wenzelm@32960
|
1 |
(* Title: HOL/UNITY/ListOrder.thy
|
paulson@6708
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
paulson@6708
|
3 |
Copyright 1998 University of Cambridge
|
paulson@6708
|
4 |
|
paulson@13798
|
5 |
Lists are partially ordered by Charpentier's Generalized Prefix Relation
|
paulson@13798
|
6 |
(xs,ys) : genPrefix(r)
|
paulson@13798
|
7 |
if ys = xs' @ zs where length xs = length xs'
|
paulson@13798
|
8 |
and corresponding elements of xs, xs' are pairwise related by r
|
paulson@13798
|
9 |
|
paulson@13798
|
10 |
Also overloads <= and < for lists!
|
paulson@6708
|
11 |
*)
|
paulson@6708
|
12 |
|
wenzelm@58889
|
13 |
section {*The Prefix Ordering on Lists*}
|
paulson@13798
|
14 |
|
haftmann@27682
|
15 |
theory ListOrder
|
haftmann@27682
|
16 |
imports Main
|
haftmann@27682
|
17 |
begin
|
paulson@13798
|
18 |
|
berghofe@23767
|
19 |
inductive_set
|
paulson@13798
|
20 |
genPrefix :: "('a * 'a)set => ('a list * 'a list)set"
|
berghofe@23767
|
21 |
for r :: "('a * 'a)set"
|
berghofe@23767
|
22 |
where
|
paulson@13798
|
23 |
Nil: "([],[]) : genPrefix(r)"
|
paulson@13798
|
24 |
|
berghofe@23767
|
25 |
| prepend: "[| (xs,ys) : genPrefix(r); (x,y) : r |] ==>
|
wenzelm@32960
|
26 |
(x#xs, y#ys) : genPrefix(r)"
|
paulson@13798
|
27 |
|
berghofe@23767
|
28 |
| append: "(xs,ys) : genPrefix(r) ==> (xs, ys@zs) : genPrefix(r)"
|
paulson@13798
|
29 |
|
haftmann@27682
|
30 |
instantiation list :: (type) ord
|
haftmann@27682
|
31 |
begin
|
paulson@13798
|
32 |
|
haftmann@27682
|
33 |
definition
|
haftmann@27682
|
34 |
prefix_def: "xs <= zs \<longleftrightarrow> (xs, zs) : genPrefix Id"
|
paulson@13798
|
35 |
|
haftmann@27682
|
36 |
definition
|
haftmann@27682
|
37 |
strict_prefix_def: "xs < zs \<longleftrightarrow> xs \<le> zs \<and> \<not> zs \<le> (xs :: 'a list)"
|
haftmann@27682
|
38 |
|
haftmann@27682
|
39 |
instance ..
|
paulson@13798
|
40 |
|
paulson@13798
|
41 |
(*Constants for the <= and >= relations, used below in translations*)
|
haftmann@27682
|
42 |
|
haftmann@27682
|
43 |
end
|
haftmann@27682
|
44 |
|
haftmann@35416
|
45 |
definition Le :: "(nat*nat) set" where
|
paulson@13798
|
46 |
"Le == {(x,y). x <= y}"
|
paulson@13798
|
47 |
|
haftmann@35416
|
48 |
definition Ge :: "(nat*nat) set" where
|
paulson@13798
|
49 |
"Ge == {(x,y). y <= x}"
|
paulson@13798
|
50 |
|
berghofe@23767
|
51 |
abbreviation
|
berghofe@23767
|
52 |
pfixLe :: "[nat list, nat list] => bool" (infixl "pfixLe" 50) where
|
berghofe@23767
|
53 |
"xs pfixLe ys == (xs,ys) : genPrefix Le"
|
paulson@13798
|
54 |
|
berghofe@23767
|
55 |
abbreviation
|
berghofe@23767
|
56 |
pfixGe :: "[nat list, nat list] => bool" (infixl "pfixGe" 50) where
|
berghofe@23767
|
57 |
"xs pfixGe ys == (xs,ys) : genPrefix Ge"
|
paulson@13798
|
58 |
|
paulson@13798
|
59 |
|
paulson@13798
|
60 |
subsection{*preliminary lemmas*}
|
paulson@13798
|
61 |
|
paulson@13798
|
62 |
lemma Nil_genPrefix [iff]: "([], xs) : genPrefix r"
|
paulson@13798
|
63 |
by (cut_tac genPrefix.Nil [THEN genPrefix.append], auto)
|
paulson@13798
|
64 |
|
paulson@13798
|
65 |
lemma genPrefix_length_le: "(xs,ys) : genPrefix r ==> length xs <= length ys"
|
paulson@13798
|
66 |
by (erule genPrefix.induct, auto)
|
paulson@13798
|
67 |
|
paulson@13798
|
68 |
lemma cdlemma:
|
paulson@13798
|
69 |
"[| (xs', ys'): genPrefix r |]
|
paulson@13798
|
70 |
==> (ALL x xs. xs' = x#xs --> (EX y ys. ys' = y#ys & (x,y) : r & (xs, ys) : genPrefix r))"
|
paulson@13798
|
71 |
apply (erule genPrefix.induct, blast, blast)
|
paulson@13798
|
72 |
apply (force intro: genPrefix.append)
|
paulson@13798
|
73 |
done
|
paulson@13798
|
74 |
|
paulson@13798
|
75 |
(*As usual converting it to an elimination rule is tiresome*)
|
paulson@13798
|
76 |
lemma cons_genPrefixE [elim!]:
|
paulson@13798
|
77 |
"[| (x#xs, zs): genPrefix r;
|
paulson@13798
|
78 |
!!y ys. [| zs = y#ys; (x,y) : r; (xs, ys) : genPrefix r |] ==> P
|
paulson@13798
|
79 |
|] ==> P"
|
paulson@13798
|
80 |
by (drule cdlemma, simp, blast)
|
paulson@13798
|
81 |
|
paulson@13798
|
82 |
lemma Cons_genPrefix_Cons [iff]:
|
paulson@13798
|
83 |
"((x#xs,y#ys) : genPrefix r) = ((x,y) : r & (xs,ys) : genPrefix r)"
|
paulson@13798
|
84 |
by (blast intro: genPrefix.prepend)
|
paulson@13798
|
85 |
|
paulson@13798
|
86 |
|
paulson@13798
|
87 |
subsection{*genPrefix is a partial order*}
|
paulson@13798
|
88 |
|
nipkow@30198
|
89 |
lemma refl_genPrefix: "refl r ==> refl (genPrefix r)"
|
nipkow@30198
|
90 |
apply (unfold refl_on_def, auto)
|
paulson@13798
|
91 |
apply (induct_tac "x")
|
paulson@13798
|
92 |
prefer 2 apply (blast intro: genPrefix.prepend)
|
paulson@13798
|
93 |
apply (blast intro: genPrefix.Nil)
|
paulson@13798
|
94 |
done
|
paulson@13798
|
95 |
|
nipkow@30198
|
96 |
lemma genPrefix_refl [simp]: "refl r ==> (l,l) : genPrefix r"
|
nipkow@30198
|
97 |
by (erule refl_onD [OF refl_genPrefix UNIV_I])
|
paulson@13798
|
98 |
|
paulson@13798
|
99 |
lemma genPrefix_mono: "r<=s ==> genPrefix r <= genPrefix s"
|
paulson@13798
|
100 |
apply clarify
|
paulson@13798
|
101 |
apply (erule genPrefix.induct)
|
paulson@13798
|
102 |
apply (auto intro: genPrefix.append)
|
paulson@13798
|
103 |
done
|
paulson@13798
|
104 |
|
paulson@13798
|
105 |
|
paulson@13798
|
106 |
(** Transitivity **)
|
paulson@13798
|
107 |
|
paulson@13798
|
108 |
(*A lemma for proving genPrefix_trans_O*)
|
wenzelm@45477
|
109 |
lemma append_genPrefix:
|
wenzelm@45477
|
110 |
"(xs @ ys, zs) : genPrefix r \<Longrightarrow> (xs, zs) : genPrefix r"
|
wenzelm@45477
|
111 |
by (induct xs arbitrary: zs) auto
|
paulson@13798
|
112 |
|
paulson@13798
|
113 |
(*Lemma proving transitivity and more*)
|
wenzelm@45477
|
114 |
lemma genPrefix_trans_O:
|
wenzelm@45477
|
115 |
assumes "(x, y) : genPrefix r"
|
wenzelm@45477
|
116 |
shows "\<And>z. (y, z) : genPrefix s \<Longrightarrow> (x, z) : genPrefix (r O s)"
|
wenzelm@45477
|
117 |
apply (atomize (full))
|
wenzelm@45477
|
118 |
using assms
|
wenzelm@45477
|
119 |
apply induct
|
wenzelm@45477
|
120 |
apply blast
|
wenzelm@45477
|
121 |
apply (blast intro: genPrefix.prepend)
|
wenzelm@45477
|
122 |
apply (blast dest: append_genPrefix)
|
wenzelm@45477
|
123 |
done
|
paulson@13798
|
124 |
|
wenzelm@45477
|
125 |
lemma genPrefix_trans:
|
wenzelm@45477
|
126 |
"(x, y) : genPrefix r \<Longrightarrow> (y, z) : genPrefix r \<Longrightarrow> trans r
|
wenzelm@45477
|
127 |
\<Longrightarrow> (x, z) : genPrefix r"
|
wenzelm@45477
|
128 |
apply (rule trans_O_subset [THEN genPrefix_mono, THEN subsetD])
|
wenzelm@45477
|
129 |
apply assumption
|
wenzelm@45477
|
130 |
apply (blast intro: genPrefix_trans_O)
|
wenzelm@45477
|
131 |
done
|
paulson@13798
|
132 |
|
wenzelm@45477
|
133 |
lemma prefix_genPrefix_trans:
|
wenzelm@45477
|
134 |
"[| x<=y; (y,z) : genPrefix r |] ==> (x, z) : genPrefix r"
|
paulson@13798
|
135 |
apply (unfold prefix_def)
|
krauss@32235
|
136 |
apply (drule genPrefix_trans_O, assumption)
|
krauss@32235
|
137 |
apply simp
|
paulson@13798
|
138 |
done
|
paulson@13798
|
139 |
|
wenzelm@45477
|
140 |
lemma genPrefix_prefix_trans:
|
wenzelm@45477
|
141 |
"[| (x,y) : genPrefix r; y<=z |] ==> (x,z) : genPrefix r"
|
paulson@13798
|
142 |
apply (unfold prefix_def)
|
krauss@32235
|
143 |
apply (drule genPrefix_trans_O, assumption)
|
krauss@32235
|
144 |
apply simp
|
paulson@13798
|
145 |
done
|
paulson@13798
|
146 |
|
paulson@13798
|
147 |
lemma trans_genPrefix: "trans r ==> trans (genPrefix r)"
|
paulson@13798
|
148 |
by (blast intro: transI genPrefix_trans)
|
paulson@13798
|
149 |
|
paulson@13798
|
150 |
|
paulson@13798
|
151 |
(** Antisymmetry **)
|
paulson@13798
|
152 |
|
wenzelm@45477
|
153 |
lemma genPrefix_antisym:
|
wenzelm@45477
|
154 |
assumes 1: "(xs, ys) : genPrefix r"
|
wenzelm@45477
|
155 |
and 2: "antisym r"
|
wenzelm@45477
|
156 |
and 3: "(ys, xs) : genPrefix r"
|
wenzelm@45477
|
157 |
shows "xs = ys"
|
wenzelm@45477
|
158 |
using 1 3
|
wenzelm@45477
|
159 |
proof induct
|
wenzelm@45477
|
160 |
case Nil
|
wenzelm@45477
|
161 |
then show ?case by blast
|
wenzelm@45477
|
162 |
next
|
wenzelm@45477
|
163 |
case prepend
|
wenzelm@45477
|
164 |
then show ?case using 2 by (simp add: antisym_def)
|
wenzelm@45477
|
165 |
next
|
wenzelm@45477
|
166 |
case (append xs ys zs)
|
wenzelm@45477
|
167 |
then show ?case
|
wenzelm@45477
|
168 |
apply -
|
wenzelm@45477
|
169 |
apply (subgoal_tac "length zs = 0", force)
|
wenzelm@45477
|
170 |
apply (drule genPrefix_length_le)+
|
wenzelm@45477
|
171 |
apply (simp del: length_0_conv)
|
wenzelm@45477
|
172 |
done
|
wenzelm@45477
|
173 |
qed
|
paulson@13798
|
174 |
|
paulson@13798
|
175 |
lemma antisym_genPrefix: "antisym r ==> antisym (genPrefix r)"
|
wenzelm@45477
|
176 |
by (blast intro: antisymI genPrefix_antisym)
|
paulson@13798
|
177 |
|
paulson@13798
|
178 |
|
paulson@13798
|
179 |
subsection{*recursion equations*}
|
paulson@13798
|
180 |
|
paulson@13798
|
181 |
lemma genPrefix_Nil [simp]: "((xs, []) : genPrefix r) = (xs = [])"
|
wenzelm@46911
|
182 |
by (induct xs) auto
|
paulson@13798
|
183 |
|
paulson@13798
|
184 |
lemma same_genPrefix_genPrefix [simp]:
|
nipkow@30198
|
185 |
"refl r ==> ((xs@ys, xs@zs) : genPrefix r) = ((ys,zs) : genPrefix r)"
|
wenzelm@46911
|
186 |
by (induct xs) (simp_all add: refl_on_def)
|
paulson@13798
|
187 |
|
paulson@13798
|
188 |
lemma genPrefix_Cons:
|
paulson@13798
|
189 |
"((xs, y#ys) : genPrefix r) =
|
paulson@13798
|
190 |
(xs=[] | (EX z zs. xs=z#zs & (z,y) : r & (zs,ys) : genPrefix r))"
|
wenzelm@46911
|
191 |
by (cases xs) auto
|
paulson@13798
|
192 |
|
paulson@13798
|
193 |
lemma genPrefix_take_append:
|
nipkow@30198
|
194 |
"[| refl r; (xs,ys) : genPrefix r |]
|
paulson@13798
|
195 |
==> (xs@zs, take (length xs) ys @ zs) : genPrefix r"
|
paulson@13798
|
196 |
apply (erule genPrefix.induct)
|
paulson@13798
|
197 |
apply (frule_tac [3] genPrefix_length_le)
|
paulson@13798
|
198 |
apply (simp_all (no_asm_simp) add: diff_is_0_eq [THEN iffD2])
|
paulson@13798
|
199 |
done
|
paulson@13798
|
200 |
|
paulson@13798
|
201 |
lemma genPrefix_append_both:
|
nipkow@30198
|
202 |
"[| refl r; (xs,ys) : genPrefix r; length xs = length ys |]
|
paulson@13798
|
203 |
==> (xs@zs, ys @ zs) : genPrefix r"
|
paulson@13798
|
204 |
apply (drule genPrefix_take_append, assumption)
|
wenzelm@46577
|
205 |
apply simp
|
paulson@13798
|
206 |
done
|
paulson@13798
|
207 |
|
paulson@13798
|
208 |
|
paulson@13798
|
209 |
(*NOT suitable for rewriting since [y] has the form y#ys*)
|
paulson@13798
|
210 |
lemma append_cons_eq: "xs @ y # ys = (xs @ [y]) @ ys"
|
paulson@13798
|
211 |
by auto
|
paulson@13798
|
212 |
|
paulson@13798
|
213 |
lemma aolemma:
|
nipkow@30198
|
214 |
"[| (xs,ys) : genPrefix r; refl r |]
|
paulson@13798
|
215 |
==> length xs < length ys --> (xs @ [ys ! length xs], ys) : genPrefix r"
|
paulson@13798
|
216 |
apply (erule genPrefix.induct)
|
paulson@13798
|
217 |
apply blast
|
paulson@13798
|
218 |
apply simp
|
paulson@13798
|
219 |
txt{*Append case is hardest*}
|
paulson@13798
|
220 |
apply simp
|
paulson@13798
|
221 |
apply (frule genPrefix_length_le [THEN le_imp_less_or_eq])
|
paulson@13798
|
222 |
apply (erule disjE)
|
paulson@13798
|
223 |
apply (simp_all (no_asm_simp) add: neq_Nil_conv nth_append)
|
paulson@13798
|
224 |
apply (blast intro: genPrefix.append, auto)
|
paulson@15481
|
225 |
apply (subst append_cons_eq, fast intro: genPrefix_append_both genPrefix.append)
|
paulson@13798
|
226 |
done
|
paulson@13798
|
227 |
|
paulson@13798
|
228 |
lemma append_one_genPrefix:
|
nipkow@30198
|
229 |
"[| (xs,ys) : genPrefix r; length xs < length ys; refl r |]
|
paulson@13798
|
230 |
==> (xs @ [ys ! length xs], ys) : genPrefix r"
|
paulson@13798
|
231 |
by (blast intro: aolemma [THEN mp])
|
paulson@13798
|
232 |
|
paulson@13798
|
233 |
|
paulson@13798
|
234 |
(** Proving the equivalence with Charpentier's definition **)
|
paulson@13798
|
235 |
|
wenzelm@45477
|
236 |
lemma genPrefix_imp_nth:
|
wenzelm@45477
|
237 |
"i < length xs \<Longrightarrow> (xs, ys) : genPrefix r \<Longrightarrow> (xs ! i, ys ! i) : r"
|
wenzelm@45477
|
238 |
apply (induct xs arbitrary: i ys)
|
wenzelm@45477
|
239 |
apply auto
|
wenzelm@45477
|
240 |
apply (case_tac i)
|
wenzelm@45477
|
241 |
apply auto
|
wenzelm@45477
|
242 |
done
|
paulson@13798
|
243 |
|
wenzelm@45477
|
244 |
lemma nth_imp_genPrefix:
|
wenzelm@45477
|
245 |
"length xs <= length ys \<Longrightarrow>
|
wenzelm@45477
|
246 |
(\<forall>i. i < length xs --> (xs ! i, ys ! i) : r) \<Longrightarrow>
|
wenzelm@45477
|
247 |
(xs, ys) : genPrefix r"
|
wenzelm@45477
|
248 |
apply (induct xs arbitrary: ys)
|
wenzelm@45477
|
249 |
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib)
|
wenzelm@45477
|
250 |
apply (case_tac ys)
|
wenzelm@45477
|
251 |
apply (force+)
|
wenzelm@45477
|
252 |
done
|
paulson@13798
|
253 |
|
paulson@13798
|
254 |
lemma genPrefix_iff_nth:
|
paulson@13798
|
255 |
"((xs,ys) : genPrefix r) =
|
paulson@13798
|
256 |
(length xs <= length ys & (ALL i. i < length xs --> (xs!i, ys!i) : r))"
|
paulson@13798
|
257 |
apply (blast intro: genPrefix_length_le genPrefix_imp_nth nth_imp_genPrefix)
|
paulson@13798
|
258 |
done
|
paulson@13798
|
259 |
|
paulson@13798
|
260 |
|
paulson@13798
|
261 |
subsection{*The type of lists is partially ordered*}
|
paulson@13798
|
262 |
|
nipkow@30198
|
263 |
declare refl_Id [iff]
|
paulson@13798
|
264 |
antisym_Id [iff]
|
paulson@13798
|
265 |
trans_Id [iff]
|
paulson@13798
|
266 |
|
paulson@13798
|
267 |
lemma prefix_refl [iff]: "xs <= (xs::'a list)"
|
paulson@13798
|
268 |
by (simp add: prefix_def)
|
paulson@13798
|
269 |
|
paulson@13798
|
270 |
lemma prefix_trans: "!!xs::'a list. [| xs <= ys; ys <= zs |] ==> xs <= zs"
|
paulson@13798
|
271 |
apply (unfold prefix_def)
|
paulson@13798
|
272 |
apply (blast intro: genPrefix_trans)
|
paulson@13798
|
273 |
done
|
paulson@13798
|
274 |
|
paulson@13798
|
275 |
lemma prefix_antisym: "!!xs::'a list. [| xs <= ys; ys <= xs |] ==> xs = ys"
|
paulson@13798
|
276 |
apply (unfold prefix_def)
|
paulson@13798
|
277 |
apply (blast intro: genPrefix_antisym)
|
paulson@13798
|
278 |
done
|
paulson@13798
|
279 |
|
haftmann@27682
|
280 |
lemma prefix_less_le_not_le: "!!xs::'a list. (xs < zs) = (xs <= zs & \<not> zs \<le> xs)"
|
paulson@13798
|
281 |
by (unfold strict_prefix_def, auto)
|
paulson@6708
|
282 |
|
wenzelm@12338
|
283 |
instance list :: (type) order
|
paulson@13798
|
284 |
by (intro_classes,
|
paulson@13798
|
285 |
(assumption | rule prefix_refl prefix_trans prefix_antisym
|
haftmann@27682
|
286 |
prefix_less_le_not_le)+)
|
paulson@13798
|
287 |
|
paulson@13798
|
288 |
(*Monotonicity of "set" operator WRT prefix*)
|
paulson@13798
|
289 |
lemma set_mono: "xs <= ys ==> set xs <= set ys"
|
paulson@13798
|
290 |
apply (unfold prefix_def)
|
paulson@13798
|
291 |
apply (erule genPrefix.induct, auto)
|
paulson@13798
|
292 |
done
|
paulson@13798
|
293 |
|
paulson@13798
|
294 |
|
paulson@13798
|
295 |
(** recursion equations **)
|
paulson@13798
|
296 |
|
paulson@13798
|
297 |
lemma Nil_prefix [iff]: "[] <= xs"
|
wenzelm@46577
|
298 |
by (simp add: prefix_def)
|
paulson@13798
|
299 |
|
paulson@13798
|
300 |
lemma prefix_Nil [simp]: "(xs <= []) = (xs = [])"
|
wenzelm@46577
|
301 |
by (simp add: prefix_def)
|
paulson@13798
|
302 |
|
paulson@13798
|
303 |
lemma Cons_prefix_Cons [simp]: "(x#xs <= y#ys) = (x=y & xs<=ys)"
|
paulson@13798
|
304 |
by (simp add: prefix_def)
|
paulson@13798
|
305 |
|
paulson@13798
|
306 |
lemma same_prefix_prefix [simp]: "(xs@ys <= xs@zs) = (ys <= zs)"
|
paulson@13798
|
307 |
by (simp add: prefix_def)
|
paulson@13798
|
308 |
|
paulson@13798
|
309 |
lemma append_prefix [iff]: "(xs@ys <= xs) = (ys <= [])"
|
paulson@13798
|
310 |
by (insert same_prefix_prefix [of xs ys "[]"], simp)
|
paulson@13798
|
311 |
|
paulson@13798
|
312 |
lemma prefix_appendI [simp]: "xs <= ys ==> xs <= ys@zs"
|
paulson@13798
|
313 |
apply (unfold prefix_def)
|
paulson@13798
|
314 |
apply (erule genPrefix.append)
|
paulson@13798
|
315 |
done
|
paulson@13798
|
316 |
|
paulson@13798
|
317 |
lemma prefix_Cons:
|
paulson@13798
|
318 |
"(xs <= y#ys) = (xs=[] | (? zs. xs=y#zs & zs <= ys))"
|
paulson@13798
|
319 |
by (simp add: prefix_def genPrefix_Cons)
|
paulson@13798
|
320 |
|
paulson@13798
|
321 |
lemma append_one_prefix:
|
paulson@13798
|
322 |
"[| xs <= ys; length xs < length ys |] ==> xs @ [ys ! length xs] <= ys"
|
paulson@13798
|
323 |
apply (unfold prefix_def)
|
paulson@13798
|
324 |
apply (simp add: append_one_genPrefix)
|
paulson@13798
|
325 |
done
|
paulson@13798
|
326 |
|
paulson@13798
|
327 |
lemma prefix_length_le: "xs <= ys ==> length xs <= length ys"
|
paulson@13798
|
328 |
apply (unfold prefix_def)
|
paulson@13798
|
329 |
apply (erule genPrefix_length_le)
|
paulson@13798
|
330 |
done
|
paulson@13798
|
331 |
|
paulson@13798
|
332 |
lemma splemma: "xs<=ys ==> xs~=ys --> length xs < length ys"
|
paulson@13798
|
333 |
apply (unfold prefix_def)
|
paulson@13798
|
334 |
apply (erule genPrefix.induct, auto)
|
paulson@13798
|
335 |
done
|
paulson@13798
|
336 |
|
paulson@13798
|
337 |
lemma strict_prefix_length_less: "xs < ys ==> length xs < length ys"
|
paulson@13798
|
338 |
apply (unfold strict_prefix_def)
|
paulson@13798
|
339 |
apply (blast intro: splemma [THEN mp])
|
paulson@13798
|
340 |
done
|
paulson@13798
|
341 |
|
paulson@13798
|
342 |
lemma mono_length: "mono length"
|
paulson@13798
|
343 |
by (blast intro: monoI prefix_length_le)
|
paulson@13798
|
344 |
|
paulson@13798
|
345 |
(*Equivalence to the definition used in Lex/Prefix.thy*)
|
paulson@13798
|
346 |
lemma prefix_iff: "(xs <= zs) = (EX ys. zs = xs@ys)"
|
paulson@13798
|
347 |
apply (unfold prefix_def)
|
paulson@13798
|
348 |
apply (auto simp add: genPrefix_iff_nth nth_append)
|
paulson@13798
|
349 |
apply (rule_tac x = "drop (length xs) zs" in exI)
|
paulson@13798
|
350 |
apply (rule nth_equalityI)
|
paulson@13798
|
351 |
apply (simp_all (no_asm_simp) add: nth_append)
|
paulson@13798
|
352 |
done
|
paulson@13798
|
353 |
|
paulson@13798
|
354 |
lemma prefix_snoc [simp]: "(xs <= ys@[y]) = (xs = ys@[y] | xs <= ys)"
|
paulson@13798
|
355 |
apply (simp add: prefix_iff)
|
paulson@13798
|
356 |
apply (rule iffI)
|
paulson@13798
|
357 |
apply (erule exE)
|
paulson@13798
|
358 |
apply (rename_tac "zs")
|
paulson@13798
|
359 |
apply (rule_tac xs = zs in rev_exhaust)
|
paulson@13798
|
360 |
apply simp
|
paulson@13798
|
361 |
apply clarify
|
paulson@13798
|
362 |
apply (simp del: append_assoc add: append_assoc [symmetric], force)
|
paulson@13798
|
363 |
done
|
paulson@13798
|
364 |
|
paulson@13798
|
365 |
lemma prefix_append_iff:
|
paulson@13798
|
366 |
"(xs <= ys@zs) = (xs <= ys | (? us. xs = ys@us & us <= zs))"
|
paulson@13798
|
367 |
apply (rule_tac xs = zs in rev_induct)
|
paulson@13798
|
368 |
apply force
|
paulson@13798
|
369 |
apply (simp del: append_assoc add: append_assoc [symmetric], force)
|
paulson@13798
|
370 |
done
|
paulson@13798
|
371 |
|
paulson@13798
|
372 |
(*Although the prefix ordering is not linear, the prefixes of a list
|
paulson@13798
|
373 |
are linearly ordered.*)
|
wenzelm@45477
|
374 |
lemma common_prefix_linear:
|
wenzelm@45477
|
375 |
fixes xs ys zs :: "'a list"
|
wenzelm@45477
|
376 |
shows "xs <= zs \<Longrightarrow> ys <= zs \<Longrightarrow> xs <= ys | ys <= xs"
|
wenzelm@45477
|
377 |
by (induct zs rule: rev_induct) auto
|
paulson@13798
|
378 |
|
paulson@13798
|
379 |
subsection{*pfixLe, pfixGe: properties inherited from the translations*}
|
paulson@13798
|
380 |
|
paulson@13798
|
381 |
(** pfixLe **)
|
paulson@13798
|
382 |
|
nipkow@30198
|
383 |
lemma refl_Le [iff]: "refl Le"
|
nipkow@30198
|
384 |
by (unfold refl_on_def Le_def, auto)
|
paulson@13798
|
385 |
|
paulson@13798
|
386 |
lemma antisym_Le [iff]: "antisym Le"
|
paulson@13798
|
387 |
by (unfold antisym_def Le_def, auto)
|
paulson@13798
|
388 |
|
paulson@13798
|
389 |
lemma trans_Le [iff]: "trans Le"
|
paulson@13798
|
390 |
by (unfold trans_def Le_def, auto)
|
paulson@13798
|
391 |
|
paulson@13798
|
392 |
lemma pfixLe_refl [iff]: "x pfixLe x"
|
paulson@13798
|
393 |
by simp
|
paulson@13798
|
394 |
|
paulson@13798
|
395 |
lemma pfixLe_trans: "[| x pfixLe y; y pfixLe z |] ==> x pfixLe z"
|
paulson@13798
|
396 |
by (blast intro: genPrefix_trans)
|
paulson@13798
|
397 |
|
paulson@13798
|
398 |
lemma pfixLe_antisym: "[| x pfixLe y; y pfixLe x |] ==> x = y"
|
paulson@13798
|
399 |
by (blast intro: genPrefix_antisym)
|
paulson@13798
|
400 |
|
paulson@13798
|
401 |
lemma prefix_imp_pfixLe: "xs<=ys ==> xs pfixLe ys"
|
paulson@13798
|
402 |
apply (unfold prefix_def Le_def)
|
paulson@13798
|
403 |
apply (blast intro: genPrefix_mono [THEN [2] rev_subsetD])
|
paulson@13798
|
404 |
done
|
paulson@13798
|
405 |
|
nipkow@30198
|
406 |
lemma refl_Ge [iff]: "refl Ge"
|
nipkow@30198
|
407 |
by (unfold refl_on_def Ge_def, auto)
|
paulson@13798
|
408 |
|
paulson@13798
|
409 |
lemma antisym_Ge [iff]: "antisym Ge"
|
paulson@13798
|
410 |
by (unfold antisym_def Ge_def, auto)
|
paulson@13798
|
411 |
|
paulson@13798
|
412 |
lemma trans_Ge [iff]: "trans Ge"
|
paulson@13798
|
413 |
by (unfold trans_def Ge_def, auto)
|
paulson@13798
|
414 |
|
paulson@13798
|
415 |
lemma pfixGe_refl [iff]: "x pfixGe x"
|
paulson@13798
|
416 |
by simp
|
paulson@13798
|
417 |
|
paulson@13798
|
418 |
lemma pfixGe_trans: "[| x pfixGe y; y pfixGe z |] ==> x pfixGe z"
|
paulson@13798
|
419 |
by (blast intro: genPrefix_trans)
|
paulson@13798
|
420 |
|
paulson@13798
|
421 |
lemma pfixGe_antisym: "[| x pfixGe y; y pfixGe x |] ==> x = y"
|
paulson@13798
|
422 |
by (blast intro: genPrefix_antisym)
|
paulson@13798
|
423 |
|
paulson@13798
|
424 |
lemma prefix_imp_pfixGe: "xs<=ys ==> xs pfixGe ys"
|
paulson@13798
|
425 |
apply (unfold prefix_def Ge_def)
|
paulson@13798
|
426 |
apply (blast intro: genPrefix_mono [THEN [2] rev_subsetD])
|
paulson@13798
|
427 |
done
|
paulson@6708
|
428 |
|
paulson@6708
|
429 |
end
|