src/HOL/Old_Number_Theory/Gauss.thy
author wenzelm
Sun Nov 02 18:21:45 2014 +0100 (2014-11-02)
changeset 58889 5b7a9633cfa8
parent 58410 6d46ad54a2ab
child 61382 efac889fccbc
permissions -rw-r--r--
modernized header uniformly as section;
wenzelm@38159
     1
(*  Title:      HOL/Old_Number_Theory/Gauss.thy
wenzelm@38159
     2
    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
paulson@13871
     3
*)
paulson@13871
     4
wenzelm@58889
     5
section {* Gauss' Lemma *}
paulson@13871
     6
haftmann@27556
     7
theory Gauss
haftmann@27556
     8
imports Euler
haftmann@27556
     9
begin
paulson@13871
    10
paulson@13871
    11
locale GAUSS =
paulson@13871
    12
  fixes p :: "int"
paulson@13871
    13
  fixes a :: "int"
paulson@13871
    14
nipkow@16663
    15
  assumes p_prime: "zprime p"
paulson@13871
    16
  assumes p_g_2: "2 < p"
paulson@13871
    17
  assumes p_a_relprime: "~[a = 0](mod p)"
paulson@13871
    18
  assumes a_nonzero:    "0 < a"
wenzelm@21233
    19
begin
paulson@13871
    20
wenzelm@38159
    21
definition "A = {(x::int). 0 < x & x \<le> ((p - 1) div 2)}"
wenzelm@38159
    22
definition "B = (%x. x * a) ` A"
wenzelm@38159
    23
definition "C = StandardRes p ` B"
wenzelm@38159
    24
definition "D = C \<inter> {x. x \<le> ((p - 1) div 2)}"
wenzelm@38159
    25
definition "E = C \<inter> {x. ((p - 1) div 2) < x}"
wenzelm@38159
    26
definition "F = (%x. (p - x)) ` E"
wenzelm@21233
    27
paulson@13871
    28
paulson@13871
    29
subsection {* Basic properties of p *}
paulson@13871
    30
wenzelm@21233
    31
lemma p_odd: "p \<in> zOdd"
paulson@13871
    32
  by (auto simp add: p_prime p_g_2 zprime_zOdd_eq_grt_2)
paulson@13871
    33
wenzelm@21233
    34
lemma p_g_0: "0 < p"
wenzelm@18369
    35
  using p_g_2 by auto
paulson@13871
    36
wenzelm@21233
    37
lemma int_nat: "int (nat ((p - 1) div 2)) = (p - 1) div 2"
wenzelm@26289
    38
  using ListMem.insert p_g_2 by (auto simp add: pos_imp_zdiv_nonneg_iff)
paulson@13871
    39
wenzelm@21233
    40
lemma p_minus_one_l: "(p - 1) div 2 < p"
wenzelm@18369
    41
proof -
wenzelm@18369
    42
  have "(p - 1) div 2 \<le> (p - 1) div 1"
wenzelm@18369
    43
    by (rule zdiv_mono2) (auto simp add: p_g_0)
wenzelm@18369
    44
  also have "\<dots> = p - 1" by simp
wenzelm@18369
    45
  finally show ?thesis by simp
wenzelm@18369
    46
qed
paulson@13871
    47
wenzelm@21233
    48
lemma p_eq: "p = (2 * (p - 1) div 2) + 1"
nipkow@30034
    49
  using div_mult_self1_is_id [of 2 "p - 1"] by auto
paulson@13871
    50
wenzelm@21233
    51
wenzelm@21288
    52
lemma (in -) zodd_imp_zdiv_eq: "x \<in> zOdd ==> 2 * (x - 1) div 2 = 2 * ((x - 1) div 2)"
paulson@13871
    53
  apply (frule odd_minus_one_even)
paulson@13871
    54
  apply (simp add: zEven_def)
paulson@13871
    55
  apply (subgoal_tac "2 \<noteq> 0")
nipkow@30034
    56
  apply (frule_tac b = "2 :: int" and a = "x - 1" in div_mult_self1_is_id)
wenzelm@18369
    57
  apply (auto simp add: even_div_2_prop2)
wenzelm@18369
    58
  done
paulson@13871
    59
wenzelm@21233
    60
wenzelm@21233
    61
lemma p_eq2: "p = (2 * ((p - 1) div 2)) + 1"
paulson@13871
    62
  apply (insert p_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 [of p], auto)
wenzelm@18369
    63
  apply (frule zodd_imp_zdiv_eq, auto)
wenzelm@18369
    64
  done
paulson@13871
    65
wenzelm@21233
    66
paulson@13871
    67
subsection {* Basic Properties of the Gauss Sets *}
paulson@13871
    68
wenzelm@21233
    69
lemma finite_A: "finite (A)"
bulwahn@46756
    70
by (auto simp add: A_def)
paulson@13871
    71
wenzelm@21233
    72
lemma finite_B: "finite (B)"
nipkow@40786
    73
by (auto simp add: B_def finite_A)
paulson@13871
    74
wenzelm@21233
    75
lemma finite_C: "finite (C)"
nipkow@40786
    76
by (auto simp add: C_def finite_B)
paulson@13871
    77
wenzelm@21233
    78
lemma finite_D: "finite (D)"
wenzelm@41541
    79
by (auto simp add: D_def finite_C)
paulson@13871
    80
wenzelm@21233
    81
lemma finite_E: "finite (E)"
wenzelm@41541
    82
by (auto simp add: E_def finite_C)
paulson@13871
    83
wenzelm@21233
    84
lemma finite_F: "finite (F)"
nipkow@40786
    85
by (auto simp add: F_def finite_E)
paulson@13871
    86
wenzelm@21233
    87
lemma C_eq: "C = D \<union> E"
nipkow@40786
    88
by (auto simp add: C_def D_def E_def)
paulson@13871
    89
wenzelm@21233
    90
lemma A_card_eq: "card A = nat ((p - 1) div 2)"
wenzelm@18369
    91
  apply (auto simp add: A_def)
paulson@13871
    92
  apply (insert int_nat)
paulson@13871
    93
  apply (erule subst)
wenzelm@18369
    94
  apply (auto simp add: card_bdd_int_set_l_le)
wenzelm@18369
    95
  done
paulson@13871
    96
wenzelm@21233
    97
lemma inj_on_xa_A: "inj_on (%x. x * a) A"
wenzelm@18369
    98
  using a_nonzero by (simp add: A_def inj_on_def)
paulson@13871
    99
wenzelm@21233
   100
lemma A_res: "ResSet p A"
wenzelm@18369
   101
  apply (auto simp add: A_def ResSet_def)
wenzelm@18369
   102
  apply (rule_tac m = p in zcong_less_eq)
wenzelm@18369
   103
  apply (insert p_g_2, auto)
wenzelm@18369
   104
  done
paulson@13871
   105
wenzelm@21233
   106
lemma B_res: "ResSet p B"
paulson@13871
   107
  apply (insert p_g_2 p_a_relprime p_minus_one_l)
wenzelm@18369
   108
  apply (auto simp add: B_def)
paulson@13871
   109
  apply (rule ResSet_image)
wenzelm@18369
   110
  apply (auto simp add: A_res)
paulson@13871
   111
  apply (auto simp add: A_def)
wenzelm@18369
   112
proof -
wenzelm@18369
   113
  fix x fix y
wenzelm@18369
   114
  assume a: "[x * a = y * a] (mod p)"
wenzelm@18369
   115
  assume b: "0 < x"
wenzelm@18369
   116
  assume c: "x \<le> (p - 1) div 2"
wenzelm@18369
   117
  assume d: "0 < y"
wenzelm@18369
   118
  assume e: "y \<le> (p - 1) div 2"
wenzelm@18369
   119
  from a p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y]
wenzelm@18369
   120
  have "[x = y](mod p)"
wenzelm@18369
   121
    by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less)
wenzelm@18369
   122
  with zcong_less_eq [of x y p] p_minus_one_l
wenzelm@18369
   123
      order_le_less_trans [of x "(p - 1) div 2" p]
wenzelm@18369
   124
      order_le_less_trans [of y "(p - 1) div 2" p] show "x = y"
wenzelm@41541
   125
    by (simp add: b c d e p_minus_one_l p_g_0)
wenzelm@18369
   126
qed
paulson@13871
   127
wenzelm@21233
   128
lemma SR_B_inj: "inj_on (StandardRes p) B"
wenzelm@41541
   129
  apply (auto simp add: B_def StandardRes_def inj_on_def A_def)
wenzelm@18369
   130
proof -
wenzelm@18369
   131
  fix x fix y
wenzelm@18369
   132
  assume a: "x * a mod p = y * a mod p"
wenzelm@18369
   133
  assume b: "0 < x"
wenzelm@18369
   134
  assume c: "x \<le> (p - 1) div 2"
wenzelm@18369
   135
  assume d: "0 < y"
wenzelm@18369
   136
  assume e: "y \<le> (p - 1) div 2"
wenzelm@18369
   137
  assume f: "x \<noteq> y"
wenzelm@18369
   138
  from a have "[x * a = y * a](mod p)"
wenzelm@18369
   139
    by (simp add: zcong_zmod_eq p_g_0)
wenzelm@18369
   140
  with p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y]
wenzelm@18369
   141
  have "[x = y](mod p)"
wenzelm@18369
   142
    by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less)
wenzelm@18369
   143
  with zcong_less_eq [of x y p] p_minus_one_l
wenzelm@18369
   144
    order_le_less_trans [of x "(p - 1) div 2" p]
wenzelm@18369
   145
    order_le_less_trans [of y "(p - 1) div 2" p] have "x = y"
wenzelm@41541
   146
    by (simp add: b c d e p_minus_one_l p_g_0)
wenzelm@18369
   147
  then have False
wenzelm@18369
   148
    by (simp add: f)
wenzelm@18369
   149
  then show "a = 0"
wenzelm@18369
   150
    by simp
wenzelm@18369
   151
qed
paulson@13871
   152
wenzelm@21233
   153
lemma inj_on_pminusx_E: "inj_on (%x. p - x) E"
paulson@13871
   154
  apply (auto simp add: E_def C_def B_def A_def)
wenzelm@18369
   155
  apply (rule_tac g = "%x. -1 * (x - p)" in inj_on_inverseI)
wenzelm@18369
   156
  apply auto
wenzelm@18369
   157
  done
paulson@13871
   158
wenzelm@21233
   159
lemma A_ncong_p: "x \<in> A ==> ~[x = 0](mod p)"
paulson@13871
   160
  apply (auto simp add: A_def)
paulson@13871
   161
  apply (frule_tac m = p in zcong_not_zero)
paulson@13871
   162
  apply (insert p_minus_one_l)
wenzelm@18369
   163
  apply auto
wenzelm@18369
   164
  done
paulson@13871
   165
wenzelm@21233
   166
lemma A_greater_zero: "x \<in> A ==> 0 < x"
paulson@13871
   167
  by (auto simp add: A_def)
paulson@13871
   168
wenzelm@21233
   169
lemma B_ncong_p: "x \<in> B ==> ~[x = 0](mod p)"
paulson@13871
   170
  apply (auto simp add: B_def)
wenzelm@18369
   171
  apply (frule A_ncong_p)
paulson@13871
   172
  apply (insert p_a_relprime p_prime a_nonzero)
thomas@57492
   173
  apply (frule_tac a = xa and b = a in zcong_zprime_prod_zero_contra)
wenzelm@18369
   174
  apply (auto simp add: A_greater_zero)
wenzelm@18369
   175
  done
paulson@13871
   176
wenzelm@21233
   177
lemma B_greater_zero: "x \<in> B ==> 0 < x"
nipkow@56544
   178
  using a_nonzero by (auto simp add: B_def A_greater_zero)
paulson@13871
   179
wenzelm@21233
   180
lemma C_ncong_p: "x \<in> C ==>  ~[x = 0](mod p)"
paulson@13871
   181
  apply (auto simp add: C_def)
paulson@13871
   182
  apply (frule B_ncong_p)
thomas@57492
   183
  apply (subgoal_tac "[xa = StandardRes p xa](mod p)")
wenzelm@18369
   184
  defer apply (simp add: StandardRes_prop1)
thomas@57492
   185
  apply (frule_tac a = xa and b = "StandardRes p xa" and c = 0 in zcong_trans)
wenzelm@18369
   186
  apply auto
wenzelm@18369
   187
  done
paulson@13871
   188
wenzelm@21233
   189
lemma C_greater_zero: "y \<in> C ==> 0 < y"
paulson@13871
   190
  apply (auto simp add: C_def)
wenzelm@18369
   191
proof -
wenzelm@18369
   192
  fix x
wenzelm@18369
   193
  assume a: "x \<in> B"
wenzelm@18369
   194
  from p_g_0 have "0 \<le> StandardRes p x"
wenzelm@18369
   195
    by (simp add: StandardRes_lbound)
wenzelm@18369
   196
  moreover have "~[x = 0] (mod p)"
wenzelm@18369
   197
    by (simp add: a B_ncong_p)
wenzelm@18369
   198
  then have "StandardRes p x \<noteq> 0"
wenzelm@18369
   199
    by (simp add: StandardRes_prop3)
wenzelm@18369
   200
  ultimately show "0 < StandardRes p x"
wenzelm@18369
   201
    by (simp add: order_le_less)
wenzelm@18369
   202
qed
paulson@13871
   203
wenzelm@21233
   204
lemma D_ncong_p: "x \<in> D ==> ~[x = 0](mod p)"
paulson@13871
   205
  by (auto simp add: D_def C_ncong_p)
paulson@13871
   206
wenzelm@21233
   207
lemma E_ncong_p: "x \<in> E ==> ~[x = 0](mod p)"
paulson@13871
   208
  by (auto simp add: E_def C_ncong_p)
paulson@13871
   209
wenzelm@21233
   210
lemma F_ncong_p: "x \<in> F ==> ~[x = 0](mod p)"
wenzelm@18369
   211
  apply (auto simp add: F_def)
wenzelm@18369
   212
proof -
wenzelm@18369
   213
  fix x assume a: "x \<in> E" assume b: "[p - x = 0] (mod p)"
wenzelm@18369
   214
  from E_ncong_p have "~[x = 0] (mod p)"
wenzelm@18369
   215
    by (simp add: a)
wenzelm@18369
   216
  moreover from a have "0 < x"
wenzelm@18369
   217
    by (simp add: a E_def C_greater_zero)
wenzelm@18369
   218
  moreover from a have "x < p"
wenzelm@18369
   219
    by (auto simp add: E_def C_def p_g_0 StandardRes_ubound)
wenzelm@18369
   220
  ultimately have "~[p - x = 0] (mod p)"
wenzelm@18369
   221
    by (simp add: zcong_not_zero)
wenzelm@18369
   222
  from this show False by (simp add: b)
wenzelm@18369
   223
qed
paulson@13871
   224
wenzelm@21233
   225
lemma F_subset: "F \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}"
wenzelm@18369
   226
  apply (auto simp add: F_def E_def)
paulson@13871
   227
  apply (insert p_g_0)
paulson@13871
   228
  apply (frule_tac x = xa in StandardRes_ubound)
paulson@13871
   229
  apply (frule_tac x = x in StandardRes_ubound)
paulson@13871
   230
  apply (subgoal_tac "xa = StandardRes p xa")
paulson@13871
   231
  apply (auto simp add: C_def StandardRes_prop2 StandardRes_prop1)
wenzelm@18369
   232
proof -
wenzelm@18369
   233
  from zodd_imp_zdiv_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 have
wenzelm@18369
   234
    "2 * (p - 1) div 2 = 2 * ((p - 1) div 2)"
wenzelm@18369
   235
    by simp
wenzelm@18369
   236
  with p_eq2 show " !!x. [| (p - 1) div 2 < StandardRes p x; x \<in> B |]
wenzelm@18369
   237
      ==> p - StandardRes p x \<le> (p - 1) div 2"
wenzelm@18369
   238
    by simp
wenzelm@18369
   239
qed
paulson@13871
   240
wenzelm@21233
   241
lemma D_subset: "D \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}"
paulson@13871
   242
  by (auto simp add: D_def C_greater_zero)
paulson@13871
   243
wenzelm@21233
   244
lemma F_eq: "F = {x. \<exists>y \<in> A. ( x = p - (StandardRes p (y*a)) & (p - 1) div 2 < StandardRes p (y*a))}"
paulson@13871
   245
  by (auto simp add: F_def E_def D_def C_def B_def A_def)
paulson@13871
   246
wenzelm@21233
   247
lemma D_eq: "D = {x. \<exists>y \<in> A. ( x = StandardRes p (y*a) & StandardRes p (y*a) \<le> (p - 1) div 2)}"
paulson@13871
   248
  by (auto simp add: D_def C_def B_def A_def)
paulson@13871
   249
wenzelm@21233
   250
lemma D_leq: "x \<in> D ==> x \<le> (p - 1) div 2"
paulson@13871
   251
  by (auto simp add: D_eq)
paulson@13871
   252
wenzelm@21233
   253
lemma F_ge: "x \<in> F ==> x \<le> (p - 1) div 2"
paulson@13871
   254
  apply (auto simp add: F_eq A_def)
wenzelm@18369
   255
proof -
wenzelm@18369
   256
  fix y
wenzelm@18369
   257
  assume "(p - 1) div 2 < StandardRes p (y * a)"
wenzelm@18369
   258
  then have "p - StandardRes p (y * a) < p - ((p - 1) div 2)"
wenzelm@18369
   259
    by arith
wenzelm@18369
   260
  also from p_eq2 have "... = 2 * ((p - 1) div 2) + 1 - ((p - 1) div 2)"
wenzelm@18369
   261
    by auto
wenzelm@18369
   262
  also have "2 * ((p - 1) div 2) + 1 - (p - 1) div 2 = (p - 1) div 2 + 1"
wenzelm@18369
   263
    by arith
wenzelm@18369
   264
  finally show "p - StandardRes p (y * a) \<le> (p - 1) div 2"
wenzelm@18369
   265
    using zless_add1_eq [of "p - StandardRes p (y * a)" "(p - 1) div 2"] by auto
wenzelm@18369
   266
qed
paulson@13871
   267
haftmann@27556
   268
lemma all_A_relprime: "\<forall>x \<in> A. zgcd x p = 1"
wenzelm@18369
   269
  using p_prime p_minus_one_l by (auto simp add: A_def zless_zprime_imp_zrelprime)
paulson@13871
   270
haftmann@27556
   271
lemma A_prod_relprime: "zgcd (setprod id A) p = 1"
nipkow@30837
   272
by(rule all_relprime_prod_relprime[OF finite_A all_A_relprime])
paulson@13871
   273
wenzelm@21233
   274
paulson@13871
   275
subsection {* Relationships Between Gauss Sets *}
paulson@13871
   276
wenzelm@21233
   277
lemma B_card_eq_A: "card B = card A"
wenzelm@18369
   278
  using finite_A by (simp add: finite_A B_def inj_on_xa_A card_image)
paulson@13871
   279
wenzelm@21233
   280
lemma B_card_eq: "card B = nat ((p - 1) div 2)"
wenzelm@18369
   281
  by (simp add: B_card_eq_A A_card_eq)
paulson@13871
   282
wenzelm@21233
   283
lemma F_card_eq_E: "card F = card E"
wenzelm@18369
   284
  using finite_E by (simp add: F_def inj_on_pminusx_E card_image)
paulson@13871
   285
wenzelm@21233
   286
lemma C_card_eq_B: "card C = card B"
paulson@13871
   287
  apply (insert finite_B)
wenzelm@18369
   288
  apply (subgoal_tac "inj_on (StandardRes p) B")
paulson@13871
   289
  apply (simp add: B_def C_def card_image)
paulson@13871
   290
  apply (rule StandardRes_inj_on_ResSet)
wenzelm@18369
   291
  apply (simp add: B_res)
wenzelm@18369
   292
  done
paulson@13871
   293
wenzelm@21233
   294
lemma D_E_disj: "D \<inter> E = {}"
paulson@13871
   295
  by (auto simp add: D_def E_def)
paulson@13871
   296
wenzelm@21233
   297
lemma C_card_eq_D_plus_E: "card C = card D + card E"
paulson@13871
   298
  by (auto simp add: C_eq card_Un_disjoint D_E_disj finite_D finite_E)
paulson@13871
   299
wenzelm@21233
   300
lemma C_prod_eq_D_times_E: "setprod id E * setprod id D = setprod id C"
paulson@13871
   301
  apply (insert D_E_disj finite_D finite_E C_eq)
haftmann@57418
   302
  apply (frule setprod.union_disjoint [of D E id])
wenzelm@18369
   303
  apply auto
wenzelm@18369
   304
  done
paulson@13871
   305
wenzelm@21233
   306
lemma C_B_zcong_prod: "[setprod id C = setprod id B] (mod p)"
paulson@13871
   307
  apply (auto simp add: C_def)
wenzelm@18369
   308
  apply (insert finite_B SR_B_inj)
haftmann@57418
   309
  apply (frule setprod.reindex [of "StandardRes p" B id])
haftmann@57418
   310
  apply auto
nipkow@15392
   311
  apply (rule setprod_same_function_zcong)
wenzelm@18369
   312
  apply (auto simp add: StandardRes_prop1 zcong_sym p_g_0)
wenzelm@18369
   313
  done
paulson@13871
   314
wenzelm@21233
   315
lemma F_Un_D_subset: "(F \<union> D) \<subseteq> A"
paulson@13871
   316
  apply (rule Un_least)
wenzelm@18369
   317
  apply (auto simp add: A_def F_subset D_subset)
wenzelm@18369
   318
  done
paulson@13871
   319
wenzelm@21233
   320
lemma F_D_disj: "(F \<inter> D) = {}"
paulson@13871
   321
  apply (simp add: F_eq D_eq)
paulson@13871
   322
  apply (auto simp add: F_eq D_eq)
wenzelm@18369
   323
proof -
wenzelm@18369
   324
  fix y fix ya
wenzelm@18369
   325
  assume "p - StandardRes p (y * a) = StandardRes p (ya * a)"
wenzelm@18369
   326
  then have "p = StandardRes p (y * a) + StandardRes p (ya * a)"
wenzelm@18369
   327
    by arith
wenzelm@18369
   328
  moreover have "p dvd p"
wenzelm@18369
   329
    by auto
wenzelm@18369
   330
  ultimately have "p dvd (StandardRes p (y * a) + StandardRes p (ya * a))"
wenzelm@18369
   331
    by auto
wenzelm@18369
   332
  then have a: "[StandardRes p (y * a) + StandardRes p (ya * a) = 0] (mod p)"
wenzelm@18369
   333
    by (auto simp add: zcong_def)
wenzelm@18369
   334
  have "[y * a = StandardRes p (y * a)] (mod p)"
wenzelm@18369
   335
    by (simp only: zcong_sym StandardRes_prop1)
wenzelm@18369
   336
  moreover have "[ya * a = StandardRes p (ya * a)] (mod p)"
wenzelm@18369
   337
    by (simp only: zcong_sym StandardRes_prop1)
wenzelm@18369
   338
  ultimately have "[y * a + ya * a =
wenzelm@18369
   339
    StandardRes p (y * a) + StandardRes p (ya * a)] (mod p)"
wenzelm@18369
   340
    by (rule zcong_zadd)
wenzelm@18369
   341
  with a have "[y * a + ya * a = 0] (mod p)"
wenzelm@18369
   342
    apply (elim zcong_trans)
wenzelm@18369
   343
    by (simp only: zcong_refl)
wenzelm@18369
   344
  also have "y * a + ya * a = a * (y + ya)"
haftmann@57512
   345
    by (simp add: distrib_left mult.commute)
wenzelm@18369
   346
  finally have "[a * (y + ya) = 0] (mod p)" .
wenzelm@18369
   347
  with p_prime a_nonzero zcong_zprime_prod_zero [of p a "y + ya"]
wenzelm@18369
   348
    p_a_relprime
wenzelm@18369
   349
  have a: "[y + ya = 0] (mod p)"
wenzelm@18369
   350
    by auto
wenzelm@18369
   351
  assume b: "y \<in> A" and c: "ya: A"
wenzelm@18369
   352
  with A_def have "0 < y + ya"
wenzelm@18369
   353
    by auto
wenzelm@18369
   354
  moreover from b c A_def have "y + ya \<le> (p - 1) div 2 + (p - 1) div 2"
wenzelm@18369
   355
    by auto
wenzelm@18369
   356
  moreover from b c p_eq2 A_def have "y + ya < p"
wenzelm@18369
   357
    by auto
wenzelm@18369
   358
  ultimately show False
wenzelm@18369
   359
    apply simp
wenzelm@18369
   360
    apply (frule_tac m = p in zcong_not_zero)
wenzelm@18369
   361
    apply (auto simp add: a)
wenzelm@18369
   362
    done
wenzelm@18369
   363
qed
paulson@13871
   364
wenzelm@21233
   365
lemma F_Un_D_card: "card (F \<union> D) = nat ((p - 1) div 2)"
wenzelm@18369
   366
proof -
wenzelm@18369
   367
  have "card (F \<union> D) = card E + card D"
wenzelm@18369
   368
    by (auto simp add: finite_F finite_D F_D_disj
wenzelm@18369
   369
      card_Un_disjoint F_card_eq_E)
wenzelm@18369
   370
  then have "card (F \<union> D) = card C"
wenzelm@18369
   371
    by (simp add: C_card_eq_D_plus_E)
wenzelm@18369
   372
  from this show "card (F \<union> D) = nat ((p - 1) div 2)"
wenzelm@18369
   373
    by (simp add: C_card_eq_B B_card_eq)
wenzelm@18369
   374
qed
paulson@13871
   375
wenzelm@21233
   376
lemma F_Un_D_eq_A: "F \<union> D = A"
wenzelm@18369
   377
  using finite_A F_Un_D_subset A_card_eq F_Un_D_card by (auto simp add: card_seteq)
paulson@13871
   378
wenzelm@21233
   379
lemma prod_D_F_eq_prod_A:
wenzelm@18369
   380
    "(setprod id D) * (setprod id F) = setprod id A"
paulson@13871
   381
  apply (insert F_D_disj finite_D finite_F)
haftmann@57418
   382
  apply (frule setprod.union_disjoint [of F D id])
wenzelm@18369
   383
  apply (auto simp add: F_Un_D_eq_A)
wenzelm@18369
   384
  done
paulson@13871
   385
wenzelm@21233
   386
lemma prod_F_zcong:
wenzelm@18369
   387
  "[setprod id F = ((-1) ^ (card E)) * (setprod id E)] (mod p)"
wenzelm@18369
   388
proof -
wenzelm@18369
   389
  have "setprod id F = setprod id (op - p ` E)"
wenzelm@18369
   390
    by (auto simp add: F_def)
wenzelm@18369
   391
  then have "setprod id F = setprod (op - p) E"
wenzelm@18369
   392
    apply simp
wenzelm@18369
   393
    apply (insert finite_E inj_on_pminusx_E)
haftmann@57418
   394
    apply (frule setprod.reindex [of "minus p" E id])
haftmann@57418
   395
    apply auto
wenzelm@18369
   396
    done
wenzelm@18369
   397
  then have one:
wenzelm@18369
   398
    "[setprod id F = setprod (StandardRes p o (op - p)) E] (mod p)"
wenzelm@18369
   399
    apply simp
nipkow@30837
   400
    apply (insert p_g_0 finite_E StandardRes_prod)
nipkow@30837
   401
    by (auto)
wenzelm@18369
   402
  moreover have a: "\<forall>x \<in> E. [p - x = 0 - x] (mod p)"
wenzelm@18369
   403
    apply clarify
wenzelm@18369
   404
    apply (insert zcong_id [of p])
wenzelm@18369
   405
    apply (rule_tac a = p and m = p and c = x and d = x in zcong_zdiff, auto)
wenzelm@18369
   406
    done
wenzelm@18369
   407
  moreover have b: "\<forall>x \<in> E. [StandardRes p (p - x) = p - x](mod p)"
wenzelm@18369
   408
    apply clarify
wenzelm@18369
   409
    apply (simp add: StandardRes_prop1 zcong_sym)
wenzelm@18369
   410
    done
wenzelm@18369
   411
  moreover have "\<forall>x \<in> E. [StandardRes p (p - x) = - x](mod p)"
wenzelm@18369
   412
    apply clarify
wenzelm@18369
   413
    apply (insert a b)
wenzelm@18369
   414
    apply (rule_tac b = "p - x" in zcong_trans, auto)
wenzelm@18369
   415
    done
wenzelm@18369
   416
  ultimately have c:
wenzelm@18369
   417
    "[setprod (StandardRes p o (op - p)) E = setprod (uminus) E](mod p)"
wenzelm@18369
   418
    apply simp
nipkow@30837
   419
    using finite_E p_g_0
nipkow@30837
   420
      setprod_same_function_zcong [of E "StandardRes p o (op - p)" uminus p]
nipkow@30837
   421
    by auto
wenzelm@18369
   422
  then have two: "[setprod id F = setprod (uminus) E](mod p)"
wenzelm@18369
   423
    apply (insert one c)
wenzelm@18369
   424
    apply (rule zcong_trans [of "setprod id F"
nipkow@15392
   425
                               "setprod (StandardRes p o op - p) E" p
wenzelm@18369
   426
                               "setprod uminus E"], auto)
wenzelm@18369
   427
    done
wenzelm@18369
   428
  also have "setprod uminus E = (setprod id E) * (-1)^(card E)"
berghofe@22274
   429
    using finite_E by (induct set: finite) auto
wenzelm@18369
   430
  then have "setprod uminus E = (-1) ^ (card E) * (setprod id E)"
haftmann@57512
   431
    by (simp add: mult.commute)
wenzelm@18369
   432
  with two show ?thesis
wenzelm@18369
   433
    by simp
nipkow@15392
   434
qed
paulson@13871
   435
wenzelm@21233
   436
paulson@13871
   437
subsection {* Gauss' Lemma *}
paulson@13871
   438
haftmann@58410
   439
lemma aux: "setprod id A * (- 1) ^ card E * a ^ card A * (- 1) ^ card E = setprod id A * a ^ card A"
paulson@13871
   440
  by (auto simp add: finite_E neg_one_special)
paulson@13871
   441
wenzelm@21233
   442
theorem pre_gauss_lemma:
wenzelm@18369
   443
  "[a ^ nat((p - 1) div 2) = (-1) ^ (card E)] (mod p)"
wenzelm@18369
   444
proof -
wenzelm@18369
   445
  have "[setprod id A = setprod id F * setprod id D](mod p)"
haftmann@57512
   446
    by (auto simp add: prod_D_F_eq_prod_A mult.commute cong del:setprod.cong)
wenzelm@18369
   447
  then have "[setprod id A = ((-1)^(card E) * setprod id E) *
wenzelm@18369
   448
      setprod id D] (mod p)"
wenzelm@18369
   449
    apply (rule zcong_trans)
haftmann@57418
   450
    apply (auto simp add: prod_F_zcong zcong_scalar cong del: setprod.cong)
wenzelm@18369
   451
    done
wenzelm@18369
   452
  then have "[setprod id A = ((-1)^(card E) * setprod id C)] (mod p)"
wenzelm@18369
   453
    apply (rule zcong_trans)
wenzelm@18369
   454
    apply (insert C_prod_eq_D_times_E, erule subst)
haftmann@57512
   455
    apply (subst mult.assoc, auto)
wenzelm@18369
   456
    done
wenzelm@18369
   457
  then have "[setprod id A = ((-1)^(card E) * setprod id B)] (mod p)"
wenzelm@18369
   458
    apply (rule zcong_trans)
haftmann@57418
   459
    apply (simp add: C_B_zcong_prod zcong_scalar2 cong del:setprod.cong)
wenzelm@18369
   460
    done
wenzelm@18369
   461
  then have "[setprod id A = ((-1)^(card E) *
wenzelm@18369
   462
    (setprod id ((%x. x * a) ` A)))] (mod p)"
wenzelm@18369
   463
    by (simp add: B_def)
wenzelm@18369
   464
  then have "[setprod id A = ((-1)^(card E) * (setprod (%x. x * a) A))]
wenzelm@18369
   465
    (mod p)"
haftmann@57418
   466
    by (simp add:finite_A inj_on_xa_A setprod.reindex cong del:setprod.cong)
wenzelm@18369
   467
  moreover have "setprod (%x. x * a) A =
wenzelm@18369
   468
    setprod (%x. a) A * setprod id A"
berghofe@22274
   469
    using finite_A by (induct set: finite) auto
wenzelm@18369
   470
  ultimately have "[setprod id A = ((-1)^(card E) * (setprod (%x. a) A *
wenzelm@18369
   471
    setprod id A))] (mod p)"
wenzelm@18369
   472
    by simp
wenzelm@18369
   473
  then have "[setprod id A = ((-1)^(card E) * a^(card A) *
wenzelm@18369
   474
      setprod id A)](mod p)"
wenzelm@18369
   475
    apply (rule zcong_trans)
haftmann@57512
   476
    apply (simp add: zcong_scalar2 zcong_scalar finite_A setprod_constant mult.assoc)
wenzelm@18369
   477
    done
wenzelm@18369
   478
  then have a: "[setprod id A * (-1)^(card E) =
wenzelm@18369
   479
      ((-1)^(card E) * a^(card A) * setprod id A * (-1)^(card E))](mod p)"
wenzelm@18369
   480
    by (rule zcong_scalar)
wenzelm@18369
   481
  then have "[setprod id A * (-1)^(card E) = setprod id A *
wenzelm@18369
   482
      (-1)^(card E) * a^(card A) * (-1)^(card E)](mod p)"
wenzelm@18369
   483
    apply (rule zcong_trans)
haftmann@57512
   484
    apply (simp add: a mult.commute mult.left_commute)
wenzelm@18369
   485
    done
wenzelm@18369
   486
  then have "[setprod id A * (-1)^(card E) = setprod id A *
wenzelm@18369
   487
      a^(card A)](mod p)"
wenzelm@18369
   488
    apply (rule zcong_trans)
haftmann@57418
   489
    apply (simp add: aux cong del:setprod.cong)
wenzelm@18369
   490
    done
haftmann@58410
   491
  with this zcong_cancel2 [of p "setprod id A" "(- 1) ^ card E" "a ^ card A"]
haftmann@58410
   492
      p_g_0 A_prod_relprime have "[(- 1) ^ card E = a ^ card A](mod p)"
wenzelm@18369
   493
    by (simp add: order_less_imp_le)
wenzelm@18369
   494
  from this show ?thesis
wenzelm@18369
   495
    by (simp add: A_card_eq zcong_sym)
nipkow@15392
   496
qed
paulson@13871
   497
wenzelm@21233
   498
theorem gauss_lemma: "(Legendre a p) = (-1) ^ (card E)"
nipkow@15392
   499
proof -
paulson@13871
   500
  from Euler_Criterion p_prime p_g_2 have
wenzelm@18369
   501
      "[(Legendre a p) = a^(nat (((p) - 1) div 2))] (mod p)"
paulson@13871
   502
    by auto
nipkow@15392
   503
  moreover note pre_gauss_lemma
nipkow@15392
   504
  ultimately have "[(Legendre a p) = (-1) ^ (card E)] (mod p)"
paulson@13871
   505
    by (rule zcong_trans)
nipkow@15392
   506
  moreover from p_a_relprime have "(Legendre a p) = 1 | (Legendre a p) = (-1)"
paulson@13871
   507
    by (auto simp add: Legendre_def)
nipkow@15392
   508
  moreover have "(-1::int) ^ (card E) = 1 | (-1::int) ^ (card E) = -1"
paulson@13871
   509
    by (rule neg_one_power)
nipkow@15392
   510
  ultimately show ?thesis
paulson@13871
   511
    by (auto simp add: p_g_2 one_not_neg_one_mod_m zcong_sym)
nipkow@15392
   512
qed
paulson@13871
   513
avigad@16775
   514
end
wenzelm@21233
   515
wenzelm@21233
   516
end