 |
by (subst normalisation_factor_unit, simp_all)
|
|
|
1211 |
also have "\<dots> = 1" using `is_unit a \<and> is_unit b` by (auto simp add: is_unit_def)
|
|
|
1212 |
finally show "lcm a b = 1" .
|
|
|
1213 |
qed
|
|
|
1214 |
|
|
|
1215 |
lemma lcm_0_left [simp]:
|
|
|
1216 |
"lcm 0 x = 0"
|
|
|
1217 |
by (rule sym, rule lcmI, simp_all)
|
|
|
1218 |
|
|
|
1219 |
lemma lcm_0 [simp]:
|
|
|
1220 |
"lcm x 0 = 0"
|
|
|
1221 |
by (rule sym, rule lcmI, simp_all)
|
|
|
1222 |
|
|
|
1223 |
lemma lcm_unique:
|
|
|
1224 |
"a dvd d \<and> b dvd d \<and>
|
|
|
1225 |
normalisation_factor d = (if d = 0 then 0 else 1) \<and>
|
|
|
1226 |
(\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
|
|
|
1227 |
by (rule, auto intro: lcmI simp: lcm_least lcm_zero)
|
|
|
1228 |
|
|
|
1229 |
lemma dvd_lcm_I1 [simp]:
|
|
|
1230 |
"k dvd m \<Longrightarrow> k dvd lcm m n"
|
|
|
1231 |
by (metis lcm_dvd1 dvd_trans)
|
|
|
1232 |
|
|
|
1233 |
lemma dvd_lcm_I2 [simp]:
|
|
|
1234 |
"k dvd n \<Longrightarrow> k dvd lcm m n"
|
|
|
1235 |
by (metis lcm_dvd2 dvd_trans)
|
|
|
1236 |
|
|
|
1237 |
lemma lcm_1_left [simp]:
|
|
|
1238 |
"lcm 1 x = x div normalisation_factor x"
|
|
|
1239 |
by (cases "x = 0") (simp, rule sym, rule lcmI, simp_all)
|
|
|
1240 |
|
|
|
1241 |
lemma lcm_1_right [simp]:
|
|
|
1242 |
"lcm x 1 = x div normalisation_factor x"
|
|
|
1243 |
by (simp add: ac_simps)
|
|
|
1244 |
|
|
|
1245 |
lemma lcm_coprime:
|
|
|
1246 |
"gcd a b = 1 \<Longrightarrow> lcm a b = a * b div normalisation_factor (a*b)"
|
|
|
1247 |
by (subst lcm_gcd) simp
|
|
|
1248 |
|
|
|
1249 |
lemma lcm_proj1_if_dvd:
|
|
|
1250 |
"y dvd x \<Longrightarrow> lcm x y = x div normalisation_factor x"
|
|
|
1251 |
by (cases "x = 0") (simp, rule sym, rule lcmI, simp_all)
|
|
|
1252 |
|
|
|
1253 |
lemma lcm_proj2_if_dvd:
|
|
|
1254 |
"x dvd y \<Longrightarrow> lcm x y = y div normalisation_factor y"
|
|
|
1255 |
using lcm_proj1_if_dvd [of x y] by (simp add: ac_simps)
|
|
|
1256 |
|
|
|
1257 |
lemma lcm_proj1_iff:
|
|
|
1258 |
"lcm m n = m div normalisation_factor m \<longleftrightarrow> n dvd m"
|
|
|
1259 |
proof
|
|
|
1260 |
assume A: "lcm m n = m div normalisation_factor m"
|
|
|
1261 |
show "n dvd m"
|
|
|
1262 |
proof (cases "m = 0")
|
|
|
1263 |
assume [simp]: "m \<noteq> 0"
|
|
|
1264 |
from A have B: "m = lcm m n * normalisation_factor m"
|
|
|
1265 |
by (simp add: unit_eq_div2)
|
|
|
1266 |
show ?thesis by (subst B, simp)
|
|
|
1267 |
qed simp
|
|
|
1268 |
next
|
|
|
1269 |
assume "n dvd m"
|
|
|
1270 |
then show "lcm m n = m div normalisation_factor m" by (rule lcm_proj1_if_dvd)
|
|
|
1271 |
qed
|
|
|
1272 |
|
|
|
1273 |
lemma lcm_proj2_iff:
|
|
|
1274 |
"lcm m n = n div normalisation_factor n \<longleftrightarrow> m dvd n"
|
|
|
1275 |
using lcm_proj1_iff [of n m] by (simp add: ac_simps)
|
|
|
1276 |
|
|
|
1277 |
lemma euclidean_size_lcm_le1:
|
|
|
1278 |
assumes "a \<noteq> 0" and "b \<noteq> 0"
|
|
|
1279 |
shows "euclidean_size a \<le> euclidean_size (lcm a b)"
|
|
|
1280 |
proof -
|
|
|
1281 |
have "a dvd lcm a b" by (rule lcm_dvd1)
|
|
|
1282 |
then obtain c where A: "lcm a b = a * c" unfolding dvd_def by blast
|
|
|
1283 |
with `a \<noteq> 0` and `b \<noteq> 0` have "c \<noteq> 0" by (auto simp: lcm_zero)
|
|
|
1284 |
then show ?thesis by (subst A, intro size_mult_mono)
|
|
|
1285 |
qed
|
|
|
1286 |
|
|
|
1287 |
lemma euclidean_size_lcm_le2:
|
|
|
1288 |
"a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> euclidean_size b \<le> euclidean_size (lcm a b)"
|
|
|
1289 |
using euclidean_size_lcm_le1 [of b a] by (simp add: ac_simps)
|
|
|
1290 |
|
|
|
1291 |
lemma euclidean_size_lcm_less1:
|
|
|
1292 |
assumes "b \<noteq> 0" and "\<not>b dvd a"
|
|
|
1293 |
shows "euclidean_size a < euclidean_size (lcm a b)"
|
|
|
1294 |
proof (rule ccontr)
|
|
|
1295 |
from assms have "a \<noteq> 0" by auto
|
|
|
1296 |
assume "\<not>euclidean_size a < euclidean_size (lcm a b)"
|
|
|
1297 |
with `a \<noteq> 0` and `b \<noteq> 0` have "euclidean_size (lcm a b) = euclidean_size a"
|
|
|
1298 |
by (intro le_antisym, simp, intro euclidean_size_lcm_le1)
|
|
|
1299 |
with assms have "lcm a b dvd a"
|
|
|
1300 |
by (rule_tac dvd_euclidean_size_eq_imp_dvd) (auto simp: lcm_zero)
|
|
|
1301 |
hence "b dvd a" by (rule dvd_lcm_D2)
|
|
|
1302 |
with `\<not>b dvd a` show False by contradiction
|
|
|
1303 |
qed
|
|
|
1304 |
|
|
|
1305 |
lemma euclidean_size_lcm_less2:
|
|
|
1306 |
assumes "a \<noteq> 0" and "\<not>a dvd b"
|
|
|
1307 |
shows "euclidean_size b < euclidean_size (lcm a b)"
|
|
|
1308 |
using assms euclidean_size_lcm_less1 [of a b] by (simp add: ac_simps)
|
|
|
1309 |
|
|
|
1310 |
lemma lcm_mult_unit1:
|
|
|
1311 |
"is_unit a \<Longrightarrow> lcm (x*a) y = lcm x y"
|
|
|
1312 |
apply (rule lcmI)
|
|
|
1313 |
apply (rule dvd_trans[of _ "x*a"], simp, rule lcm_dvd1)
|
|
|
1314 |
apply (rule lcm_dvd2)
|
|
|
1315 |
apply (rule lcm_least, simp add: unit_simps, assumption)
|
|
|
1316 |
apply (subst normalisation_factor_lcm, simp add: lcm_zero)
|
|
|
1317 |
done
|
|
|
1318 |
|
|
|
1319 |
lemma lcm_mult_unit2:
|
|
|
1320 |
"is_unit a \<Longrightarrow> lcm x (y*a) = lcm x y"
|
|
|
1321 |
using lcm_mult_unit1 [of a y x] by (simp add: ac_simps)
|
|
|
1322 |
|
|
|
1323 |
lemma lcm_div_unit1:
|
|
|
1324 |
"is_unit a \<Longrightarrow> lcm (x div a) y = lcm x y"
|
|
|
1325 |
by (simp add: unit_ring_inv lcm_mult_unit1)
|
|
|
1326 |
|
|
|
1327 |
lemma lcm_div_unit2:
|
|
|
1328 |
"is_unit a \<Longrightarrow> lcm x (y div a) = lcm x y"
|
|
|
1329 |
by (simp add: unit_ring_inv lcm_mult_unit2)
|
|
|
1330 |
|
|
|
1331 |
lemma lcm_left_idem:
|
|
|
1332 |
"lcm p (lcm p q) = lcm p q"
|
|
|
1333 |
apply (rule lcmI)
|
|
|
1334 |
apply simp
|
|
|
1335 |
apply (subst lcm.assoc [symmetric], rule lcm_dvd2)
|
|
|
1336 |
apply (rule lcm_least, assumption)
|
|
|
1337 |
apply (erule (1) lcm_least)
|
|
|
1338 |
apply (auto simp: lcm_zero)
|
|
|
1339 |
done
|
|
|
1340 |
|
|
|
1341 |
lemma lcm_right_idem:
|
|
|
1342 |
"lcm (lcm p q) q = lcm p q"
|
|
|
1343 |
apply (rule lcmI)
|
|
|
1344 |
apply (subst lcm.assoc, rule lcm_dvd1)
|
|
|
1345 |
apply (rule lcm_dvd2)
|
|
|
1346 |
apply (rule lcm_least, erule (1) lcm_least, assumption)
|
|
|
1347 |
apply (auto simp: lcm_zero)
|
|
|
1348 |
done
|
|
|
1349 |
|
|
|
1350 |
lemma comp_fun_idem_lcm: "comp_fun_idem lcm"
|
|
|
1351 |
proof
|
|
|
1352 |
fix a b show "lcm a \<circ> lcm b = lcm b \<circ> lcm a"
|
|
|
1353 |
by (simp add: fun_eq_iff ac_simps)
|
|
|
1354 |
next
|
|
|
1355 |
fix a show "lcm a \<circ> lcm a = lcm a" unfolding o_def
|
|
|
1356 |
by (intro ext, simp add: lcm_left_idem)
|
|
|
1357 |
qed
|
|
|
1358 |
|
|
|
1359 |
lemma dvd_Lcm [simp]: "x \<in> A \<Longrightarrow> x dvd Lcm A"
|
|
|
1360 |
and Lcm_dvd [simp]: "(\<forall>x\<in>A. x dvd l') \<Longrightarrow> Lcm A dvd l'"
|
|
|
1361 |
and normalisation_factor_Lcm [simp]:
|
|
|
1362 |
"normalisation_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)"
|
|
|
1363 |
proof -
|
|
|
1364 |
have "(\<forall>x\<in>A. x dvd Lcm A) \<and> (\<forall>l'. (\<forall>x\<in>A. x dvd l') \<longrightarrow> Lcm A dvd l') \<and>
|
|
|
1365 |
normalisation_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" (is ?thesis)
|
|
|
1366 |
proof (cases "\<exists>l. l \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l)")
|
|
|
1367 |
case False
|
|
|
1368 |
hence "Lcm A = 0" by (auto simp: Lcm_Lcm_eucl Lcm_eucl_def)
|
|
|
1369 |
with False show ?thesis by auto
|
|
|
1370 |
next
|
|
|
1371 |
case True
|
|
|
1372 |
then obtain l\<^sub>0 where l\<^sub>0_props: "l\<^sub>0 \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l\<^sub>0)" by blast
|
|
|
1373 |
def n \<equiv> "LEAST n. \<exists>l. l \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l) \<and> euclidean_size l = n"
|
|
|
1374 |
def l \<equiv> "SOME l. l \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l) \<and> euclidean_size l = n"
|
|
|
1375 |
have "\<exists>l. l \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l) \<and> euclidean_size l = n"
|
|
|
1376 |
apply (subst n_def)
|
|
|
1377 |
apply (rule LeastI[of _ "euclidean_size l\<^sub>0"])
|
|
|
1378 |
apply (rule exI[of _ l\<^sub>0])
|
|
|
1379 |
apply (simp add: l\<^sub>0_props)
|
|
|
1380 |
done
|
|
|
1381 |
from someI_ex[OF this] have "l \<noteq> 0" and "\<forall>x\<in>A. x dvd l" and "euclidean_size l = n"
|
|
|
1382 |
unfolding l_def by simp_all
|
|
|
1383 |
{
|
|
|
1384 |
fix l' assume "\<forall>x\<in>A. x dvd l'"
|
|
|
1385 |
with `\<forall>x\<in>A. x dvd l` have "\<forall>x\<in>A. x dvd gcd l l'" by (auto intro: gcd_greatest)
|
|
|
1386 |
moreover from `l \<noteq> 0` have "gcd l l' \<noteq> 0" by (simp add: gcd_zero)
|
|
|
1387 |
ultimately have "\<exists>b. b \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd b) \<and> euclidean_size b = euclidean_size (gcd l l')"
|
|
|
1388 |
by (intro exI[of _ "gcd l l'"], auto)
|
|
|
1389 |
hence "euclidean_size (gcd l l') \<ge> n" by (subst n_def) (rule Least_le)
|
|
|
1390 |
moreover have "euclidean_size (gcd l l') \<le> n"
|
|
|
1391 |
proof -
|
|
|
1392 |
have "gcd l l' dvd l" by simp
|
|
|
1393 |
then obtain a where "l = gcd l l' * a" unfolding dvd_def by blast
|
|
|
1394 |
with `l \<noteq> 0` have "a \<noteq> 0" by auto
|
|
|
1395 |
hence "euclidean_size (gcd l l') \<le> euclidean_size (gcd l l' * a)"
|
|
|
1396 |
by (rule size_mult_mono)
|
|
|
1397 |
also have "gcd l l' * a = l" using `l = gcd l l' * a` ..
|
|
|
1398 |
also note `euclidean_size l = n`
|
|
|
1399 |
finally show "euclidean_size (gcd l l') \<le> n" .
|
|
|
1400 |
qed
|
|
|
1401 |
ultimately have "euclidean_size l = euclidean_size (gcd l l')"
|
|
|
1402 |
by (intro le_antisym, simp_all add: `euclidean_size l = n`)
|
|
|
1403 |
with `l \<noteq> 0` have "l dvd gcd l l'" by (blast intro: dvd_euclidean_size_eq_imp_dvd)
|
|
|
1404 |
hence "l dvd l'" by (blast dest: dvd_gcd_D2)
|
|
|
1405 |
}
|
|
|
1406 |
|
|
|
1407 |
with `(\<forall>x\<in>A. x dvd l)` and normalisation_factor_is_unit[OF `l \<noteq> 0`] and `l \<noteq> 0`
|
|
|
1408 |
have "(\<forall>x\<in>A. x dvd l div normalisation_factor l) \<and>
|
|
|
1409 |
(\<forall>l'. (\<forall>x\<in>A. x dvd l') \<longrightarrow> l div normalisation_factor l dvd l') \<and>
|
|
|
1410 |
normalisation_factor (l div normalisation_factor l) =
|
|
|
1411 |
(if l div normalisation_factor l = 0 then 0 else 1)"
|
|
|
1412 |
by (auto simp: unit_simps)
|
|
|
1413 |
also from True have "l div normalisation_factor l = Lcm A"
|
|
|
1414 |
by (simp add: Lcm_Lcm_eucl Lcm_eucl_def Let_def n_def l_def)
|
|
|
1415 |
finally show ?thesis .
|
|
|
1416 |
qed
|
|
|
1417 |
note A = this
|
|
|
1418 |
|
|
|
1419 |
{fix x assume "x \<in> A" then show "x dvd Lcm A" using A by blast}
|
|
|
1420 |
{fix l' assume "\<forall>x\<in>A. x dvd l'" then show "Lcm A dvd l'" using A by blast}
|
|
|
1421 |
from A show "normalisation_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" by blast
|
|
|
1422 |
qed
|
|
|
1423 |
|
|
|
1424 |
lemma LcmI:
|
|
|
1425 |
"(\<And>x. x\<in>A \<Longrightarrow> x dvd l) \<Longrightarrow> (\<And>l'. (\<forall>x\<in>A. x dvd l') \<Longrightarrow> l dvd l') \<Longrightarrow>
|
|
|
1426 |
normalisation_factor l = (if l = 0 then 0 else 1) \<Longrightarrow> l = Lcm A"
|
|
|
1427 |
by (intro normed_associated_imp_eq)
|
|
|
1428 |
(auto intro: Lcm_dvd dvd_Lcm simp: associated_def)
|
|
|
1429 |
|
|
|
1430 |
lemma Lcm_subset:
|
|
|
1431 |
"A \<subseteq> B \<Longrightarrow> Lcm A dvd Lcm B"
|
|
|
1432 |
by (blast intro: Lcm_dvd dvd_Lcm)
|
|
|
1433 |
|
|
|
1434 |
lemma Lcm_Un:
|
|
|
1435 |
"Lcm (A \<union> B) = lcm (Lcm A) (Lcm B)"
|
|
|
1436 |
apply (rule lcmI)
|
|
|
1437 |
apply (blast intro: Lcm_subset)
|
|
|
1438 |
apply (blast intro: Lcm_subset)
|
|
|
1439 |
apply (intro Lcm_dvd ballI, elim UnE)
|
|
|
1440 |
apply (rule dvd_trans, erule dvd_Lcm, assumption)
|
|
|
1441 |
apply (rule dvd_trans, erule dvd_Lcm, assumption)
|
|
|
1442 |
apply simp
|
|
|
1443 |
done
|
|
|
1444 |
|
|
|
1445 |
lemma Lcm_1_iff:
|
|
|
1446 |
"Lcm A = 1 \<longleftrightarrow> (\<forall>x\<in>A. is_unit x)"
|
|
|
1447 |
proof
|
|
|
1448 |
assume "Lcm A = 1"
|
|
|
1449 |
then show "\<forall>x\<in>A. is_unit x" unfolding is_unit_def by auto
|
|
|
1450 |
qed (rule LcmI [symmetric], auto)
|
|
|
1451 |
|
|
|
1452 |
lemma Lcm_no_units:
|
|
|
1453 |
"Lcm A = Lcm (A - {x. is_unit x})"
|
|
|
1454 |
proof -
|
|
|
1455 |
have "(A - {x. is_unit x}) \<union> {x\<in>A. is_unit x} = A" by blast
|
|
|
1456 |
hence "Lcm A = lcm (Lcm (A - {x. is_unit x})) (Lcm {x\<in>A. is_unit x})"
|
|
|
1457 |
by (simp add: Lcm_Un[symmetric])
|
|
|
1458 |
also have "Lcm {x\<in>A. is_unit x} = 1" by (simp add: Lcm_1_iff)
|
|
|
1459 |
finally show ?thesis by simp
|
|
|
1460 |
qed
|
|
|
1461 |
|
|
|
1462 |
lemma Lcm_empty [simp]:
|
|
|
1463 |
"Lcm {} = 1"
|
|
|
1464 |
by (simp add: Lcm_1_iff)
|
|
|
1465 |
|
|
|
1466 |
lemma Lcm_eq_0 [simp]:
|
|
|
1467 |
"0 \<in> A \<Longrightarrow> Lcm A = 0"
|
|
|
1468 |
by (drule dvd_Lcm) simp
|
|
|
1469 |
|
|
|
1470 |
lemma Lcm0_iff':
|
|
|
1471 |
"Lcm A = 0 \<longleftrightarrow> \<not>(\<exists>l. l \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l))"
|
|
|
1472 |
proof
|
|
|
1473 |
assume "Lcm A = 0"
|
|
|
1474 |
show "\<not>(\<exists>l. l \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l))"
|
|
|
1475 |
proof
|
|
|
1476 |
assume ex: "\<exists>l. l \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l)"
|
|
|
1477 |
then obtain l\<^sub>0 where l\<^sub>0_props: "l\<^sub>0 \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l\<^sub>0)" by blast
|
|
|
1478 |
def n \<equiv> "LEAST n. \<exists>l. l \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l) \<and> euclidean_size l = n"
|
|
|
1479 |
def l \<equiv> "SOME l. l \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l) \<and> euclidean_size l = n"
|
|
|
1480 |
have "\<exists>l. l \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l) \<and> euclidean_size l = n"
|
|
|
1481 |
apply (subst n_def)
|
|
|
1482 |
apply (rule LeastI[of _ "euclidean_size l\<^sub>0"])
|
|
|
1483 |
apply (rule exI[of _ l\<^sub>0])
|
|
|
1484 |
apply (simp add: l\<^sub>0_props)
|
|
|
1485 |
done
|
|
|
1486 |
from someI_ex[OF this] have "l \<noteq> 0" unfolding l_def by simp_all
|
|
|
1487 |
hence "l div normalisation_factor l \<noteq> 0" by simp
|
|
|
1488 |
also from ex have "l div normalisation_factor l = Lcm A"
|
|
|
1489 |
by (simp only: Lcm_Lcm_eucl Lcm_eucl_def n_def l_def if_True Let_def)
|
|
|
1490 |
finally show False using `Lcm A = 0` by contradiction
|
|
|
1491 |
qed
|
|
|
1492 |
qed (simp only: Lcm_Lcm_eucl Lcm_eucl_def if_False)
|
|
|
1493 |
|
|
|
1494 |
lemma Lcm0_iff [simp]:
|
|
|
1495 |
"finite A \<Longrightarrow> Lcm A = 0 \<longleftrightarrow> 0 \<in> A"
|
|
|
1496 |
proof -
|
|
|
1497 |
assume "finite A"
|
|
|
1498 |
have "0 \<in> A \<Longrightarrow> Lcm A = 0" by (intro dvd_0_left dvd_Lcm)
|
|
|
1499 |
moreover {
|
|
|
1500 |
assume "0 \<notin> A"
|
|
|
1501 |
hence "\<Prod>A \<noteq> 0"
|
|
|
1502 |
apply (induct rule: finite_induct[OF `finite A`])
|
|
|
1503 |
apply simp
|
|
|
1504 |
apply (subst setprod.insert, assumption, assumption)
|
|
|
1505 |
apply (rule no_zero_divisors)
|
|
|
1506 |
apply blast+
|
|
|
1507 |
done
|
|
|
1508 |
moreover from `finite A` have "\<forall>x\<in>A. x dvd \<Prod>A" by (intro ballI dvd_setprod)
|
|
|
1509 |
ultimately have "\<exists>l. l \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l)" by blast
|
|
|
1510 |
with Lcm0_iff' have "Lcm A \<noteq> 0" by simp
|
|
|
1511 |
}
|
|
|
1512 |
ultimately show "Lcm A = 0 \<longleftrightarrow> 0 \<in> A" by blast
|
|
|
1513 |
qed
|
|
|
1514 |
|
|
|
1515 |
lemma Lcm_no_multiple:
|
|
|
1516 |
"(\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>x\<in>A. \<not>x dvd m)) \<Longrightarrow> Lcm A = 0"
|
|
|
1517 |
proof -
|
|
|
1518 |
assume "\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>x\<in>A. \<not>x dvd m)"
|
|
|
1519 |
hence "\<not>(\<exists>l. l \<noteq> 0 \<and> (\<forall>x\<in>A. x dvd l))" by blast
|
|
|
1520 |
then show "Lcm A = 0" by (simp only: Lcm_Lcm_eucl Lcm_eucl_def if_False)
|
|
|
1521 |
qed
|
|
|
1522 |
|
|
|
1523 |
lemma Lcm_insert [simp]:
|
|
|
1524 |
"Lcm (insert a A) = lcm a (Lcm A)"
|
|
|
1525 |
proof (rule lcmI)
|
|
|
1526 |
fix l assume "a dvd l" and "Lcm A dvd l"
|
|
|
1527 |
hence "\<forall>x\<in>A. x dvd l" by (blast intro: dvd_trans dvd_Lcm)
|
|
|
1528 |
with `a dvd l` show "Lcm (insert a A) dvd l" by (force intro: Lcm_dvd)
|
|
|
1529 |
qed (auto intro: Lcm_dvd dvd_Lcm)
|
|
|
1530 |
|
|
|
1531 |
lemma Lcm_finite:
|
|
|
1532 |
assumes "finite A"
|
|
|
1533 |
shows "Lcm A = Finite_Set.fold lcm 1 A"
|
|
|
1534 |
by (induct rule: finite.induct[OF `finite A`])
|
|
|
1535 |
(simp_all add: comp_fun_idem.fold_insert_idem[OF comp_fun_idem_lcm])
|
|
|
1536 |
|
|
|
1537 |
lemma Lcm_set [code, code_unfold]:
|
|
|
1538 |
"Lcm (set xs) = fold lcm xs 1"
|
|
|
1539 |
using comp_fun_idem.fold_set_fold[OF comp_fun_idem_lcm] Lcm_finite by (simp add: ac_simps)
|
|
|
1540 |
|
|
|
1541 |
lemma Lcm_singleton [simp]:
|
|
|
1542 |
"Lcm {a} = a div normalisation_factor a"
|
|
|
1543 |
by simp
|
|
|
1544 |
|
|
|
1545 |
lemma Lcm_2 [simp]:
|
|
|
1546 |
"Lcm {a,b} = lcm a b"
|
|
|
1547 |
by (simp only: Lcm_insert Lcm_empty lcm_1_right)
|
|
|
1548 |
(cases "b = 0", simp, rule lcm_div_unit2, simp)
|
|
|
1549 |
|
|
|
1550 |
lemma Lcm_coprime:
|
|
|
1551 |
assumes "finite A" and "A \<noteq> {}"
|
|
|
1552 |
assumes "\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> gcd a b = 1"
|
|
|
1553 |
shows "Lcm A = \<Prod>A div normalisation_factor (\<Prod>A)"
|
|
|
1554 |
using assms proof (induct rule: finite_ne_induct)
|
|
|
1555 |
case (insert a A)
|
|
|
1556 |
have "Lcm (insert a A) = lcm a (Lcm A)" by simp
|
|
|
1557 |
also from insert have "Lcm A = \<Prod>A div normalisation_factor (\<Prod>A)" by blast
|
|
|
1558 |
also have "lcm a \<dots> = lcm a (\<Prod>A)" by (cases "\<Prod>A = 0") (simp_all add: lcm_div_unit2)
|
|
|
1559 |
also from insert have "gcd a (\<Prod>A) = 1" by (subst gcd.commute, intro setprod_coprime) auto
|
|
|
1560 |
with insert have "lcm a (\<Prod>A) = \<Prod>(insert a A) div normalisation_factor (\<Prod>(insert a A))"
|
|
|
1561 |
by (simp add: lcm_coprime)
|
|
|
1562 |
finally show ?case .
|
|
|
1563 |
qed simp
|
|
|
1564 |
|
|
|
1565 |
lemma Lcm_coprime':
|
|
|
1566 |
"card A \<noteq> 0 \<Longrightarrow> (\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> gcd a b = 1)
|
|
|
1567 |
\<Longrightarrow> Lcm A = \<Prod>A div normalisation_factor (\<Prod>A)"
|
|
|
1568 |
by (rule Lcm_coprime) (simp_all add: card_eq_0_iff)
|
|
|
1569 |
|
|
|
1570 |
lemma Gcd_Lcm:
|
|
|
1571 |
"Gcd A = Lcm {d. \<forall>x\<in>A. d dvd x}"
|
|
|
1572 |
by (simp add: Gcd_Gcd_eucl Lcm_Lcm_eucl Gcd_eucl_def)
|
|
|
1573 |
|
|
|
1574 |
lemma Gcd_dvd [simp]: "x \<in> A \<Longrightarrow> Gcd A dvd x"
|
|
|
1575 |
and dvd_Gcd [simp]: "(\<forall>x\<in>A. g' dvd x) \<Longrightarrow> g' dvd Gcd A"
|
|
|
1576 |
and normalisation_factor_Gcd [simp]:
|
|
|
1577 |
"normalisation_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)"
|
|
|
1578 |
proof -
|
|
|
1579 |
fix x assume "x \<in> A"
|
|
|
1580 |
hence "Lcm {d. \<forall>x\<in>A. d dvd x} dvd x" by (intro Lcm_dvd) blast
|
|
|
1581 |
then show "Gcd A dvd x" by (simp add: Gcd_Lcm)
|
|
|
1582 |
next
|
|
|
1583 |
fix g' assume "\<forall>x\<in>A. g' dvd x"
|
|
|
1584 |
hence "g' dvd Lcm {d. \<forall>x\<in>A. d dvd x}" by (intro dvd_Lcm) blast
|
|
|
1585 |
then show "g' dvd Gcd A" by (simp add: Gcd_Lcm)
|
|
|
1586 |
next
|
|
|
1587 |
show "normalisation_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)"
|
|
|
1588 |
by (simp add: Gcd_Lcm normalisation_factor_Lcm)
|
|
|
1589 |
qed
|
|
|
1590 |
|
|
|
1591 |
lemma GcdI:
|
|
|
1592 |
"(\<And>x. x\<in>A \<Longrightarrow> l dvd x) \<Longrightarrow> (\<And>l'. (\<forall>x\<in>A. l' dvd x) \<Longrightarrow> l' dvd l) \<Longrightarrow>
|
|
|
1593 |
normalisation_factor l = (if l = 0 then 0 else 1) \<Longrightarrow> l = Gcd A"
|
|
|
1594 |
by (intro normed_associated_imp_eq)
|
|
|
1595 |
(auto intro: Gcd_dvd dvd_Gcd simp: associated_def)
|
|
|
1596 |
|
|
|
1597 |
lemma Lcm_Gcd:
|
|
|
1598 |
"Lcm A = Gcd {m. \<forall>x\<in>A. x dvd m}"
|
|
|
1599 |
by (rule LcmI[symmetric]) (auto intro: dvd_Gcd Gcd_dvd)
|
|
|
1600 |
|
|
|
1601 |
lemma Gcd_0_iff:
|
|
|
1602 |
"Gcd A = 0 \<longleftrightarrow> A \<subseteq> {0}"
|
|
|
1603 |
apply (rule iffI)
|
|
|
1604 |
apply (rule subsetI, drule Gcd_dvd, simp)
|
|
|
1605 |
apply (auto intro: GcdI[symmetric])
|
|
|
1606 |
done
|
|
|
1607 |
|
|
|
1608 |
lemma Gcd_empty [simp]:
|
|
|
1609 |
"Gcd {} = 0"
|
|
|
1610 |
by (simp add: Gcd_0_iff)
|
|
|
1611 |
|
|
|
1612 |
lemma Gcd_1:
|
|
|
1613 |
"1 \<in> A \<Longrightarrow> Gcd A = 1"
|
|
|
1614 |
by (intro GcdI[symmetric]) (auto intro: Gcd_dvd dvd_Gcd)
|
|
|
1615 |
|
|
|
1616 |
lemma Gcd_insert [simp]:
|
|
|
1617 |
"Gcd (insert a A) = gcd a (Gcd A)"
|
|
|
1618 |
proof (rule gcdI)
|
|
|
1619 |
fix l assume "l dvd a" and "l dvd Gcd A"
|
|
|
1620 |
hence "\<forall>x\<in>A. l dvd x" by (blast intro: dvd_trans Gcd_dvd)
|
|
|
1621 |
with `l dvd a` show "l dvd Gcd (insert a A)" by (force intro: Gcd_dvd)
|
|
|
1622 |
qed (auto intro: Gcd_dvd dvd_Gcd simp: normalisation_factor_Gcd)
|
|
|
1623 |
|
|
|
1624 |
lemma Gcd_finite:
|
|
|
1625 |
assumes "finite A"
|
|
|
1626 |
shows "Gcd A = Finite_Set.fold gcd 0 A"
|
|
|
1627 |
by (induct rule: finite.induct[OF `finite A`])
|
|
|
1628 |
(simp_all add: comp_fun_idem.fold_insert_idem[OF comp_fun_idem_gcd])
|
|
|
1629 |
|
|
|
1630 |
lemma Gcd_set [code, code_unfold]:
|
|
|
1631 |
"Gcd (set xs) = fold gcd xs 0"
|
|
|
1632 |
using comp_fun_idem.fold_set_fold[OF comp_fun_idem_gcd] Gcd_finite by (simp add: ac_simps)
|
|
|
1633 |
|
|
|
1634 |
lemma Gcd_singleton [simp]: "Gcd {a} = a div normalisation_factor a"
|
|
|
1635 |
by (simp add: gcd_0)
|
|
|
1636 |
|
|
|
1637 |
lemma Gcd_2 [simp]: "Gcd {a,b} = gcd a b"
|
|
|
1638 |
by (simp only: Gcd_insert Gcd_empty gcd_0) (cases "b = 0", simp, rule gcd_div_unit2, simp)
|
|
|
1639 |
|
|
|
1640 |
end
|
|
|
1641 |
|
|
|
1642 |
text {*
|
|
|
1643 |
A Euclidean ring is a Euclidean semiring with additive inverses. It provides a
|
|
|
1644 |
few more lemmas; in particular, Bezout's lemma holds for any Euclidean ring.
|
|
|
1645 |
*}
|
|
|
1646 |
|
|
|
1647 |
class euclidean_ring = euclidean_semiring + idom
|
|
|
1648 |
|
|
|
1649 |
class euclidean_ring_gcd = euclidean_semiring_gcd + idom
|
|
|
1650 |
begin
|
|
|
1651 |
|
|
|
1652 |
subclass euclidean_ring ..
|
|
|
1653 |
|
|
|
1654 |
lemma gcd_neg1 [simp]:
|
|
|
1655 |
"gcd (-x) y = gcd x y"
|
|
|
1656 |
by (rule sym, rule gcdI, simp_all add: gcd_greatest gcd_zero)
|
|
|
1657 |
|
|
|
1658 |
lemma gcd_neg2 [simp]:
|
|
|
1659 |
"gcd x (-y) = gcd x y"
|
|
|
1660 |
by (rule sym, rule gcdI, simp_all add: gcd_greatest gcd_zero)
|
|
|
1661 |
|
|
|
1662 |
lemma gcd_neg_numeral_1 [simp]:
|
|
|
1663 |
"gcd (- numeral n) x = gcd (numeral n) x"
|
|
|
1664 |
by (fact gcd_neg1)
|
|
|
1665 |
|
|
|
1666 |
lemma gcd_neg_numeral_2 [simp]:
|
|
|
1667 |
"gcd x (- numeral n) = gcd x (numeral n)"
|
|
|
1668 |
by (fact gcd_neg2)
|
|
|
1669 |
|
|
|
1670 |
lemma gcd_diff1: "gcd (m - n) n = gcd m n"
|
|
|
1671 |
by (subst diff_conv_add_uminus, subst gcd_neg2[symmetric], subst gcd_add1, simp)
|
|
|
1672 |
|
|
|
1673 |
lemma gcd_diff2: "gcd (n - m) n = gcd m n"
|
|
|
1674 |
by (subst gcd_neg1[symmetric], simp only: minus_diff_eq gcd_diff1)
|
|
|
1675 |
|
|
|
1676 |
lemma coprime_minus_one [simp]: "gcd (n - 1) n = 1"
|
|
|
1677 |
proof -
|
|
|
1678 |
have "gcd (n - 1) n = gcd n (n - 1)" by (fact gcd.commute)
|
|
|
1679 |
also have "\<dots> = gcd ((n - 1) + 1) (n - 1)" by simp
|
|
|
1680 |
also have "\<dots> = 1" by (rule coprime_plus_one)
|
|
|
1681 |
finally show ?thesis .
|
|
|
1682 |
qed
|
|
|
1683 |
|
|
|
1684 |
lemma lcm_neg1 [simp]: "lcm (-x) y = lcm x y"
|
|
|
1685 |
by (rule sym, rule lcmI, simp_all add: lcm_least lcm_zero)
|
|
|
1686 |
|
|
|
1687 |
lemma lcm_neg2 [simp]: "lcm x (-y) = lcm x y"
|
|
|
1688 |
by (rule sym, rule lcmI, simp_all add: lcm_least lcm_zero)
|
|
|
1689 |
|
|
|
1690 |
lemma lcm_neg_numeral_1 [simp]: "lcm (- numeral n) x = lcm (numeral n) x"
|
|
|
1691 |
by (fact lcm_neg1)
|
|
|
1692 |
|
|
|
1693 |
lemma lcm_neg_numeral_2 [simp]: "lcm x (- numeral n) = lcm x (numeral n)"
|
|
|
1694 |
by (fact lcm_neg2)
|
|
|
1695 |
|
|
|
1696 |
function euclid_ext :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<times> 'a \<times> 'a" where
|
|
|
1697 |
"euclid_ext a b =
|
|
|
1698 |
(if b = 0 then
|
|
|
1699 |
let x = ring_inv (normalisation_factor a) in (x, 0, a * x)
|
|
|
1700 |
else
|
|
|
1701 |
case euclid_ext b (a mod b) of
|
|
|
1702 |
(s,t,c) \<Rightarrow> (t, s - t * (a div b), c))"
|
|
|
1703 |
by (pat_completeness, simp)
|
|
|
1704 |
termination by (relation "measure (euclidean_size \<circ> snd)", simp_all)
|
|
|
1705 |
|
|
|
1706 |
declare euclid_ext.simps [simp del]
|
|
|
1707 |
|
|
|
1708 |
lemma euclid_ext_0:
|
|
|
1709 |
"euclid_ext a 0 = (ring_inv (normalisation_factor a), 0, a * ring_inv (normalisation_factor a))"
|
|
|
1710 |
by (subst euclid_ext.simps, simp add: Let_def)
|
|
|
1711 |
|
|
|
1712 |
lemma euclid_ext_non_0:
|
|
|
1713 |
"b \<noteq> 0 \<Longrightarrow> euclid_ext a b = (case euclid_ext b (a mod b) of
|
|
|
1714 |
(s,t,c) \<Rightarrow> (t, s - t * (a div b), c))"
|
|
|
1715 |
by (subst euclid_ext.simps, simp)
|
|
|
1716 |
|
|
|
1717 |
definition euclid_ext' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<times> 'a"
|
|
|
1718 |
where
|
|
|
1719 |
"euclid_ext' a b = (case euclid_ext a b of (s, t, _) \<Rightarrow> (s, t))"
|
|
|
1720 |
|
|
|
1721 |
lemma euclid_ext_gcd [simp]:
|
|
|
1722 |
"(case euclid_ext a b of (_,_,t) \<Rightarrow> t) = gcd a b"
|
|
|
1723 |
proof (induct a b rule: euclid_ext.induct)
|
|
|
1724 |
case (1 a b)
|
|
|
1725 |
then show ?case
|
|
|
1726 |
proof (cases "b = 0")
|
|
|
1727 |
case True
|
|
|
1728 |
then show ?thesis by (cases "a = 0")
|
|
|
1729 |
(simp_all add: euclid_ext_0 unit_div mult_ac unit_simps gcd_0)
|
|
|
1730 |
next
|
|
|
1731 |
case False with 1 show ?thesis
|
|
|
1732 |
by (simp add: euclid_ext_non_0 ac_simps split: prod.split prod.split_asm)
|
|
|
1733 |
qed
|
|
|
1734 |
qed
|
|
|
1735 |
|
|
|
1736 |
lemma euclid_ext_gcd' [simp]:
|
|
|
1737 |
"euclid_ext a b = (r, s, t) \<Longrightarrow> t = gcd a b"
|
|
|
1738 |
by (insert euclid_ext_gcd[of a b], drule (1) subst, simp)
|
|
|
1739 |
|
|
|
1740 |
lemma euclid_ext_correct:
|
|
|
1741 |
"case euclid_ext x y of (s,t,c) \<Rightarrow> s*x + t*y = c"
|
|
|
1742 |
proof (induct x y rule: euclid_ext.induct)
|
|
|
1743 |
case (1 x y)
|
|
|
1744 |
show ?case
|
|
|
1745 |
proof (cases "y = 0")
|
|
|
1746 |
case True
|
|
|
1747 |
then show ?thesis by (simp add: euclid_ext_0 mult_ac)
|
|
|
1748 |
next
|
|
|
1749 |
case False
|
|
|
1750 |
obtain s t c where stc: "euclid_ext y (x mod y) = (s,t,c)"
|
|
|
1751 |
by (cases "euclid_ext y (x mod y)", blast)
|
|
|
1752 |
from 1 have "c = s * y + t * (x mod y)" by (simp add: stc False)
|
|
|
1753 |
also have "... = t*((x div y)*y + x mod y) + (s - t * (x div y))*y"
|
|
|
1754 |
by (simp add: algebra_simps)
|
|
|
1755 |
also have "(x div y)*y + x mod y = x" using mod_div_equality .
|
|
|
1756 |
finally show ?thesis
|
|
|
1757 |
by (subst euclid_ext.simps, simp add: False stc)
|
|
|
1758 |
qed
|
|
|
1759 |
qed
|
|
|
1760 |
|
|
|
1761 |
lemma euclid_ext'_correct:
|
|
|
1762 |
"fst (euclid_ext' a b) * a + snd (euclid_ext' a b) * b = gcd a b"
|
|
|
1763 |
proof-
|
|
|
1764 |
obtain s t c where "euclid_ext a b = (s,t,c)"
|
|
|
1765 |
by (cases "euclid_ext a b", blast)
|
|
|
1766 |
with euclid_ext_correct[of a b] euclid_ext_gcd[of a b]
|
|
|
1767 |
show ?thesis unfolding euclid_ext'_def by simp
|
|
|
1768 |
qed
|
|
|
1769 |
|
|
|
1770 |
lemma bezout: "\<exists>s t. s * x + t * y = gcd x y"
|
|
|
1771 |
using euclid_ext'_correct by blast
|
|
|
1772 |
|
|
|
1773 |
lemma euclid_ext'_0 [simp]: "euclid_ext' x 0 = (ring_inv (normalisation_factor x), 0)"
|
|
|
1774 |
by (simp add: bezw_def euclid_ext'_def euclid_ext_0)
|
|
|
1775 |
|
|
|
1776 |
lemma euclid_ext'_non_0: "y \<noteq> 0 \<Longrightarrow> euclid_ext' x y = (snd (euclid_ext' y (x mod y)),
|
|
|
1777 |
fst (euclid_ext' y (x mod y)) - snd (euclid_ext' y (x mod y)) * (x div y))"
|
|
|
1778 |
by (cases "euclid_ext y (x mod y)")
|
|
|
1779 |
(simp add: euclid_ext'_def euclid_ext_non_0)
|
|
|
1780 |
|
|
|
1781 |
end
|
|
|
1782 |
|
|
|
1783 |
instantiation nat :: euclidean_semiring
|
|
|
1784 |
begin
|
|
|
1785 |
|
|
|
1786 |
definition [simp]:
|
|
|
1787 |
"euclidean_size_nat = (id :: nat \<Rightarrow> nat)"
|
|
|
1788 |
|
|
|
1789 |
definition [simp]:
|
|
|
1790 |
"normalisation_factor_nat (n::nat) = (if n = 0 then 0 else 1 :: nat)"
|
|
|
1791 |
|
|
|
1792 |
instance proof
|
|
|
1793 |
qed (simp_all add: is_unit_def)
|
|
|
1794 |
|
|
|
1795 |
end
|
|
|
1796 |
|
|
|
1797 |
instantiation int :: euclidean_ring
|
|
|
1798 |
begin
|
|
|
1799 |
|
|
|
1800 |
definition [simp]:
|
|
|
1801 |
"euclidean_size_int = (nat \<circ> abs :: int \<Rightarrow> nat)"
|
|
|
1802 |
|
|
|
1803 |
definition [simp]:
|
|
|
1804 |
"normalisation_factor_int = (sgn :: int \<Rightarrow> int)"
|
|
|
1805 |
|
|
|
1806 |
instance proof
|
|
|
1807 |
case goal2 then show ?case by (auto simp add: abs_mult nat_mult_distrib)
|
|
|
1808 |
next
|
|
|
1809 |
case goal3 then show ?case by (simp add: zsgn_def is_unit_def)
|
|
|
1810 |
next
|
|
|
1811 |
case goal5 then show ?case by (auto simp: zsgn_def is_unit_def)
|
|
|
1812 |
next
|
|
|
1813 |
case goal6 then show ?case by (auto split: abs_split simp: zsgn_def is_unit_def)
|
|
|
1814 |
qed (auto simp: sgn_times split: abs_split)
|
|
|
1815 |
|
|
|
1816 |
end
|
|
|
1817 |
|
|
|
1818 |
end
|
|
|
1819 |
|