src/HOL/UNITY/UNITY.thy
author wenzelm
Sun Nov 02 18:21:45 2014 +0100 (2014-11-02)
changeset 58889 5b7a9633cfa8
parent 49834 b27bbb021df1
child 61952 546958347e05
permissions -rw-r--r--
modernized header uniformly as section;
wenzelm@32960
     1
(*  Title:      HOL/UNITY/UNITY.thy
paulson@4776
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@4776
     3
    Copyright   1998  University of Cambridge
paulson@4776
     4
wenzelm@32960
     5
The basic UNITY theory (revised version, based upon the "co"
wenzelm@32960
     6
operator).
paulson@4776
     7
wenzelm@32960
     8
From Misra, "A Logic for Concurrent Programming", 1994.
paulson@4776
     9
*)
paulson@4776
    10
wenzelm@58889
    11
section {*The Basic UNITY Theory*}
paulson@13798
    12
haftmann@16417
    13
theory UNITY imports Main begin
paulson@6535
    14
wenzelm@45694
    15
definition
wenzelm@45694
    16
  "Program =
wenzelm@45694
    17
    {(init:: 'a set, acts :: ('a * 'a)set set,
wenzelm@45694
    18
      allowed :: ('a * 'a)set set). Id \<in> acts & Id: allowed}"
wenzelm@45694
    19
wenzelm@49834
    20
typedef 'a program = "Program :: ('a set * ('a * 'a) set set * ('a * 'a) set set) set"
wenzelm@45694
    21
  morphisms Rep_Program Abs_Program
wenzelm@45694
    22
  unfolding Program_def by blast
paulson@6536
    23
haftmann@35416
    24
definition Acts :: "'a program => ('a * 'a)set set" where
wenzelm@14653
    25
    "Acts F == (%(init, acts, allowed). acts) (Rep_Program F)"
wenzelm@14653
    26
haftmann@35416
    27
definition "constrains" :: "['a set, 'a set] => 'a program set"  (infixl "co"     60) where
paulson@13805
    28
    "A co B == {F. \<forall>act \<in> Acts F. act``A \<subseteq> B}"
paulson@13797
    29
haftmann@35416
    30
definition unless  :: "['a set, 'a set] => 'a program set"  (infixl "unless" 60)  where
paulson@13805
    31
    "A unless B == (A-B) co (A \<union> B)"
paulson@13797
    32
haftmann@35416
    33
definition mk_program :: "('a set * ('a * 'a)set set * ('a * 'a)set set)
haftmann@35416
    34
                   => 'a program" where
paulson@10064
    35
    "mk_program == %(init, acts, allowed).
paulson@10064
    36
                      Abs_Program (init, insert Id acts, insert Id allowed)"
paulson@6535
    37
haftmann@35416
    38
definition Init :: "'a program => 'a set" where
paulson@10064
    39
    "Init F == (%(init, acts, allowed). init) (Rep_Program F)"
paulson@6535
    40
haftmann@35416
    41
definition AllowedActs :: "'a program => ('a * 'a)set set" where
paulson@10064
    42
    "AllowedActs F == (%(init, acts, allowed). allowed) (Rep_Program F)"
paulson@10064
    43
haftmann@35416
    44
definition Allowed :: "'a program => 'a program set" where
paulson@13805
    45
    "Allowed F == {G. Acts G \<subseteq> AllowedActs F}"
paulson@4776
    46
haftmann@35416
    47
definition stable     :: "'a set => 'a program set" where
paulson@6536
    48
    "stable A == A co A"
paulson@4776
    49
haftmann@35416
    50
definition strongest_rhs :: "['a program, 'a set] => 'a set" where
paulson@13805
    51
    "strongest_rhs F A == Inter {B. F \<in> A co B}"
paulson@4776
    52
haftmann@35416
    53
definition invariant :: "'a set => 'a program set" where
paulson@13805
    54
    "invariant A == {F. Init F \<subseteq> A} \<inter> stable A"
paulson@4776
    55
haftmann@35416
    56
definition increasing :: "['a => 'b::{order}] => 'a program set" where
paulson@13812
    57
    --{*Polymorphic in both states and the meaning of @{text "\<le>"}*}
paulson@13805
    58
    "increasing f == \<Inter>z. stable {s. z \<le> f s}"
paulson@4776
    59
paulson@6536
    60
paulson@16184
    61
subsubsection{*The abstract type of programs*}
paulson@13797
    62
paulson@13797
    63
lemmas program_typedef =
paulson@13797
    64
     Rep_Program Rep_Program_inverse Abs_Program_inverse 
paulson@13797
    65
     Program_def Init_def Acts_def AllowedActs_def mk_program_def
paulson@13797
    66
paulson@13805
    67
lemma Id_in_Acts [iff]: "Id \<in> Acts F"
paulson@13797
    68
apply (cut_tac x = F in Rep_Program)
paulson@13797
    69
apply (auto simp add: program_typedef) 
paulson@13797
    70
done
paulson@13797
    71
paulson@13797
    72
lemma insert_Id_Acts [iff]: "insert Id (Acts F) = Acts F"
wenzelm@46577
    73
by (simp add: insert_absorb)
paulson@13797
    74
paulson@13861
    75
lemma Acts_nonempty [simp]: "Acts F \<noteq> {}"
paulson@13861
    76
by auto
paulson@13861
    77
paulson@13805
    78
lemma Id_in_AllowedActs [iff]: "Id \<in> AllowedActs F"
paulson@13797
    79
apply (cut_tac x = F in Rep_Program)
paulson@13797
    80
apply (auto simp add: program_typedef) 
paulson@13797
    81
done
paulson@13797
    82
paulson@13797
    83
lemma insert_Id_AllowedActs [iff]: "insert Id (AllowedActs F) = AllowedActs F"
wenzelm@46577
    84
by (simp add: insert_absorb)
paulson@13797
    85
paulson@16184
    86
subsubsection{*Inspectors for type "program"*}
paulson@13797
    87
paulson@13797
    88
lemma Init_eq [simp]: "Init (mk_program (init,acts,allowed)) = init"
paulson@13812
    89
by (simp add: program_typedef)
paulson@13797
    90
paulson@13797
    91
lemma Acts_eq [simp]: "Acts (mk_program (init,acts,allowed)) = insert Id acts"
paulson@13812
    92
by (simp add: program_typedef)
paulson@13797
    93
paulson@13797
    94
lemma AllowedActs_eq [simp]:
paulson@13797
    95
     "AllowedActs (mk_program (init,acts,allowed)) = insert Id allowed"
paulson@13812
    96
by (simp add: program_typedef)
paulson@13797
    97
paulson@16184
    98
subsubsection{*Equality for UNITY programs*}
paulson@13797
    99
paulson@13797
   100
lemma surjective_mk_program [simp]:
paulson@13797
   101
     "mk_program (Init F, Acts F, AllowedActs F) = F"
paulson@13797
   102
apply (cut_tac x = F in Rep_Program)
paulson@13797
   103
apply (auto simp add: program_typedef)
paulson@13797
   104
apply (drule_tac f = Abs_Program in arg_cong)+
paulson@13797
   105
apply (simp add: program_typedef insert_absorb)
paulson@13797
   106
done
paulson@13797
   107
paulson@13797
   108
lemma program_equalityI:
paulson@13797
   109
     "[| Init F = Init G; Acts F = Acts G; AllowedActs F = AllowedActs G |]  
paulson@13797
   110
      ==> F = G"
paulson@13797
   111
apply (rule_tac t = F in surjective_mk_program [THEN subst])
paulson@13797
   112
apply (rule_tac t = G in surjective_mk_program [THEN subst], simp)
paulson@13797
   113
done
paulson@13797
   114
paulson@13797
   115
lemma program_equalityE:
paulson@13797
   116
     "[| F = G;  
paulson@13797
   117
         [| Init F = Init G; Acts F = Acts G; AllowedActs F = AllowedActs G |] 
paulson@13797
   118
         ==> P |] ==> P"
paulson@13797
   119
by simp 
paulson@13797
   120
paulson@13797
   121
lemma program_equality_iff:
paulson@13797
   122
     "(F=G) =   
paulson@13797
   123
      (Init F = Init G & Acts F = Acts G &AllowedActs F = AllowedActs G)"
paulson@13797
   124
by (blast intro: program_equalityI program_equalityE)
paulson@13797
   125
paulson@13797
   126
paulson@16184
   127
subsubsection{*co*}
paulson@13797
   128
paulson@13797
   129
lemma constrainsI: 
paulson@13805
   130
    "(!!act s s'. [| act: Acts F;  (s,s') \<in> act;  s \<in> A |] ==> s': A')  
paulson@13805
   131
     ==> F \<in> A co A'"
paulson@13797
   132
by (simp add: constrains_def, blast)
paulson@13797
   133
paulson@13797
   134
lemma constrainsD: 
paulson@13805
   135
    "[| F \<in> A co A'; act: Acts F;  (s,s'): act;  s \<in> A |] ==> s': A'"
paulson@13797
   136
by (unfold constrains_def, blast)
paulson@13797
   137
paulson@13805
   138
lemma constrains_empty [iff]: "F \<in> {} co B"
paulson@13797
   139
by (unfold constrains_def, blast)
paulson@13797
   140
paulson@13805
   141
lemma constrains_empty2 [iff]: "(F \<in> A co {}) = (A={})"
paulson@13797
   142
by (unfold constrains_def, blast)
paulson@13797
   143
paulson@13805
   144
lemma constrains_UNIV [iff]: "(F \<in> UNIV co B) = (B = UNIV)"
paulson@13797
   145
by (unfold constrains_def, blast)
paulson@13797
   146
paulson@13805
   147
lemma constrains_UNIV2 [iff]: "F \<in> A co UNIV"
paulson@13797
   148
by (unfold constrains_def, blast)
paulson@13797
   149
paulson@13812
   150
text{*monotonic in 2nd argument*}
paulson@13797
   151
lemma constrains_weaken_R: 
paulson@13805
   152
    "[| F \<in> A co A'; A'<=B' |] ==> F \<in> A co B'"
paulson@13797
   153
by (unfold constrains_def, blast)
paulson@13797
   154
paulson@13812
   155
text{*anti-monotonic in 1st argument*}
paulson@13797
   156
lemma constrains_weaken_L: 
paulson@13805
   157
    "[| F \<in> A co A'; B \<subseteq> A |] ==> F \<in> B co A'"
paulson@13797
   158
by (unfold constrains_def, blast)
paulson@13797
   159
paulson@13797
   160
lemma constrains_weaken: 
paulson@13805
   161
   "[| F \<in> A co A'; B \<subseteq> A; A'<=B' |] ==> F \<in> B co B'"
paulson@13797
   162
by (unfold constrains_def, blast)
paulson@13797
   163
paulson@16184
   164
subsubsection{*Union*}
paulson@13797
   165
paulson@13797
   166
lemma constrains_Un: 
paulson@13805
   167
    "[| F \<in> A co A'; F \<in> B co B' |] ==> F \<in> (A \<union> B) co (A' \<union> B')"
paulson@13797
   168
by (unfold constrains_def, blast)
paulson@13797
   169
paulson@13797
   170
lemma constrains_UN: 
paulson@13805
   171
    "(!!i. i \<in> I ==> F \<in> (A i) co (A' i)) 
paulson@13805
   172
     ==> F \<in> (\<Union>i \<in> I. A i) co (\<Union>i \<in> I. A' i)"
paulson@13797
   173
by (unfold constrains_def, blast)
paulson@13797
   174
paulson@13805
   175
lemma constrains_Un_distrib: "(A \<union> B) co C = (A co C) \<inter> (B co C)"
paulson@13797
   176
by (unfold constrains_def, blast)
paulson@13797
   177
paulson@13805
   178
lemma constrains_UN_distrib: "(\<Union>i \<in> I. A i) co B = (\<Inter>i \<in> I. A i co B)"
paulson@13797
   179
by (unfold constrains_def, blast)
paulson@13797
   180
paulson@13805
   181
lemma constrains_Int_distrib: "C co (A \<inter> B) = (C co A) \<inter> (C co B)"
paulson@13797
   182
by (unfold constrains_def, blast)
paulson@13797
   183
paulson@13805
   184
lemma constrains_INT_distrib: "A co (\<Inter>i \<in> I. B i) = (\<Inter>i \<in> I. A co B i)"
paulson@13797
   185
by (unfold constrains_def, blast)
paulson@13797
   186
paulson@16184
   187
subsubsection{*Intersection*}
paulson@6536
   188
paulson@13797
   189
lemma constrains_Int: 
paulson@13805
   190
    "[| F \<in> A co A'; F \<in> B co B' |] ==> F \<in> (A \<inter> B) co (A' \<inter> B')"
paulson@13797
   191
by (unfold constrains_def, blast)
paulson@13797
   192
paulson@13797
   193
lemma constrains_INT: 
paulson@13805
   194
    "(!!i. i \<in> I ==> F \<in> (A i) co (A' i)) 
paulson@13805
   195
     ==> F \<in> (\<Inter>i \<in> I. A i) co (\<Inter>i \<in> I. A' i)"
paulson@13797
   196
by (unfold constrains_def, blast)
paulson@13797
   197
paulson@13805
   198
lemma constrains_imp_subset: "F \<in> A co A' ==> A \<subseteq> A'"
paulson@13797
   199
by (unfold constrains_def, auto)
paulson@13797
   200
paulson@13812
   201
text{*The reasoning is by subsets since "co" refers to single actions
paulson@13812
   202
  only.  So this rule isn't that useful.*}
paulson@13797
   203
lemma constrains_trans: 
paulson@13805
   204
    "[| F \<in> A co B; F \<in> B co C |] ==> F \<in> A co C"
paulson@13797
   205
by (unfold constrains_def, blast)
paulson@13797
   206
paulson@13797
   207
lemma constrains_cancel: 
paulson@13805
   208
   "[| F \<in> A co (A' \<union> B); F \<in> B co B' |] ==> F \<in> A co (A' \<union> B')"
paulson@13797
   209
by (unfold constrains_def, clarify, blast)
paulson@13797
   210
paulson@13797
   211
paulson@16184
   212
subsubsection{*unless*}
paulson@13797
   213
paulson@13805
   214
lemma unlessI: "F \<in> (A-B) co (A \<union> B) ==> F \<in> A unless B"
paulson@13797
   215
by (unfold unless_def, assumption)
paulson@13797
   216
paulson@13805
   217
lemma unlessD: "F \<in> A unless B ==> F \<in> (A-B) co (A \<union> B)"
paulson@13797
   218
by (unfold unless_def, assumption)
paulson@13797
   219
paulson@13797
   220
paulson@16184
   221
subsubsection{*stable*}
paulson@13797
   222
paulson@13805
   223
lemma stableI: "F \<in> A co A ==> F \<in> stable A"
paulson@13797
   224
by (unfold stable_def, assumption)
paulson@13797
   225
paulson@13805
   226
lemma stableD: "F \<in> stable A ==> F \<in> A co A"
paulson@13797
   227
by (unfold stable_def, assumption)
paulson@13797
   228
paulson@13797
   229
lemma stable_UNIV [simp]: "stable UNIV = UNIV"
paulson@13797
   230
by (unfold stable_def constrains_def, auto)
paulson@13797
   231
paulson@16184
   232
subsubsection{*Union*}
paulson@13797
   233
paulson@13797
   234
lemma stable_Un: 
paulson@13805
   235
    "[| F \<in> stable A; F \<in> stable A' |] ==> F \<in> stable (A \<union> A')"
paulson@13797
   236
paulson@13797
   237
apply (unfold stable_def)
paulson@13797
   238
apply (blast intro: constrains_Un)
paulson@13797
   239
done
paulson@13797
   240
paulson@13797
   241
lemma stable_UN: 
paulson@13805
   242
    "(!!i. i \<in> I ==> F \<in> stable (A i)) ==> F \<in> stable (\<Union>i \<in> I. A i)"
paulson@13797
   243
apply (unfold stable_def)
paulson@13797
   244
apply (blast intro: constrains_UN)
paulson@13797
   245
done
paulson@13797
   246
paulson@13870
   247
lemma stable_Union: 
paulson@13870
   248
    "(!!A. A \<in> X ==> F \<in> stable A) ==> F \<in> stable (\<Union>X)"
paulson@13870
   249
by (unfold stable_def constrains_def, blast)
paulson@13870
   250
paulson@16184
   251
subsubsection{*Intersection*}
paulson@13797
   252
paulson@13797
   253
lemma stable_Int: 
paulson@13805
   254
    "[| F \<in> stable A;  F \<in> stable A' |] ==> F \<in> stable (A \<inter> A')"
paulson@13797
   255
apply (unfold stable_def)
paulson@13797
   256
apply (blast intro: constrains_Int)
paulson@13797
   257
done
paulson@13797
   258
paulson@13797
   259
lemma stable_INT: 
paulson@13805
   260
    "(!!i. i \<in> I ==> F \<in> stable (A i)) ==> F \<in> stable (\<Inter>i \<in> I. A i)"
paulson@13797
   261
apply (unfold stable_def)
paulson@13797
   262
apply (blast intro: constrains_INT)
paulson@13797
   263
done
paulson@13797
   264
paulson@13870
   265
lemma stable_Inter: 
paulson@13870
   266
    "(!!A. A \<in> X ==> F \<in> stable A) ==> F \<in> stable (\<Inter>X)"
paulson@13870
   267
by (unfold stable_def constrains_def, blast)
paulson@13870
   268
paulson@13797
   269
lemma stable_constrains_Un: 
paulson@13805
   270
    "[| F \<in> stable C; F \<in> A co (C \<union> A') |] ==> F \<in> (C \<union> A) co (C \<union> A')"
paulson@13797
   271
by (unfold stable_def constrains_def, blast)
paulson@13797
   272
paulson@13797
   273
lemma stable_constrains_Int: 
paulson@13805
   274
  "[| F \<in> stable C; F \<in>  (C \<inter> A) co A' |] ==> F \<in> (C \<inter> A) co (C \<inter> A')"
paulson@13797
   275
by (unfold stable_def constrains_def, blast)
paulson@13797
   276
paulson@13805
   277
(*[| F \<in> stable C; F \<in>  (C \<inter> A) co A |] ==> F \<in> stable (C \<inter> A) *)
wenzelm@45605
   278
lemmas stable_constrains_stable = stable_constrains_Int[THEN stableI]
paulson@13797
   279
paulson@13797
   280
paulson@16184
   281
subsubsection{*invariant*}
paulson@13797
   282
paulson@13805
   283
lemma invariantI: "[| Init F \<subseteq> A;  F \<in> stable A |] ==> F \<in> invariant A"
paulson@13797
   284
by (simp add: invariant_def)
paulson@13797
   285
paulson@14150
   286
text{*Could also say @{term "invariant A \<inter> invariant B \<subseteq> invariant(A \<inter> B)"}*}
paulson@13797
   287
lemma invariant_Int:
paulson@13805
   288
     "[| F \<in> invariant A;  F \<in> invariant B |] ==> F \<in> invariant (A \<inter> B)"
paulson@13797
   289
by (auto simp add: invariant_def stable_Int)
paulson@13797
   290
paulson@13797
   291
paulson@16184
   292
subsubsection{*increasing*}
paulson@13797
   293
paulson@13797
   294
lemma increasingD: 
paulson@13805
   295
     "F \<in> increasing f ==> F \<in> stable {s. z \<subseteq> f s}"
paulson@13797
   296
by (unfold increasing_def, blast)
paulson@13797
   297
paulson@13805
   298
lemma increasing_constant [iff]: "F \<in> increasing (%s. c)"
paulson@13797
   299
by (unfold increasing_def stable_def, auto)
paulson@13797
   300
paulson@13797
   301
lemma mono_increasing_o: 
paulson@13805
   302
     "mono g ==> increasing f \<subseteq> increasing (g o f)"
paulson@13797
   303
apply (unfold increasing_def stable_def constrains_def, auto)
paulson@13797
   304
apply (blast intro: monoD order_trans)
paulson@13797
   305
done
paulson@13797
   306
paulson@13805
   307
(*Holds by the theorem (Suc m \<subseteq> n) = (m < n) *)
paulson@13797
   308
lemma strict_increasingD: 
paulson@13805
   309
     "!!z::nat. F \<in> increasing f ==> F \<in> stable {s. z < f s}"
paulson@13797
   310
by (simp add: increasing_def Suc_le_eq [symmetric])
paulson@13797
   311
paulson@13797
   312
paulson@13797
   313
(** The Elimination Theorem.  The "free" m has become universally quantified!
paulson@13805
   314
    Should the premise be !!m instead of \<forall>m ?  Would make it harder to use
paulson@13797
   315
    in forward proof. **)
paulson@13797
   316
paulson@13797
   317
lemma elimination: 
paulson@13805
   318
    "[| \<forall>m \<in> M. F \<in> {s. s x = m} co (B m) |]  
paulson@13805
   319
     ==> F \<in> {s. s x \<in> M} co (\<Union>m \<in> M. B m)"
paulson@13797
   320
by (unfold constrains_def, blast)
paulson@13797
   321
paulson@13812
   322
text{*As above, but for the trivial case of a one-variable state, in which the
paulson@13812
   323
  state is identified with its one variable.*}
paulson@13797
   324
lemma elimination_sing: 
paulson@13805
   325
    "(\<forall>m \<in> M. F \<in> {m} co (B m)) ==> F \<in> M co (\<Union>m \<in> M. B m)"
paulson@13797
   326
by (unfold constrains_def, blast)
paulson@13797
   327
paulson@13797
   328
paulson@13797
   329
paulson@16184
   330
subsubsection{*Theoretical Results from Section 6*}
paulson@13797
   331
paulson@13797
   332
lemma constrains_strongest_rhs: 
paulson@13805
   333
    "F \<in> A co (strongest_rhs F A )"
paulson@13797
   334
by (unfold constrains_def strongest_rhs_def, blast)
paulson@13797
   335
paulson@13797
   336
lemma strongest_rhs_is_strongest: 
paulson@13805
   337
    "F \<in> A co B ==> strongest_rhs F A \<subseteq> B"
paulson@13797
   338
by (unfold constrains_def strongest_rhs_def, blast)
paulson@13797
   339
paulson@13797
   340
paulson@16184
   341
subsubsection{*Ad-hoc set-theory rules*}
paulson@13797
   342
paulson@13805
   343
lemma Un_Diff_Diff [simp]: "A \<union> B - (A - B) = B"
paulson@13797
   344
by blast
paulson@13797
   345
paulson@13805
   346
lemma Int_Union_Union: "Union(B) \<inter> A = Union((%C. C \<inter> A)`B)"
paulson@13797
   347
by blast
paulson@13797
   348
wenzelm@24147
   349
text{*Needed for WF reasoning in WFair.thy*}
paulson@13797
   350
paulson@13797
   351
lemma Image_less_than [simp]: "less_than `` {k} = greaterThan k"
paulson@13797
   352
by blast
paulson@13797
   353
paulson@13797
   354
lemma Image_inverse_less_than [simp]: "less_than^-1 `` {k} = lessThan k"
paulson@13797
   355
by blast
paulson@6536
   356
paulson@13812
   357
paulson@13812
   358
subsection{*Partial versus Total Transitions*}
paulson@13812
   359
haftmann@35416
   360
definition totalize_act :: "('a * 'a)set => ('a * 'a)set" where
nipkow@30198
   361
    "totalize_act act == act \<union> Id_on (-(Domain act))"
paulson@13812
   362
haftmann@35416
   363
definition totalize :: "'a program => 'a program" where
paulson@13812
   364
    "totalize F == mk_program (Init F,
wenzelm@32960
   365
                               totalize_act ` Acts F,
wenzelm@32960
   366
                               AllowedActs F)"
paulson@13812
   367
haftmann@35416
   368
definition mk_total_program :: "('a set * ('a * 'a)set set * ('a * 'a)set set)
haftmann@35416
   369
                   => 'a program" where
paulson@13812
   370
    "mk_total_program args == totalize (mk_program args)"
paulson@13812
   371
haftmann@35416
   372
definition all_total :: "'a program => bool" where
paulson@13812
   373
    "all_total F == \<forall>act \<in> Acts F. Domain act = UNIV"
paulson@13812
   374
  
paulson@13812
   375
lemma insert_Id_image_Acts: "f Id = Id ==> insert Id (f`Acts F) = f ` Acts F"
paulson@13812
   376
by (blast intro: sym [THEN image_eqI])
paulson@13812
   377
paulson@13812
   378
paulson@16184
   379
subsubsection{*Basic properties*}
paulson@13812
   380
paulson@13812
   381
lemma totalize_act_Id [simp]: "totalize_act Id = Id"
paulson@13812
   382
by (simp add: totalize_act_def) 
paulson@13812
   383
paulson@13812
   384
lemma Domain_totalize_act [simp]: "Domain (totalize_act act) = UNIV"
paulson@13812
   385
by (auto simp add: totalize_act_def)
paulson@13812
   386
paulson@13812
   387
lemma Init_totalize [simp]: "Init (totalize F) = Init F"
paulson@13812
   388
by (unfold totalize_def, auto)
paulson@13812
   389
paulson@13812
   390
lemma Acts_totalize [simp]: "Acts (totalize F) = (totalize_act ` Acts F)"
paulson@13812
   391
by (simp add: totalize_def insert_Id_image_Acts) 
paulson@13812
   392
paulson@13812
   393
lemma AllowedActs_totalize [simp]: "AllowedActs (totalize F) = AllowedActs F"
paulson@13812
   394
by (simp add: totalize_def)
paulson@13812
   395
paulson@13812
   396
lemma totalize_constrains_iff [simp]: "(totalize F \<in> A co B) = (F \<in> A co B)"
paulson@13812
   397
by (simp add: totalize_def totalize_act_def constrains_def, blast)
paulson@13812
   398
paulson@13812
   399
lemma totalize_stable_iff [simp]: "(totalize F \<in> stable A) = (F \<in> stable A)"
paulson@13812
   400
by (simp add: stable_def)
paulson@13812
   401
paulson@13812
   402
lemma totalize_invariant_iff [simp]:
paulson@13812
   403
     "(totalize F \<in> invariant A) = (F \<in> invariant A)"
paulson@13812
   404
by (simp add: invariant_def)
paulson@13812
   405
paulson@13812
   406
lemma all_total_totalize: "all_total (totalize F)"
paulson@13812
   407
by (simp add: totalize_def all_total_def)
paulson@13812
   408
paulson@13812
   409
lemma Domain_iff_totalize_act: "(Domain act = UNIV) = (totalize_act act = act)"
paulson@13812
   410
by (force simp add: totalize_act_def)
paulson@13812
   411
paulson@13812
   412
lemma all_total_imp_totalize: "all_total F ==> (totalize F = F)"
paulson@13812
   413
apply (simp add: all_total_def totalize_def) 
paulson@13812
   414
apply (rule program_equalityI)
paulson@13812
   415
  apply (simp_all add: Domain_iff_totalize_act image_def)
paulson@13812
   416
done
paulson@13812
   417
paulson@13812
   418
lemma all_total_iff_totalize: "all_total F = (totalize F = F)"
paulson@13812
   419
apply (rule iffI) 
paulson@13812
   420
 apply (erule all_total_imp_totalize) 
paulson@13812
   421
apply (erule subst) 
paulson@13812
   422
apply (rule all_total_totalize) 
paulson@13812
   423
done
paulson@13812
   424
paulson@13812
   425
lemma mk_total_program_constrains_iff [simp]:
paulson@13812
   426
     "(mk_total_program args \<in> A co B) = (mk_program args \<in> A co B)"
paulson@13812
   427
by (simp add: mk_total_program_def)
paulson@13812
   428
paulson@13812
   429
paulson@13812
   430
subsection{*Rules for Lazy Definition Expansion*}
paulson@13812
   431
paulson@13812
   432
text{*They avoid expanding the full program, which is a large expression*}
paulson@13812
   433
paulson@13812
   434
lemma def_prg_Init:
wenzelm@36866
   435
     "F = mk_total_program (init,acts,allowed) ==> Init F = init"
paulson@13812
   436
by (simp add: mk_total_program_def)
paulson@13812
   437
paulson@13812
   438
lemma def_prg_Acts:
wenzelm@36866
   439
     "F = mk_total_program (init,acts,allowed) 
paulson@13812
   440
      ==> Acts F = insert Id (totalize_act ` acts)"
paulson@13812
   441
by (simp add: mk_total_program_def)
paulson@13812
   442
paulson@13812
   443
lemma def_prg_AllowedActs:
wenzelm@36866
   444
     "F = mk_total_program (init,acts,allowed)  
paulson@13812
   445
      ==> AllowedActs F = insert Id allowed"
paulson@13812
   446
by (simp add: mk_total_program_def)
paulson@13812
   447
paulson@13812
   448
text{*An action is expanded if a pair of states is being tested against it*}
paulson@13812
   449
lemma def_act_simp:
wenzelm@36866
   450
     "act = {(s,s'). P s s'} ==> ((s,s') \<in> act) = P s s'"
paulson@13812
   451
by (simp add: mk_total_program_def)
paulson@13812
   452
paulson@13812
   453
text{*A set is expanded only if an element is being tested against it*}
wenzelm@36866
   454
lemma def_set_simp: "A = B ==> (x \<in> A) = (x \<in> B)"
paulson@13812
   455
by (simp add: mk_total_program_def)
paulson@13812
   456
paulson@16184
   457
subsubsection{*Inspectors for type "program"*}
paulson@13812
   458
paulson@13812
   459
lemma Init_total_eq [simp]:
paulson@13812
   460
     "Init (mk_total_program (init,acts,allowed)) = init"
paulson@13812
   461
by (simp add: mk_total_program_def)
paulson@13812
   462
paulson@13812
   463
lemma Acts_total_eq [simp]:
paulson@13812
   464
    "Acts(mk_total_program(init,acts,allowed)) = insert Id (totalize_act`acts)"
paulson@13812
   465
by (simp add: mk_total_program_def)
paulson@13812
   466
paulson@13812
   467
lemma AllowedActs_total_eq [simp]:
paulson@13812
   468
     "AllowedActs (mk_total_program (init,acts,allowed)) = insert Id allowed"
paulson@13812
   469
by (auto simp add: mk_total_program_def)
paulson@13812
   470
paulson@4776
   471
end