src/HOL/Transcendental.thy
author wenzelm
Sun, 02 Nov 2014 18:21:45 +0100
changeset 58889 5b7a9633cfa8
parent 58834 773b378d9313
child 58981 11b6c099f5f3
permissions -rw-r--r--
modernized header uniformly as section;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     1
(*  Title:      HOL/Transcendental.thy
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     2
    Author:     Jacques D. Fleuriot, University of Cambridge, University of Edinburgh
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     3
    Author:     Lawrence C Paulson
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
     4
    Author:     Jeremy Avigad
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     5
*)
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     6
58889
5b7a9633cfa8 modernized header uniformly as section;
wenzelm
parents: 58834
diff changeset
     7
section{*Power Series, Transcendental Functions etc.*}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
     8
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
     9
theory Transcendental
25600
73431bd8c4c4 joined EvenOdd theory with Parity
haftmann
parents: 25153
diff changeset
    10
imports Fact Series Deriv NthRoot
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
    11
begin
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    12
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    13
lemma root_test_convergence:
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    14
  fixes f :: "nat \<Rightarrow> 'a::banach"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    15
  assumes f: "(\<lambda>n. root n (norm (f n))) ----> x" -- "could be weakened to lim sup"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    16
  assumes "x < 1"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    17
  shows "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    18
proof -
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    19
  have "0 \<le> x"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    20
    by (rule LIMSEQ_le[OF tendsto_const f]) (auto intro!: exI[of _ 1])
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    21
  from `x < 1` obtain z where z: "x < z" "z < 1"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    22
    by (metis dense)
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    23
  from f `x < z`
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    24
  have "eventually (\<lambda>n. root n (norm (f n)) < z) sequentially"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    25
    by (rule order_tendstoD)
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    26
  then have "eventually (\<lambda>n. norm (f n) \<le> z^n) sequentially"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    27
    using eventually_ge_at_top
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    28
  proof eventually_elim
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    29
    fix n assume less: "root n (norm (f n)) < z" and n: "1 \<le> n"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    30
    from power_strict_mono[OF less, of n] n
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    31
    show "norm (f n) \<le> z ^ n"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    32
      by simp
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    33
  qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    34
  then show "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    35
    unfolding eventually_sequentially
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    36
    using z `0 \<le> x` by (auto intro!: summable_comparison_test[OF _  summable_geometric])
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    37
qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    38
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
    39
subsection {* Properties of Power Series *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    40
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    41
lemma lemma_realpow_diff:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
    42
  fixes y :: "'a::monoid_mult"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    43
  shows "p \<le> n \<Longrightarrow> y ^ (Suc n - p) = (y ^ (n - p)) * y"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    44
proof -
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    45
  assume "p \<le> n"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    46
  hence "Suc n - p = Suc (n - p)" by (rule Suc_diff_le)
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
    47
  thus ?thesis by (simp add: power_commutes)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    48
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    49
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
    50
lemma lemma_realpow_diff_sumr2:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
    51
  fixes y :: "'a::{comm_ring,monoid_mult}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
    52
  shows
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
    53
    "x ^ (Suc n) - y ^ (Suc n) =
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    54
      (x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    55
proof (induct n)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    56
  case (Suc n)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    57
  have "x ^ Suc (Suc n) - y ^ Suc (Suc n) = x * (x * x ^ n) - y * (y * y ^ n)"
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    58
    by simp
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    59
  also have "... = y * (x ^ (Suc n) - y ^ (Suc n)) + (x - y) * (x * x ^ n)"
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    60
    by (simp add: algebra_simps)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    61
  also have "... = y * ((x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x ^ n)"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    62
    by (simp only: Suc)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    63
  also have "... = (x - y) * (y * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x ^ n)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
    64
    by (simp only: mult.left_commute)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    65
  also have "... = (x - y) * (\<Sum>p<Suc (Suc n). x ^ p * y ^ (Suc n - p))"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    66
    by (simp add: field_simps Suc_diff_le setsum_left_distrib setsum_right_distrib)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    67
  finally show ?case .
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    68
qed simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    69
55832
8dd16f8dfe99 repaired document;
wenzelm
parents: 55734
diff changeset
    70
corollary power_diff_sumr2: --{* @{text COMPLEX_POLYFUN} in HOL Light *}
55734
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55719
diff changeset
    71
  fixes x :: "'a::{comm_ring,monoid_mult}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    72
  shows   "x^n - y^n = (x - y) * (\<Sum>i<n. y^(n - Suc i) * x^i)"
55734
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55719
diff changeset
    73
using lemma_realpow_diff_sumr2[of x "n - 1" y]
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55719
diff changeset
    74
by (cases "n = 0") (simp_all add: field_simps)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55719
diff changeset
    75
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
    76
lemma lemma_realpow_rev_sumr:
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    77
   "(\<Sum>p<Suc n. (x ^ p) * (y ^ (n - p))) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    78
    (\<Sum>p<Suc n. (x ^ (n - p)) * (y ^ p))"
57129
7edb7550663e introduce more powerful reindexing rules for big operators
hoelzl
parents: 57025
diff changeset
    79
  by (subst nat_diff_setsum_reindex[symmetric]) simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    80
55719
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    81
lemma power_diff_1_eq:
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    82
  fixes x :: "'a::{comm_ring,monoid_mult}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    83
  shows "n \<noteq> 0 \<Longrightarrow> x^n - 1 = (x - 1) * (\<Sum>i<n. (x^i))"
55719
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    84
using lemma_realpow_diff_sumr2 [of x _ 1] 
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    85
  by (cases n) auto
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    86
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    87
lemma one_diff_power_eq':
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    88
  fixes x :: "'a::{comm_ring,monoid_mult}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    89
  shows "n \<noteq> 0 \<Longrightarrow> 1 - x^n = (1 - x) * (\<Sum>i<n. x^(n - Suc i))"
55719
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    90
using lemma_realpow_diff_sumr2 [of 1 _ x] 
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    91
  by (cases n) auto
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    92
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    93
lemma one_diff_power_eq:
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    94
  fixes x :: "'a::{comm_ring,monoid_mult}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    95
  shows "n \<noteq> 0 \<Longrightarrow> 1 - x^n = (1 - x) * (\<Sum>i<n. x^i)"
55719
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    96
by (metis one_diff_power_eq' [of n x] nat_diff_setsum_reindex)
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    97
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    98
text{*Power series has a `circle` of convergence, i.e. if it sums for @{term
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
    99
  x}, then it sums absolutely for @{term z} with @{term "\<bar>z\<bar> < \<bar>x\<bar>"}.*}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   100
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   101
lemma powser_insidea:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   102
  fixes x z :: "'a::real_normed_div_algebra"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   103
  assumes 1: "summable (\<lambda>n. f n * x ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   104
    and 2: "norm z < norm x"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   105
  shows "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   106
proof -
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   107
  from 2 have x_neq_0: "x \<noteq> 0" by clarsimp
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   108
  from 1 have "(\<lambda>n. f n * x ^ n) ----> 0"
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   109
    by (rule summable_LIMSEQ_zero)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   110
  hence "convergent (\<lambda>n. f n * x ^ n)"
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   111
    by (rule convergentI)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   112
  hence "Cauchy (\<lambda>n. f n * x ^ n)"
44726
8478eab380e9 generalize some lemmas
huffman
parents: 44725
diff changeset
   113
    by (rule convergent_Cauchy)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   114
  hence "Bseq (\<lambda>n. f n * x ^ n)"
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   115
    by (rule Cauchy_Bseq)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   116
  then obtain K where 3: "0 < K" and 4: "\<forall>n. norm (f n * x ^ n) \<le> K"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   117
    by (simp add: Bseq_def, safe)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   118
  have "\<exists>N. \<forall>n\<ge>N. norm (norm (f n * z ^ n)) \<le>
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   119
                   K * norm (z ^ n) * inverse (norm (x ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   120
  proof (intro exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   121
    fix n::nat
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   122
    assume "0 \<le> n"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   123
    have "norm (norm (f n * z ^ n)) * norm (x ^ n) =
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   124
          norm (f n * x ^ n) * norm (z ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   125
      by (simp add: norm_mult abs_mult)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   126
    also have "\<dots> \<le> K * norm (z ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   127
      by (simp only: mult_right_mono 4 norm_ge_zero)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   128
    also have "\<dots> = K * norm (z ^ n) * (inverse (norm (x ^ n)) * norm (x ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   129
      by (simp add: x_neq_0)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   130
    also have "\<dots> = K * norm (z ^ n) * inverse (norm (x ^ n)) * norm (x ^ n)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   131
      by (simp only: mult.assoc)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   132
    finally show "norm (norm (f n * z ^ n)) \<le>
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   133
                  K * norm (z ^ n) * inverse (norm (x ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   134
      by (simp add: mult_le_cancel_right x_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   135
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   136
  moreover have "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   137
  proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   138
    from 2 have "norm (norm (z * inverse x)) < 1"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   139
      using x_neq_0
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   140
      by (simp add: norm_mult nonzero_norm_inverse divide_inverse [where 'a=real, symmetric])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   141
    hence "summable (\<lambda>n. norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   142
      by (rule summable_geometric)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   143
    hence "summable (\<lambda>n. K * norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   144
      by (rule summable_mult)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   145
    thus "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   146
      using x_neq_0
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   147
      by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   148
                    power_inverse norm_power mult.assoc)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   149
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   150
  ultimately show "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   151
    by (rule summable_comparison_test)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   152
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   153
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   154
lemma powser_inside:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   155
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   156
  shows
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   157
    "summable (\<lambda>n. f n * (x ^ n)) \<Longrightarrow> norm z < norm x \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   158
      summable (\<lambda>n. f n * (z ^ n))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   159
  by (rule powser_insidea [THEN summable_norm_cancel])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   160
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   161
lemma sum_split_even_odd:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   162
  fixes f :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   163
  shows
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   164
    "(\<Sum>i<2 * n. if even i then f i else g i) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   165
     (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1))"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   166
proof (induct n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   167
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   168
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   169
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   170
  case (Suc n)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   171
  have "(\<Sum>i<2 * Suc n. if even i then f i else g i) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   172
    (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1)) + (f (2 * n) + g (2 * n + 1))"
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
   173
    using Suc.hyps unfolding One_nat_def by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   174
  also have "\<dots> = (\<Sum>i<Suc n. f (2 * i)) + (\<Sum>i<Suc n. g (2 * i + 1))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   175
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   176
  finally show ?case .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   177
qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   178
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   179
lemma sums_if':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   180
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   181
  assumes "g sums x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   182
  shows "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   183
  unfolding sums_def
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   184
proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   185
  fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   186
  assume "0 < r"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   187
  from `g sums x`[unfolded sums_def, THEN LIMSEQ_D, OF this]
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   188
  obtain no where no_eq: "\<And> n. n \<ge> no \<Longrightarrow> (norm (setsum g {..<n} - x) < r)" by blast
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   189
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   190
  let ?SUM = "\<lambda> m. \<Sum>i<m. if even i then 0 else g ((i - 1) div 2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   191
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   192
    fix m
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   193
    assume "m \<ge> 2 * no"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   194
    hence "m div 2 \<ge> no" by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   195
    have sum_eq: "?SUM (2 * (m div 2)) = setsum g {..< m div 2}"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   196
      using sum_split_even_odd by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   197
    hence "(norm (?SUM (2 * (m div 2)) - x) < r)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   198
      using no_eq unfolding sum_eq using `m div 2 \<ge> no` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   199
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   200
    have "?SUM (2 * (m div 2)) = ?SUM m"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   201
    proof (cases "even m")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   202
      case True
58710
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   203
      then show ?thesis by (auto simp add: even_two_times_div_two)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   204
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   205
      case False
58834
773b378d9313 more simp rules concerning dvd and even/odd
haftmann
parents: 58740
diff changeset
   206
      then have eq: "Suc (2 * (m div 2)) = m" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   207
      hence "even (2 * (m div 2))" using `odd m` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   208
      have "?SUM m = ?SUM (Suc (2 * (m div 2)))" unfolding eq ..
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   209
      also have "\<dots> = ?SUM (2 * (m div 2))" using `even (2 * (m div 2))` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   210
      finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   211
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   212
    ultimately have "(norm (?SUM m - x) < r)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   213
  }
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   214
  thus "\<exists> no. \<forall> m \<ge> no. norm (?SUM m - x) < r" by blast
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   215
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   216
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   217
lemma sums_if:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   218
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   219
  assumes "g sums x" and "f sums y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   220
  shows "(\<lambda> n. if even n then f (n div 2) else g ((n - 1) div 2)) sums (x + y)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   221
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   222
  let ?s = "\<lambda> n. if even n then 0 else f ((n - 1) div 2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   223
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   224
    fix B T E
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   225
    have "(if B then (0 :: real) else E) + (if B then T else 0) = (if B then T else E)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   226
      by (cases B) auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   227
  } note if_sum = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   228
  have g_sums: "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   229
    using sums_if'[OF `g sums x`] .
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   230
  {
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 38642
diff changeset
   231
    have if_eq: "\<And>B T E. (if \<not> B then T else E) = (if B then E else T)" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   232
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   233
    have "?s sums y" using sums_if'[OF `f sums y`] .
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   234
    from this[unfolded sums_def, THEN LIMSEQ_Suc]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   235
    have "(\<lambda> n. if even n then f (n div 2) else 0) sums y"
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 57275
diff changeset
   236
      by (simp add: lessThan_Suc_eq_insert_0 image_iff setsum.reindex if_eq sums_def cong del: if_cong)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   237
  }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   238
  from sums_add[OF g_sums this] show ?thesis unfolding if_sum .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   239
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   240
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   241
subsection {* Alternating series test / Leibniz formula *}
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   242
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   243
lemma sums_alternating_upper_lower:
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   244
  fixes a :: "nat \<Rightarrow> real"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   245
  assumes mono: "\<And>n. a (Suc n) \<le> a n" and a_pos: "\<And>n. 0 \<le> a n" and "a ----> 0"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   246
  shows "\<exists>l. ((\<forall>n. (\<Sum>i<2*n. (- 1)^i*a i) \<le> l) \<and> (\<lambda> n. \<Sum>i<2*n. (- 1)^i*a i) ----> l) \<and>
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   247
             ((\<forall>n. l \<le> (\<Sum>i<2*n + 1. (- 1)^i*a i)) \<and> (\<lambda> n. \<Sum>i<2*n + 1. (- 1)^i*a i) ----> l)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   248
  (is "\<exists>l. ((\<forall>n. ?f n \<le> l) \<and> _) \<and> ((\<forall>n. l \<le> ?g n) \<and> _)")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   249
proof (rule nested_sequence_unique)
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
   250
  have fg_diff: "\<And>n. ?f n - ?g n = - a (2 * n)" unfolding One_nat_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   251
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   252
  show "\<forall>n. ?f n \<le> ?f (Suc n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   253
  proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   254
    fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   255
    show "?f n \<le> ?f (Suc n)" using mono[of "2*n"] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   256
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   257
  show "\<forall>n. ?g (Suc n) \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   258
  proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   259
    fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   260
    show "?g (Suc n) \<le> ?g n" using mono[of "Suc (2*n)"]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   261
      unfolding One_nat_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   262
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   263
  show "\<forall>n. ?f n \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   264
  proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   265
    fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   266
    show "?f n \<le> ?g n" using fg_diff a_pos
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   267
      unfolding One_nat_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   268
  qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   269
  show "(\<lambda>n. ?f n - ?g n) ----> 0" unfolding fg_diff
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   270
  proof (rule LIMSEQ_I)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   271
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   272
    assume "0 < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   273
    with `a ----> 0`[THEN LIMSEQ_D] obtain N where "\<And> n. n \<ge> N \<Longrightarrow> norm (a n - 0) < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   274
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   275
    hence "\<forall>n \<ge> N. norm (- a (2 * n) - 0) < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   276
    thus "\<exists>N. \<forall>n \<ge> N. norm (- a (2 * n) - 0) < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   277
  qed
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   278
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   279
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   280
lemma summable_Leibniz':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   281
  fixes a :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   282
  assumes a_zero: "a ----> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   283
    and a_pos: "\<And> n. 0 \<le> a n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   284
    and a_monotone: "\<And> n. a (Suc n) \<le> a n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   285
  shows summable: "summable (\<lambda> n. (-1)^n * a n)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   286
    and "\<And>n. (\<Sum>i<2*n. (-1)^i*a i) \<le> (\<Sum>i. (-1)^i*a i)"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   287
    and "(\<lambda>n. \<Sum>i<2*n. (-1)^i*a i) ----> (\<Sum>i. (-1)^i*a i)"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   288
    and "\<And>n. (\<Sum>i. (-1)^i*a i) \<le> (\<Sum>i<2*n+1. (-1)^i*a i)"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   289
    and "(\<lambda>n. \<Sum>i<2*n+1. (-1)^i*a i) ----> (\<Sum>i. (-1)^i*a i)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   290
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   291
  let ?S = "\<lambda>n. (-1)^n * a n"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   292
  let ?P = "\<lambda>n. \<Sum>i<n. ?S i"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   293
  let ?f = "\<lambda>n. ?P (2 * n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   294
  let ?g = "\<lambda>n. ?P (2 * n + 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   295
  obtain l :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   296
    where below_l: "\<forall> n. ?f n \<le> l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   297
      and "?f ----> l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   298
      and above_l: "\<forall> n. l \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   299
      and "?g ----> l"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   300
    using sums_alternating_upper_lower[OF a_monotone a_pos a_zero] by blast
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   301
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   302
  let ?Sa = "\<lambda>m. \<Sum>n<m. ?S n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   303
  have "?Sa ----> l"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   304
  proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   305
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   306
    assume "0 < r"
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   307
    with `?f ----> l`[THEN LIMSEQ_D]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   308
    obtain f_no where f: "\<And> n. n \<ge> f_no \<Longrightarrow> norm (?f n - l) < r" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   309
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   310
    from `0 < r` `?g ----> l`[THEN LIMSEQ_D]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   311
    obtain g_no where g: "\<And> n. n \<ge> g_no \<Longrightarrow> norm (?g n - l) < r" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   312
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   313
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   314
      fix n :: nat
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   315
      assume "n \<ge> (max (2 * f_no) (2 * g_no))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   316
      hence "n \<ge> 2 * f_no" and "n \<ge> 2 * g_no" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   317
      have "norm (?Sa n - l) < r"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   318
      proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   319
        case True
58710
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   320
        then have n_eq: "2 * (n div 2) = n" by (simp add: even_two_times_div_two)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   321
        with `n \<ge> 2 * f_no` have "n div 2 \<ge> f_no"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   322
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   323
        from f[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   324
          unfolding n_eq atLeastLessThanSuc_atLeastAtMost .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   325
      next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   326
        case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   327
        hence "even (n - 1)" by simp
58710
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   328
        then have n_eq: "2 * ((n - 1) div 2) = n - 1"
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   329
          by (simp add: even_two_times_div_two)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   330
        hence range_eq: "n - 1 + 1 = n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   331
          using odd_pos[OF False] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   332
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   333
        from n_eq `n \<ge> 2 * g_no` have "(n - 1) div 2 \<ge> g_no"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   334
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   335
        from g[OF this] show ?thesis
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   336
          unfolding n_eq range_eq .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   337
      qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   338
    }
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   339
    thus "\<exists>no. \<forall>n \<ge> no. norm (?Sa n - l) < r" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   340
  qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   341
  hence sums_l: "(\<lambda>i. (-1)^i * a i) sums l"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   342
    unfolding sums_def .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   343
  thus "summable ?S" using summable_def by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   344
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   345
  have "l = suminf ?S" using sums_unique[OF sums_l] .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   346
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   347
  fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   348
  show "suminf ?S \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   349
    unfolding sums_unique[OF sums_l, symmetric] using above_l by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   350
  show "?f n \<le> suminf ?S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   351
    unfolding sums_unique[OF sums_l, symmetric] using below_l by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   352
  show "?g ----> suminf ?S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   353
    using `?g ----> l` `l = suminf ?S` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   354
  show "?f ----> suminf ?S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   355
    using `?f ----> l` `l = suminf ?S` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   356
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   357
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   358
theorem summable_Leibniz:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   359
  fixes a :: "nat \<Rightarrow> real"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   360
  assumes a_zero: "a ----> 0" and "monoseq a"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   361
  shows "summable (\<lambda> n. (-1)^n * a n)" (is "?summable")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   362
    and "0 < a 0 \<longrightarrow>
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   363
      (\<forall>n. (\<Sum>i. (- 1)^i*a i) \<in> { \<Sum>i<2*n. (- 1)^i * a i .. \<Sum>i<2*n+1. (- 1)^i * a i})" (is "?pos")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   364
    and "a 0 < 0 \<longrightarrow>
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   365
      (\<forall>n. (\<Sum>i. (- 1)^i*a i) \<in> { \<Sum>i<2*n+1. (- 1)^i * a i .. \<Sum>i<2*n. (- 1)^i * a i})" (is "?neg")
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   366
    and "(\<lambda>n. \<Sum>i<2*n. (- 1)^i*a i) ----> (\<Sum>i. (- 1)^i*a i)" (is "?f")
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   367
    and "(\<lambda>n. \<Sum>i<2*n+1. (- 1)^i*a i) ----> (\<Sum>i. (- 1)^i*a i)" (is "?g")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   368
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   369
  have "?summable \<and> ?pos \<and> ?neg \<and> ?f \<and> ?g"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   370
  proof (cases "(\<forall> n. 0 \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m)")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   371
    case True
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   372
    hence ord: "\<And>n m. m \<le> n \<Longrightarrow> a n \<le> a m" and ge0: "\<And> n. 0 \<le> a n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   373
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   374
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   375
      fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   376
      have "a (Suc n) \<le> a n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   377
        using ord[where n="Suc n" and m=n] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   378
    } note mono = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   379
    note leibniz = summable_Leibniz'[OF `a ----> 0` ge0]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   380
    from leibniz[OF mono]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   381
    show ?thesis using `0 \<le> a 0` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   382
  next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   383
    let ?a = "\<lambda> n. - a n"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   384
    case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   385
    with monoseq_le[OF `monoseq a` `a ----> 0`]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   386
    have "(\<forall> n. a n \<le> 0) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   387
    hence ord: "\<And>n m. m \<le> n \<Longrightarrow> ?a n \<le> ?a m" and ge0: "\<And> n. 0 \<le> ?a n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   388
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   389
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   390
      fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   391
      have "?a (Suc n) \<le> ?a n" using ord[where n="Suc n" and m=n]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   392
        by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   393
    } note monotone = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   394
    note leibniz =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   395
      summable_Leibniz'[OF _ ge0, of "\<lambda>x. x",
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   396
        OF tendsto_minus[OF `a ----> 0`, unfolded minus_zero] monotone]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   397
    have "summable (\<lambda> n. (-1)^n * ?a n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   398
      using leibniz(1) by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   399
    then obtain l where "(\<lambda> n. (-1)^n * ?a n) sums l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   400
      unfolding summable_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   401
    from this[THEN sums_minus] have "(\<lambda> n. (-1)^n * a n) sums -l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   402
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   403
    hence ?summable unfolding summable_def by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   404
    moreover
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   405
    have "\<And>a b :: real. \<bar>- a - - b\<bar> = \<bar>a - b\<bar>"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   406
      unfolding minus_diff_minus by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   407
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   408
    from suminf_minus[OF leibniz(1), unfolded mult_minus_right minus_minus]
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   409
    have move_minus: "(\<Sum>n. - ((- 1) ^ n * a n)) = - (\<Sum>n. (- 1) ^ n * a n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   410
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   411
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   412
    have ?pos using `0 \<le> ?a 0` by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   413
    moreover have ?neg
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   414
      using leibniz(2,4)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   415
      unfolding mult_minus_right setsum_negf move_minus neg_le_iff_le
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   416
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   417
    moreover have ?f and ?g
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   418
      using leibniz(3,5)[unfolded mult_minus_right setsum_negf move_minus, THEN tendsto_minus_cancel]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   419
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   420
    ultimately show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   421
  qed
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
   422
  then show ?summable and ?pos and ?neg and ?f and ?g 
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   423
    by safe
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   424
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   425
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   426
subsection {* Term-by-Term Differentiability of Power Series *}
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   427
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   428
definition diffs :: "(nat \<Rightarrow> 'a::ring_1) \<Rightarrow> nat \<Rightarrow> 'a"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   429
  where "diffs c = (\<lambda>n. of_nat (Suc n) * c (Suc n))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   430
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   431
text{*Lemma about distributing negation over it*}
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   432
lemma diffs_minus: "diffs (\<lambda>n. - c n) = (\<lambda>n. - diffs c n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   433
  by (simp add: diffs_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   434
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   435
lemma sums_Suc_imp:
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   436
  "(f::nat \<Rightarrow> 'a::real_normed_vector) 0 = 0 \<Longrightarrow> (\<lambda>n. f (Suc n)) sums s \<Longrightarrow> (\<lambda>n. f n) sums s"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   437
  using sums_Suc_iff[of f] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   438
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   439
lemma diffs_equiv:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   440
  fixes x :: "'a::{real_normed_vector, ring_1}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   441
  shows "summable (\<lambda>n. diffs c n * x^n) \<Longrightarrow>
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   442
      (\<lambda>n. of_nat n * c n * x^(n - Suc 0)) sums (\<Sum>n. diffs c n * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   443
  unfolding diffs_def
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   444
  by (simp add: summable_sums sums_Suc_imp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   445
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   446
lemma lemma_termdiff1:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   447
  fixes z :: "'a :: {monoid_mult,comm_ring}" shows
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   448
  "(\<Sum>p<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   449
   (\<Sum>p<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   450
  by (auto simp add: algebra_simps power_add [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   451
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   452
lemma sumr_diff_mult_const2:
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   453
  "setsum f {..<n} - of_nat n * (r::'a::ring_1) = (\<Sum>i<n. f i - r)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   454
  by (simp add: setsum_subtractf)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   455
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   456
lemma lemma_termdiff2:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   457
  fixes h :: "'a :: {field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   458
  assumes h: "h \<noteq> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   459
  shows
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   460
    "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) =
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   461
     h * (\<Sum>p< n - Suc 0. \<Sum>q< n - Suc 0 - p.
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   462
          (z + h) ^ q * z ^ (n - 2 - q))" (is "?lhs = ?rhs")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   463
  apply (subgoal_tac "h * ?lhs = h * ?rhs", simp add: h)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   464
  apply (simp add: right_diff_distrib diff_divide_distrib h)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   465
  apply (simp add: mult.assoc [symmetric])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   466
  apply (cases "n", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   467
  apply (simp add: lemma_realpow_diff_sumr2 h
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   468
                   right_diff_distrib [symmetric] mult.assoc
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   469
              del: power_Suc setsum_lessThan_Suc of_nat_Suc)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   470
  apply (subst lemma_realpow_rev_sumr)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   471
  apply (subst sumr_diff_mult_const2)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   472
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   473
  apply (simp only: lemma_termdiff1 setsum_right_distrib)
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 57275
diff changeset
   474
  apply (rule setsum.cong [OF refl])
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   475
  apply (simp add: less_iff_Suc_add)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   476
  apply (clarify)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   477
  apply (simp add: setsum_right_distrib lemma_realpow_diff_sumr2 ac_simps
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   478
              del: setsum_lessThan_Suc power_Suc)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   479
  apply (subst mult.assoc [symmetric], subst power_add [symmetric])
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   480
  apply (simp add: ac_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   481
  done
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   482
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   483
lemma real_setsum_nat_ivl_bounded2:
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34974
diff changeset
   484
  fixes K :: "'a::linordered_semidom"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   485
  assumes f: "\<And>p::nat. p < n \<Longrightarrow> f p \<le> K"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   486
    and K: "0 \<le> K"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   487
  shows "setsum f {..<n-k} \<le> of_nat n * K"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   488
  apply (rule order_trans [OF setsum_mono])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   489
  apply (rule f, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   490
  apply (simp add: mult_right_mono K)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   491
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   492
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   493
lemma lemma_termdiff3:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   494
  fixes h z :: "'a::{real_normed_field}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   495
  assumes 1: "h \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   496
    and 2: "norm z \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   497
    and 3: "norm (z + h) \<le> K"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   498
  shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0))
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   499
          \<le> of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   500
proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   501
  have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) =
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   502
        norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p.
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   503
          (z + h) ^ q * z ^ (n - 2 - q)) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   504
    by (metis (lifting, no_types) lemma_termdiff2 [OF 1] mult.commute norm_mult)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   505
  also have "\<dots> \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   506
  proof (rule mult_right_mono [OF _ norm_ge_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   507
    from norm_ge_zero 2 have K: "0 \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   508
      by (rule order_trans)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   509
    have le_Kn: "\<And>i j n. i + j = n \<Longrightarrow> norm ((z + h) ^ i * z ^ j) \<le> K ^ n"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   510
      apply (erule subst)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   511
      apply (simp only: norm_mult norm_power power_add)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   512
      apply (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   513
      done
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   514
    show "norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q))
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   515
          \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   516
      apply (intro
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   517
         order_trans [OF norm_setsum]
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   518
         real_setsum_nat_ivl_bounded2
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   519
         mult_nonneg_nonneg
47489
04e7d09ade7a tuned some proofs;
huffman
parents: 47108
diff changeset
   520
         of_nat_0_le_iff
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   521
         zero_le_power K)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   522
      apply (rule le_Kn, simp)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   523
      done
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   524
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   525
  also have "\<dots> = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   526
    by (simp only: mult.assoc)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   527
  finally show ?thesis .
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   528
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   529
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   530
lemma lemma_termdiff4:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   531
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   532
  assumes k: "0 < (k::real)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   533
    and le: "\<And>h. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (f h) \<le> K * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   534
  shows "f -- 0 --> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   535
proof (rule tendsto_norm_zero_cancel)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   536
  show "(\<lambda>h. norm (f h)) -- 0 --> 0"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   537
  proof (rule real_tendsto_sandwich)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   538
    show "eventually (\<lambda>h. 0 \<le> norm (f h)) (at 0)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   539
      by simp
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   540
    show "eventually (\<lambda>h. norm (f h) \<le> K * norm h) (at 0)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   541
      using k by (auto simp add: eventually_at dist_norm le)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   542
    show "(\<lambda>h. 0) -- (0::'a) --> (0::real)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   543
      by (rule tendsto_const)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   544
    have "(\<lambda>h. K * norm h) -- (0::'a) --> K * norm (0::'a)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   545
      by (intro tendsto_intros)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   546
    then show "(\<lambda>h. K * norm h) -- (0::'a) --> 0"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   547
      by simp
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   548
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   549
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   550
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   551
lemma lemma_termdiff5:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   552
  fixes g :: "'a::real_normed_vector \<Rightarrow> nat \<Rightarrow> 'b::banach"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   553
  assumes k: "0 < (k::real)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   554
  assumes f: "summable f"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   555
  assumes le: "\<And>h n. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (g h n) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   556
  shows "(\<lambda>h. suminf (g h)) -- 0 --> 0"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   557
proof (rule lemma_termdiff4 [OF k])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   558
  fix h::'a
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   559
  assume "h \<noteq> 0" and "norm h < k"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   560
  hence A: "\<forall>n. norm (g h n) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   561
    by (simp add: le)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   562
  hence "\<exists>N. \<forall>n\<ge>N. norm (norm (g h n)) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   563
    by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   564
  moreover from f have B: "summable (\<lambda>n. f n * norm h)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   565
    by (rule summable_mult2)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   566
  ultimately have C: "summable (\<lambda>n. norm (g h n))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   567
    by (rule summable_comparison_test)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   568
  hence "norm (suminf (g h)) \<le> (\<Sum>n. norm (g h n))"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   569
    by (rule summable_norm)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   570
  also from A C B have "(\<Sum>n. norm (g h n)) \<le> (\<Sum>n. f n * norm h)"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
   571
    by (rule suminf_le)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   572
  also from f have "(\<Sum>n. f n * norm h) = suminf f * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   573
    by (rule suminf_mult2 [symmetric])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   574
  finally show "norm (suminf (g h)) \<le> suminf f * norm h" .
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   575
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   576
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   577
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   578
text{* FIXME: Long proofs*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   579
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   580
lemma termdiffs_aux:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   581
  fixes x :: "'a::{real_normed_field,banach}"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   582
  assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   583
    and 2: "norm x < norm K"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   584
  shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   585
             - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   586
proof -
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   587
  from dense [OF 2]
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   588
  obtain r where r1: "norm x < r" and r2: "r < norm K" by fast
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   589
  from norm_ge_zero r1 have r: "0 < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   590
    by (rule order_le_less_trans)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   591
  hence r_neq_0: "r \<noteq> 0" by simp
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   592
  show ?thesis
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   593
  proof (rule lemma_termdiff5)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   594
    show "0 < r - norm x" using r1 by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   595
    from r r2 have "norm (of_real r::'a) < norm K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   596
      by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   597
    with 1 have "summable (\<lambda>n. norm (diffs (diffs c) n * (of_real r ^ n)))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   598
      by (rule powser_insidea)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   599
    hence "summable (\<lambda>n. diffs (diffs (\<lambda>n. norm (c n))) n * r ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   600
      using r
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   601
      by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   602
    hence "summable (\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   603
      by (rule diffs_equiv [THEN sums_summable])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   604
    also have "(\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0)) =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   605
      (\<lambda>n. diffs (\<lambda>m. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   606
      apply (rule ext)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   607
      apply (simp add: diffs_def)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   608
      apply (case_tac n, simp_all add: r_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   609
      done
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   610
    finally have "summable
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   611
      (\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   612
      by (rule diffs_equiv [THEN sums_summable])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   613
    also have
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   614
      "(\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) *
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   615
           r ^ (n - Suc 0)) =
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   616
       (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   617
      apply (rule ext)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   618
      apply (case_tac "n", simp)
55417
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 54576
diff changeset
   619
      apply (rename_tac nat)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   620
      apply (case_tac "nat", simp)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   621
      apply (simp add: r_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   622
      done
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   623
    finally
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   624
    show "summable (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" .
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   625
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   626
    fix h::'a and n::nat
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   627
    assume h: "h \<noteq> 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   628
    assume "norm h < r - norm x"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   629
    hence "norm x + norm h < r" by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   630
    with norm_triangle_ineq have xh: "norm (x + h) < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   631
      by (rule order_le_less_trans)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   632
    show "norm (c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0)))
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   633
          \<le> norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   634
      apply (simp only: norm_mult mult.assoc)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   635
      apply (rule mult_left_mono [OF _ norm_ge_zero])
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   636
      apply (simp add: mult.assoc [symmetric])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   637
      apply (metis h lemma_termdiff3 less_eq_real_def r1 xh)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   638
      done
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   639
  qed
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   640
qed
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19765
diff changeset
   641
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   642
lemma termdiffs:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   643
  fixes K x :: "'a::{real_normed_field,banach}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   644
  assumes 1: "summable (\<lambda>n. c n * K ^ n)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   645
      and 2: "summable (\<lambda>n. (diffs c) n * K ^ n)"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   646
      and 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   647
      and 4: "norm x < norm K"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   648
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x ^ n) x :> (\<Sum>n. (diffs c) n * x ^ n)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   649
  unfolding DERIV_def
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   650
proof (rule LIM_zero_cancel)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   651
  show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x ^ n)) / h
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   652
            - suminf (\<lambda>n. diffs c n * x ^ n)) -- 0 --> 0"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   653
  proof (rule LIM_equal2)
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   654
    show "0 < norm K - norm x" using 4 by (simp add: less_diff_eq)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   655
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   656
    fix h :: 'a
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   657
    assume "norm (h - 0) < norm K - norm x"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   658
    hence "norm x + norm h < norm K" by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   659
    hence 5: "norm (x + h) < norm K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   660
      by (rule norm_triangle_ineq [THEN order_le_less_trans])
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   661
    have "summable (\<lambda>n. c n * x ^ n)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   662
      and "summable (\<lambda>n. c n * (x + h) ^ n)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   663
      and "summable (\<lambda>n. diffs c n * x ^ n)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   664
      using 1 2 4 5 by (auto elim: powser_inside)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   665
    then have "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x ^ n)) / h - (\<Sum>n. diffs c n * x ^ n) =
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   666
          (\<Sum>n. (c n * (x + h) ^ n - c n * x ^ n) / h - of_nat n * c n * x ^ (n - Suc 0))"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   667
      by (intro sums_unique sums_diff sums_divide diffs_equiv summable_sums)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   668
    then show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x ^ n)) / h - (\<Sum>n. diffs c n * x ^ n) =
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   669
          (\<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0)))"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   670
      by (simp add: algebra_simps)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   671
  next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   672
    show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   673
      by (rule termdiffs_aux [OF 3 4])
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   674
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   675
qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   676
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   677
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   678
subsection {* Derivability of power series *}
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   679
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   680
lemma DERIV_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   681
  fixes f :: "real \<Rightarrow> nat \<Rightarrow> real"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   682
  assumes DERIV_f: "\<And> n. DERIV (\<lambda> x. f x n) x0 :> (f' x0 n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   683
    and allf_summable: "\<And> x. x \<in> {a <..< b} \<Longrightarrow> summable (f x)" and x0_in_I: "x0 \<in> {a <..< b}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   684
    and "summable (f' x0)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   685
    and "summable L"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   686
    and L_def: "\<And>n x y. \<lbrakk> x \<in> { a <..< b} ; y \<in> { a <..< b} \<rbrakk> \<Longrightarrow> \<bar>f x n - f y n\<bar> \<le> L n * \<bar>x - y\<bar>"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   687
  shows "DERIV (\<lambda> x. suminf (f x)) x0 :> (suminf (f' x0))"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   688
  unfolding DERIV_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   689
proof (rule LIM_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   690
  fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   691
  assume "0 < r" hence "0 < r/3" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   692
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   693
  obtain N_L where N_L: "\<And> n. N_L \<le> n \<Longrightarrow> \<bar> \<Sum> i. L (i + n) \<bar> < r/3"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   694
    using suminf_exist_split[OF `0 < r/3` `summable L`] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   695
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   696
  obtain N_f' where N_f': "\<And> n. N_f' \<le> n \<Longrightarrow> \<bar> \<Sum> i. f' x0 (i + n) \<bar> < r/3"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   697
    using suminf_exist_split[OF `0 < r/3` `summable (f' x0)`] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   698
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   699
  let ?N = "Suc (max N_L N_f')"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   700
  have "\<bar> \<Sum> i. f' x0 (i + ?N) \<bar> < r/3" (is "?f'_part < r/3") and
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   701
    L_estimate: "\<bar> \<Sum> i. L (i + ?N) \<bar> < r/3" using N_L[of "?N"] and N_f' [of "?N"] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   702
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   703
  let ?diff = "\<lambda>i x. (f (x0 + x) i - f x0 i) / x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   704
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   705
  let ?r = "r / (3 * real ?N)"
56541
0e3abadbef39 made divide_pos_pos a simp rule
nipkow
parents: 56536
diff changeset
   706
  from `0 < r` have "0 < ?r" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   707
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   708
  let ?s = "\<lambda>n. SOME s. 0 < s \<and> (\<forall> x. x \<noteq> 0 \<and> \<bar> x \<bar> < s \<longrightarrow> \<bar> ?diff n x - f' x0 n \<bar> < ?r)"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   709
  def S' \<equiv> "Min (?s ` {..< ?N })"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   710
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   711
  have "0 < S'" unfolding S'_def
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   712
  proof (rule iffD2[OF Min_gr_iff])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   713
    show "\<forall>x \<in> (?s ` {..< ?N }). 0 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   714
    proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   715
      fix x
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   716
      assume "x \<in> ?s ` {..<?N}"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   717
      then obtain n where "x = ?s n" and "n \<in> {..<?N}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   718
        using image_iff[THEN iffD1] by blast
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   719
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF `0 < ?r`, unfolded real_norm_def]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   720
      obtain s where s_bound: "0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   721
        by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   722
      have "0 < ?s n" by (rule someI2[where a=s]) (auto simp add: s_bound)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   723
      thus "0 < x" unfolding `x = ?s n` .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   724
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   725
  qed auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   726
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   727
  def S \<equiv> "min (min (x0 - a) (b - x0)) S'"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   728
  hence "0 < S" and S_a: "S \<le> x0 - a" and S_b: "S \<le> b - x0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   729
    and "S \<le> S'" using x0_in_I and `0 < S'`
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   730
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   731
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   732
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   733
    fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   734
    assume "x \<noteq> 0" and "\<bar> x \<bar> < S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   735
    hence x_in_I: "x0 + x \<in> { a <..< b }"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   736
      using S_a S_b by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   737
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   738
    note diff_smbl = summable_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   739
    note div_smbl = summable_divide[OF diff_smbl]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   740
    note all_smbl = summable_diff[OF div_smbl `summable (f' x0)`]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   741
    note ign = summable_ignore_initial_segment[where k="?N"]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   742
    note diff_shft_smbl = summable_diff[OF ign[OF allf_summable[OF x_in_I]] ign[OF allf_summable[OF x0_in_I]]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   743
    note div_shft_smbl = summable_divide[OF diff_shft_smbl]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   744
    note all_shft_smbl = summable_diff[OF div_smbl ign[OF `summable (f' x0)`]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   745
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   746
    { fix n
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   747
      have "\<bar> ?diff (n + ?N) x \<bar> \<le> L (n + ?N) * \<bar> (x0 + x) - x0 \<bar> / \<bar> x \<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   748
        using divide_right_mono[OF L_def[OF x_in_I x0_in_I] abs_ge_zero]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   749
        unfolding abs_divide .
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   750
      hence "\<bar> (\<bar>?diff (n + ?N) x \<bar>) \<bar> \<le> L (n + ?N)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   751
        using `x \<noteq> 0` by auto }
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   752
    note 1 = this and 2 = summable_rabs_comparison_test[OF _ ign[OF `summable L`]]
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   753
    then have "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> (\<Sum> i. L (i + ?N))"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
   754
      by (metis (lifting) abs_idempotent order_trans[OF summable_rabs[OF 2] suminf_le[OF _ 2 ign[OF `summable L`]]])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   755
    then have "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> r / 3" (is "?L_part \<le> r/3")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   756
      using L_estimate by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   757
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   758
    have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n \<bar> \<le> (\<Sum>n<?N. \<bar>?diff n x - f' x0 n \<bar>)" ..
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   759
    also have "\<dots> < (\<Sum>n<?N. ?r)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   760
    proof (rule setsum_strict_mono)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   761
      fix n
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   762
      assume "n \<in> {..< ?N}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   763
      have "\<bar>x\<bar> < S" using `\<bar>x\<bar> < S` .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   764
      also have "S \<le> S'" using `S \<le> S'` .
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   765
      also have "S' \<le> ?s n" unfolding S'_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   766
      proof (rule Min_le_iff[THEN iffD2])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   767
        have "?s n \<in> (?s ` {..<?N}) \<and> ?s n \<le> ?s n"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   768
          using `n \<in> {..< ?N}` by auto
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   769
        thus "\<exists> a \<in> (?s ` {..<?N}). a \<le> ?s n" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   770
      qed auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   771
      finally have "\<bar>x\<bar> < ?s n" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   772
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   773
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF `0 < ?r`, unfolded real_norm_def diff_0_right, unfolded some_eq_ex[symmetric], THEN conjunct2]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   774
      have "\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < ?s n \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r" .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   775
      with `x \<noteq> 0` and `\<bar>x\<bar> < ?s n` show "\<bar>?diff n x - f' x0 n\<bar> < ?r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   776
        by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   777
    qed auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   778
    also have "\<dots> = of_nat (card {..<?N}) * ?r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   779
      by (rule setsum_constant)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   780
    also have "\<dots> = real ?N * ?r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   781
      unfolding real_eq_of_nat by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   782
    also have "\<dots> = r/3" by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   783
    finally have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n \<bar> < r / 3" (is "?diff_part < r / 3") .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   784
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   785
    from suminf_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   786
    have "\<bar>(suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0)\<bar> =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   787
        \<bar>\<Sum>n. ?diff n x - f' x0 n\<bar>"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   788
      unfolding suminf_diff[OF div_smbl `summable (f' x0)`, symmetric]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   789
      using suminf_divide[OF diff_smbl, symmetric] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   790
    also have "\<dots> \<le> ?diff_part + \<bar> (\<Sum>n. ?diff (n + ?N) x) - (\<Sum> n. f' x0 (n + ?N)) \<bar>"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   791
      unfolding suminf_split_initial_segment[OF all_smbl, where k="?N"]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   792
      unfolding suminf_diff[OF div_shft_smbl ign[OF `summable (f' x0)`]]
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   793
      apply (subst (5) add.commute)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   794
      by (rule abs_triangle_ineq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   795
    also have "\<dots> \<le> ?diff_part + ?L_part + ?f'_part"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   796
      using abs_triangle_ineq4 by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   797
    also have "\<dots> < r /3 + r/3 + r/3"
36842
99745a4b9cc9 fix some linarith_split_limit warnings
huffman
parents: 36824
diff changeset
   798
      using `?diff_part < r/3` `?L_part \<le> r/3` and `?f'_part < r/3`
99745a4b9cc9 fix some linarith_split_limit warnings
huffman
parents: 36824
diff changeset
   799
      by (rule add_strict_mono [OF add_less_le_mono])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   800
    finally have "\<bar>(suminf (f (x0 + x)) - suminf (f x0)) / x - suminf (f' x0)\<bar> < r"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   801
      by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   802
  }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   803
  thus "\<exists> s > 0. \<forall> x. x \<noteq> 0 \<and> norm (x - 0) < s \<longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   804
      norm (((\<Sum>n. f (x0 + x) n) - (\<Sum>n. f x0 n)) / x - (\<Sum>n. f' x0 n)) < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   805
    using `0 < S` unfolding real_norm_def diff_0_right by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   806
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   807
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   808
lemma DERIV_power_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   809
  fixes f :: "nat \<Rightarrow> real"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   810
  assumes converges: "\<And> x. x \<in> {-R <..< R} \<Longrightarrow> summable (\<lambda> n. f n * real (Suc n) * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   811
    and x0_in_I: "x0 \<in> {-R <..< R}" and "0 < R"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   812
  shows "DERIV (\<lambda> x. (\<Sum> n. f n * x^(Suc n))) x0 :> (\<Sum> n. f n * real (Suc n) * x0^n)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   813
  (is "DERIV (\<lambda> x. (suminf (?f x))) x0 :> (suminf (?f' x0))")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   814
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   815
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   816
    fix R'
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   817
    assume "0 < R'" and "R' < R" and "-R' < x0" and "x0 < R'"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   818
    hence "x0 \<in> {-R' <..< R'}" and "R' \<in> {-R <..< R}" and "x0 \<in> {-R <..< R}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   819
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   820
    have "DERIV (\<lambda> x. (suminf (?f x))) x0 :> (suminf (?f' x0))"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   821
    proof (rule DERIV_series')
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   822
      show "summable (\<lambda> n. \<bar>f n * real (Suc n) * R'^n\<bar>)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   823
      proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   824
        have "(R' + R) / 2 < R" and "0 < (R' + R) / 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   825
          using `0 < R'` `0 < R` `R' < R` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   826
        hence in_Rball: "(R' + R) / 2 \<in> {-R <..< R}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   827
          using `R' < R` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   828
        have "norm R' < norm ((R' + R) / 2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   829
          using `0 < R'` `0 < R` `R' < R` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   830
        from powser_insidea[OF converges[OF in_Rball] this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   831
          by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   832
      qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   833
      {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   834
        fix n x y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   835
        assume "x \<in> {-R' <..< R'}" and "y \<in> {-R' <..< R'}"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   836
        show "\<bar>?f x n - ?f y n\<bar> \<le> \<bar>f n * real (Suc n) * R'^n\<bar> * \<bar>x-y\<bar>"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   837
        proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   838
          have "\<bar>f n * x ^ (Suc n) - f n * y ^ (Suc n)\<bar> =
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   839
            (\<bar>f n\<bar> * \<bar>x-y\<bar>) * \<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   840
            unfolding right_diff_distrib[symmetric] lemma_realpow_diff_sumr2 abs_mult
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   841
            by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   842
          also have "\<dots> \<le> (\<bar>f n\<bar> * \<bar>x-y\<bar>) * (\<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   843
          proof (rule mult_left_mono)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   844
            have "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> (\<Sum>p<Suc n. \<bar>x ^ p * y ^ (n - p)\<bar>)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   845
              by (rule setsum_abs)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   846
            also have "\<dots> \<le> (\<Sum>p<Suc n. R' ^ n)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   847
            proof (rule setsum_mono)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   848
              fix p
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   849
              assume "p \<in> {..<Suc n}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   850
              hence "p \<le> n" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   851
              {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   852
                fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   853
                fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   854
                assume "x \<in> {-R'<..<R'}"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   855
                hence "\<bar>x\<bar> \<le> R'"  by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   856
                hence "\<bar>x^n\<bar> \<le> R'^n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   857
                  unfolding power_abs by (rule power_mono, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   858
              }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   859
              from mult_mono[OF this[OF `x \<in> {-R'<..<R'}`, of p] this[OF `y \<in> {-R'<..<R'}`, of "n-p"]] `0 < R'`
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   860
              have "\<bar>x^p * y^(n-p)\<bar> \<le> R'^p * R'^(n-p)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   861
                unfolding abs_mult by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   862
              thus "\<bar>x^p * y^(n-p)\<bar> \<le> R'^n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   863
                unfolding power_add[symmetric] using `p \<le> n` by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   864
            qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   865
            also have "\<dots> = real (Suc n) * R' ^ n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   866
              unfolding setsum_constant card_atLeastLessThan real_of_nat_def by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   867
            finally show "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> \<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   868
              unfolding abs_real_of_nat_cancel abs_of_nonneg[OF zero_le_power[OF less_imp_le[OF `0 < R'`]]] .
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   869
            show "0 \<le> \<bar>f n\<bar> * \<bar>x - y\<bar>"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   870
              unfolding abs_mult[symmetric] by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   871
          qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   872
          also have "\<dots> = \<bar>f n * real (Suc n) * R' ^ n\<bar> * \<bar>x - y\<bar>"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   873
            unfolding abs_mult mult.assoc[symmetric] by algebra
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   874
          finally show ?thesis .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   875
        qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   876
      }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   877
      {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   878
        fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   879
        show "DERIV (\<lambda> x. ?f x n) x0 :> (?f' x0 n)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   880
          by (auto intro!: derivative_eq_intros simp del: power_Suc simp: real_of_nat_def)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   881
      }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   882
      {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   883
        fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   884
        assume "x \<in> {-R' <..< R'}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   885
        hence "R' \<in> {-R <..< R}" and "norm x < norm R'"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   886
          using assms `R' < R` by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   887
        have "summable (\<lambda> n. f n * x^n)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   888
        proof (rule summable_comparison_test, intro exI allI impI)
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   889
          fix n
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   890
          have le: "\<bar>f n\<bar> * 1 \<le> \<bar>f n\<bar> * real (Suc n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   891
            by (rule mult_left_mono) auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   892
          show "norm (f n * x ^ n) \<le> norm (f n * real (Suc n) * x ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   893
            unfolding real_norm_def abs_mult
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   894
            by (rule mult_right_mono) (auto simp add: le[unfolded mult_1_right])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   895
        qed (rule powser_insidea[OF converges[OF `R' \<in> {-R <..< R}`] `norm x < norm R'`])
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   896
        from this[THEN summable_mult2[where c=x], unfolded mult.assoc, unfolded mult.commute]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   897
        show "summable (?f x)" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   898
      }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   899
      show "summable (?f' x0)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   900
        using converges[OF `x0 \<in> {-R <..< R}`] .
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   901
      show "x0 \<in> {-R' <..< R'}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   902
        using `x0 \<in> {-R' <..< R'}` .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   903
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   904
  } note for_subinterval = this
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   905
  let ?R = "(R + \<bar>x0\<bar>) / 2"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   906
  have "\<bar>x0\<bar> < ?R" using assms by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   907
  hence "- ?R < x0"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   908
  proof (cases "x0 < 0")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   909
    case True
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   910
    hence "- x0 < ?R" using `\<bar>x0\<bar> < ?R` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   911
    thus ?thesis unfolding neg_less_iff_less[symmetric, of "- x0"] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   912
  next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   913
    case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   914
    have "- ?R < 0" using assms by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   915
    also have "\<dots> \<le> x0" using False by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   916
    finally show ?thesis .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   917
  qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   918
  hence "0 < ?R" "?R < R" "- ?R < x0" and "x0 < ?R"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   919
    using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   920
  from for_subinterval[OF this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   921
  show ?thesis .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   922
qed
29695
171146a93106 Added real related theorems from Fact.thy
chaieb
parents: 29667
diff changeset
   923
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   924
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   925
subsection {* Exponential Function *}
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   926
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
   927
definition exp :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   928
  where "exp = (\<lambda>x. \<Sum>n. x ^ n /\<^sub>R real (fact n))"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   929
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   930
lemma summable_exp_generic:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   931
  fixes x :: "'a::{real_normed_algebra_1,banach}"
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   932
  defines S_def: "S \<equiv> \<lambda>n. x ^ n /\<^sub>R real (fact n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   933
  shows "summable S"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   934
proof -
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   935
  have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R real (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
   936
    unfolding S_def by (simp del: mult_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   937
  obtain r :: real where r0: "0 < r" and r1: "r < 1"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   938
    using dense [OF zero_less_one] by fast
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   939
  obtain N :: nat where N: "norm x < real N * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   940
    using reals_Archimedean3 [OF r0] by fast
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   941
  from r1 show ?thesis
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   942
  proof (rule summable_ratio_test [rule_format])
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   943
    fix n :: nat
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   944
    assume n: "N \<le> n"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   945
    have "norm x \<le> real N * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   946
      using N by (rule order_less_imp_le)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   947
    also have "real N * r \<le> real (Suc n) * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   948
      using r0 n by (simp add: mult_right_mono)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   949
    finally have "norm x * norm (S n) \<le> real (Suc n) * r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   950
      using norm_ge_zero by (rule mult_right_mono)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   951
    hence "norm (x * S n) \<le> real (Suc n) * r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   952
      by (rule order_trans [OF norm_mult_ineq])
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   953
    hence "norm (x * S n) / real (Suc n) \<le> r * norm (S n)"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   954
      by (simp add: pos_divide_le_eq ac_simps)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   955
    thus "norm (S (Suc n)) \<le> r * norm (S n)"
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
   956
      by (simp add: S_Suc inverse_eq_divide)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   957
  qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   958
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   959
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   960
lemma summable_norm_exp:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   961
  fixes x :: "'a::{real_normed_algebra_1,banach}"
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   962
  shows "summable (\<lambda>n. norm (x ^ n /\<^sub>R real (fact n)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   963
proof (rule summable_norm_comparison_test [OF exI, rule_format])
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   964
  show "summable (\<lambda>n. norm x ^ n /\<^sub>R real (fact n))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   965
    by (rule summable_exp_generic)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   966
  fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   967
  show "norm (x ^ n /\<^sub>R real (fact n)) \<le> norm x ^ n /\<^sub>R real (fact n)"
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
   968
    by (simp add: norm_power_ineq)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   969
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   970
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   971
lemma summable_exp: "summable (\<lambda>n. inverse (real (fact n)) * x ^ n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   972
  using summable_exp_generic [where x=x] by simp
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   973
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   974
lemma exp_converges: "(\<lambda>n. x ^ n /\<^sub>R real (fact n)) sums exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   975
  unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   976
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   977
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   978
lemma exp_fdiffs:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   979
      "diffs (\<lambda>n. inverse(real (fact n))) = (\<lambda>n. inverse(real (fact n)))"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   980
  by (simp add: diffs_def mult.assoc [symmetric] real_of_nat_def of_nat_mult
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   981
        del: mult_Suc of_nat_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   982
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   983
lemma diffs_of_real: "diffs (\<lambda>n. of_real (f n)) = (\<lambda>n. of_real (diffs f n))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   984
  by (simp add: diffs_def)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   985
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   986
lemma DERIV_exp [simp]: "DERIV exp x :> exp(x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   987
  unfolding exp_def scaleR_conv_of_real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   988
  apply (rule DERIV_cong)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   989
  apply (rule termdiffs [where K="of_real (1 + norm x)"])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   990
  apply (simp_all only: diffs_of_real scaleR_conv_of_real exp_fdiffs)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   991
  apply (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])+
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   992
  apply (simp del: of_real_add)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   993
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   994
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   995
declare DERIV_exp[THEN DERIV_chain2, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
   996
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
   997
lemma norm_exp: "norm (exp x) \<le> exp (norm x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
   998
proof -
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
   999
  from summable_norm[OF summable_norm_exp, of x]
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1000
  have "norm (exp x) \<le> (\<Sum>n. inverse (real (fact n)) * norm (x ^ n))"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1001
    by (simp add: exp_def)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1002
  also have "\<dots> \<le> exp (norm x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1003
    using summable_exp_generic[of "norm x"] summable_norm_exp[of x]
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1004
    by (auto simp: exp_def intro!: suminf_le norm_power_ineq)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1005
  finally show ?thesis .
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1006
qed
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1007
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1008
lemma isCont_exp:
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1009
  fixes x::"'a::{real_normed_field,banach}"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1010
  shows "isCont exp x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1011
  by (rule DERIV_exp [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1012
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1013
lemma isCont_exp' [simp]:
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1014
  fixes f::"_ \<Rightarrow>'a::{real_normed_field,banach}"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1015
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. exp (f x)) a"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1016
  by (rule isCont_o2 [OF _ isCont_exp])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1017
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1018
lemma tendsto_exp [tendsto_intros]:
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1019
  fixes f::"_ \<Rightarrow>'a::{real_normed_field,banach}"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1020
  shows "(f ---> a) F \<Longrightarrow> ((\<lambda>x. exp (f x)) ---> exp a) F"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1021
  by (rule isCont_tendsto_compose [OF isCont_exp])
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1022
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1023
lemma continuous_exp [continuous_intros]:
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1024
  fixes f::"_ \<Rightarrow>'a::{real_normed_field,banach}"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1025
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. exp (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1026
  unfolding continuous_def by (rule tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1027
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  1028
lemma continuous_on_exp [continuous_intros]:
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1029
  fixes f::"_ \<Rightarrow>'a::{real_normed_field,banach}"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1030
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. exp (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1031
  unfolding continuous_on_def by (auto intro: tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1032
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1033
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1034
subsubsection {* Properties of the Exponential Function *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1035
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1036
lemma powser_zero:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
  1037
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_algebra_1}"
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1038
  shows "(\<Sum>n. f n * 0 ^ n) = f 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1039
proof -
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1040
  have "(\<Sum>n<1. f n * 0 ^ n) = (\<Sum>n. f n * 0 ^ n)"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1041
    by (subst suminf_finite[where N="{0}"]) (auto simp: power_0_left)
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  1042
  thus ?thesis unfolding One_nat_def by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1043
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1044
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1045
lemma exp_zero [simp]: "exp 0 = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1046
  unfolding exp_def by (simp add: scaleR_conv_of_real powser_zero)
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1047
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1048
lemma exp_series_add_commuting:
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1049
  fixes x y :: "'a::{real_normed_algebra_1, banach}"
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1050
  defines S_def: "S \<equiv> \<lambda>x n. x ^ n /\<^sub>R real (fact n)"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1051
  assumes comm: "x * y = y * x"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1052
  shows "S (x + y) n = (\<Sum>i\<le>n. S x i * S y (n - i))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1053
proof (induct n)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1054
  case 0
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1055
  show ?case
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1056
    unfolding S_def by simp
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1057
next
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1058
  case (Suc n)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1059
  have S_Suc: "\<And>x n. S x (Suc n) = (x * S x n) /\<^sub>R real (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
  1060
    unfolding S_def by (simp del: mult_Suc)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1061
  hence times_S: "\<And>x n. x * S x n = real (Suc n) *\<^sub>R S x (Suc n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1062
    by simp
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1063
  have S_comm: "\<And>n. S x n * y = y * S x n"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1064
    by (simp add: power_commuting_commutes comm S_def)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1065
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1066
  have "real (Suc n) *\<^sub>R S (x + y) (Suc n) = (x + y) * S (x + y) n"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1067
    by (simp only: times_S)
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1068
  also have "\<dots> = (x + y) * (\<Sum>i\<le>n. S x i * S y (n-i))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1069
    by (simp only: Suc)
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1070
  also have "\<dots> = x * (\<Sum>i\<le>n. S x i * S y (n-i))
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1071
                + y * (\<Sum>i\<le>n. S x i * S y (n-i))"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  1072
    by (rule distrib_right)
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1073
  also have "\<dots> = (\<Sum>i\<le>n. x * S x i * S y (n-i))
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1074
                + (\<Sum>i\<le>n. S x i * y * S y (n-i))"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1075
    by (simp add: setsum_right_distrib ac_simps S_comm)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1076
  also have "\<dots> = (\<Sum>i\<le>n. x * S x i * S y (n-i))
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1077
                + (\<Sum>i\<le>n. S x i * (y * S y (n-i)))"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1078
    by (simp add: ac_simps)
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1079
  also have "\<dots> = (\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i)))
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1080
                + (\<Sum>i\<le>n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1081
    by (simp add: times_S Suc_diff_le)
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1082
  also have "(\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i))) =
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1083
             (\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n-i)))"
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1084
    by (subst setsum_atMost_Suc_shift) simp
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1085
  also have "(\<Sum>i\<le>n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) =
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1086
             (\<Sum>i\<le>Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))"
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1087
    by simp
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1088
  also have "(\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n-i))) +
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1089
             (\<Sum>i\<le>Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) =
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1090
             (\<Sum>i\<le>Suc n. real (Suc n) *\<^sub>R (S x i * S y (Suc n-i)))"
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 57275
diff changeset
  1091
    by (simp only: setsum.distrib [symmetric] scaleR_left_distrib [symmetric]
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1092
                   real_of_nat_add [symmetric]) simp
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1093
  also have "\<dots> = real (Suc n) *\<^sub>R (\<Sum>i\<le>Suc n. S x i * S y (Suc n-i))"
23127
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23115
diff changeset
  1094
    by (simp only: scaleR_right.setsum)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1095
  finally show
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1096
    "S (x + y) (Suc n) = (\<Sum>i\<le>Suc n. S x i * S y (Suc n - i))"
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1097
    by (simp del: setsum_cl_ivl_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1098
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1099
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1100
lemma exp_add_commuting: "x * y = y * x \<Longrightarrow> exp (x + y) = exp x * exp y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1101
  unfolding exp_def
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1102
  by (simp only: Cauchy_product summable_norm_exp exp_series_add_commuting)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1103
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1104
lemma exp_add:
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1105
  fixes x y::"'a::{real_normed_field,banach}"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1106
  shows "exp (x + y) = exp x * exp y"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1107
  by (rule exp_add_commuting) (simp add: ac_simps)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1108
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1109
lemmas mult_exp_exp = exp_add [symmetric]
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1110
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1111
lemma exp_of_real: "exp (of_real x) = of_real (exp x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1112
  unfolding exp_def
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1113
  apply (subst suminf_of_real)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1114
  apply (rule summable_exp_generic)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1115
  apply (simp add: scaleR_conv_of_real)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1116
  done
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1117
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1118
lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1119
proof
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1120
  have "exp x * exp (- x) = 1" by (simp add: exp_add_commuting[symmetric])
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1121
  also assume "exp x = 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1122
  finally show "False" by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1123
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1124
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1125
lemma exp_minus_inverse:
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1126
  shows "exp x * exp (- x) = 1"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1127
  by (simp add: exp_add_commuting[symmetric])
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1128
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1129
lemma exp_minus:
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1130
  fixes x :: "'a::{real_normed_field, banach}"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1131
  shows "exp (- x) = inverse (exp x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1132
  by (intro inverse_unique [symmetric] exp_minus_inverse)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1133
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1134
lemma exp_diff:
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1135
  fixes x :: "'a::{real_normed_field, banach}"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1136
  shows "exp (x - y) = exp x / exp y"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  1137
  using exp_add [of x "- y"] by (simp add: exp_minus divide_inverse)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1138
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1139
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1140
subsubsection {* Properties of the Exponential Function on Reals *}
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1141
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1142
text {* Comparisons of @{term "exp x"} with zero. *}
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1143
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1144
text{*Proof: because every exponential can be seen as a square.*}
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1145
lemma exp_ge_zero [simp]: "0 \<le> exp (x::real)"
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1146
proof -
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1147
  have "0 \<le> exp (x/2) * exp (x/2)" by simp
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1148
  thus ?thesis by (simp add: exp_add [symmetric])
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1149
qed
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1150
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1151
lemma exp_gt_zero [simp]: "0 < exp (x::real)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1152
  by (simp add: order_less_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1153
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1154
lemma not_exp_less_zero [simp]: "\<not> exp (x::real) < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1155
  by (simp add: not_less)
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1156
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1157
lemma not_exp_le_zero [simp]: "\<not> exp (x::real) \<le> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1158
  by (simp add: not_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1159
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1160
lemma abs_exp_cancel [simp]: "\<bar>exp x::real\<bar> = exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1161
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1162
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1163
lemma exp_real_of_nat_mult: "exp(real n * x) = exp(x) ^ n"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1164
  by (induct n) (auto simp add: real_of_nat_Suc distrib_left exp_add mult.commute)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1165
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1166
text {* Strict monotonicity of exponential. *}
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1167
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1168
lemma exp_ge_add_one_self_aux: 
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1169
  assumes "0 \<le> (x::real)" shows "1+x \<le> exp(x)"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1170
using order_le_imp_less_or_eq [OF assms]
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1171
proof 
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1172
  assume "0 < x"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1173
  have "1+x \<le> (\<Sum>n<2. inverse (real (fact n)) * x ^ n)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1174
    by (auto simp add: numeral_2_eq_2)
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1175
  also have "... \<le> (\<Sum>n. inverse (real (fact n)) * x ^ n)"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1176
    apply (rule setsum_le_suminf [OF summable_exp])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1177
    using `0 < x`
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1178
    apply (auto  simp add:  zero_le_mult_iff)
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1179
    done
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1180
  finally show "1+x \<le> exp x" 
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1181
    by (simp add: exp_def)
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1182
next
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1183
  assume "0 = x"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1184
  then show "1 + x \<le> exp x"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1185
    by auto
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1186
qed
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1187
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1188
lemma exp_gt_one: "0 < (x::real) \<Longrightarrow> 1 < exp x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1189
proof -
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1190
  assume x: "0 < x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1191
  hence "1 < 1 + x" by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1192
  also from x have "1 + x \<le> exp x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1193
    by (simp add: exp_ge_add_one_self_aux)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1194
  finally show ?thesis .
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1195
qed
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1196
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1197
lemma exp_less_mono:
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1198
  fixes x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1199
  assumes "x < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1200
  shows "exp x < exp y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1201
proof -
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1202
  from `x < y` have "0 < y - x" by simp
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1203
  hence "1 < exp (y - x)" by (rule exp_gt_one)
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1204
  hence "1 < exp y / exp x" by (simp only: exp_diff)
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1205
  thus "exp x < exp y" by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1206
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1207
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1208
lemma exp_less_cancel: "exp (x::real) < exp y \<Longrightarrow> x < y"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1209
  unfolding linorder_not_le [symmetric]
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1210
  by (auto simp add: order_le_less exp_less_mono)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1211
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1212
lemma exp_less_cancel_iff [iff]: "exp (x::real) < exp y \<longleftrightarrow> x < y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1213
  by (auto intro: exp_less_mono exp_less_cancel)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1214
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1215
lemma exp_le_cancel_iff [iff]: "exp (x::real) \<le> exp y \<longleftrightarrow> x \<le> y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1216
  by (auto simp add: linorder_not_less [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1217
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1218
lemma exp_inj_iff [iff]: "exp (x::real) = exp y \<longleftrightarrow> x = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1219
  by (simp add: order_eq_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1220
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1221
text {* Comparisons of @{term "exp x"} with one. *}
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1222
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1223
lemma one_less_exp_iff [simp]: "1 < exp (x::real) \<longleftrightarrow> 0 < x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1224
  using exp_less_cancel_iff [where x=0 and y=x] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1225
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1226
lemma exp_less_one_iff [simp]: "exp (x::real) < 1 \<longleftrightarrow> x < 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1227
  using exp_less_cancel_iff [where x=x and y=0] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1228
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1229
lemma one_le_exp_iff [simp]: "1 \<le> exp (x::real) \<longleftrightarrow> 0 \<le> x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1230
  using exp_le_cancel_iff [where x=0 and y=x] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1231
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1232
lemma exp_le_one_iff [simp]: "exp (x::real) \<le> 1 \<longleftrightarrow> x \<le> 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1233
  using exp_le_cancel_iff [where x=x and y=0] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1234
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1235
lemma exp_eq_one_iff [simp]: "exp (x::real) = 1 \<longleftrightarrow> x = 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1236
  using exp_inj_iff [where x=x and y=0] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1237
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1238
lemma lemma_exp_total: "1 \<le> y \<Longrightarrow> \<exists>x. 0 \<le> x & x \<le> y - 1 & exp(x::real) = y"
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1239
proof (rule IVT)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1240
  assume "1 \<le> y"
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1241
  hence "0 \<le> y - 1" by simp
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1242
  hence "1 + (y - 1) \<le> exp (y - 1)" by (rule exp_ge_add_one_self_aux)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1243
  thus "y \<le> exp (y - 1)" by simp
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1244
qed (simp_all add: le_diff_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1245
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1246
lemma exp_total: "0 < (y::real) \<Longrightarrow> \<exists>x. exp x = y"
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1247
proof (rule linorder_le_cases [of 1 y])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1248
  assume "1 \<le> y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1249
  thus "\<exists>x. exp x = y" by (fast dest: lemma_exp_total)
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1250
next
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1251
  assume "0 < y" and "y \<le> 1"
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1252
  hence "1 \<le> inverse y" by (simp add: one_le_inverse_iff)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1253
  then obtain x where "exp x = inverse y" by (fast dest: lemma_exp_total)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1254
  hence "exp (- x) = y" by (simp add: exp_minus)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1255
  thus "\<exists>x. exp x = y" ..
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1256
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1257
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1258
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  1259
subsection {* Natural Logarithm *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1260
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1261
definition ln :: "real \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1262
  where "ln x = (THE u. exp u = x)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1263
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1264
lemma ln_exp [simp]: "ln (exp x) = x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1265
  by (simp add: ln_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1266
22654
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
  1267
lemma exp_ln [simp]: "0 < x \<Longrightarrow> exp (ln x) = x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1268
  by (auto dest: exp_total)
22654
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
  1269
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1270
lemma exp_ln_iff [simp]: "exp (ln x) = x \<longleftrightarrow> 0 < x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1271
  by (metis exp_gt_zero exp_ln)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1272
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1273
lemma ln_unique: "exp y = x \<Longrightarrow> ln x = y"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1274
  by (erule subst, rule ln_exp)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1275
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1276
lemma ln_one [simp]: "ln 1 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1277
  by (rule ln_unique) simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1278
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1279
lemma ln_mult: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln (x * y) = ln x + ln y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1280
  by (rule ln_unique) (simp add: exp_add)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1281
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1282
lemma ln_inverse: "0 < x \<Longrightarrow> ln (inverse x) = - ln x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1283
  by (rule ln_unique) (simp add: exp_minus)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1284
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1285
lemma ln_div: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln (x / y) = ln x - ln y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1286
  by (rule ln_unique) (simp add: exp_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1287
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1288
lemma ln_realpow: "0 < x \<Longrightarrow> ln (x ^ n) = real n * ln x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1289
  by (rule ln_unique) (simp add: exp_real_of_nat_mult)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1290
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1291
lemma ln_less_cancel_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x < ln y \<longleftrightarrow> x < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1292
  by (subst exp_less_cancel_iff [symmetric]) simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1293
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1294
lemma ln_le_cancel_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x \<le> ln y \<longleftrightarrow> x \<le> y"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1295
  by (simp add: linorder_not_less [symmetric])
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1296
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1297
lemma ln_inj_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x = ln y \<longleftrightarrow> x = y"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1298
  by (simp add: order_eq_iff)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1299
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1300
lemma ln_add_one_self_le_self [simp]: "0 \<le> x \<Longrightarrow> ln (1 + x) \<le> x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1301
  apply (rule exp_le_cancel_iff [THEN iffD1])
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1302
  apply (simp add: exp_ge_add_one_self_aux)
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1303
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1304
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1305
lemma ln_less_self [simp]: "0 < x \<Longrightarrow> ln x < x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1306
  by (rule order_less_le_trans [where y="ln (1 + x)"]) simp_all
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1307
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1308
lemma ln_ge_zero [simp]: "1 \<le> x \<Longrightarrow> 0 \<le> ln x"
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1309
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1310
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1311
lemma ln_ge_zero_imp_ge_one: "0 \<le> ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1312
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1313
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1314
lemma ln_ge_zero_iff [simp]: "0 < x \<Longrightarrow> 0 \<le> ln x \<longleftrightarrow> 1 \<le> x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1315
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1316
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1317
lemma ln_less_zero_iff [simp]: "0 < x \<Longrightarrow> ln x < 0 \<longleftrightarrow> x < 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1318
  using ln_less_cancel_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1319
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1320
lemma ln_gt_zero: "1 < x \<Longrightarrow> 0 < ln x"
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1321
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1322
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1323
lemma ln_gt_zero_imp_gt_one: "0 < ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 < x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1324
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1325
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1326
lemma ln_gt_zero_iff [simp]: "0 < x \<Longrightarrow> 0 < ln x \<longleftrightarrow> 1 < x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1327
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1328
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1329
lemma ln_eq_zero_iff [simp]: "0 < x \<Longrightarrow> ln x = 0 \<longleftrightarrow> x = 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1330
  using ln_inj_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1331
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1332
lemma ln_less_zero: "0 < x \<Longrightarrow> x < 1 \<Longrightarrow> ln x < 0"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1333
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1334
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1335
lemma ln_neg_is_const: "x \<le> 0 \<Longrightarrow> ln x = (THE x. False)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1336
  by (auto simp add: ln_def intro!: arg_cong[where f=The])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1337
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1338
lemma isCont_ln: assumes "x \<noteq> 0" shows "isCont ln x"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1339
proof cases
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1340
  assume "0 < x"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1341
  moreover then have "isCont ln (exp (ln x))"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1342
    by (intro isCont_inv_fun[where d="\<bar>x\<bar>" and f=exp]) auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1343
  ultimately show ?thesis
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1344
    by simp
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1345
next
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1346
  assume "\<not> 0 < x" with `x \<noteq> 0` show "isCont ln x"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1347
    unfolding isCont_def
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1348
    by (subst filterlim_cong[OF _ refl, of _ "nhds (ln 0)" _ "\<lambda>_. ln 0"])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1349
       (auto simp: ln_neg_is_const not_less eventually_at dist_real_def
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 58710
diff changeset
  1350
                intro!: exI[of _ "\<bar>x\<bar>"])
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1351
qed
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1352
45915
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1353
lemma tendsto_ln [tendsto_intros]:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1354
  "(f ---> a) F \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. ln (f x)) ---> ln a) F"
45915
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1355
  by (rule isCont_tendsto_compose [OF isCont_ln])
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1356
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1357
lemma continuous_ln:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1358
  "continuous F f \<Longrightarrow> f (Lim F (\<lambda>x. x)) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. ln (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1359
  unfolding continuous_def by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1360
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1361
lemma isCont_ln' [continuous_intros]:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1362
  "continuous (at x) f \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> continuous (at x) (\<lambda>x. ln (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1363
  unfolding continuous_at by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1364
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1365
lemma continuous_within_ln [continuous_intros]:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1366
  "continuous (at x within s) f \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. ln (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1367
  unfolding continuous_within by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1368
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  1369
lemma continuous_on_ln [continuous_intros]:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1370
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. f x \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. ln (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1371
  unfolding continuous_on_def by (auto intro: tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1372
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1373
lemma DERIV_ln: "0 < x \<Longrightarrow> DERIV ln x :> inverse x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1374
  apply (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"])
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1375
  apply (auto intro: DERIV_cong [OF DERIV_exp exp_ln] isCont_ln)
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1376
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1377
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1378
lemma DERIV_ln_divide: "0 < x \<Longrightarrow> DERIV ln x :> 1 / x"
33667
958dc9f03611 A little rationalisation
paulson
parents: 33549
diff changeset
  1379
  by (rule DERIV_ln[THEN DERIV_cong], simp, simp add: divide_inverse)
958dc9f03611 A little rationalisation
paulson
parents: 33549
diff changeset
  1380
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1381
declare DERIV_ln_divide[THEN DERIV_chain2, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1382
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1383
lemma ln_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1384
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1385
  shows "ln x = (\<Sum> n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1386
  (is "ln x = suminf (?f (x - 1))")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1387
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1388
  let ?f' = "\<lambda>x n. (-1)^n * (x - 1)^n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1389
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1390
  have "ln x - suminf (?f (x - 1)) = ln 1 - suminf (?f (1 - 1))"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1391
  proof (rule DERIV_isconst3[where x=x])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1392
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1393
    assume "x \<in> {0 <..< 2}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1394
    hence "0 < x" and "x < 2" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1395
    have "norm (1 - x) < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1396
      using `0 < x` and `x < 2` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1397
    have "1 / x = 1 / (1 - (1 - x))" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1398
    also have "\<dots> = (\<Sum> n. (1 - x)^n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1399
      using geometric_sums[OF `norm (1 - x) < 1`] by (rule sums_unique)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1400
    also have "\<dots> = suminf (?f' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1401
      unfolding power_mult_distrib[symmetric]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1402
      by (rule arg_cong[where f=suminf], rule arg_cong[where f="op ^"], auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1403
    finally have "DERIV ln x :> suminf (?f' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1404
      using DERIV_ln[OF `0 < x`] unfolding divide_inverse by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1405
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1406
    have repos: "\<And> h x :: real. h - 1 + x = h + x - 1" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1407
    have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1408
      (\<Sum>n. (-1)^n * (1 / real (n + 1)) * real (Suc n) * (x - 1) ^ n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1409
    proof (rule DERIV_power_series')
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1410
      show "x - 1 \<in> {- 1<..<1}" and "(0 :: real) < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1411
        using `0 < x` `x < 2` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1412
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1413
      assume "x \<in> {- 1<..<1}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1414
      hence "norm (-x) < 1" by auto
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  1415
      show "summable (\<lambda>n. (- 1) ^ n * (1 / real (n + 1)) * real (Suc n) * x ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1416
        unfolding One_nat_def
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1417
        by (auto simp add: power_mult_distrib[symmetric] summable_geometric[OF `norm (-x) < 1`])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1418
    qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1419
    hence "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :> suminf (?f' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1420
      unfolding One_nat_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1421
    hence "DERIV (\<lambda>x. suminf (?f (x - 1))) x :> suminf (?f' x)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1422
      unfolding DERIV_def repos .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1423
    ultimately have "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> (suminf (?f' x) - suminf (?f' x))"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1424
      by (rule DERIV_diff)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1425
    thus "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> 0" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1426
  qed (auto simp add: assms)
44289
d81d09cdab9c optimize some proofs
huffman
parents: 44282
diff changeset
  1427
  thus ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1428
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1429
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1430
lemma exp_first_two_terms: "exp x = 1 + x + (\<Sum> n. inverse(fact (n+2)) * (x ^ (n+2)))"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1431
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1432
  have "exp x = suminf (\<lambda>n. inverse(fact n) * (x ^ n))"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1433
    by (simp add: exp_def)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1434
  also from summable_exp have "... = (\<Sum> n. inverse(fact(n+2)) * (x ^ (n+2))) + 
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1435
    (\<Sum> n::nat<2. inverse(fact n) * (x ^ n))" (is "_ = _ + ?a")
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1436
    by (rule suminf_split_initial_segment)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1437
  also have "?a = 1 + x"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1438
    by (simp add: numeral_2_eq_2)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1439
  finally show ?thesis
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1440
    by simp
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1441
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1442
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1443
lemma exp_bound: "0 <= (x::real) \<Longrightarrow> x <= 1 \<Longrightarrow> exp x <= 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1444
proof -
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1445
  assume a: "0 <= x"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1446
  assume b: "x <= 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1447
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1448
    fix n :: nat
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1449
    have "2 * 2 ^ n \<le> fact (n + 2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1450
      by (induct n) simp_all
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1451
    hence "real ((2::nat) * 2 ^ n) \<le> real (fact (n + 2))"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1452
      by (simp only: real_of_nat_le_iff)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1453
    hence "2 * 2 ^ n \<le> real (fact (n + 2))"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1454
      by simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1455
    hence "inverse (fact (n + 2)) \<le> inverse (2 * 2 ^ n)"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1456
      by (rule le_imp_inverse_le) simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1457
    hence "inverse (fact (n + 2)) \<le> 1/2 * (1/2)^n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1458
      by (simp add: power_inverse)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1459
    hence "inverse (fact (n + 2)) * (x^n * x\<^sup>2) \<le> 1/2 * (1/2)^n * (1 * x\<^sup>2)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1460
      by (rule mult_mono)
56536
aefb4a8da31f made mult_nonneg_nonneg a simp rule
nipkow
parents: 56483
diff changeset
  1461
        (rule mult_mono, simp_all add: power_le_one a b)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1462
    hence "inverse (fact (n + 2)) * x ^ (n + 2) \<le> (x\<^sup>2/2) * ((1/2)^n)"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1463
      unfolding power_add by (simp add: ac_simps del: fact_Suc) }
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1464
  note aux1 = this
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1465
  have "(\<lambda>n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums (x\<^sup>2 / 2 * (1 / (1 - 1 / 2)))"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1466
    by (intro sums_mult geometric_sums, simp)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1467
  hence aux2: "(\<lambda>n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1468
    by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1469
  have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n+2))) <= x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1470
  proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1471
    have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n+2))) <=
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1472
        suminf (\<lambda>n. (x\<^sup>2/2) * ((1/2)^n))"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1473
      apply (rule suminf_le)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1474
      apply (rule allI, rule aux1)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1475
      apply (rule summable_exp [THEN summable_ignore_initial_segment])
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1476
      by (rule sums_summable, rule aux2)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1477
    also have "... = x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1478
      by (rule sums_unique [THEN sym], rule aux2)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1479
    finally show ?thesis .
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1480
  qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1481
  thus ?thesis unfolding exp_first_two_terms by auto
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1482
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1483
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1484
lemma ln_one_minus_pos_upper_bound: "0 <= x \<Longrightarrow> x < 1 \<Longrightarrow> ln (1 - x) <= - x"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1485
proof -
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1486
  assume a: "0 <= (x::real)" and b: "x < 1"
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1487
  have "(1 - x) * (1 + x + x\<^sup>2) = (1 - x^3)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1488
    by (simp add: algebra_simps power2_eq_square power3_eq_cube)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1489
  also have "... <= 1"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1490
    by (auto simp add: a)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1491
  finally have "(1 - x) * (1 + x + x\<^sup>2) <= 1" .
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1492
  moreover have c: "0 < 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1493
    by (simp add: add_pos_nonneg a)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1494
  ultimately have "1 - x <= 1 / (1 + x + x\<^sup>2)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1495
    by (elim mult_imp_le_div_pos)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1496
  also have "... <= 1 / exp x"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1497
    by (metis a abs_one b exp_bound exp_gt_zero frac_le less_eq_real_def real_sqrt_abs 
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1498
              real_sqrt_pow2_iff real_sqrt_power)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1499
  also have "... = exp (-x)"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1500
    by (auto simp add: exp_minus divide_inverse)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1501
  finally have "1 - x <= exp (- x)" .
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1502
  also have "1 - x = exp (ln (1 - x))"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1503
    by (metis b diff_0 exp_ln_iff less_iff_diff_less_0 minus_diff_eq)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1504
  finally have "exp (ln (1 - x)) <= exp (- x)" .
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1505
  thus ?thesis by (auto simp only: exp_le_cancel_iff)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1506
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1507
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1508
lemma exp_ge_add_one_self [simp]: "1 + (x::real) <= exp x"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1509
  apply (case_tac "0 <= x")
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1510
  apply (erule exp_ge_add_one_self_aux)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1511
  apply (case_tac "x <= -1")
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1512
  apply (subgoal_tac "1 + x <= 0")
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1513
  apply (erule order_trans)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1514
  apply simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1515
  apply simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1516
  apply (subgoal_tac "1 + x = exp(ln (1 + x))")
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1517
  apply (erule ssubst)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1518
  apply (subst exp_le_cancel_iff)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1519
  apply (subgoal_tac "ln (1 - (- x)) <= - (- x)")
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1520
  apply simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1521
  apply (rule ln_one_minus_pos_upper_bound)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1522
  apply auto
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1523
done
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1524
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1525
lemma ln_one_plus_pos_lower_bound: "0 <= x \<Longrightarrow> x <= 1 \<Longrightarrow> x - x\<^sup>2 <= ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1526
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1527
  assume a: "0 <= x" and b: "x <= 1"
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1528
  have "exp (x - x\<^sup>2) = exp x / exp (x\<^sup>2)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1529
    by (rule exp_diff)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1530
  also have "... <= (1 + x + x\<^sup>2) / exp (x \<^sup>2)"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1531
    by (metis a b divide_right_mono exp_bound exp_ge_zero)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1532
  also have "... <= (1 + x + x\<^sup>2) / (1 + x\<^sup>2)"
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56541
diff changeset
  1533
    by (simp add: a divide_left_mono add_pos_nonneg)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1534
  also from a have "... <= 1 + x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1535
    by (simp add: field_simps add_strict_increasing zero_le_mult_iff)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1536
  finally have "exp (x - x\<^sup>2) <= 1 + x" .
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1537
  also have "... = exp (ln (1 + x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1538
  proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1539
    from a have "0 < 1 + x" by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1540
    thus ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1541
      by (auto simp only: exp_ln_iff [THEN sym])
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1542
  qed
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1543
  finally have "exp (x - x\<^sup>2) <= exp (ln (1 + x))" .
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1544
  thus ?thesis
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1545
    by (metis exp_le_cancel_iff) 
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1546
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1547
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1548
lemma ln_one_minus_pos_lower_bound:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1549
  "0 <= x \<Longrightarrow> x <= (1 / 2) \<Longrightarrow> - x - 2 * x\<^sup>2 <= ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1550
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1551
  assume a: "0 <= x" and b: "x <= (1 / 2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1552
  from b have c: "x < 1" by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1553
  then have "ln (1 - x) = - ln (1 + x / (1 - x))"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1554
    apply (subst ln_inverse [symmetric])
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1555
    apply (simp add: field_simps)
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1556
    apply (rule arg_cong [where f=ln])
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1557
    apply (simp add: field_simps)
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1558
    done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1559
  also have "- (x / (1 - x)) <= ..."
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1560
  proof -
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1561
    have "ln (1 + x / (1 - x)) <= x / (1 - x)"
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  1562
      using a c by (intro ln_add_one_self_le_self) auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1563
    thus ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1564
      by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1565
  qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1566
  also have "- (x / (1 - x)) = -x / (1 - x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1567
    by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1568
  finally have d: "- x / (1 - x) <= ln (1 - x)" .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1569
  have "0 < 1 - x" using a b by simp
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1570
  hence e: "-x - 2 * x\<^sup>2 <= - x / (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1571
    using mult_right_le_one_le[of "x*x" "2*x"] a b
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1572
    by (simp add: field_simps power2_eq_square)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1573
  from e d show "- x - 2 * x\<^sup>2 <= ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1574
    by (rule order_trans)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1575
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1576
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1577
lemma ln_add_one_self_le_self2: "-1 < x \<Longrightarrow> ln(1 + x) <= x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1578
  apply (subgoal_tac "ln (1 + x) \<le> ln (exp x)", simp)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1579
  apply (subst ln_le_cancel_iff)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1580
  apply auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1581
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1582
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1583
lemma abs_ln_one_plus_x_minus_x_bound_nonneg:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1584
  "0 <= x \<Longrightarrow> x <= 1 \<Longrightarrow> abs(ln (1 + x) - x) <= x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1585
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1586
  assume x: "0 <= x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1587
  assume x1: "x <= 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1588
  from x have "ln (1 + x) <= x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1589
    by (rule ln_add_one_self_le_self)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1590
  then have "ln (1 + x) - x <= 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1591
    by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1592
  then have "abs(ln(1 + x) - x) = - (ln(1 + x) - x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1593
    by (rule abs_of_nonpos)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1594
  also have "... = x - ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1595
    by simp
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1596
  also have "... <= x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1597
  proof -
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1598
    from x x1 have "x - x\<^sup>2 <= ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1599
      by (intro ln_one_plus_pos_lower_bound)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1600
    thus ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1601
      by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1602
  qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1603
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1604
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1605
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1606
lemma abs_ln_one_plus_x_minus_x_bound_nonpos:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1607
  "-(1 / 2) <= x \<Longrightarrow> x <= 0 \<Longrightarrow> abs(ln (1 + x) - x) <= 2 * x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1608
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1609
  assume a: "-(1 / 2) <= x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1610
  assume b: "x <= 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1611
  have "abs(ln (1 + x) - x) = x - ln(1 - (-x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1612
    apply (subst abs_of_nonpos)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1613
    apply simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1614
    apply (rule ln_add_one_self_le_self2)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1615
    using a apply auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1616
    done
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1617
  also have "... <= 2 * x\<^sup>2"
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1618
    apply (subgoal_tac "- (-x) - 2 * (-x)\<^sup>2 <= ln (1 - (-x))")
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1619
    apply (simp add: algebra_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1620
    apply (rule ln_one_minus_pos_lower_bound)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1621
    using a b apply auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1622
    done
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1623
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1624
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1625
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1626
lemma abs_ln_one_plus_x_minus_x_bound:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1627
    "abs x <= 1 / 2 \<Longrightarrow> abs(ln (1 + x) - x) <= 2 * x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1628
  apply (case_tac "0 <= x")
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1629
  apply (rule order_trans)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1630
  apply (rule abs_ln_one_plus_x_minus_x_bound_nonneg)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1631
  apply auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1632
  apply (rule abs_ln_one_plus_x_minus_x_bound_nonpos)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1633
  apply auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1634
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1635
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1636
lemma ln_x_over_x_mono: "exp 1 <= x \<Longrightarrow> x <= y \<Longrightarrow> (ln y / y) <= (ln x / x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1637
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1638
  assume x: "exp 1 <= x" "x <= y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1639
  moreover have "0 < exp (1::real)" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1640
  ultimately have a: "0 < x" and b: "0 < y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1641
    by (fast intro: less_le_trans order_trans)+
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1642
  have "x * ln y - x * ln x = x * (ln y - ln x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1643
    by (simp add: algebra_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1644
  also have "... = x * ln(y / x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1645
    by (simp only: ln_div a b)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1646
  also have "y / x = (x + (y - x)) / x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1647
    by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1648
  also have "... = 1 + (y - x) / x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1649
    using x a by (simp add: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1650
  also have "x * ln(1 + (y - x) / x) <= x * ((y - x) / x)"
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  1651
    using x a 
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  1652
    by (intro mult_left_mono ln_add_one_self_le_self) simp_all
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1653
  also have "... = y - x" using a by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1654
  also have "... = (y - x) * ln (exp 1)" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1655
  also have "... <= (y - x) * ln x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1656
    apply (rule mult_left_mono)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1657
    apply (subst ln_le_cancel_iff)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1658
    apply fact
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1659
    apply (rule a)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1660
    apply (rule x)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1661
    using x apply simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1662
    done
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1663
  also have "... = y * ln x - x * ln x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1664
    by (rule left_diff_distrib)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1665
  finally have "x * ln y <= y * ln x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1666
    by arith
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1667
  then have "ln y <= (y * ln x) / x" using a by (simp add: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1668
  also have "... = y * (ln x / x)" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1669
  finally show ?thesis using b by (simp add: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1670
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1671
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1672
lemma ln_le_minus_one: "0 < x \<Longrightarrow> ln x \<le> x - 1"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1673
  using exp_ge_add_one_self[of "ln x"] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1674
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1675
lemma ln_eq_minus_one:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1676
  assumes "0 < x" "ln x = x - 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1677
  shows "x = 1"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1678
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1679
  let ?l = "\<lambda>y. ln y - y + 1"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1680
  have D: "\<And>x. 0 < x \<Longrightarrow> DERIV ?l x :> (1 / x - 1)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1681
    by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1682
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1683
  show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1684
  proof (cases rule: linorder_cases)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1685
    assume "x < 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1686
    from dense[OF `x < 1`] obtain a where "x < a" "a < 1" by blast
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1687
    from `x < a` have "?l x < ?l a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1688
    proof (rule DERIV_pos_imp_increasing, safe)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1689
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1690
      assume "x \<le> y" "y \<le> a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1691
      with `0 < x` `a < 1` have "0 < 1 / y - 1" "0 < y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1692
        by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1693
      with D show "\<exists>z. DERIV ?l y :> z \<and> 0 < z"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1694
        by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1695
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1696
    also have "\<dots> \<le> 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1697
      using ln_le_minus_one `0 < x` `x < a` by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1698
    finally show "x = 1" using assms by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1699
  next
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1700
    assume "1 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1701
    from dense[OF this] obtain a where "1 < a" "a < x" by blast
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1702
    from `a < x` have "?l x < ?l a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1703
    proof (rule DERIV_neg_imp_decreasing, safe)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1704
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1705
      assume "a \<le> y" "y \<le> x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1706
      with `1 < a` have "1 / y - 1 < 0" "0 < y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1707
        by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1708
      with D show "\<exists>z. DERIV ?l y :> z \<and> z < 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1709
        by blast
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1710
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1711
    also have "\<dots> \<le> 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1712
      using ln_le_minus_one `1 < a` by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1713
    finally show "x = 1" using assms by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1714
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1715
    assume "x = 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1716
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1717
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1718
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1719
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1720
lemma exp_at_bot: "(exp ---> (0::real)) at_bot"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1721
  unfolding tendsto_Zfun_iff
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1722
proof (rule ZfunI, simp add: eventually_at_bot_dense)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1723
  fix r :: real assume "0 < r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1724
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1725
    fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1726
    assume "x < ln r"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1727
    then have "exp x < exp (ln r)"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1728
      by simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1729
    with `0 < r` have "exp x < r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1730
      by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1731
  }
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1732
  then show "\<exists>k. \<forall>n<k. exp n < r" by auto
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1733
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1734
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1735
lemma exp_at_top: "LIM x at_top. exp x :: real :> at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  1736
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. True" and P="\<lambda>x. 0 < x" and g="ln"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  1737
     (auto intro: eventually_gt_at_top)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1738
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1739
lemma ln_at_0: "LIM x at_right 0. ln x :> at_bot"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  1740
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g="exp"])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51527
diff changeset
  1741
     (auto simp: eventually_at_filter)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1742
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1743
lemma ln_at_top: "LIM x at_top. ln x :> at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  1744
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g="exp"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  1745
     (auto intro: eventually_gt_at_top)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1746
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1747
lemma tendsto_power_div_exp_0: "((\<lambda>x. x ^ k / exp x) ---> (0::real)) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1748
proof (induct k)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1749
  case 0
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1750
  show "((\<lambda>x. x ^ 0 / exp x) ---> (0::real)) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1751
    by (simp add: inverse_eq_divide[symmetric])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1752
       (metis filterlim_compose[OF tendsto_inverse_0] exp_at_top filterlim_mono
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1753
              at_top_le_at_infinity order_refl)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1754
next
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1755
  case (Suc k)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1756
  show ?case
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1757
  proof (rule lhospital_at_top_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1758
    show "eventually (\<lambda>x. DERIV (\<lambda>x. x ^ Suc k) x :> (real (Suc k) * x^k)) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1759
      by eventually_elim (intro derivative_eq_intros, auto)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1760
    show "eventually (\<lambda>x. DERIV exp x :> exp x) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1761
      by eventually_elim auto
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1762
    show "eventually (\<lambda>x. exp x \<noteq> 0) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1763
      by auto
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1764
    from tendsto_mult[OF tendsto_const Suc, of "real (Suc k)"]
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1765
    show "((\<lambda>x. real (Suc k) * x ^ k / exp x) ---> 0) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1766
      by simp
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1767
  qed (rule exp_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1768
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1769
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1770
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1771
definition powr :: "[real,real] => real"  (infixr "powr" 80)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1772
  -- {*exponentation with real exponent*}
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1773
  where "x powr a = exp(a * ln x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1774
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1775
definition log :: "[real,real] => real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1776
  -- {*logarithm of @{term x} to base @{term a}*}
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1777
  where "log a x = ln x / ln a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1778
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1779
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1780
lemma tendsto_log [tendsto_intros]:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1781
  "\<lbrakk>(f ---> a) F; (g ---> b) F; 0 < a; a \<noteq> 1; 0 < b\<rbrakk> \<Longrightarrow> ((\<lambda>x. log (f x) (g x)) ---> log a b) F"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1782
  unfolding log_def by (intro tendsto_intros) auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1783
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1784
lemma continuous_log:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1785
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1786
    and "continuous F g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1787
    and "0 < f (Lim F (\<lambda>x. x))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1788
    and "f (Lim F (\<lambda>x. x)) \<noteq> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1789
    and "0 < g (Lim F (\<lambda>x. x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1790
  shows "continuous F (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1791
  using assms unfolding continuous_def by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1792
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1793
lemma continuous_at_within_log[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1794
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1795
    and "continuous (at a within s) g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1796
    and "0 < f a"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1797
    and "f a \<noteq> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1798
    and "0 < g a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1799
  shows "continuous (at a within s) (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1800
  using assms unfolding continuous_within by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1801
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1802
lemma isCont_log[continuous_intros, simp]:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1803
  assumes "isCont f a" "isCont g a" "0 < f a" "f a \<noteq> 1" "0 < g a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1804
  shows "isCont (\<lambda>x. log (f x) (g x)) a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1805
  using assms unfolding continuous_at by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1806
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  1807
lemma continuous_on_log[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1808
  assumes "continuous_on s f" "continuous_on s g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1809
    and "\<forall>x\<in>s. 0 < f x" "\<forall>x\<in>s. f x \<noteq> 1" "\<forall>x\<in>s. 0 < g x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1810
  shows "continuous_on s (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1811
  using assms unfolding continuous_on_def by (fast intro: tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1812
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1813
lemma powr_one_eq_one [simp]: "1 powr a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1814
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1815
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1816
lemma powr_zero_eq_one [simp]: "x powr 0 = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1817
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1818
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1819
lemma powr_one_gt_zero_iff [simp]: "(x powr 1 = x) = (0 < x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1820
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1821
declare powr_one_gt_zero_iff [THEN iffD2, simp]
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1822
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1823
lemma powr_mult: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> (x * y) powr a = (x powr a) * (y powr a)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1824
  by (simp add: powr_def exp_add [symmetric] ln_mult distrib_left)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1825
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1826
lemma powr_gt_zero [simp]: "0 < x powr a"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1827
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1828
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1829
lemma powr_ge_pzero [simp]: "0 <= x powr y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1830
  by (rule order_less_imp_le, rule powr_gt_zero)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1831
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1832
lemma powr_not_zero [simp]: "x powr a \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1833
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1834
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1835
lemma powr_divide: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> (x / y) powr a = (x powr a) / (y powr a)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1836
  apply (simp add: divide_inverse positive_imp_inverse_positive powr_mult)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1837
  apply (simp add: powr_def exp_minus [symmetric] exp_add [symmetric] ln_inverse)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1838
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1839
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1840
lemma powr_divide2: "x powr a / x powr b = x powr (a - b)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1841
  apply (simp add: powr_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1842
  apply (subst exp_diff [THEN sym])
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1843
  apply (simp add: left_diff_distrib)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1844
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1845
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1846
lemma powr_add: "x powr (a + b) = (x powr a) * (x powr b)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1847
  by (simp add: powr_def exp_add [symmetric] distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1848
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1849
lemma powr_mult_base: "0 < x \<Longrightarrow>x * x powr y = x powr (1 + y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1850
  using assms by (auto simp: powr_add)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1851
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1852
lemma powr_powr: "(x powr a) powr b = x powr (a * b)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1853
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1854
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1855
lemma powr_powr_swap: "(x powr a) powr b = (x powr b) powr a"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1856
  by (simp add: powr_powr mult.commute)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1857
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1858
lemma powr_minus: "x powr (-a) = inverse (x powr a)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1859
  by (simp add: powr_def exp_minus [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1860
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1861
lemma powr_minus_divide: "x powr (-a) = 1/(x powr a)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1862
  by (simp add: divide_inverse powr_minus)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1863
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1864
lemma powr_less_mono: "a < b \<Longrightarrow> 1 < x \<Longrightarrow> x powr a < x powr b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1865
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1866
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1867
lemma powr_less_cancel: "x powr a < x powr b \<Longrightarrow> 1 < x \<Longrightarrow> a < b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1868
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1869
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1870
lemma powr_less_cancel_iff [simp]: "1 < x \<Longrightarrow> (x powr a < x powr b) = (a < b)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1871
  by (blast intro: powr_less_cancel powr_less_mono)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1872
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1873
lemma powr_le_cancel_iff [simp]: "1 < x \<Longrightarrow> (x powr a \<le> x powr b) = (a \<le> b)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1874
  by (simp add: linorder_not_less [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1875
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1876
lemma log_ln: "ln x = log (exp(1)) x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1877
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1878
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1879
lemma DERIV_log:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1880
  assumes "x > 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1881
  shows "DERIV (\<lambda>y. log b y) x :> 1 / (ln b * x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1882
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1883
  def lb \<equiv> "1 / ln b"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1884
  moreover have "DERIV (\<lambda>y. lb * ln y) x :> lb / x"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1885
    using `x > 0` by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1886
  ultimately show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1887
    by (simp add: log_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1888
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1889
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1890
lemmas DERIV_log[THEN DERIV_chain2, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1891
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1892
lemma powr_log_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> a powr (log a x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1893
  by (simp add: powr_def log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1894
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1895
lemma log_powr_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a (a powr y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1896
  by (simp add: log_def powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1897
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1898
lemma log_mult:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1899
  "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1900
    log a (x * y) = log a x + log a y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1901
  by (simp add: log_def ln_mult divide_inverse distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1902
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1903
lemma log_eq_div_ln_mult_log:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1904
  "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1905
    log a x = (ln b/ln a) * log b x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1906
  by (simp add: log_def divide_inverse)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1907
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1908
text{*Base 10 logarithms*}
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1909
lemma log_base_10_eq1: "0 < x \<Longrightarrow> log 10 x = (ln (exp 1) / ln 10) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1910
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1911
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1912
lemma log_base_10_eq2: "0 < x \<Longrightarrow> log 10 x = (log 10 (exp 1)) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1913
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1914
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1915
lemma log_one [simp]: "log a 1 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1916
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1917
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1918
lemma log_eq_one [simp]: "[| 0 < a; a \<noteq> 1 |] ==> log a a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1919
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1920
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1921
lemma log_inverse: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log a (inverse x) = - log a x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1922
  apply (rule_tac a1 = "log a x" in add_left_cancel [THEN iffD1])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1923
  apply (simp add: log_mult [symmetric])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1924
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1925
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1926
lemma log_divide: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a (x/y) = log a x - log a y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1927
  by (simp add: log_mult divide_inverse log_inverse)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1928
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1929
lemma log_less_cancel_iff [simp]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1930
  "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a x < log a y \<longleftrightarrow> x < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1931
  apply safe
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1932
  apply (rule_tac [2] powr_less_cancel)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1933
  apply (drule_tac a = "log a x" in powr_less_mono, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1934
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1935
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1936
lemma log_inj:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1937
  assumes "1 < b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1938
  shows "inj_on (log b) {0 <..}"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1939
proof (rule inj_onI, simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1940
  fix x y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1941
  assume pos: "0 < x" "0 < y" and *: "log b x = log b y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1942
  show "x = y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1943
  proof (cases rule: linorder_cases)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1944
    assume "x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1945
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1946
  next
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1947
    assume "x < y" hence "log b x < log b y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1948
      using log_less_cancel_iff[OF `1 < b`] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1949
    then show ?thesis using * by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1950
  next
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1951
    assume "y < x" hence "log b y < log b x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1952
      using log_less_cancel_iff[OF `1 < b`] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1953
    then show ?thesis using * by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1954
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1955
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1956
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1957
lemma log_le_cancel_iff [simp]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1958
  "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> (log a x \<le> log a y) = (x \<le> y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1959
  by (simp add: linorder_not_less [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1960
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1961
lemma zero_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < log a x \<longleftrightarrow> 1 < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1962
  using log_less_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1963
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1964
lemma zero_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 \<le> log a x \<longleftrightarrow> 1 \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1965
  using log_le_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1966
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1967
lemma log_less_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 0 \<longleftrightarrow> x < 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1968
  using log_less_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1969
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1970
lemma log_le_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 0 \<longleftrightarrow> x \<le> 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1971
  using log_le_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1972
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1973
lemma one_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 < log a x \<longleftrightarrow> a < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1974
  using log_less_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1975
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1976
lemma one_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> log a x \<longleftrightarrow> a \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1977
  using log_le_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1978
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1979
lemma log_less_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 1 \<longleftrightarrow> x < a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1980
  using log_less_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1981
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1982
lemma log_le_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 1 \<longleftrightarrow> x \<le> a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1983
  using log_le_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1984
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1985
lemma powr_realpow: "0 < x ==> x powr (real n) = x^n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1986
  apply (induct n)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1987
  apply simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1988
  apply (subgoal_tac "real(Suc n) = real n + 1")
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1989
  apply (erule ssubst)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1990
  apply (subst powr_add, simp, simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1991
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1992
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  1993
lemma powr_realpow_numeral: "0 < x \<Longrightarrow> x powr (numeral n :: real) = x ^ (numeral n)"
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  1994
  unfolding real_of_nat_numeral [symmetric] by (rule powr_realpow)
52139
40fe6b80b481 add lemma
noschinl
parents: 51641
diff changeset
  1995
57180
74c81a5b5a34 added lemma
nipkow
parents: 57129
diff changeset
  1996
lemma powr2_sqrt[simp]: "0 < x \<Longrightarrow> sqrt x powr 2 = x"
74c81a5b5a34 added lemma
nipkow
parents: 57129
diff changeset
  1997
by(simp add: powr_realpow_numeral)
74c81a5b5a34 added lemma
nipkow
parents: 57129
diff changeset
  1998
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1999
lemma powr_realpow2: "0 <= x ==> 0 < n ==> x^n = (if (x = 0) then 0 else x powr (real n))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2000
  apply (case_tac "x = 0", simp, simp)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2001
  apply (rule powr_realpow [THEN sym], simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2002
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2003
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2004
lemma powr_int:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2005
  assumes "x > 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2006
  shows "x powr i = (if i \<ge> 0 then x ^ nat i else 1 / x ^ nat (-i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2007
proof (cases "i < 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2008
  case True
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2009
  have r: "x powr i = 1 / x powr (-i)" by (simp add: powr_minus field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2010
  show ?thesis using `i < 0` `x > 0` by (simp add: r field_simps powr_realpow[symmetric])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2011
next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2012
  case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2013
  then show ?thesis by (simp add: assms powr_realpow[symmetric])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2014
qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2015
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2016
lemma powr_one: "0 < x \<Longrightarrow> x powr 1 = x"
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2017
  using powr_realpow [of x 1] by simp
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2018
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2019
lemma powr_numeral: "0 < x \<Longrightarrow> x powr numeral n = x ^ numeral n"
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2020
  by (fact powr_realpow_numeral)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2021
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2022
lemma powr_neg_one: "0 < x \<Longrightarrow> x powr - 1 = 1 / x"
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2023
  using powr_int [of x "- 1"] by simp
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2024
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2025
lemma powr_neg_numeral: "0 < x \<Longrightarrow> x powr - numeral n = 1 / x ^ numeral n"
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2026
  using powr_int [of x "- numeral n"] by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2027
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2028
lemma root_powr_inverse: "0 < n \<Longrightarrow> 0 < x \<Longrightarrow> root n x = x powr (1/n)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2029
  by (rule real_root_pos_unique) (auto simp: powr_realpow[symmetric] powr_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2030
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2031
lemma ln_powr: "ln (x powr y) = y * ln x"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2032
  by (simp add: powr_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2033
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2034
lemma ln_root: "\<lbrakk> n > 0; b > 0 \<rbrakk> \<Longrightarrow> ln (root n b) =  ln b / n"
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2035
by(simp add: root_powr_inverse ln_powr)
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2036
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2037
lemma ln_sqrt: "0 < x \<Longrightarrow> ln (sqrt x) = ln x / 2"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2038
  by (simp add: ln_powr powr_numeral ln_powr[symmetric] mult.commute)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2039
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2040
lemma log_root: "\<lbrakk> n > 0; a > 0 \<rbrakk> \<Longrightarrow> log b (root n a) =  log b a / n"
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2041
by(simp add: log_def ln_root)
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2042
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2043
lemma log_powr: "log b (x powr y) = y * log b x"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2044
  by (simp add: log_def ln_powr)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2045
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2046
lemma log_nat_power: "0 < x \<Longrightarrow> log b (x ^ n) = real n * log b x"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2047
  by (simp add: log_powr powr_realpow [symmetric])
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2048
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2049
lemma log_base_change: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log b x = log a x / log a b"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2050
  by (simp add: log_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2051
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2052
lemma log_base_pow: "0 < a \<Longrightarrow> log (a ^ n) x = log a x / n"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2053
  by (simp add: log_def ln_realpow)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2054
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2055
lemma log_base_powr: "log (a powr b) x = log a x / b"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2056
  by (simp add: log_def ln_powr)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2057
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2058
lemma log_base_root: "\<lbrakk> n > 0; b > 0 \<rbrakk> \<Longrightarrow> log (root n b) x = n * (log b x)"
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2059
by(simp add: log_def ln_root)
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2060
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2061
lemma ln_bound: "1 <= x ==> ln x <= x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2062
  apply (subgoal_tac "ln(1 + (x - 1)) <= x - 1")
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2063
  apply simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2064
  apply (rule ln_add_one_self_le_self, simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2065
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2066
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2067
lemma powr_mono: "a <= b ==> 1 <= x ==> x powr a <= x powr b"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2068
  apply (cases "x = 1", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2069
  apply (cases "a = b", simp)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2070
  apply (rule order_less_imp_le)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2071
  apply (rule powr_less_mono, auto)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2072
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2073
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2074
lemma ge_one_powr_ge_zero: "1 <= x ==> 0 <= a ==> 1 <= x powr a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2075
  apply (subst powr_zero_eq_one [THEN sym])
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2076
  apply (rule powr_mono, assumption+)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2077
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2078
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2079
lemma powr_less_mono2: "0 < a ==> 0 < x ==> x < y ==> x powr a < y powr a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2080
  apply (unfold powr_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2081
  apply (rule exp_less_mono)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2082
  apply (rule mult_strict_left_mono)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2083
  apply (subst ln_less_cancel_iff, assumption)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2084
  apply (rule order_less_trans)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2085
  prefer 2
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2086
  apply assumption+
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2087
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2088
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2089
lemma powr_less_mono2_neg: "a < 0 ==> 0 < x ==> x < y ==> y powr a < x powr a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2090
  apply (unfold powr_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2091
  apply (rule exp_less_mono)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2092
  apply (rule mult_strict_left_mono_neg)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2093
  apply (subst ln_less_cancel_iff)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2094
  apply assumption
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2095
  apply (rule order_less_trans)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2096
  prefer 2
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2097
  apply assumption+
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2098
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2099
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2100
lemma powr_mono2: "0 <= a ==> 0 < x ==> x <= y ==> x powr a <= y powr a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2101
  apply (case_tac "a = 0", simp)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2102
  apply (case_tac "x = y", simp)
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2103
  apply (metis less_eq_real_def powr_less_mono2)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2104
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2105
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2106
lemma powr_inj: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> a powr x = a powr y \<longleftrightarrow> x = y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2107
  unfolding powr_def exp_inj_iff by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2108
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2109
lemma ln_powr_bound: "1 <= x ==> 0 < a ==> ln x <= (x powr a) / a"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2110
  by (metis less_eq_real_def ln_less_self mult_imp_le_div_pos ln_powr mult.commute 
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2111
            order.strict_trans2 powr_gt_zero zero_less_one)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2112
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2113
lemma ln_powr_bound2:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2114
  assumes "1 < x" and "0 < a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2115
  shows "(ln x) powr a <= (a powr a) * x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2116
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2117
  from assms have "ln x <= (x powr (1 / a)) / (1 / a)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2118
    by (metis less_eq_real_def ln_powr_bound zero_less_divide_1_iff)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2119
  also have "... = a * (x powr (1 / a))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2120
    by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2121
  finally have "(ln x) powr a <= (a * (x powr (1 / a))) powr a"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2122
    by (metis assms less_imp_le ln_gt_zero powr_mono2)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2123
  also have "... = (a powr a) * ((x powr (1 / a)) powr a)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2124
    by (metis assms(2) powr_mult powr_gt_zero)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2125
  also have "(x powr (1 / a)) powr a = x powr ((1 / a) * a)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2126
    by (rule powr_powr)
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2127
  also have "... = x" using assms
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2128
    by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2129
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2130
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2131
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2132
lemma tendsto_powr [tendsto_intros]:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2133
  "\<lbrakk>(f ---> a) F; (g ---> b) F; a \<noteq> 0\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x powr g x) ---> a powr b) F"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2134
  unfolding powr_def by (intro tendsto_intros)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2135
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2136
lemma continuous_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2137
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2138
    and "continuous F g"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2139
    and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2140
  shows "continuous F (\<lambda>x. (f x) powr (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2141
  using assms unfolding continuous_def by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2142
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2143
lemma continuous_at_within_powr[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2144
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2145
    and "continuous (at a within s) g"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2146
    and "f a \<noteq> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2147
  shows "continuous (at a within s) (\<lambda>x. (f x) powr (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2148
  using assms unfolding continuous_within by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2149
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2150
lemma isCont_powr[continuous_intros, simp]:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2151
  assumes "isCont f a" "isCont g a" "f a \<noteq> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2152
  shows "isCont (\<lambda>x. (f x) powr g x) a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2153
  using assms unfolding continuous_at by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2154
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2155
lemma continuous_on_powr[continuous_intros]:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2156
  assumes "continuous_on s f" "continuous_on s g" and "\<forall>x\<in>s. f x \<noteq> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2157
  shows "continuous_on s (\<lambda>x. (f x) powr (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2158
  using assms unfolding continuous_on_def by (fast intro: tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2159
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2160
(* FIXME: generalize by replacing d by with g x and g ---> d? *)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2161
lemma tendsto_zero_powrI:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2162
  assumes "eventually (\<lambda>x. 0 < f x ) F" and "(f ---> 0) F"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2163
    and "0 < d"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2164
  shows "((\<lambda>x. f x powr d) ---> 0) F"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2165
proof (rule tendstoI)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2166
  fix e :: real assume "0 < e"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2167
  def Z \<equiv> "e powr (1 / d)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2168
  with `0 < e` have "0 < Z" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2169
  with assms have "eventually (\<lambda>x. 0 < f x \<and> dist (f x) 0 < Z) F"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2170
    by (intro eventually_conj tendstoD)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2171
  moreover
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2172
  from assms have "\<And>x. 0 < x \<and> dist x 0 < Z \<Longrightarrow> x powr d < Z powr d"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2173
    by (intro powr_less_mono2) (auto simp: dist_real_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2174
  with assms `0 < e` have "\<And>x. 0 < x \<and> dist x 0 < Z \<Longrightarrow> dist (x powr d) 0 < e"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2175
    unfolding dist_real_def Z_def by (auto simp: powr_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2176
  ultimately
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2177
  show "eventually (\<lambda>x. dist (f x powr d) 0 < e) F" by (rule eventually_elim1)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2178
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2179
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2180
lemma tendsto_neg_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2181
  assumes "s < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2182
    and "LIM x F. f x :> at_top"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2183
  shows "((\<lambda>x. f x powr s) ---> 0) F"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2184
proof (rule tendstoI)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2185
  fix e :: real assume "0 < e"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2186
  def Z \<equiv> "e powr (1 / s)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2187
  from assms have "eventually (\<lambda>x. Z < f x) F"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2188
    by (simp add: filterlim_at_top_dense)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2189
  moreover
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2190
  from assms have "\<And>x. Z < x \<Longrightarrow> x powr s < Z powr s"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2191
    by (auto simp: Z_def intro!: powr_less_mono2_neg)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2192
  with assms `0 < e` have "\<And>x. Z < x \<Longrightarrow> dist (x powr s) 0 < e"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2193
    by (simp add: powr_powr Z_def dist_real_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2194
  ultimately
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2195
  show "eventually (\<lambda>x. dist (f x powr s) 0 < e) F" by (rule eventually_elim1)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2196
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2197
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2198
(* it is funny that this isn't in the library! It could go in Transcendental *)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2199
lemma tendsto_exp_limit_at_right:
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2200
  fixes x :: real
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2201
  shows "((\<lambda>y. (1 + x * y) powr (1 / y)) ---> exp x) (at_right 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2202
proof cases
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2203
  assume "x \<noteq> 0"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2204
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2205
  have "((\<lambda>y. ln (1 + x * y)::real) has_real_derivative 1 * x) (at 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2206
    by (auto intro!: derivative_eq_intros)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2207
  then have "((\<lambda>y. ln (1 + x * y) / y) ---> x) (at 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2208
    by (auto simp add: has_field_derivative_def field_has_derivative_at) 
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2209
  then have *: "((\<lambda>y. exp (ln (1 + x * y) / y)) ---> exp x) (at 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2210
    by (rule tendsto_intros)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2211
  then show ?thesis
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2212
  proof (rule filterlim_mono_eventually)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2213
    show "eventually (\<lambda>xa. exp (ln (1 + x * xa) / xa) = (1 + x * xa) powr (1 / xa)) (at_right 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2214
      unfolding eventually_at_right[OF zero_less_one]
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2215
      using `x \<noteq> 0` by (intro exI[of _ "1 / \<bar>x\<bar>"]) (auto simp: field_simps powr_def)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2216
  qed (simp_all add: at_eq_sup_left_right)
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 58710
diff changeset
  2217
qed simp
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2218
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2219
lemma tendsto_exp_limit_at_top:
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2220
  fixes x :: real
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2221
  shows "((\<lambda>y. (1 + x / y) powr y) ---> exp x) at_top"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2222
  apply (subst filterlim_at_top_to_right)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2223
  apply (simp add: inverse_eq_divide)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2224
  apply (rule tendsto_exp_limit_at_right)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2225
  done
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2226
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2227
lemma tendsto_exp_limit_sequentially:
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2228
  fixes x :: real
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2229
  shows "(\<lambda>n. (1 + x / n) ^ n) ----> exp x"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2230
proof (rule filterlim_mono_eventually)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2231
  from reals_Archimedean2 [of "abs x"] obtain n :: nat where *: "real n > abs x" ..
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2232
  hence "eventually (\<lambda>n :: nat. 0 < 1 + x / real n) at_top"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2233
    apply (intro eventually_sequentiallyI [of n])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2234
    apply (case_tac "x \<ge> 0")
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2235
    apply (rule add_pos_nonneg, auto intro: divide_nonneg_nonneg)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2236
    apply (subgoal_tac "x / real xa > -1")
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2237
    apply (auto simp add: field_simps)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2238
    done
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2239
  then show "eventually (\<lambda>n. (1 + x / n) powr n = (1 + x / n) ^ n) at_top"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2240
    by (rule eventually_elim1) (erule powr_realpow)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2241
  show "(\<lambda>n. (1 + x / real n) powr real n) ----> exp x"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2242
    by (rule filterlim_compose [OF tendsto_exp_limit_at_top filterlim_real_sequentially])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2243
qed auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2244
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2245
subsection {* Sine and Cosine *}
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2246
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2247
definition sin_coeff :: "nat \<Rightarrow> real" where
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  2248
  "sin_coeff = (\<lambda>n. if even n then 0 else (- 1) ^ ((n - Suc 0) div 2) / real (fact n))"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2249
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2250
definition cos_coeff :: "nat \<Rightarrow> real" where
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  2251
  "cos_coeff = (\<lambda>n. if even n then ((- 1) ^ (n div 2)) / real (fact n) else 0)"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2252
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2253
definition sin :: "real \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2254
  where "sin = (\<lambda>x. \<Sum>n. sin_coeff n * x ^ n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2255
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2256
definition cos :: "real \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2257
  where "cos = (\<lambda>x. \<Sum>n. cos_coeff n * x ^ n)"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2258
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2259
lemma sin_coeff_0 [simp]: "sin_coeff 0 = 0"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2260
  unfolding sin_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2261
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2262
lemma cos_coeff_0 [simp]: "cos_coeff 0 = 1"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2263
  unfolding cos_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2264
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2265
lemma sin_coeff_Suc: "sin_coeff (Suc n) = cos_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2266
  unfolding cos_coeff_def sin_coeff_def
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2267
  by (simp del: mult_Suc)
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2268
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2269
lemma cos_coeff_Suc: "cos_coeff (Suc n) = - sin_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2270
  unfolding cos_coeff_def sin_coeff_def
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2271
  by (simp del: mult_Suc) (auto elim: oddE)
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2272
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2273
lemma summable_sin: "summable (\<lambda>n. sin_coeff n * x ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2274
  unfolding sin_coeff_def
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2275
  apply (rule summable_comparison_test [OF _ summable_exp [where x="\<bar>x\<bar>"]])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2276
  apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2277
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2278
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2279
lemma summable_cos: "summable (\<lambda>n. cos_coeff n * x ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2280
  unfolding cos_coeff_def
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2281
  apply (rule summable_comparison_test [OF _ summable_exp [where x="\<bar>x\<bar>"]])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2282
  apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2283
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2284
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2285
lemma sin_converges: "(\<lambda>n. sin_coeff n * x ^ n) sums sin(x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2286
  unfolding sin_def by (rule summable_sin [THEN summable_sums])
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2287
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2288
lemma cos_converges: "(\<lambda>n. cos_coeff n * x ^ n) sums cos(x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2289
  unfolding cos_def by (rule summable_cos [THEN summable_sums])
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2290
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2291
lemma diffs_sin_coeff: "diffs sin_coeff = cos_coeff"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2292
  by (simp add: diffs_def sin_coeff_Suc real_of_nat_def del: of_nat_Suc)
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2293
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2294
lemma diffs_cos_coeff: "diffs cos_coeff = (\<lambda>n. - sin_coeff n)"
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  2295
  by (simp add: diffs_def cos_coeff_Suc real_of_nat_def del: of_nat_Suc)
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2296
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2297
text{*Now at last we can get the derivatives of exp, sin and cos*}
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2298
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2299
lemma DERIV_sin [simp]: "DERIV sin x :> cos(x)"
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2300
  unfolding sin_def cos_def
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2301
  apply (rule DERIV_cong, rule termdiffs [where K="1 + \<bar>x\<bar>"])
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2302
  apply (simp_all add: diffs_sin_coeff diffs_cos_coeff
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2303
    summable_minus summable_sin summable_cos)
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2304
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2305
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2306
declare DERIV_sin[THEN DERIV_chain2, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2307
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2308
lemma DERIV_cos [simp]: "DERIV cos x :> -sin(x)"
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2309
  unfolding cos_def sin_def
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2310
  apply (rule DERIV_cong, rule termdiffs [where K="1 + \<bar>x\<bar>"])
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2311
  apply (simp_all add: diffs_sin_coeff diffs_cos_coeff diffs_minus
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2312
    summable_minus summable_sin summable_cos suminf_minus)
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2313
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2314
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2315
declare DERIV_cos[THEN DERIV_chain2, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2316
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2317
lemma isCont_sin: "isCont sin x"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2318
  by (rule DERIV_sin [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2319
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2320
lemma isCont_cos: "isCont cos x"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2321
  by (rule DERIV_cos [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2322
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2323
lemma isCont_sin' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. sin (f x)) a"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2324
  by (rule isCont_o2 [OF _ isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2325
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2326
lemma isCont_cos' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. cos (f x)) a"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2327
  by (rule isCont_o2 [OF _ isCont_cos])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2328
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2329
lemma tendsto_sin [tendsto_intros]:
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2330
  "(f ---> a) F \<Longrightarrow> ((\<lambda>x. sin (f x)) ---> sin a) F"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2331
  by (rule isCont_tendsto_compose [OF isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2332
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2333
lemma tendsto_cos [tendsto_intros]:
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2334
  "(f ---> a) F \<Longrightarrow> ((\<lambda>x. cos (f x)) ---> cos a) F"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2335
  by (rule isCont_tendsto_compose [OF isCont_cos])
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2336
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2337
lemma continuous_sin [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2338
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. sin (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2339
  unfolding continuous_def by (rule tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2340
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2341
lemma continuous_on_sin [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2342
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. sin (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2343
  unfolding continuous_on_def by (auto intro: tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2344
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2345
lemma continuous_cos [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2346
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. cos (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2347
  unfolding continuous_def by (rule tendsto_cos)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2348
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2349
lemma continuous_on_cos [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2350
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. cos (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2351
  unfolding continuous_on_def by (auto intro: tendsto_cos)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2352
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2353
subsection {* Properties of Sine and Cosine *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2354
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2355
lemma sin_zero [simp]: "sin 0 = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2356
  unfolding sin_def sin_coeff_def by (simp add: powser_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2357
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2358
lemma cos_zero [simp]: "cos 0 = 1"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2359
  unfolding cos_def cos_coeff_def by (simp add: powser_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2360
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2361
lemma sin_cos_squared_add [simp]: "(sin x)\<^sup>2 + (cos x)\<^sup>2 = 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2362
proof -
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2363
  have "\<forall>x. DERIV (\<lambda>x. (sin x)\<^sup>2 + (cos x)\<^sup>2) x :> 0"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2364
    by (auto intro!: derivative_eq_intros)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2365
  hence "(sin x)\<^sup>2 + (cos x)\<^sup>2 = (sin 0)\<^sup>2 + (cos 0)\<^sup>2"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2366
    by (rule DERIV_isconst_all)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2367
  thus "(sin x)\<^sup>2 + (cos x)\<^sup>2 = 1" by simp
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2368
qed
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2369
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2370
lemma sin_cos_squared_add2 [simp]: "(cos x)\<^sup>2 + (sin x)\<^sup>2 = 1"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2371
  by (subst add.commute, rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2372
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2373
lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2374
  using sin_cos_squared_add2 [unfolded power2_eq_square] .
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2375
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2376
lemma sin_squared_eq: "(sin x)\<^sup>2 = 1 - (cos x)\<^sup>2"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2377
  unfolding eq_diff_eq by (rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2378
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2379
lemma cos_squared_eq: "(cos x)\<^sup>2 = 1 - (sin x)\<^sup>2"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2380
  unfolding eq_diff_eq by (rule sin_cos_squared_add2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2381
15081
32402f5624d1 abs notation
paulson
parents: 15079
diff changeset
  2382
lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2383
  by (rule power2_le_imp_le, simp_all add: sin_squared_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2384
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2385
lemma sin_ge_minus_one [simp]: "-1 \<le> sin x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2386
  using abs_sin_le_one [of x] unfolding abs_le_iff by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2387
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2388
lemma sin_le_one [simp]: "sin x \<le> 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2389
  using abs_sin_le_one [of x] unfolding abs_le_iff by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2390
15081
32402f5624d1 abs notation
paulson
parents: 15079
diff changeset
  2391
lemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2392
  by (rule power2_le_imp_le, simp_all add: cos_squared_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2393
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2394
lemma cos_ge_minus_one [simp]: "-1 \<le> cos x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2395
  using abs_cos_le_one [of x] unfolding abs_le_iff by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2396
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2397
lemma cos_le_one [simp]: "cos x \<le> 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2398
  using abs_cos_le_one [of x] unfolding abs_le_iff by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2399
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2400
lemma DERIV_fun_pow: "DERIV g x :> m ==>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2401
      DERIV (\<lambda>x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2402
  by (auto intro!: derivative_eq_intros simp: real_of_nat_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2403
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2404
lemma DERIV_fun_exp:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2405
     "DERIV g x :> m ==> DERIV (\<lambda>x. exp(g x)) x :> exp(g x) * m"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2406
  by (auto intro!: derivative_intros)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2407
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2408
lemma DERIV_fun_sin:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2409
     "DERIV g x :> m ==> DERIV (\<lambda>x. sin(g x)) x :> cos(g x) * m"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2410
  by (auto intro!: derivative_intros)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2411
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2412
lemma DERIV_fun_cos:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2413
     "DERIV g x :> m ==> DERIV (\<lambda>x. cos(g x)) x :> -sin(g x) * m"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2414
  by (auto intro!: derivative_eq_intros simp: real_of_nat_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2415
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2416
lemma sin_cos_add_lemma:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2417
  "(sin (x + y) - (sin x * cos y + cos x * sin y))\<^sup>2 +
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2418
    (cos (x + y) - (cos x * cos y - sin x * sin y))\<^sup>2 = 0"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2419
  (is "?f x = 0")
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2420
proof -
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2421
  have "\<forall>x. DERIV (\<lambda>x. ?f x) x :> 0"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2422
    by (auto intro!: derivative_eq_intros simp add: algebra_simps)
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2423
  hence "?f x = ?f 0"
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2424
    by (rule DERIV_isconst_all)
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2425
  thus ?thesis by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2426
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2427
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2428
lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2429
  using sin_cos_add_lemma unfolding realpow_two_sum_zero_iff by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2430
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2431
lemma cos_add: "cos (x + y) = cos x * cos y - sin x * sin y"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2432
  using sin_cos_add_lemma unfolding realpow_two_sum_zero_iff by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2433
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2434
lemma sin_cos_minus_lemma:
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2435
  "(sin(-x) + sin(x))\<^sup>2 + (cos(-x) - cos(x))\<^sup>2 = 0" (is "?f x = 0")
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2436
proof -
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2437
  have "\<forall>x. DERIV (\<lambda>x. ?f x) x :> 0"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2438
    by (auto intro!: derivative_eq_intros simp add: algebra_simps)
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2439
  hence "?f x = ?f 0"
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2440
    by (rule DERIV_isconst_all)
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2441
  thus ?thesis by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2442
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2443
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2444
lemma sin_minus [simp]: "sin (-x) = -sin(x)"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2445
  using sin_cos_minus_lemma [where x=x] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2446
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2447
lemma cos_minus [simp]: "cos (-x) = cos(x)"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2448
  using sin_cos_minus_lemma [where x=x] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2449
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2450
lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  2451
  using sin_add [of x "- y"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2452
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2453
lemma sin_diff2: "sin (x - y) = cos y * sin x - sin y * cos x"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2454
  by (simp add: sin_diff mult.commute)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2455
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2456
lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  2457
  using cos_add [of x "- y"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2458
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2459
lemma cos_diff2: "cos (x - y) = cos y * cos x + sin y * sin x"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2460
  by (simp add: cos_diff mult.commute)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2461
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2462
lemma sin_double [simp]: "sin(2 * x) = 2* sin x * cos x"
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  2463
  using sin_add [where x=x and y=x] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2464
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2465
lemma cos_double: "cos(2* x) = ((cos x)\<^sup>2) - ((sin x)\<^sup>2)"
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  2466
  using cos_add [where x=x and y=x]
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  2467
  by (simp add: power2_eq_square)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2468
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2469
lemma sin_x_le_x: assumes x: "x \<ge> 0" shows "sin x \<le> x"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2470
proof -
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2471
  let ?f = "\<lambda>x. x - sin x"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2472
  from x have "?f x \<ge> ?f 0"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2473
    apply (rule DERIV_nonneg_imp_nondecreasing)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2474
    apply (intro allI impI exI[of _ "1 - cos x" for x])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2475
    apply (auto intro!: derivative_eq_intros simp: field_simps)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2476
    done
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2477
  thus "sin x \<le> x" by simp
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2478
qed
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2479
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2480
lemma sin_x_ge_neg_x: assumes x: "x \<ge> 0" shows "sin x \<ge> - x"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2481
proof -
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2482
  let ?f = "\<lambda>x. x + sin x"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2483
  from x have "?f x \<ge> ?f 0"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2484
    apply (rule DERIV_nonneg_imp_nondecreasing)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2485
    apply (intro allI impI exI[of _ "1 + cos x" for x])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2486
    apply (auto intro!: derivative_eq_intros simp: field_simps real_0_le_add_iff)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2487
    done
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2488
  thus "sin x \<ge> -x" by simp
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2489
qed
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2490
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2491
lemma abs_sin_x_le_abs_x: "\<bar>sin x\<bar> \<le> \<bar>x\<bar>"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2492
  using sin_x_ge_neg_x [of x] sin_x_le_x [of x] sin_x_ge_neg_x [of "-x"] sin_x_le_x [of "-x"]
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2493
  by (auto simp: abs_real_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2494
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2495
subsection {* The Constant Pi *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2496
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2497
definition pi :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2498
  where "pi = 2 * (THE x. 0 \<le> (x::real) & x \<le> 2 & cos x = 0)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  2499
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2500
text{*Show that there's a least positive @{term x} with @{term "cos(x) = 0"};
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2501
   hence define pi.*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2502
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2503
lemma sin_paired:
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  2504
  "(\<lambda>n. (- 1) ^ n /(real (fact (2 * n + 1))) * x ^ (2 * n + 1)) sums  sin x"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2505
proof -
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2506
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. sin_coeff k * x ^ k) sums sin x"
44727
d45acd50a894 modify lemma sums_group, and shorten proofs that use it
huffman
parents: 44726
diff changeset
  2507
    by (rule sin_converges [THEN sums_group], simp)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  2508
  thus ?thesis unfolding One_nat_def sin_coeff_def by (simp add: ac_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2509
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2510
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2511
lemma sin_gt_zero:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2512
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2513
  shows "0 < sin x"
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2514
proof -
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  2515
  let ?f = "\<lambda>n. \<Sum>k = n*2..<n*2+2. (- 1) ^ k / real (fact (2*k+1)) * x^(2*k+1)"
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2516
  have pos: "\<forall>n. 0 < ?f n"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2517
  proof
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2518
    fix n :: nat
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2519
    let ?k2 = "real (Suc (Suc (4 * n)))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2520
    let ?k3 = "real (Suc (Suc (Suc (4 * n))))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2521
    have "x * x < ?k2 * ?k3"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2522
      using assms by (intro mult_strict_mono', simp_all)
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2523
    hence "x * x * x * x ^ (n * 4) < ?k2 * ?k3 * x * x ^ (n * 4)"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2524
      by (intro mult_strict_right_mono zero_less_power `0 < x`)
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2525
    thus "0 < ?f n"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2526
      by (simp del: mult_Suc,
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56541
diff changeset
  2527
        simp add: less_divide_eq field_simps del: mult_Suc)
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2528
  qed
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2529
  have sums: "?f sums sin x"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2530
    by (rule sin_paired [THEN sums_group], simp)
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2531
  show "0 < sin x"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2532
    unfolding sums_unique [OF sums]
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2533
    using sums_summable [OF sums] pos
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  2534
    by (rule suminf_pos)
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2535
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2536
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2537
lemma cos_double_less_one: "0 < x \<Longrightarrow> x < 2 \<Longrightarrow> cos (2 * x) < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2538
  using sin_gt_zero [where x = x] by (auto simp add: cos_squared_eq cos_double)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2539
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  2540
lemma cos_paired: "(\<lambda>n. (- 1) ^ n /(real (fact (2 * n))) * x ^ (2 * n)) sums cos x"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2541
proof -
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2542
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. cos_coeff k * x ^ k) sums cos x"
44727
d45acd50a894 modify lemma sums_group, and shorten proofs that use it
huffman
parents: 44726
diff changeset
  2543
    by (rule cos_converges [THEN sums_group], simp)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  2544
  thus ?thesis unfolding cos_coeff_def by (simp add: ac_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2545
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2546
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2547
lemmas realpow_num_eq_if = power_eq_if
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2548
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2549
lemma sumr_pos_lt_pair:
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2550
  fixes f :: "nat \<Rightarrow> real"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2551
  shows "\<lbrakk>summable f;
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2552
        \<And>d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc(Suc 0) * d) + 1))\<rbrakk>
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2553
      \<Longrightarrow> setsum f {..<k} < suminf f"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2554
unfolding One_nat_def
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2555
apply (subst suminf_split_initial_segment [where k="k"])
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2556
apply assumption
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2557
apply simp
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2558
apply (drule_tac k="k" in summable_ignore_initial_segment)
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2559
apply (drule_tac k="Suc (Suc 0)" in sums_group [OF summable_sums], simp)
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2560
apply simp
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2561
apply (frule sums_unique)
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2562
apply (drule sums_summable)
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2563
apply simp
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  2564
apply (erule suminf_pos)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  2565
apply (simp add: ac_simps)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2566
done
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2567
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2568
lemma cos_two_less_zero [simp]:
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2569
  "cos 2 < 0"
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2570
proof -
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2571
  note fact_Suc [simp del]
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2572
  from cos_paired
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  2573
  have "(\<lambda>n. - ((- 1) ^ n / real (fact (2 * n)) * 2 ^ (2 * n))) sums - cos 2"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2574
    by (rule sums_minus)
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  2575
  then have *: "(\<lambda>n. - ((- 1) ^ n * 2 ^ (2 * n) / real (fact (2 * n)))) sums - cos 2"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2576
    by simp
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  2577
  then have **: "summable (\<lambda>n. - ((- 1) ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2578
    by (rule sums_summable)
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  2579
  have "0 < (\<Sum>n<Suc (Suc (Suc 0)). - ((- 1) ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2580
    by (simp add: fact_num_eq_if_nat realpow_num_eq_if)
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  2581
  moreover have "(\<Sum>n<Suc (Suc (Suc 0)). - ((- 1) ^ n  * 2 ^ (2 * n) / real (fact (2 * n))))
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  2582
    < (\<Sum>n. - ((- 1) ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2583
  proof -
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2584
    { fix d
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2585
      have "4 * real (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2586
       < real (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))) *
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2587
           fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))))"
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2588
        by (simp only: real_of_nat_mult) (auto intro!: mult_strict_mono fact_less_mono_nat)
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2589
      then have "4 * real (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2590
        < real (fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))))"
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2591
        by (simp only: fact_Suc [of "Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))"])
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2592
      then have "4 * inverse (real (fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))))))
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2593
        < inverse (real (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))))"
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2594
        by (simp add: inverse_eq_divide less_divide_eq)
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2595
    }
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2596
    note *** = this
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  2597
    have [simp]: "\<And>x y::real. 0 < x - y \<longleftrightarrow> y < x" by arith
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2598
    from ** show ?thesis by (rule sumr_pos_lt_pair)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2599
      (simp add: divide_inverse mult.assoc [symmetric] ***)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2600
  qed
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  2601
  ultimately have "0 < (\<Sum>n. - ((- 1) ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2602
    by (rule order_less_trans)
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  2603
  moreover from * have "- cos 2 = (\<Sum>n. - ((- 1) ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2604
    by (rule sums_unique)
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2605
  ultimately have "0 < - cos 2" by simp
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2606
  then show ?thesis by simp
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2607
qed
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2608
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2609
lemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2610
lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2611
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2612
lemma cos_is_zero: "EX! x. 0 \<le> x & x \<le> 2 \<and> cos x = 0"
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2613
proof (rule ex_ex1I)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2614
  show "\<exists>x. 0 \<le> x & x \<le> 2 & cos x = 0"
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2615
    by (rule IVT2, simp_all)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2616
next
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2617
  fix x y
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2618
  assume x: "0 \<le> x \<and> x \<le> 2 \<and> cos x = 0"
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2619
  assume y: "0 \<le> y \<and> y \<le> 2 \<and> cos y = 0"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  2620
  have [simp]: "\<forall>x. cos differentiable (at x)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  2621
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2622
  from x y show "x = y"
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2623
    apply (cut_tac less_linear [of x y], auto)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2624
    apply (drule_tac f = cos in Rolle)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2625
    apply (drule_tac [5] f = cos in Rolle)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2626
    apply (auto dest!: DERIV_cos [THEN DERIV_unique])
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2627
    apply (metis order_less_le_trans less_le sin_gt_zero)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2628
    apply (metis order_less_le_trans less_le sin_gt_zero)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2629
    done
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2630
qed
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  2631
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2632
lemma pi_half: "pi/2 = (THE x. 0 \<le> x & x \<le> 2 & cos x = 0)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2633
  by (simp add: pi_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2634
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2635
lemma cos_pi_half [simp]: "cos (pi / 2) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2636
  by (simp add: pi_half cos_is_zero [THEN theI'])
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2637
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2638
lemma pi_half_gt_zero [simp]: "0 < pi / 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2639
  apply (rule order_le_neq_trans)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2640
  apply (simp add: pi_half cos_is_zero [THEN theI'])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2641
  apply (metis cos_pi_half cos_zero zero_neq_one)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2642
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2643
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2644
lemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2645
lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2646
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2647
lemma pi_half_less_two [simp]: "pi / 2 < 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2648
  apply (rule order_le_neq_trans)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2649
  apply (simp add: pi_half cos_is_zero [THEN theI'])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2650
  apply (metis cos_pi_half cos_two_neq_zero)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2651
  done
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2652
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2653
lemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2654
lemmas pi_half_le_two [simp] =  pi_half_less_two [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2655
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2656
lemma pi_gt_zero [simp]: "0 < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2657
  using pi_half_gt_zero by simp
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2658
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2659
lemma pi_ge_zero [simp]: "0 \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2660
  by (rule pi_gt_zero [THEN order_less_imp_le])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2661
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2662
lemma pi_neq_zero [simp]: "pi \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2663
  by (rule pi_gt_zero [THEN less_imp_neq, symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2664
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2665
lemma pi_not_less_zero [simp]: "\<not> pi < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2666
  by (simp add: linorder_not_less)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2667
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  2668
lemma minus_pi_half_less_zero: "-(pi/2) < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2669
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2670
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2671
lemma m2pi_less_pi: "- (2 * pi) < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2672
  by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2673
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2674
lemma sin_pi_half [simp]: "sin(pi/2) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2675
  using sin_cos_squared_add2 [where x = "pi/2"]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2676
  using sin_gt_zero [OF pi_half_gt_zero pi_half_less_two]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2677
  by (simp add: power2_eq_1_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2678
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2679
lemma cos_pi [simp]: "cos pi = -1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2680
  using cos_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2681
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2682
lemma sin_pi [simp]: "sin pi = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2683
  using sin_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2684
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2685
lemma sin_cos_eq: "sin x = cos (pi/2 - x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2686
  by (simp add: cos_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2687
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2688
lemma minus_sin_cos_eq: "-sin x = cos (x + pi/2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2689
  by (simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2690
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2691
lemma cos_sin_eq: "cos x = sin (pi/2 - x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2692
  by (simp add: sin_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2693
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2694
lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2695
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2696
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2697
lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2698
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2699
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2700
lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2701
  by (simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2702
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2703
lemma sin_periodic [simp]: "sin (x + 2*pi) = sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2704
  by (simp add: sin_add cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2705
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2706
lemma cos_periodic [simp]: "cos (x + 2*pi) = cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2707
  by (simp add: cos_add cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2708
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  2709
lemma cos_npi [simp]: "cos (real n * pi) = (- 1) ^ n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2710
  by (induct n) (auto simp add: real_of_nat_Suc distrib_right)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2711
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  2712
lemma cos_npi2 [simp]: "cos (pi * real n) = (- 1) ^ n"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2713
  by (metis cos_npi mult.commute)
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2714
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2715
lemma sin_npi [simp]: "sin (real (n::nat) * pi) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2716
  by (induct n) (auto simp add: real_of_nat_Suc distrib_right)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2717
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2718
lemma sin_npi2 [simp]: "sin (pi * real (n::nat)) = 0"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2719
  by (simp add: mult.commute [of pi])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2720
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2721
lemma cos_two_pi [simp]: "cos (2 * pi) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2722
  by (simp add: cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2723
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2724
lemma sin_two_pi [simp]: "sin (2 * pi) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2725
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2726
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2727
lemma sin_gt_zero2: "[| 0 < x; x < pi/2 |] ==> 0 < sin x"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2728
  by (metis sin_gt_zero order_less_trans pi_half_less_two)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2729
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2730
lemma sin_less_zero:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2731
  assumes "- pi/2 < x" and "x < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2732
  shows "sin x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2733
proof -
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2734
  have "0 < sin (- x)" using assms by (simp only: sin_gt_zero2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2735
  thus ?thesis by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2736
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2737
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2738
lemma pi_less_4: "pi < 4"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2739
  using pi_half_less_two by auto
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2740
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2741
lemma cos_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2742
  apply (cut_tac pi_less_4)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2743
  apply (cut_tac f = cos and a = 0 and b = x and y = 0 in IVT2_objl, safe, simp_all)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2744
  apply (cut_tac cos_is_zero, safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2745
  apply (rename_tac y z)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2746
  apply (drule_tac x = y in spec)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2747
  apply (drule_tac x = "pi/2" in spec, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2748
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2749
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2750
lemma cos_gt_zero_pi: "[| -(pi/2) < x; x < pi/2 |] ==> 0 < cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2751
  apply (rule_tac x = x and y = 0 in linorder_cases)
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2752
  apply (metis cos_gt_zero cos_minus minus_less_iff neg_0_less_iff_less)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2753
  apply (auto intro: cos_gt_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2754
  done
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2755
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2756
lemma cos_ge_zero: "[| -(pi/2) \<le> x; x \<le> pi/2 |] ==> 0 \<le> cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2757
  apply (auto simp add: order_le_less cos_gt_zero_pi)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2758
  apply (subgoal_tac "x = pi/2", auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2759
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2760
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2761
lemma sin_gt_zero_pi: "[| 0 < x; x < pi  |] ==> 0 < sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2762
  by (simp add: sin_cos_eq cos_gt_zero_pi)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2763
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2764
lemma pi_ge_two: "2 \<le> pi"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2765
proof (rule ccontr)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2766
  assume "\<not> 2 \<le> pi" hence "pi < 2" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2767
  have "\<exists>y > pi. y < 2 \<and> y < 2 * pi"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2768
  proof (cases "2 < 2 * pi")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2769
    case True with dense[OF `pi < 2`] show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2770
  next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2771
    case False have "pi < 2 * pi" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2772
    from dense[OF this] and False show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2773
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2774
  then obtain y where "pi < y" and "y < 2" and "y < 2 * pi" by blast
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2775
  hence "0 < sin y" using sin_gt_zero by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2776
  moreover
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2777
  have "sin y < 0" using sin_gt_zero_pi[of "y - pi"] `pi < y` and `y < 2 * pi` sin_periodic_pi[of "y - pi"] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2778
  ultimately show False by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2779
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2780
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2781
lemma sin_ge_zero: "[| 0 \<le> x; x \<le> pi |] ==> 0 \<le> sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2782
  by (auto simp add: order_le_less sin_gt_zero_pi)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2783
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2784
text {* FIXME: This proof is almost identical to lemma @{text cos_is_zero}.
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2785
  It should be possible to factor out some of the common parts. *}
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2786
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2787
lemma cos_total: "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. 0 \<le> x & x \<le> pi & (cos x = y)"
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2788
proof (rule ex_ex1I)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2789
  assume y: "-1 \<le> y" "y \<le> 1"
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2790
  show "\<exists>x. 0 \<le> x & x \<le> pi & cos x = y"
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2791
    by (rule IVT2, simp_all add: y)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2792
next
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2793
  fix a b
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2794
  assume a: "0 \<le> a \<and> a \<le> pi \<and> cos a = y"
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2795
  assume b: "0 \<le> b \<and> b \<le> pi \<and> cos b = y"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  2796
  have [simp]: "\<forall>x. cos differentiable (at x)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  2797
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2798
  from a b show "a = b"
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2799
    apply (cut_tac less_linear [of a b], auto)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2800
    apply (drule_tac f = cos in Rolle)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2801
    apply (drule_tac [5] f = cos in Rolle)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2802
    apply (auto dest!: DERIV_cos [THEN DERIV_unique])
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2803
    apply (metis order_less_le_trans less_le sin_gt_zero_pi)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2804
    apply (metis order_less_le_trans less_le sin_gt_zero_pi)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2805
    done
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2806
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2807
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2808
lemma sin_total:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2809
     "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. -(pi/2) \<le> x & x \<le> pi/2 & (sin x = y)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2810
apply (rule ccontr)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2811
apply (subgoal_tac "\<forall>x. (- (pi/2) \<le> x & x \<le> pi/2 & (sin x = y)) = (0 \<le> (x + pi/2) & (x + pi/2) \<le> pi & (cos (x + pi/2) = -y))")
18585
5d379fe2eb74 replaced swap by contrapos_np;
wenzelm
parents: 17318
diff changeset
  2812
apply (erule contrapos_np)
45309
5885ec8eb6b0 removed ad-hoc simp rules sin_cos_eq[symmetric], minus_sin_cos_eq[symmetric], cos_sin_eq[symmetric]
huffman
parents: 45308
diff changeset
  2813
apply simp
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2814
apply (cut_tac y="-y" in cos_total, simp) apply simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2815
apply (erule ex1E)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2816
apply (rule_tac a = "x - (pi/2)" in ex1I)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2817
apply (simp (no_asm) add: add.assoc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2818
apply (rotate_tac 3)
45309
5885ec8eb6b0 removed ad-hoc simp rules sin_cos_eq[symmetric], minus_sin_cos_eq[symmetric], cos_sin_eq[symmetric]
huffman
parents: 45308
diff changeset
  2819
apply (drule_tac x = "xa + pi/2" in spec, safe, simp_all add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2820
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2821
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2822
lemma reals_Archimedean4:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2823
     "[| 0 < y; 0 \<le> x |] ==> \<exists>n. real n * y \<le> x & x < real (Suc n) * y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2824
apply (auto dest!: reals_Archimedean3)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2825
apply (drule_tac x = x in spec, clarify)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2826
apply (subgoal_tac "x < real(LEAST m::nat. x < real m * y) * y")
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2827
 prefer 2 apply (erule LeastI)
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2828
apply (case_tac "LEAST m::nat. x < real m * y", simp)
55417
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 54576
diff changeset
  2829
apply (rename_tac m)
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 54576
diff changeset
  2830
apply (subgoal_tac "~ x < real m * y")
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2831
 prefer 2 apply (rule not_less_Least, simp, force)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2832
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2833
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2834
(* Pre Isabelle99-2 proof was simpler- numerals arithmetic
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2835
   now causes some unwanted re-arrangements of literals!   *)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2836
lemma cos_zero_lemma:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2837
     "[| 0 \<le> x; cos x = 0 |] ==>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2838
      \<exists>n::nat. ~even n & x = real n * (pi/2)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2839
apply (drule pi_gt_zero [THEN reals_Archimedean4], safe)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2840
apply (subgoal_tac "0 \<le> x - real n * pi &
15086
e6a2a98d5ef5 removal of more iff-rules from RealDef.thy
paulson
parents: 15085
diff changeset
  2841
                    (x - real n * pi) \<le> pi & (cos (x - real n * pi) = 0) ")
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29171
diff changeset
  2842
apply (auto simp add: algebra_simps real_of_nat_Suc)
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29171
diff changeset
  2843
 prefer 2 apply (simp add: cos_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2844
apply (simp add: cos_diff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2845
apply (subgoal_tac "EX! x. 0 \<le> x & x \<le> pi & cos x = 0")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2846
apply (rule_tac [2] cos_total, safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2847
apply (drule_tac x = "x - real n * pi" in spec)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2848
apply (drule_tac x = "pi/2" in spec)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2849
apply (simp add: cos_diff)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2850
apply (rule_tac x = "Suc (2 * n)" in exI)
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29171
diff changeset
  2851
apply (simp add: real_of_nat_Suc algebra_simps, auto)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2852
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2853
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2854
lemma sin_zero_lemma:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2855
     "[| 0 \<le> x; sin x = 0 |] ==>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2856
      \<exists>n::nat. even n & x = real n * (pi/2)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2857
apply (subgoal_tac "\<exists>n::nat. ~ even n & x + pi/2 = real n * (pi/2) ")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2858
 apply (clarify, rule_tac x = "n - 1" in exI)
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2859
 apply (auto elim!: oddE simp add: real_of_nat_Suc field_simps)[1]
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2860
 apply (rule cos_zero_lemma)
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2861
 apply (auto simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2862
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2863
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2864
lemma cos_zero_iff:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2865
     "(cos x = 0) =
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2866
      ((\<exists>n::nat. ~even n & (x = real n * (pi/2))) |
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2867
       (\<exists>n::nat. ~even n & (x = -(real n * (pi/2)))))"
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2868
proof -
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2869
  { fix n :: nat
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2870
    assume "odd n"
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2871
    then obtain m where "n = 2 * m + 1" ..
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2872
    then have "cos (real n * pi / 2) = 0"
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2873
      by (simp add: field_simps real_of_nat_Suc) (simp add: cos_add add_divide_distrib)
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2874
  } note * = this
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2875
  show ?thesis
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2876
  apply (rule iffI)
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2877
  apply (cut_tac linorder_linear [of 0 x], safe)
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2878
  apply (drule cos_zero_lemma, assumption+)
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2879
  apply (cut_tac x="-x" in cos_zero_lemma, simp, simp)
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2880
  apply (auto dest: *)
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2881
  done
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2882
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2883
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2884
(* ditto: but to a lesser extent *)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2885
lemma sin_zero_iff:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2886
     "(sin x = 0) =
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2887
      ((\<exists>n::nat. even n & (x = real n * (pi/2))) |
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2888
       (\<exists>n::nat. even n & (x = -(real n * (pi/2)))))"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2889
apply (rule iffI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2890
apply (cut_tac linorder_linear [of 0 x], safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2891
apply (drule sin_zero_lemma, assumption+)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2892
apply (cut_tac x="-x" in sin_zero_lemma, simp, simp, safe)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2893
apply (force simp add: minus_equation_iff [of x])
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2894
apply (auto elim: evenE)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2895
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2896
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2897
lemma cos_monotone_0_pi:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2898
  assumes "0 \<le> y" and "y < x" and "x \<le> pi"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2899
  shows "cos x < cos y"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2900
proof -
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  2901
  have "- (x - y) < 0" using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2902
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2903
  from MVT2[OF `y < x` DERIV_cos[THEN impI, THEN allI]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2904
  obtain z where "y < z" and "z < x" and cos_diff: "cos x - cos y = (x - y) * - sin z"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2905
    by auto
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  2906
  hence "0 < z" and "z < pi" using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2907
  hence "0 < sin z" using sin_gt_zero_pi by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2908
  hence "cos x - cos y < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2909
    unfolding cos_diff minus_mult_commute[symmetric]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2910
    using `- (x - y) < 0` by (rule mult_pos_neg2)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2911
  thus ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2912
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2913
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2914
lemma cos_monotone_0_pi':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2915
  assumes "0 \<le> y" and "y \<le> x" and "x \<le> pi"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2916
  shows "cos x \<le> cos y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2917
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2918
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2919
  show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2920
    using cos_monotone_0_pi[OF `0 \<le> y` True `x \<le> pi`] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2921
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2922
  case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2923
  hence "y = x" using `y \<le> x` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2924
  thus ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2925
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2926
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2927
lemma cos_monotone_minus_pi_0:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2928
  assumes "-pi \<le> y" and "y < x" and "x \<le> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2929
  shows "cos y < cos x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2930
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2931
  have "0 \<le> -x" and "-x < -y" and "-y \<le> pi"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2932
    using assms by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2933
  from cos_monotone_0_pi[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2934
    unfolding cos_minus .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2935
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2936
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2937
lemma cos_monotone_minus_pi_0':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2938
  assumes "-pi \<le> y" and "y \<le> x" and "x \<le> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2939
  shows "cos y \<le> cos x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2940
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2941
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2942
  show ?thesis using cos_monotone_minus_pi_0[OF `-pi \<le> y` True `x \<le> 0`]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2943
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2944
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2945
  case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2946
  hence "y = x" using `y \<le> x` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2947
  thus ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2948
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2949
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2950
lemma sin_monotone_2pi':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2951
  assumes "- (pi / 2) \<le> y" and "y \<le> x" and "x \<le> pi / 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2952
  shows "sin y \<le> sin x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2953
proof -
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  2954
  have "0 \<le> y + pi / 2" and "y + pi / 2 \<le> x + pi / 2" and "x + pi /2 \<le> pi"
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  2955
    using pi_ge_two and assms by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2956
  from cos_monotone_0_pi'[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2957
    unfolding minus_sin_cos_eq[symmetric] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2958
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2959
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2960
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2961
subsection {* Tangent *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2962
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2963
definition tan :: "real \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2964
  where "tan = (\<lambda>x. sin x / cos x)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  2965
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2966
lemma tan_zero [simp]: "tan 0 = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2967
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2968
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2969
lemma tan_pi [simp]: "tan pi = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2970
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2971
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2972
lemma tan_npi [simp]: "tan (real (n::nat) * pi) = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2973
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2974
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2975
lemma tan_minus [simp]: "tan (-x) = - tan x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2976
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2977
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2978
lemma tan_periodic [simp]: "tan (x + 2*pi) = tan x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2979
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2980
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2981
lemma lemma_tan_add1:
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2982
  "\<lbrakk>cos x \<noteq> 0; cos y \<noteq> 0\<rbrakk> \<Longrightarrow> 1 - tan x * tan y = cos (x + y)/(cos x * cos y)"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2983
  by (simp add: tan_def cos_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2984
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2985
lemma add_tan_eq:
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2986
  "\<lbrakk>cos x \<noteq> 0; cos y \<noteq> 0\<rbrakk> \<Longrightarrow> tan x + tan y = sin(x + y)/(cos x * cos y)"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2987
  by (simp add: tan_def sin_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2988
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2989
lemma tan_add:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2990
     "[| cos x \<noteq> 0; cos y \<noteq> 0; cos (x + y) \<noteq> 0 |]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2991
      ==> tan(x + y) = (tan(x) + tan(y))/(1 - tan(x) * tan(y))"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2992
  by (simp add: add_tan_eq lemma_tan_add1, simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2993
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2994
lemma tan_double:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2995
     "[| cos x \<noteq> 0; cos (2 * x) \<noteq> 0 |]
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  2996
      ==> tan (2 * x) = (2 * tan x) / (1 - (tan x)\<^sup>2)"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2997
  using tan_add [of x x] by (simp add: power2_eq_square)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2998
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2999
lemma tan_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < tan x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3000
  by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3001
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3002
lemma tan_less_zero:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3003
  assumes lb: "- pi/2 < x" and "x < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3004
  shows "tan x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3005
proof -
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3006
  have "0 < tan (- x)" using assms by (simp only: tan_gt_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3007
  thus ?thesis by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3008
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3009
44756
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  3010
lemma tan_half: "tan x = sin (2 * x) / (cos (2 * x) + 1)"
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  3011
  unfolding tan_def sin_double cos_double sin_squared_eq
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  3012
  by (simp add: power2_eq_square)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3013
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3014
lemma DERIV_tan [simp]: "cos x \<noteq> 0 \<Longrightarrow> DERIV tan x :> inverse ((cos x)\<^sup>2)"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3015
  unfolding tan_def
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3016
  by (auto intro!: derivative_eq_intros, simp add: divide_inverse power2_eq_square)
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3017
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3018
lemma isCont_tan: "cos x \<noteq> 0 \<Longrightarrow> isCont tan x"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3019
  by (rule DERIV_tan [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3020
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3021
lemma isCont_tan' [simp]:
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3022
  "\<lbrakk>isCont f a; cos (f a) \<noteq> 0\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. tan (f x)) a"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3023
  by (rule isCont_o2 [OF _ isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3024
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3025
lemma tendsto_tan [tendsto_intros]:
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3026
  "\<lbrakk>(f ---> a) F; cos a \<noteq> 0\<rbrakk> \<Longrightarrow> ((\<lambda>x. tan (f x)) ---> tan a) F"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3027
  by (rule isCont_tendsto_compose [OF isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3028
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3029
lemma continuous_tan:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3030
  "continuous F f \<Longrightarrow> cos (f (Lim F (\<lambda>x. x))) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. tan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3031
  unfolding continuous_def by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3032
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3033
lemma isCont_tan'' [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3034
  "continuous (at x) f \<Longrightarrow> cos (f x) \<noteq> 0 \<Longrightarrow> continuous (at x) (\<lambda>x. tan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3035
  unfolding continuous_at by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3036
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3037
lemma continuous_within_tan [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3038
  "continuous (at x within s) f \<Longrightarrow> cos (f x) \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. tan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3039
  unfolding continuous_within by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3040
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  3041
lemma continuous_on_tan [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3042
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. cos (f x) \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. tan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3043
  unfolding continuous_on_def by (auto intro: tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3044
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3045
lemma LIM_cos_div_sin: "(\<lambda>x. cos(x)/sin(x)) -- pi/2 --> 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3046
  by (rule LIM_cong_limit, (rule tendsto_intros)+, simp_all)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3047
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3048
lemma lemma_tan_total: "0 < y ==> \<exists>x. 0 < x & x < pi/2 & y < tan x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3049
  apply (cut_tac LIM_cos_div_sin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3050
  apply (simp only: LIM_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3051
  apply (drule_tac x = "inverse y" in spec, safe, force)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3052
  apply (drule_tac ?d1.0 = s in pi_half_gt_zero [THEN [2] real_lbound_gt_zero], safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3053
  apply (rule_tac x = "(pi/2) - e" in exI)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3054
  apply (simp (no_asm_simp))
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3055
  apply (drule_tac x = "(pi/2) - e" in spec)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3056
  apply (auto simp add: tan_def sin_diff cos_diff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3057
  apply (rule inverse_less_iff_less [THEN iffD1])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3058
  apply (auto simp add: divide_inverse)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3059
  apply (rule mult_pos_pos)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3060
  apply (subgoal_tac [3] "0 < sin e & 0 < cos e")
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3061
  apply (auto intro: cos_gt_zero sin_gt_zero2 simp add: mult.commute)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3062
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3063
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3064
lemma tan_total_pos: "0 \<le> y ==> \<exists>x. 0 \<le> x & x < pi/2 & tan x = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3065
  apply (frule order_le_imp_less_or_eq, safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3066
   prefer 2 apply force
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3067
  apply (drule lemma_tan_total, safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3068
  apply (cut_tac f = tan and a = 0 and b = x and y = y in IVT_objl)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3069
  apply (auto intro!: DERIV_tan [THEN DERIV_isCont])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3070
  apply (drule_tac y = xa in order_le_imp_less_or_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3071
  apply (auto dest: cos_gt_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3072
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3073
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3074
lemma lemma_tan_total1: "\<exists>x. -(pi/2) < x & x < (pi/2) & tan x = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3075
  apply (cut_tac linorder_linear [of 0 y], safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3076
  apply (drule tan_total_pos)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3077
  apply (cut_tac [2] y="-y" in tan_total_pos, safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3078
  apply (rule_tac [3] x = "-x" in exI)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3079
  apply (auto del: exI intro!: exI)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3080
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3081
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3082
lemma tan_total: "EX! x. -(pi/2) < x & x < (pi/2) & tan x = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3083
  apply (cut_tac y = y in lemma_tan_total1, auto)
57492
74bf65a1910a Hypsubst preserves equality hypotheses
Thomas Sewell <thomas.sewell@nicta.com.au>
parents: 57418
diff changeset
  3084
  apply hypsubst_thin
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3085
  apply (cut_tac x = xa and y = y in linorder_less_linear, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3086
  apply (subgoal_tac [2] "\<exists>z. y < z & z < xa & DERIV tan z :> 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3087
  apply (subgoal_tac "\<exists>z. xa < z & z < y & DERIV tan z :> 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3088
  apply (rule_tac [4] Rolle)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3089
  apply (rule_tac [2] Rolle)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3090
  apply (auto del: exI intro!: DERIV_tan DERIV_isCont exI
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  3091
              simp add: real_differentiable_def)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3092
  txt{*Now, simulate TRYALL*}
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3093
  apply (rule_tac [!] DERIV_tan asm_rl)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3094
  apply (auto dest!: DERIV_unique [OF _ DERIV_tan]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3095
              simp add: cos_gt_zero_pi [THEN less_imp_neq, THEN not_sym])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3096
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3097
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3098
lemma tan_monotone:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3099
  assumes "- (pi / 2) < y" and "y < x" and "x < pi / 2"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3100
  shows "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3101
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3102
  have "\<forall>x'. y \<le> x' \<and> x' \<le> x \<longrightarrow> DERIV tan x' :> inverse ((cos x')\<^sup>2)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3103
  proof (rule allI, rule impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3104
    fix x' :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3105
    assume "y \<le> x' \<and> x' \<le> x"
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  3106
    hence "-(pi/2) < x'" and "x' < pi/2" using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3107
    from cos_gt_zero_pi[OF this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3108
    have "cos x' \<noteq> 0" by auto
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  3109
    thus "DERIV tan x' :> inverse ((cos x')\<^sup>2)" by (rule DERIV_tan)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3110
  qed
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3111
  from MVT2[OF `y < x` this]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3112
  obtain z where "y < z" and "z < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3113
    and tan_diff: "tan x - tan y = (x - y) * inverse ((cos z)\<^sup>2)" by auto
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  3114
  hence "- (pi / 2) < z" and "z < pi / 2" using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3115
  hence "0 < cos z" using cos_gt_zero_pi by auto
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3116
  hence inv_pos: "0 < inverse ((cos z)\<^sup>2)" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3117
  have "0 < x - y" using `y < x` by auto
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56541
diff changeset
  3118
  with inv_pos have "0 < tan x - tan y" unfolding tan_diff by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3119
  thus ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3120
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3121
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3122
lemma tan_monotone':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3123
  assumes "- (pi / 2) < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3124
    and "y < pi / 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3125
    and "- (pi / 2) < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3126
    and "x < pi / 2"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3127
  shows "(y < x) = (tan y < tan x)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3128
proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3129
  assume "y < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3130
  thus "tan y < tan x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3131
    using tan_monotone and `- (pi / 2) < y` and `x < pi / 2` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3132
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3133
  assume "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3134
  show "y < x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3135
  proof (rule ccontr)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3136
    assume "\<not> y < x" hence "x \<le> y" by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3137
    hence "tan x \<le> tan y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3138
    proof (cases "x = y")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3139
      case True thus ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3140
    next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3141
      case False hence "x < y" using `x \<le> y` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3142
      from tan_monotone[OF `- (pi/2) < x` this `y < pi / 2`] show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3143
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3144
    thus False using `tan y < tan x` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3145
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3146
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3147
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3148
lemma tan_inverse: "1 / (tan y) = tan (pi / 2 - y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3149
  unfolding tan_def sin_cos_eq[of y] cos_sin_eq[of y] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3150
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3151
lemma tan_periodic_pi[simp]: "tan (x + pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3152
  by (simp add: tan_def)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3153
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3154
lemma tan_periodic_nat[simp]:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3155
  fixes n :: nat
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3156
  shows "tan (x + real n * pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3157
proof (induct n arbitrary: x)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3158
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3159
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3160
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3161
  case (Suc n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3162
  have split_pi_off: "x + real (Suc n) * pi = (x + real n * pi) + pi"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3163
    unfolding Suc_eq_plus1 real_of_nat_add real_of_one distrib_right by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3164
  show ?case unfolding split_pi_off using Suc by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3165
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3166
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3167
lemma tan_periodic_int[simp]: fixes i :: int shows "tan (x + real i * pi) = tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3168
proof (cases "0 \<le> i")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3169
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3170
  hence i_nat: "real i = real (nat i)" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3171
  show ?thesis unfolding i_nat by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3172
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3173
  case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3174
  hence i_nat: "real i = - real (nat (-i))" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3175
  have "tan x = tan (x + real i * pi - real i * pi)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3176
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3177
  also have "\<dots> = tan (x + real i * pi)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3178
    unfolding i_nat mult_minus_left diff_minus_eq_add by (rule tan_periodic_nat)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3179
  finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3180
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3181
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46240
diff changeset
  3182
lemma tan_periodic_n[simp]: "tan (x + numeral n * pi) = tan x"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46240
diff changeset
  3183
  using tan_periodic_int[of _ "numeral n" ] unfolding real_numeral .
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  3184
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  3185
subsection {* Inverse Trigonometric Functions *}
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  3186
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3187
definition arcsin :: "real => real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3188
  where "arcsin y = (THE x. -(pi/2) \<le> x & x \<le> pi/2 & sin x = y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3189
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3190
definition arccos :: "real => real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3191
  where "arccos y = (THE x. 0 \<le> x & x \<le> pi & cos x = y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3192
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3193
definition arctan :: "real => real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3194
  where "arctan y = (THE x. -(pi/2) < x & x < pi/2 & tan x = y)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  3195
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  3196
lemma arcsin:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3197
  "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3198
    -(pi/2) \<le> arcsin y & arcsin y \<le> pi/2 & sin(arcsin y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3199
  unfolding arcsin_def by (rule theI' [OF sin_total])
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  3200
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  3201
lemma arcsin_pi:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3202
  "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> -(pi/2) \<le> arcsin y & arcsin y \<le> pi & sin(arcsin y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3203
  apply (drule (1) arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3204
  apply (force intro: order_trans)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3205
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3206
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3207
lemma sin_arcsin [simp]: "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> sin(arcsin y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3208
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3209
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3210
lemma arcsin_bounded: "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> -(pi/2) \<le> arcsin y & arcsin y \<le> pi/2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3211
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3212
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3213
lemma arcsin_lbound: "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> -(pi/2) \<le> arcsin y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3214
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3215
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3216
lemma arcsin_ubound: "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin y \<le> pi/2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3217
  by (blast dest: arcsin)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3218
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3219
lemma arcsin_lt_bounded:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3220
     "[| -1 < y; y < 1 |] ==> -(pi/2) < arcsin y & arcsin y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3221
  apply (frule order_less_imp_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3222
  apply (frule_tac y = y in order_less_imp_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3223
  apply (frule arcsin_bounded)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3224
  apply (safe, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3225
  apply (drule_tac y = "arcsin y" in order_le_imp_less_or_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3226
  apply (drule_tac [2] y = "pi/2" in order_le_imp_less_or_eq, safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3227
  apply (drule_tac [!] f = sin in arg_cong, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3228
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3229
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3230
lemma arcsin_sin: "[|-(pi/2) \<le> x; x \<le> pi/2 |] ==> arcsin(sin x) = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3231
  apply (unfold arcsin_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3232
  apply (rule the1_equality)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3233
  apply (rule sin_total, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3234
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3235
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3236
lemma arccos:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3237
     "[| -1 \<le> y; y \<le> 1 |]
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3238
      ==> 0 \<le> arccos y & arccos y \<le> pi & cos(arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3239
  unfolding arccos_def by (rule theI' [OF cos_total])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3240
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3241
lemma cos_arccos [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> cos(arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3242
  by (blast dest: arccos)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3243
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3244
lemma arccos_bounded: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y & arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3245
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3246
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3247
lemma arccos_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3248
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3249
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3250
lemma arccos_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3251
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3252
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3253
lemma arccos_lt_bounded:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3254
     "[| -1 < y; y < 1 |]
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3255
      ==> 0 < arccos y & arccos y < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3256
  apply (frule order_less_imp_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3257
  apply (frule_tac y = y in order_less_imp_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3258
  apply (frule arccos_bounded, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3259
  apply (drule_tac y = "arccos y" in order_le_imp_less_or_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3260
  apply (drule_tac [2] y = pi in order_le_imp_less_or_eq, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3261
  apply (drule_tac [!] f = cos in arg_cong, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3262
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3263
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3264
lemma arccos_cos: "[|0 \<le> x; x \<le> pi |] ==> arccos(cos x) = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3265
  apply (simp add: arccos_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3266
  apply (auto intro!: the1_equality cos_total)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3267
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3268
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3269
lemma arccos_cos2: "[|x \<le> 0; -pi \<le> x |] ==> arccos(cos x) = -x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3270
  apply (simp add: arccos_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3271
  apply (auto intro!: the1_equality cos_total)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3272
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3273
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3274
lemma cos_arcsin: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> cos (arcsin x) = sqrt (1 - x\<^sup>2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3275
  apply (subgoal_tac "x\<^sup>2 \<le> 1")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3276
  apply (rule power2_eq_imp_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3277
  apply (simp add: cos_squared_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3278
  apply (rule cos_ge_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3279
  apply (erule (1) arcsin_lbound)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3280
  apply (erule (1) arcsin_ubound)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3281
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3282
  apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 \<le> 1\<^sup>2", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3283
  apply (rule power_mono, simp, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3284
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3285
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3286
lemma sin_arccos: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> sin (arccos x) = sqrt (1 - x\<^sup>2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3287
  apply (subgoal_tac "x\<^sup>2 \<le> 1")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3288
  apply (rule power2_eq_imp_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3289
  apply (simp add: sin_squared_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3290
  apply (rule sin_ge_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3291
  apply (erule (1) arccos_lbound)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3292
  apply (erule (1) arccos_ubound)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3293
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3294
  apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 \<le> 1\<^sup>2", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3295
  apply (rule power_mono, simp, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3296
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3297
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3298
lemma arctan [simp]: "- (pi/2) < arctan y  & arctan y < pi/2 & tan (arctan y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3299
  unfolding arctan_def by (rule theI' [OF tan_total])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3300
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3301
lemma tan_arctan: "tan (arctan y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3302
  by auto
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3303
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3304
lemma arctan_bounded: "- (pi/2) < arctan y  & arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3305
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3306
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3307
lemma arctan_lbound: "- (pi/2) < arctan y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3308
  by auto
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3309
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3310
lemma arctan_ubound: "arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3311
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3312
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3313
lemma arctan_unique:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3314
  assumes "-(pi/2) < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3315
    and "x < pi/2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3316
    and "tan x = y"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3317
  shows "arctan y = x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3318
  using assms arctan [of y] tan_total [of y] by (fast elim: ex1E)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3319
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3320
lemma arctan_tan: "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> arctan (tan x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3321
  by (rule arctan_unique) simp_all
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3322
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3323
lemma arctan_zero_zero [simp]: "arctan 0 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3324
  by (rule arctan_unique) simp_all
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3325
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3326
lemma arctan_minus: "arctan (- x) = - arctan x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3327
  apply (rule arctan_unique)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3328
  apply (simp only: neg_less_iff_less arctan_ubound)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3329
  apply (metis minus_less_iff arctan_lbound)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3330
  apply simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3331
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3332
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3333
lemma cos_arctan_not_zero [simp]: "cos (arctan x) \<noteq> 0"
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3334
  by (intro less_imp_neq [symmetric] cos_gt_zero_pi
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3335
    arctan_lbound arctan_ubound)
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3336
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3337
lemma cos_arctan: "cos (arctan x) = 1 / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3338
proof (rule power2_eq_imp_eq)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3339
  have "0 < 1 + x\<^sup>2" by (simp add: add_pos_nonneg)
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3340
  show "0 \<le> 1 / sqrt (1 + x\<^sup>2)" by simp
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3341
  show "0 \<le> cos (arctan x)"
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3342
    by (intro less_imp_le cos_gt_zero_pi arctan_lbound arctan_ubound)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3343
  have "(cos (arctan x))\<^sup>2 * (1 + (tan (arctan x))\<^sup>2) = 1"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  3344
    unfolding tan_def by (simp add: distrib_left power_divide)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3345
  thus "(cos (arctan x))\<^sup>2 = (1 / sqrt (1 + x\<^sup>2))\<^sup>2"
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3346
    using `0 < 1 + x\<^sup>2` by (simp add: power_divide eq_divide_eq)
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3347
qed
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3348
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3349
lemma sin_arctan: "sin (arctan x) = x / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3350
  using add_pos_nonneg [OF zero_less_one zero_le_power2 [of x]]
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3351
  using tan_arctan [of x] unfolding tan_def cos_arctan
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3352
  by (simp add: eq_divide_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3353
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  3354
lemma tan_sec: "cos x \<noteq> 0 ==> 1 + (tan x)\<^sup>2 = (inverse (cos x))\<^sup>2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3355
  apply (rule power_inverse [THEN subst])
56217
dc429a5b13c4 Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents: 56213
diff changeset
  3356
  apply (rule_tac c1 = "(cos x)\<^sup>2" in mult_right_cancel [THEN iffD1])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3357
  apply (auto dest: field_power_not_zero
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3358
          simp add: power_mult_distrib distrib_right power_divide tan_def
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3359
                    mult.assoc power_inverse [symmetric])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3360
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3361
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3362
lemma arctan_less_iff: "arctan x < arctan y \<longleftrightarrow> x < y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3363
  by (metis tan_monotone' arctan_lbound arctan_ubound tan_arctan)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3364
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3365
lemma arctan_le_iff: "arctan x \<le> arctan y \<longleftrightarrow> x \<le> y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3366
  by (simp only: not_less [symmetric] arctan_less_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3367
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3368
lemma arctan_eq_iff: "arctan x = arctan y \<longleftrightarrow> x = y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3369
  by (simp only: eq_iff [where 'a=real] arctan_le_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3370
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3371
lemma zero_less_arctan_iff [simp]: "0 < arctan x \<longleftrightarrow> 0 < x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3372
  using arctan_less_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3373
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3374
lemma arctan_less_zero_iff [simp]: "arctan x < 0 \<longleftrightarrow> x < 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3375
  using arctan_less_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3376
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3377
lemma zero_le_arctan_iff [simp]: "0 \<le> arctan x \<longleftrightarrow> 0 \<le> x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3378
  using arctan_le_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3379
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3380
lemma arctan_le_zero_iff [simp]: "arctan x \<le> 0 \<longleftrightarrow> x \<le> 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3381
  using arctan_le_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3382
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3383
lemma arctan_eq_zero_iff [simp]: "arctan x = 0 \<longleftrightarrow> x = 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3384
  using arctan_eq_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3385
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3386
lemma continuous_on_arcsin': "continuous_on {-1 .. 1} arcsin"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3387
proof -
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3388
  have "continuous_on (sin ` {- pi / 2 .. pi / 2}) arcsin"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  3389
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arcsin_sin)
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3390
  also have "sin ` {- pi / 2 .. pi / 2} = {-1 .. 1}"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3391
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3392
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3393
    assume "x \<in> {-1..1}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3394
    then show "x \<in> sin ` {- pi / 2..pi / 2}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3395
      using arcsin_lbound arcsin_ubound
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  3396
      by (intro image_eqI[where x="arcsin x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3397
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3398
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3399
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3400
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  3401
lemma continuous_on_arcsin [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3402
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arcsin (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3403
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arcsin']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3404
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3405
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3406
lemma isCont_arcsin: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arcsin x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3407
  using continuous_on_arcsin'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3408
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3409
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3410
lemma continuous_on_arccos': "continuous_on {-1 .. 1} arccos"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3411
proof -
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3412
  have "continuous_on (cos ` {0 .. pi}) arccos"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  3413
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arccos_cos)
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3414
  also have "cos ` {0 .. pi} = {-1 .. 1}"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3415
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3416
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3417
    assume "x \<in> {-1..1}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3418
    then show "x \<in> cos ` {0..pi}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3419
      using arccos_lbound arccos_ubound
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3420
      by (intro image_eqI[where x="arccos x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3421
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3422
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3423
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3424
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  3425
lemma continuous_on_arccos [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3426
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arccos (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3427
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arccos']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3428
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3429
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3430
lemma isCont_arccos: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arccos x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3431
  using continuous_on_arccos'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3432
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3433
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3434
lemma isCont_arctan: "isCont arctan x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3435
  apply (rule arctan_lbound [of x, THEN dense, THEN exE], clarify)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3436
  apply (rule arctan_ubound [of x, THEN dense, THEN exE], clarify)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3437
  apply (subgoal_tac "isCont arctan (tan (arctan x))", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3438
  apply (erule (1) isCont_inverse_function2 [where f=tan])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3439
  apply (metis arctan_tan order_le_less_trans order_less_le_trans)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3440
  apply (metis cos_gt_zero_pi isCont_tan order_less_le_trans less_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3441
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3442
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3443
lemma tendsto_arctan [tendsto_intros]: "(f ---> x) F \<Longrightarrow> ((\<lambda>x. arctan (f x)) ---> arctan x) F"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3444
  by (rule isCont_tendsto_compose [OF isCont_arctan])
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3445
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3446
lemma continuous_arctan [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. arctan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3447
  unfolding continuous_def by (rule tendsto_arctan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3448
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  3449
lemma continuous_on_arctan [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. arctan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3450
  unfolding continuous_on_def by (auto intro: tendsto_arctan)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3451
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3452
lemma DERIV_arcsin:
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3453
  "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arcsin x :> inverse (sqrt (1 - x\<^sup>2))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3454
  apply (rule DERIV_inverse_function [where f=sin and a="-1" and b="1"])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3455
  apply (rule DERIV_cong [OF DERIV_sin])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3456
  apply (simp add: cos_arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3457
  apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 < 1\<^sup>2", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3458
  apply (rule power_strict_mono, simp, simp, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3459
  apply assumption
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3460
  apply assumption
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3461
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3462
  apply (erule (1) isCont_arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3463
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3464
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3465
lemma DERIV_arccos:
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3466
  "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arccos x :> inverse (- sqrt (1 - x\<^sup>2))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3467
  apply (rule DERIV_inverse_function [where f=cos and a="-1" and b="1"])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3468
  apply (rule DERIV_cong [OF DERIV_cos])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3469
  apply (simp add: sin_arccos)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3470
  apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 < 1\<^sup>2", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3471
  apply (rule power_strict_mono, simp, simp, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3472
  apply assumption
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3473
  apply assumption
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3474
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3475
  apply (erule (1) isCont_arccos)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3476
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3477
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3478
lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x\<^sup>2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3479
  apply (rule DERIV_inverse_function [where f=tan and a="x - 1" and b="x + 1"])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3480
  apply (rule DERIV_cong [OF DERIV_tan])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3481
  apply (rule cos_arctan_not_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3482
  apply (simp add: power_inverse tan_sec [symmetric])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3483
  apply (subgoal_tac "0 < 1 + x\<^sup>2", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3484
  apply (simp add: add_pos_nonneg)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3485
  apply (simp, simp, simp, rule isCont_arctan)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3486
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3487
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  3488
declare
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3489
  DERIV_arcsin[THEN DERIV_chain2, derivative_intros]
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3490
  DERIV_arccos[THEN DERIV_chain2, derivative_intros]
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3491
  DERIV_arctan[THEN DERIV_chain2, derivative_intros]
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  3492
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3493
lemma filterlim_tan_at_right: "filterlim tan at_bot (at_right (- pi/2))"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3494
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  3495
     (auto simp: le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3496
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3497
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3498
lemma filterlim_tan_at_left: "filterlim tan at_top (at_left (pi/2))"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3499
  by (rule filterlim_at_top_at_left[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  3500
     (auto simp: le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3501
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3502
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3503
lemma tendsto_arctan_at_top: "(arctan ---> (pi/2)) at_top"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3504
proof (rule tendstoI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3505
  fix e :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3506
  assume "0 < e"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3507
  def y \<equiv> "pi/2 - min (pi/2) e"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3508
  then have y: "0 \<le> y" "y < pi/2" "pi/2 \<le> e + y"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3509
    using `0 < e` by auto
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3510
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3511
  show "eventually (\<lambda>x. dist (arctan x) (pi / 2) < e) at_top"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3512
  proof (intro eventually_at_top_dense[THEN iffD2] exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3513
    fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3514
    assume "tan y < x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3515
    then have "arctan (tan y) < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3516
      by (simp add: arctan_less_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3517
    with y have "y < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3518
      by (subst (asm) arctan_tan) simp_all
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3519
    with arctan_ubound[of x, arith] y `0 < e`
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3520
    show "dist (arctan x) (pi / 2) < e"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3521
      by (simp add: dist_real_def)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3522
  qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3523
qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3524
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3525
lemma tendsto_arctan_at_bot: "(arctan ---> - (pi/2)) at_bot"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3526
  unfolding filterlim_at_bot_mirror arctan_minus
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3527
  by (intro tendsto_minus tendsto_arctan_at_top)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3528
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3529
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  3530
subsection {* More Theorems about Sin and Cos *}
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  3531
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3532
lemma cos_45: "cos (pi / 4) = sqrt 2 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3533
proof -
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3534
  let ?c = "cos (pi / 4)" and ?s = "sin (pi / 4)"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3535
  have nonneg: "0 \<le> ?c"
45308
2e84e5f0463b extend cancellation simproc patterns to cover terms like '- (2 * pi) < pi'
huffman
parents: 44756
diff changeset
  3536
    by (simp add: cos_ge_zero)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3537
  have "0 = cos (pi / 4 + pi / 4)"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3538
    by simp
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3539
  also have "cos (pi / 4 + pi / 4) = ?c\<^sup>2 - ?s\<^sup>2"
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3540
    by (simp only: cos_add power2_eq_square)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3541
  also have "\<dots> = 2 * ?c\<^sup>2 - 1"
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3542
    by (simp add: sin_squared_eq)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3543
  finally have "?c\<^sup>2 = (sqrt 2 / 2)\<^sup>2"
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3544
    by (simp add: power_divide)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3545
  thus ?thesis
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3546
    using nonneg by (rule power2_eq_imp_eq) simp
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3547
qed
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3548
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3549
lemma cos_30: "cos (pi / 6) = sqrt 3 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3550
proof -
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3551
  let ?c = "cos (pi / 6)" and ?s = "sin (pi / 6)"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3552
  have pos_c: "0 < ?c"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3553
    by (rule cos_gt_zero, simp, simp)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3554
  have "0 = cos (pi / 6 + pi / 6 + pi / 6)"
23066
26a9157b620a new field_combine_numerals simproc, which uses fractions as coefficients
huffman
parents: 23053
diff changeset
  3555
    by simp
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3556
  also have "\<dots> = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3557
    by (simp only: cos_add sin_add)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3558
  also have "\<dots> = ?c * (?c\<^sup>2 - 3 * ?s\<^sup>2)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29171
diff changeset
  3559
    by (simp add: algebra_simps power2_eq_square)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3560
  finally have "?c\<^sup>2 = (sqrt 3 / 2)\<^sup>2"
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3561
    using pos_c by (simp add: sin_squared_eq power_divide)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3562
  thus ?thesis
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3563
    using pos_c [THEN order_less_imp_le]
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3564
    by (rule power2_eq_imp_eq) simp
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3565
qed
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3566
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3567
lemma sin_45: "sin (pi / 4) = sqrt 2 / 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3568
  by (simp add: sin_cos_eq cos_45)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3569
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3570
lemma sin_60: "sin (pi / 3) = sqrt 3 / 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3571
  by (simp add: sin_cos_eq cos_30)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3572
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3573
lemma cos_60: "cos (pi / 3) = 1 / 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3574
  apply (rule power2_eq_imp_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3575
  apply (simp add: cos_squared_eq sin_60 power_divide)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3576
  apply (rule cos_ge_zero, rule order_trans [where y=0], simp_all)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3577
  done
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3578
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3579
lemma sin_30: "sin (pi / 6) = 1 / 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3580
  by (simp add: sin_cos_eq cos_60)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3581
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3582
lemma tan_30: "tan (pi / 6) = 1 / sqrt 3"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3583
  unfolding tan_def by (simp add: sin_30 cos_30)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3584
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3585
lemma tan_45: "tan (pi / 4) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3586
  unfolding tan_def by (simp add: sin_45 cos_45)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3587
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3588
lemma tan_60: "tan (pi / 3) = sqrt 3"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3589
  unfolding tan_def by (simp add: sin_60 cos_60)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3590
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3591
lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi / 2) = (-1) ^ n"
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3592
proof -
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3593
  have "sin ((real n + 1/2) * pi) = cos (real n * pi)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29171
diff changeset
  3594
    by (auto simp add: algebra_simps sin_add)
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3595
  thus ?thesis
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  3596
    by (simp add: real_of_nat_Suc distrib_right add_divide_distrib
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3597
                  mult.commute [of pi])
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3598
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3599
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3600
lemma cos_2npi [simp]: "cos (2 * real (n::nat) * pi) = 1"
58740
cb9d84d3e7f2 turn even into an abbreviation
haftmann
parents: 58729
diff changeset
  3601
  by (cases "even n") (simp_all add: cos_double mult.assoc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3602
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3603
lemma cos_3over2_pi [simp]: "cos (3 / 2 * pi) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3604
  apply (subgoal_tac "cos (pi + pi/2) = 0", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3605
  apply (subst cos_add, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3606
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3607
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3608
lemma sin_2npi [simp]: "sin (2 * real (n::nat) * pi) = 0"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3609
  by (auto simp add: mult.assoc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3610
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3611
lemma sin_3over2_pi [simp]: "sin (3 / 2 * pi) = - 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3612
  apply (subgoal_tac "sin (pi + pi/2) = - 1", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3613
  apply (subst sin_add, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3614
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3615
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3616
lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3617
  apply (simp only: cos_add sin_add real_of_nat_Suc distrib_right distrib_left add_divide_distrib)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3618
  apply auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3619
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3620
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3621
lemma DERIV_cos_add [simp]: "DERIV (\<lambda>x. cos (x + k)) xa :> - sin (xa + k)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3622
  by (auto intro!: derivative_eq_intros)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3623
15081
32402f5624d1 abs notation
paulson
parents: 15079
diff changeset
  3624
lemma sin_zero_abs_cos_one: "sin x = 0 ==> \<bar>cos x\<bar> = 1"
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3625
  by (auto simp add: sin_zero_iff elim: evenE)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3626
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3627
lemma cos_one_sin_zero: "cos x = 1 ==> sin x = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3628
  using sin_cos_squared_add3 [where x = x] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3629
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3630
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3631
subsection {* Machins formula *}
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3632
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3633
lemma arctan_one: "arctan 1 = pi / 4"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3634
  by (rule arctan_unique, simp_all add: tan_45 m2pi_less_pi)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3635
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3636
lemma tan_total_pi4:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3637
  assumes "\<bar>x\<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3638
  shows "\<exists>z. - (pi / 4) < z \<and> z < pi / 4 \<and> tan z = x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3639
proof
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3640
  show "- (pi / 4) < arctan x \<and> arctan x < pi / 4 \<and> tan (arctan x) = x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3641
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3642
    unfolding arctan_less_iff using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3643
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3644
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3645
lemma arctan_add:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3646
  assumes "\<bar>x\<bar> \<le> 1" and "\<bar>y\<bar> < 1"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3647
  shows "arctan x + arctan y = arctan ((x + y) / (1 - x * y))"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3648
proof (rule arctan_unique [symmetric])
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3649
  have "- (pi / 4) \<le> arctan x" and "- (pi / 4) < arctan y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3650
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3651
    unfolding arctan_le_iff arctan_less_iff using assms by auto
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3652
  from add_le_less_mono [OF this]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3653
  show 1: "- (pi / 2) < arctan x + arctan y" by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3654
  have "arctan x \<le> pi / 4" and "arctan y < pi / 4"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3655
    unfolding arctan_one [symmetric]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3656
    unfolding arctan_le_iff arctan_less_iff using assms by auto
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3657
  from add_le_less_mono [OF this]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3658
  show 2: "arctan x + arctan y < pi / 2" by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3659
  show "tan (arctan x + arctan y) = (x + y) / (1 - x * y)"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3660
    using cos_gt_zero_pi [OF 1 2] by (simp add: tan_add)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3661
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3662
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3663
theorem machin: "pi / 4 = 4 * arctan (1/5) - arctan (1 / 239)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3664
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3665
  have "\<bar>1 / 5\<bar> < (1 :: real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3666
  from arctan_add[OF less_imp_le[OF this] this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3667
  have "2 * arctan (1 / 5) = arctan (5 / 12)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3668
  moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3669
  have "\<bar>5 / 12\<bar> < (1 :: real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3670
  from arctan_add[OF less_imp_le[OF this] this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3671
  have "2 * arctan (5 / 12) = arctan (120 / 119)" by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3672
  moreover
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3673
  have "\<bar>1\<bar> \<le> (1::real)" and "\<bar>1 / 239\<bar> < (1::real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3674
  from arctan_add[OF this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3675
  have "arctan 1 + arctan (1 / 239) = arctan (120 / 119)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3676
  ultimately have "arctan 1 + arctan (1 / 239) = 4 * arctan (1 / 5)" by auto
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3677
  thus ?thesis unfolding arctan_one by algebra
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3678
qed
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3679
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3680
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3681
subsection {* Introducing the arcus tangens power series *}
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3682
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3683
lemma monoseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3684
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3685
  assumes "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3686
  shows "monoseq (\<lambda> n. 1 / real (n*2+1) * x^(n*2+1))" (is "monoseq ?a")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3687
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3688
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3689
  thus ?thesis unfolding monoseq_def One_nat_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3690
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3691
  case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3692
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x" using assms by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3693
  show "monoseq ?a"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3694
  proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3695
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3696
      fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3697
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3698
      assume "0 \<le> x" and "x \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3699
      have "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<le>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3700
        1 / real (Suc (n * 2)) * x ^ Suc (n * 2)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3701
      proof (rule mult_mono)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3702
        show "1 / real (Suc (Suc n * 2)) \<le> 1 / real (Suc (n * 2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3703
          by (rule frac_le) simp_all
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3704
        show "0 \<le> 1 / real (Suc (n * 2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3705
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3706
        show "x ^ Suc (Suc n * 2) \<le> x ^ Suc (n * 2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3707
          by (rule power_decreasing) (simp_all add: `0 \<le> x` `x \<le> 1`)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3708
        show "0 \<le> x ^ Suc (Suc n * 2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3709
          by (rule zero_le_power) (simp add: `0 \<le> x`)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3710
      qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3711
    } note mono = this
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3712
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3713
    show ?thesis
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3714
    proof (cases "0 \<le> x")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3715
      case True from mono[OF this `x \<le> 1`, THEN allI]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3716
      show ?thesis unfolding Suc_eq_plus1[symmetric]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3717
        by (rule mono_SucI2)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3718
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3719
      case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3720
      hence "0 \<le> -x" and "-x \<le> 1" using `-1 \<le> x` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3721
      from mono[OF this]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3722
      have "\<And>n. 1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<ge>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3723
        1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" using `0 \<le> -x` by auto
31790
05c92381363c corrected and unified thm names
nipkow
parents: 31338
diff changeset
  3724
      thus ?thesis unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI1[OF allI])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3725
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3726
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3727
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3728
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3729
lemma zeroseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3730
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3731
  assumes "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3732
  shows "(\<lambda> n. 1 / real (n*2+1) * x^(n*2+1)) ----> 0" (is "?a ----> 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3733
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3734
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3735
  thus ?thesis
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 58710
diff changeset
  3736
    unfolding One_nat_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3737
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3738
  case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3739
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x" using assms by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3740
  show "?a ----> 0"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3741
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3742
    case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3743
    hence "norm x < 1" by auto
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  3744
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_power_zero[OF `norm x < 1`, THEN LIMSEQ_Suc]]
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  3745
    have "(\<lambda>n. 1 / real (n + 1) * x ^ (n + 1)) ----> 0"
31790
05c92381363c corrected and unified thm names
nipkow
parents: 31338
diff changeset
  3746
      unfolding inverse_eq_divide Suc_eq_plus1 by simp
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  3747
    then show ?thesis using pos2 by (rule LIMSEQ_linear)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3748
  next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3749
    case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3750
    hence "x = -1 \<or> x = 1" using `\<bar>x\<bar> \<le> 1` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3751
    hence n_eq: "\<And> n. x ^ (n * 2 + 1) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3752
      unfolding One_nat_def by auto
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  3753
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat[THEN LIMSEQ_linear, OF pos2, unfolded inverse_eq_divide] tendsto_const[of x]]
31790
05c92381363c corrected and unified thm names
nipkow
parents: 31338
diff changeset
  3754
    show ?thesis unfolding n_eq Suc_eq_plus1 by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3755
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3756
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3757
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3758
lemma summable_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3759
  fixes x :: real and n :: nat
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3760
  assumes "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3761
  shows "summable (\<lambda> k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3762
  (is "summable (?c x)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3763
  by (rule summable_Leibniz(1), rule zeroseq_arctan_series[OF assms], rule monoseq_arctan_series[OF assms])
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3764
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3765
lemma less_one_imp_sqr_less_one:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3766
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3767
  assumes "\<bar>x\<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3768
  shows "x\<^sup>2 < 1"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3769
proof -
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  3770
  have "\<bar>x\<^sup>2\<bar> < 1"
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  3771
    by (metis abs_power2 assms pos2 power2_abs power_0 power_strict_decreasing zero_eq_power2 zero_less_abs_iff) 
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3772
  thus ?thesis using zero_le_power2 by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3773
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3774
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3775
lemma DERIV_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3776
  assumes "\<bar> x \<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3777
  shows "DERIV (\<lambda> x'. \<Sum> k. (-1)^k * (1 / real (k*2+1) * x' ^ (k*2+1))) x :> (\<Sum> k. (-1)^k * x^(k*2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3778
  (is "DERIV ?arctan _ :> ?Int")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3779
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3780
  let ?f = "\<lambda>n. if even n then (-1)^(n div 2) * 1 / real (Suc n) else 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3781
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3782
  have n_even: "\<And>n :: nat. even n \<Longrightarrow> 2 * (n div 2) = n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3783
    by presburger
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3784
  then have if_eq: "\<And>n x'. ?f n * real (Suc n) * x'^n =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3785
    (if even n then (-1)^(n div 2) * x'^(2 * (n div 2)) else 0)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3786
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3787
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3788
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3789
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3790
    assume "\<bar>x\<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3791
    hence "x\<^sup>2 < 1" by (rule less_one_imp_sqr_less_one)
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3792
    have "summable (\<lambda> n. (- 1) ^ n * (x\<^sup>2) ^n)"
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  3793
      by (rule summable_Leibniz(1), auto intro!: LIMSEQ_realpow_zero monoseq_realpow `x\<^sup>2 < 1` order_less_imp_le[OF `x\<^sup>2 < 1`])
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3794
    hence "summable (\<lambda> n. (- 1) ^ n * x^(2*n))" unfolding power_mult .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3795
  } note summable_Integral = this
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3796
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3797
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3798
    fix f :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3799
    have "\<And>x. f sums x = (\<lambda> n. if even n then f (n div 2) else 0) sums x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3800
    proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3801
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3802
      assume "f sums x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3803
      from sums_if[OF sums_zero this]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3804
      show "(\<lambda>n. if even n then f (n div 2) else 0) sums x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3805
        by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3806
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3807
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3808
      assume "(\<lambda> n. if even n then f (n div 2) else 0) sums x"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3809
      from LIMSEQ_linear[OF this[unfolded sums_def] pos2, unfolded sum_split_even_odd[unfolded mult.commute]]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3810
      show "f sums x" unfolding sums_def by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3811
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3812
    hence "op sums f = op sums (\<lambda> n. if even n then f (n div 2) else 0)" ..
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3813
  } note sums_even = this
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3814
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3815
  have Int_eq: "(\<Sum>n. ?f n * real (Suc n) * x^n) = ?Int"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3816
    unfolding if_eq mult.commute[of _ 2] suminf_def sums_even[of "\<lambda> n. (- 1) ^ n * x ^ (2 * n)", symmetric]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3817
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3818
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3819
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3820
    fix x :: real
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3821
    have if_eq': "\<And>n. (if even n then (- 1) ^ (n div 2) * 1 / real (Suc n) else 0) * x ^ Suc n =
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3822
      (if even n then (- 1) ^ (n div 2) * (1 / real (Suc (2 * (n div 2))) * x ^ Suc (2 * (n div 2))) else 0)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3823
      using n_even by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3824
    have idx_eq: "\<And>n. n * 2 + 1 = Suc (2 * n)" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3825
    have "(\<Sum>n. ?f n * x^(Suc n)) = ?arctan x"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3826
      unfolding if_eq' idx_eq suminf_def sums_even[of "\<lambda> n. (- 1) ^ n * (1 / real (Suc (2 * n)) * x ^ Suc (2 * n))", symmetric]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3827
      by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3828
  } note arctan_eq = this
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3829
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3830
  have "DERIV (\<lambda> x. \<Sum> n. ?f n * x^(Suc n)) x :> (\<Sum> n. ?f n * real (Suc n) * x^n)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3831
  proof (rule DERIV_power_series')
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3832
    show "x \<in> {- 1 <..< 1}" using `\<bar> x \<bar> < 1` by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3833
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3834
      fix x' :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3835
      assume x'_bounds: "x' \<in> {- 1 <..< 1}"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3836
      then have "\<bar>x'\<bar> < 1" by auto
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3837
      then
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3838
        have *: "summable (\<lambda>n. (- 1) ^ n * x' ^ (2 * n))"
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3839
        by (rule summable_Integral)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3840
      let ?S = "\<Sum> n. (-1)^n * x'^(2 * n)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3841
      show "summable (\<lambda> n. ?f n * real (Suc n) * x'^n)" unfolding if_eq
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3842
        apply (rule sums_summable [where l="0 + ?S"])
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3843
        apply (rule sums_if)
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3844
        apply (rule sums_zero)
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3845
        apply (rule summable_sums)
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3846
        apply (rule *)
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3847
        done
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3848
    }
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3849
  qed auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3850
  thus ?thesis unfolding Int_eq arctan_eq .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3851
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3852
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3853
lemma arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3854
  assumes "\<bar> x \<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3855
  shows "arctan x = (\<Sum>k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3856
  (is "_ = suminf (\<lambda> n. ?c x n)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3857
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3858
  let ?c' = "\<lambda>x n. (-1)^n * x^(n*2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3859
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3860
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3861
    fix r x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3862
    assume "0 < r" and "r < 1" and "\<bar> x \<bar> < r"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3863
    have "\<bar>x\<bar> < 1" using `r < 1` and `\<bar>x\<bar> < r` by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3864
    from DERIV_arctan_series[OF this] have "DERIV (\<lambda> x. suminf (?c x)) x :> (suminf (?c' x))" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3865
  } note DERIV_arctan_suminf = this
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3866
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3867
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3868
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3869
    assume "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3870
    note summable_Leibniz[OF zeroseq_arctan_series[OF this] monoseq_arctan_series[OF this]]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3871
  } note arctan_series_borders = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3872
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3873
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3874
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3875
    assume "\<bar>x\<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3876
    have "arctan x = (\<Sum>k. ?c x k)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3877
    proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3878
      obtain r where "\<bar>x\<bar> < r" and "r < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3879
        using dense[OF `\<bar>x\<bar> < 1`] by blast
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3880
      hence "0 < r" and "-r < x" and "x < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3881
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3882
      have suminf_eq_arctan_bounded: "\<And>x a b. \<lbrakk> -r < a ; b < r ; a < b ; a \<le> x ; x \<le> b \<rbrakk> \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3883
        suminf (?c x) - arctan x = suminf (?c a) - arctan a"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3884
      proof -
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3885
        fix x a b
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3886
        assume "-r < a" and "b < r" and "a < b" and "a \<le> x" and "x \<le> b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3887
        hence "\<bar>x\<bar> < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3888
        show "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3889
        proof (rule DERIV_isconst2[of "a" "b"])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3890
          show "a < b" and "a \<le> x" and "x \<le> b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3891
            using `a < b` `a \<le> x` `x \<le> b` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3892
          have "\<forall>x. -r < x \<and> x < r \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3893
          proof (rule allI, rule impI)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3894
            fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3895
            assume "-r < x \<and> x < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3896
            hence "\<bar>x\<bar> < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3897
            hence "\<bar>x\<bar> < 1" using `r < 1` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3898
            have "\<bar> - (x\<^sup>2) \<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3899
              using less_one_imp_sqr_less_one[OF `\<bar>x\<bar> < 1`] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3900
            hence "(\<lambda> n. (- (x\<^sup>2)) ^ n) sums (1 / (1 - (- (x\<^sup>2))))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3901
              unfolding real_norm_def[symmetric] by (rule geometric_sums)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3902
            hence "(?c' x) sums (1 / (1 - (- (x\<^sup>2))))"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3903
              unfolding power_mult_distrib[symmetric] power_mult mult.commute[of _ 2] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3904
            hence suminf_c'_eq_geom: "inverse (1 + x\<^sup>2) = suminf (?c' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3905
              using sums_unique unfolding inverse_eq_divide by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3906
            have "DERIV (\<lambda> x. suminf (?c x)) x :> (inverse (1 + x\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3907
              unfolding suminf_c'_eq_geom
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3908
              by (rule DERIV_arctan_suminf[OF `0 < r` `r < 1` `\<bar>x\<bar> < r`])
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56217
diff changeset
  3909
            from DERIV_diff [OF this DERIV_arctan]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3910
            show "DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  3911
              by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3912
          qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3913
          hence DERIV_in_rball: "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3914
            using `-r < a` `b < r` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3915
          thus "\<forall> y. a < y \<and> y < b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3916
            using `\<bar>x\<bar> < r` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3917
          show "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> isCont (\<lambda> x. suminf (?c x) - arctan x) y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3918
            using DERIV_in_rball DERIV_isCont by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3919
        qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3920
      qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3921
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3922
      have suminf_arctan_zero: "suminf (?c 0) - arctan 0 = 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3923
        unfolding Suc_eq_plus1[symmetric] power_Suc2 mult_zero_right arctan_zero_zero suminf_zero
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3924
        by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3925
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3926
      have "suminf (?c x) - arctan x = 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3927
      proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3928
        case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3929
        thus ?thesis using suminf_arctan_zero by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3930
      next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3931
        case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3932
        hence "0 < \<bar>x\<bar>" and "- \<bar>x\<bar> < \<bar>x\<bar>" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3933
        have "suminf (?c (-\<bar>x\<bar>)) - arctan (-\<bar>x\<bar>) = suminf (?c 0) - arctan 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3934
          by (rule suminf_eq_arctan_bounded[where x="0" and a="-\<bar>x\<bar>" and b="\<bar>x\<bar>", symmetric])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3935
            (simp_all only: `\<bar>x\<bar> < r` `-\<bar>x\<bar> < \<bar>x\<bar>` neg_less_iff_less)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3936
        moreover
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3937
        have "suminf (?c x) - arctan x = suminf (?c (-\<bar>x\<bar>)) - arctan (-\<bar>x\<bar>)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3938
          by (rule suminf_eq_arctan_bounded[where x="x" and a="-\<bar>x\<bar>" and b="\<bar>x\<bar>"])
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  3939
             (simp_all only: `\<bar>x\<bar> < r` `-\<bar>x\<bar> < \<bar>x\<bar>` neg_less_iff_less)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3940
        ultimately
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3941
        show ?thesis using suminf_arctan_zero by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3942
      qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3943
      thus ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3944
    qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3945
  } note when_less_one = this
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3946
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3947
  show "arctan x = suminf (\<lambda> n. ?c x n)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3948
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3949
    case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3950
    thus ?thesis by (rule when_less_one)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3951
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3952
    case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3953
    hence "\<bar>x\<bar> = 1" using `\<bar>x\<bar> \<le> 1` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3954
    let ?a = "\<lambda>x n. \<bar>1 / real (n*2+1) * x^(n*2+1)\<bar>"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3955
    let ?diff = "\<lambda> x n. \<bar> arctan x - (\<Sum> i<n. ?c x i)\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3956
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3957
      fix n :: nat
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3958
      have "0 < (1 :: real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3959
      moreover
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3960
      {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3961
        fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3962
        assume "0 < x" and "x < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3963
        hence "\<bar>x\<bar> \<le> 1" and "\<bar>x\<bar> < 1" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3964
        from `0 < x` have "0 < 1 / real (0 * 2 + (1::nat)) * x ^ (0 * 2 + 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3965
          by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3966
        note bounds = mp[OF arctan_series_borders(2)[OF `\<bar>x\<bar> \<le> 1`] this, unfolded when_less_one[OF `\<bar>x\<bar> < 1`, symmetric], THEN spec]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3967
        have "0 < 1 / real (n*2+1) * x^(n*2+1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3968
          by (rule mult_pos_pos, auto simp only: zero_less_power[OF `0 < x`], auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3969
        hence a_pos: "?a x n = 1 / real (n*2+1) * x^(n*2+1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3970
          by (rule abs_of_pos)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3971
        have "?diff x n \<le> ?a x n"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3972
        proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3973
          case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3974
          hence sgn_pos: "(-1)^n = (1::real)" by auto
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3975
          from `even n` obtain m where "n = 2 * m" ..
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3976
          then have "2 * m = n" ..
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3977
          from bounds[of m, unfolded this atLeastAtMost_iff]
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3978
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n + 1. (?c x i)) - (\<Sum>i<n. (?c x i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3979
            by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3980
          also have "\<dots> = ?c x n" unfolding One_nat_def by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3981
          also have "\<dots> = ?a x n" unfolding sgn_pos a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3982
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3983
        next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3984
          case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3985
          hence sgn_neg: "(-1)^n = (-1::real)" by auto
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3986
          from `odd n` obtain m where "n = 2 * m + 1" ..
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3987
          then have m_def: "2 * m + 1 = n" ..
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3988
          hence m_plus: "2 * (m + 1) = n + 1" by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3989
          from bounds[of "m + 1", unfolded this atLeastAtMost_iff, THEN conjunct1] bounds[of m, unfolded m_def atLeastAtMost_iff, THEN conjunct2]
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3990
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n. (?c x i)) - (\<Sum>i<n+1. (?c x i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3991
            by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3992
          also have "\<dots> = - ?c x n" unfolding One_nat_def by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3993
          also have "\<dots> = ?a x n" unfolding sgn_neg a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3994
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3995
        qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3996
        hence "0 \<le> ?a x n - ?diff x n" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3997
      }
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3998
      hence "\<forall> x \<in> { 0 <..< 1 }. 0 \<le> ?a x n - ?diff x n" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3999
      moreover have "\<And>x. isCont (\<lambda> x. ?a x n - ?diff x n) x"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  4000
        unfolding diff_conv_add_uminus divide_inverse
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4001
        by (auto intro!: isCont_add isCont_rabs isCont_ident isCont_minus isCont_arctan
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  4002
          isCont_inverse isCont_mult isCont_power isCont_const isCont_setsum
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  4003
          simp del: add_uminus_conv_diff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4004
      ultimately have "0 \<le> ?a 1 n - ?diff 1 n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4005
        by (rule LIM_less_bound)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4006
      hence "?diff 1 n \<le> ?a 1 n" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4007
    }
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  4008
    have "?a 1 ----> 0"
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  4009
      unfolding tendsto_rabs_zero_iff power_one divide_inverse One_nat_def
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  4010
      by (auto intro!: tendsto_mult LIMSEQ_linear LIMSEQ_inverse_real_of_nat)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4011
    have "?diff 1 ----> 0"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4012
    proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4013
      fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4014
      assume "0 < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4015
      obtain N :: nat where N_I: "\<And>n. N \<le> n \<Longrightarrow> ?a 1 n < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4016
        using LIMSEQ_D[OF `?a 1 ----> 0` `0 < r`] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4017
      {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4018
        fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4019
        assume "N \<le> n" from `?diff 1 n \<le> ?a 1 n` N_I[OF this]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4020
        have "norm (?diff 1 n - 0) < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4021
      }
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4022
      thus "\<exists> N. \<forall> n \<ge> N. norm (?diff 1 n - 0) < r" by blast
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4023
    qed
44710
9caf6883f1f4 remove redundant lemmas about LIMSEQ
huffman
parents: 44568
diff changeset
  4024
    from this [unfolded tendsto_rabs_zero_iff, THEN tendsto_add [OF _ tendsto_const], of "- arctan 1", THEN tendsto_minus]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4025
    have "(?c 1) sums (arctan 1)" unfolding sums_def by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4026
    hence "arctan 1 = (\<Sum> i. ?c 1 i)" by (rule sums_unique)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4027
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4028
    show ?thesis
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4029
    proof (cases "x = 1")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4030
      case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4031
      then show ?thesis by (simp add: `arctan 1 = (\<Sum> i. ?c 1 i)`)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4032
    next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4033
      case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4034
      hence "x = -1" using `\<bar>x\<bar> = 1` by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4035
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4036
      have "- (pi / 2) < 0" using pi_gt_zero by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4037
      have "- (2 * pi) < 0" using pi_gt_zero by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4038
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4039
      have c_minus_minus: "\<And>i. ?c (- 1) i = - ?c 1 i"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4040
        unfolding One_nat_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4041
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4042
      have "arctan (- 1) = arctan (tan (-(pi / 4)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4043
        unfolding tan_45 tan_minus ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4044
      also have "\<dots> = - (pi / 4)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4045
        by (rule arctan_tan, auto simp add: order_less_trans[OF `- (pi / 2) < 0` pi_gt_zero])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4046
      also have "\<dots> = - (arctan (tan (pi / 4)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4047
        unfolding neg_equal_iff_equal by (rule arctan_tan[symmetric], auto simp add: order_less_trans[OF `- (2 * pi) < 0` pi_gt_zero])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4048
      also have "\<dots> = - (arctan 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4049
        unfolding tan_45 ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4050
      also have "\<dots> = - (\<Sum> i. ?c 1 i)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4051
        using `arctan 1 = (\<Sum> i. ?c 1 i)` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4052
      also have "\<dots> = (\<Sum> i. ?c (- 1) i)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4053
        using suminf_minus[OF sums_summable[OF `(?c 1) sums (arctan 1)`]]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4054
        unfolding c_minus_minus by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4055
      finally show ?thesis using `x = -1` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4056
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4057
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4058
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4059
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4060
lemma arctan_half:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4061
  fixes x :: real
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  4062
  shows "arctan x = 2 * arctan (x / (1 + sqrt(1 + x\<^sup>2)))"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4063
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4064
  obtain y where low: "- (pi / 2) < y" and high: "y < pi / 2" and y_eq: "tan y = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4065
    using tan_total by blast
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4066
  hence low2: "- (pi / 2) < y / 2" and high2: "y / 2 < pi / 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4067
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4068
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4069
  have "0 < cos y" using cos_gt_zero_pi[OF low high] .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4070
  hence "cos y \<noteq> 0" and cos_sqrt: "sqrt ((cos y)\<^sup>2) = cos y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4071
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4072
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4073
  have "1 + (tan y)\<^sup>2 = 1 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4074
    unfolding tan_def power_divide ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4075
  also have "\<dots> = (cos y)\<^sup>2 / (cos y)\<^sup>2 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4076
    using `cos y \<noteq> 0` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4077
  also have "\<dots> = 1 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4078
    unfolding add_divide_distrib[symmetric] sin_cos_squared_add2 ..
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  4079
  finally have "1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4080
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4081
  have "sin y / (cos y + 1) = tan y / ((cos y + 1) / cos y)"
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  4082
    unfolding tan_def using `cos y \<noteq> 0` by (simp add: field_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4083
  also have "\<dots> = tan y / (1 + 1 / cos y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4084
    using `cos y \<noteq> 0` unfolding add_divide_distrib by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4085
  also have "\<dots> = tan y / (1 + 1 / sqrt ((cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4086
    unfolding cos_sqrt ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4087
  also have "\<dots> = tan y / (1 + sqrt (1 / (cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4088
    unfolding real_sqrt_divide by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4089
  finally have eq: "sin y / (cos y + 1) = tan y / (1 + sqrt(1 + (tan y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4090
    unfolding `1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2` .
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4091
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4092
  have "arctan x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4093
    using arctan_tan low high y_eq by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4094
  also have "\<dots> = 2 * (arctan (tan (y/2)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4095
    using arctan_tan[OF low2 high2] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4096
  also have "\<dots> = 2 * (arctan (sin y / (cos y + 1)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4097
    unfolding tan_half by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4098
  finally show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4099
    unfolding eq `tan y = x` .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4100
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4101
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4102
lemma arctan_monotone: "x < y \<Longrightarrow> arctan x < arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4103
  by (simp only: arctan_less_iff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4104
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4105
lemma arctan_monotone': "x \<le> y \<Longrightarrow> arctan x \<le> arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4106
  by (simp only: arctan_le_iff)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4107
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4108
lemma arctan_inverse:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4109
  assumes "x \<noteq> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4110
  shows "arctan (1 / x) = sgn x * pi / 2 - arctan x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4111
proof (rule arctan_unique)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4112
  show "- (pi / 2) < sgn x * pi / 2 - arctan x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4113
    using arctan_bounded [of x] assms
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4114
    unfolding sgn_real_def
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4115
    apply (auto simp add: algebra_simps)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4116
    apply (drule zero_less_arctan_iff [THEN iffD2])
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4117
    apply arith
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4118
    done
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4119
  show "sgn x * pi / 2 - arctan x < pi / 2"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4120
    using arctan_bounded [of "- x"] assms
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4121
    unfolding sgn_real_def arctan_minus
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  4122
    by (auto simp add: algebra_simps)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4123
  show "tan (sgn x * pi / 2 - arctan x) = 1 / x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4124
    unfolding tan_inverse [of "arctan x", unfolded tan_arctan]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4125
    unfolding sgn_real_def
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  4126
    by (simp add: tan_def cos_arctan sin_arctan sin_diff cos_diff)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4127
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4128
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4129
theorem pi_series: "pi / 4 = (\<Sum> k. (-1)^k * 1 / real (k*2+1))" (is "_ = ?SUM")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4130
proof -
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4131
  have "pi / 4 = arctan 1" using arctan_one by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4132
  also have "\<dots> = ?SUM" using arctan_series[of 1] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4133
  finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4134
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4135
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4136
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  4137
subsection {* Existence of Polar Coordinates *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4138
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4139
lemma cos_x_y_le_one: "\<bar>x / sqrt (x\<^sup>2 + y\<^sup>2)\<bar> \<le> 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4140
  apply (rule power2_le_imp_le [OF _ zero_le_one])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4141
  apply (simp add: power_divide divide_le_eq not_sum_power2_lt_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4142
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4143
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  4144
lemma cos_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> cos (arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4145
  by (simp add: abs_le_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4146
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4147
lemma sin_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> sin (arccos y) = sqrt (1 - y\<^sup>2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4148
  by (simp add: sin_arccos abs_le_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4149
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  4150
lemmas cos_arccos_lemma1 = cos_arccos_abs [OF cos_x_y_le_one]
15228
4d332d10fa3d revised simprules for division
paulson
parents: 15140
diff changeset
  4151
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4152
lemmas sin_arccos_lemma1 = sin_arccos_abs [OF cos_x_y_le_one]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4153
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4154
lemma polar_Ex: "\<exists>r a. x = r * cos a & y = r * sin a"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4155
proof -
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4156
  have polar_ex1: "\<And>y. 0 < y \<Longrightarrow> \<exists>r a. x = r * cos a & y = r * sin a"
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4157
    apply (rule_tac x = "sqrt (x\<^sup>2 + y\<^sup>2)" in exI)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4158
    apply (rule_tac x = "arccos (x / sqrt (x\<^sup>2 + y\<^sup>2))" in exI)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4159
    apply (simp add: cos_arccos_lemma1 sin_arccos_lemma1 power_divide
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4160
                     real_sqrt_mult [symmetric] right_diff_distrib)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4161
    done
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4162
  show ?thesis
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4163
  proof (cases "0::real" y rule: linorder_cases)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4164
    case less 
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4165
      then show ?thesis by (rule polar_ex1)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4166
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4167
    case equal
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4168
      then show ?thesis
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4169
        by (force simp add: intro!: cos_zero sin_zero)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4170
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4171
    case greater
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4172
      then show ?thesis 
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4173
     using polar_ex1 [where y="-y"]
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4174
    by auto (metis cos_minus minus_minus minus_mult_right sin_minus)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4175
  qed
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4176
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4177
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  4178
end