author | huffman |
Tue, 08 May 2007 04:56:28 +0200 | |
changeset 22858 | 5ca5d1cce388 |
parent 22856 | eb0e0582092a |
child 22943 | 0b928312ab94 |
permissions | -rw-r--r-- |
12196 | 1 |
(* Title : NthRoot.thy |
2 |
Author : Jacques D. Fleuriot |
|
3 |
Copyright : 1998 University of Cambridge |
|
14477 | 4 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2004 |
12196 | 5 |
*) |
6 |
||
14324 | 7 |
header{*Existence of Nth Root*} |
8 |
||
15131 | 9 |
theory NthRoot |
21865
55cc354fd2d9
moved several theorems; rearranged theory dependencies
huffman
parents:
21404
diff
changeset
|
10 |
imports SEQ Parity |
15131 | 11 |
begin |
14324 | 12 |
|
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
13 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
20898
diff
changeset
|
14 |
root :: "[nat, real] \<Rightarrow> real" where |
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
15 |
"root n x = (THE u. (0 < x \<longrightarrow> 0 < u) \<and> (u ^ n = x))" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
16 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
20898
diff
changeset
|
17 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
20898
diff
changeset
|
18 |
sqrt :: "real \<Rightarrow> real" where |
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
19 |
"sqrt x = root 2 x" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
20 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
21 |
|
14767 | 22 |
text {* |
23 |
Various lemmas needed for this result. We follow the proof given by |
|
24 |
John Lindsay Orr (\texttt{jorr@math.unl.edu}) in his Analysis |
|
25 |
Webnotes available at \url{http://www.math.unl.edu/~webnotes}. |
|
26 |
||
27 |
Lemmas about sequences of reals are used to reach the result. |
|
28 |
*} |
|
14324 | 29 |
|
30 |
lemma lemma_nth_realpow_non_empty: |
|
31 |
"[| (0::real) < a; 0 < n |] ==> \<exists>s. s : {x. x ^ n <= a & 0 < x}" |
|
32 |
apply (case_tac "1 <= a") |
|
14477 | 33 |
apply (rule_tac x = 1 in exI) |
14334 | 34 |
apply (drule_tac [2] linorder_not_le [THEN iffD1]) |
14477 | 35 |
apply (drule_tac [2] less_not_refl2 [THEN not0_implies_Suc], simp) |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14334
diff
changeset
|
36 |
apply (force intro!: realpow_Suc_le_self simp del: realpow_Suc) |
14324 | 37 |
done |
38 |
||
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14334
diff
changeset
|
39 |
text{*Used only just below*} |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14334
diff
changeset
|
40 |
lemma realpow_ge_self2: "[| (1::real) \<le> r; 0 < n |] ==> r \<le> r ^ n" |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14334
diff
changeset
|
41 |
by (insert power_increasing [of 1 n r], simp) |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14334
diff
changeset
|
42 |
|
14324 | 43 |
lemma lemma_nth_realpow_isUb_ex: |
44 |
"[| (0::real) < a; 0 < n |] |
|
45 |
==> \<exists>u. isUb (UNIV::real set) {x. x ^ n <= a & 0 < x} u" |
|
46 |
apply (case_tac "1 <= a") |
|
14477 | 47 |
apply (rule_tac x = a in exI) |
14334 | 48 |
apply (drule_tac [2] linorder_not_le [THEN iffD1]) |
14477 | 49 |
apply (rule_tac [2] x = 1 in exI) |
50 |
apply (rule_tac [!] setleI [THEN isUbI], safe) |
|
14324 | 51 |
apply (simp_all (no_asm)) |
52 |
apply (rule_tac [!] ccontr) |
|
14334 | 53 |
apply (drule_tac [!] linorder_not_le [THEN iffD1]) |
14477 | 54 |
apply (drule realpow_ge_self2, assumption) |
55 |
apply (drule_tac n = n in realpow_less) |
|
14324 | 56 |
apply (assumption+) |
14477 | 57 |
apply (drule real_le_trans, assumption) |
58 |
apply (drule_tac y = "y ^ n" in order_less_le_trans, assumption, simp) |
|
59 |
apply (drule_tac n = n in zero_less_one [THEN realpow_less], auto) |
|
14324 | 60 |
done |
61 |
||
62 |
lemma nth_realpow_isLub_ex: |
|
63 |
"[| (0::real) < a; 0 < n |] |
|
64 |
==> \<exists>u. isLub (UNIV::real set) {x. x ^ n <= a & 0 < x} u" |
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14355
diff
changeset
|
65 |
by (blast intro: lemma_nth_realpow_isUb_ex lemma_nth_realpow_non_empty reals_complete) |
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14355
diff
changeset
|
66 |
|
14324 | 67 |
|
68 |
subsection{*First Half -- Lemmas First*} |
|
69 |
||
70 |
lemma lemma_nth_realpow_seq: |
|
71 |
"isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u |
|
72 |
==> u + inverse(real (Suc k)) ~: {x. x ^ n <= a & 0 < x}" |
|
14477 | 73 |
apply (safe, drule isLubD2, blast) |
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14355
diff
changeset
|
74 |
apply (simp add: linorder_not_less [symmetric]) |
14324 | 75 |
done |
76 |
||
77 |
lemma lemma_nth_realpow_isLub_gt_zero: |
|
78 |
"[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u; |
|
79 |
0 < a; 0 < n |] ==> 0 < u" |
|
14477 | 80 |
apply (drule lemma_nth_realpow_non_empty, auto) |
81 |
apply (drule_tac y = s in isLub_isUb [THEN isUbD]) |
|
14324 | 82 |
apply (auto intro: order_less_le_trans) |
83 |
done |
|
84 |
||
85 |
lemma lemma_nth_realpow_isLub_ge: |
|
86 |
"[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u; |
|
87 |
0 < a; 0 < n |] ==> ALL k. a <= (u + inverse(real (Suc k))) ^ n" |
|
14477 | 88 |
apply safe |
89 |
apply (frule lemma_nth_realpow_seq, safe) |
|
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
14767
diff
changeset
|
90 |
apply (auto elim: order_less_asym simp add: linorder_not_less [symmetric] |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
14767
diff
changeset
|
91 |
iff: real_0_less_add_iff) --{*legacy iff rule!*} |
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14355
diff
changeset
|
92 |
apply (simp add: linorder_not_less) |
14324 | 93 |
apply (rule order_less_trans [of _ 0]) |
14325 | 94 |
apply (auto intro: lemma_nth_realpow_isLub_gt_zero) |
14324 | 95 |
done |
96 |
||
97 |
text{*First result we want*} |
|
98 |
lemma realpow_nth_ge: |
|
99 |
"[| (0::real) < a; 0 < n; |
|
100 |
isLub (UNIV::real set) |
|
101 |
{x. x ^ n <= a & 0 < x} u |] ==> a <= u ^ n" |
|
14477 | 102 |
apply (frule lemma_nth_realpow_isLub_ge, safe) |
14324 | 103 |
apply (rule LIMSEQ_inverse_real_of_nat_add [THEN LIMSEQ_pow, THEN LIMSEQ_le_const]) |
14334 | 104 |
apply (auto simp add: real_of_nat_def) |
14324 | 105 |
done |
106 |
||
107 |
subsection{*Second Half*} |
|
108 |
||
109 |
lemma less_isLub_not_isUb: |
|
110 |
"[| isLub (UNIV::real set) S u; x < u |] |
|
111 |
==> ~ isUb (UNIV::real set) S x" |
|
14477 | 112 |
apply safe |
113 |
apply (drule isLub_le_isUb, assumption) |
|
114 |
apply (drule order_less_le_trans, auto) |
|
14324 | 115 |
done |
116 |
||
117 |
lemma not_isUb_less_ex: |
|
118 |
"~ isUb (UNIV::real set) S u ==> \<exists>x \<in> S. u < x" |
|
18585 | 119 |
apply (rule ccontr, erule contrapos_np) |
14324 | 120 |
apply (rule setleI [THEN isUbI]) |
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14355
diff
changeset
|
121 |
apply (auto simp add: linorder_not_less [symmetric]) |
14324 | 122 |
done |
123 |
||
14325 | 124 |
lemma real_mult_less_self: "0 < r ==> r * (1 + -inverse(real (Suc n))) < r" |
14334 | 125 |
apply (simp (no_asm) add: right_distrib) |
126 |
apply (rule add_less_cancel_left [of "-r", THEN iffD1]) |
|
16775
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents:
15140
diff
changeset
|
127 |
apply (auto intro: mult_pos_pos |
14334 | 128 |
simp add: add_assoc [symmetric] neg_less_0_iff_less) |
14325 | 129 |
done |
130 |
||
22630
2a9b64b26612
move lemma real_of_nat_inverse_le_iff from NSA.thy to NthRoot.thy
huffman
parents:
22443
diff
changeset
|
131 |
lemma real_of_nat_inverse_le_iff: |
2a9b64b26612
move lemma real_of_nat_inverse_le_iff from NSA.thy to NthRoot.thy
huffman
parents:
22443
diff
changeset
|
132 |
"(inverse (real(Suc n)) \<le> r) = (1 \<le> r * real(Suc n))" |
2a9b64b26612
move lemma real_of_nat_inverse_le_iff from NSA.thy to NthRoot.thy
huffman
parents:
22443
diff
changeset
|
133 |
by (simp add: inverse_eq_divide pos_divide_le_eq) |
2a9b64b26612
move lemma real_of_nat_inverse_le_iff from NSA.thy to NthRoot.thy
huffman
parents:
22443
diff
changeset
|
134 |
|
14325 | 135 |
lemma real_mult_add_one_minus_ge_zero: |
136 |
"0 < r ==> 0 <= r*(1 + -inverse(real (Suc n)))" |
|
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
14767
diff
changeset
|
137 |
by (simp add: zero_le_mult_iff real_of_nat_inverse_le_iff real_0_le_add_iff) |
14325 | 138 |
|
14324 | 139 |
lemma lemma_nth_realpow_isLub_le: |
140 |
"[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u; |
|
14325 | 141 |
0 < a; 0 < n |] ==> ALL k. (u*(1 + -inverse(real (Suc k)))) ^ n <= a" |
14477 | 142 |
apply safe |
14324 | 143 |
apply (frule less_isLub_not_isUb [THEN not_isUb_less_ex]) |
14477 | 144 |
apply (rule_tac n = k in real_mult_less_self) |
145 |
apply (blast intro: lemma_nth_realpow_isLub_gt_zero, safe) |
|
146 |
apply (drule_tac n = k in |
|
147 |
lemma_nth_realpow_isLub_gt_zero [THEN real_mult_add_one_minus_ge_zero], assumption+) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14334
diff
changeset
|
148 |
apply (blast intro: order_trans order_less_imp_le power_mono) |
14324 | 149 |
done |
150 |
||
151 |
text{*Second result we want*} |
|
152 |
lemma realpow_nth_le: |
|
153 |
"[| (0::real) < a; 0 < n; |
|
154 |
isLub (UNIV::real set) |
|
155 |
{x. x ^ n <= a & 0 < x} u |] ==> u ^ n <= a" |
|
14477 | 156 |
apply (frule lemma_nth_realpow_isLub_le, safe) |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14334
diff
changeset
|
157 |
apply (rule LIMSEQ_inverse_real_of_nat_add_minus_mult |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14334
diff
changeset
|
158 |
[THEN LIMSEQ_pow, THEN LIMSEQ_le_const2]) |
14334 | 159 |
apply (auto simp add: real_of_nat_def) |
14324 | 160 |
done |
161 |
||
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14334
diff
changeset
|
162 |
text{*The theorem at last!*} |
14324 | 163 |
lemma realpow_nth: "[| (0::real) < a; 0 < n |] ==> \<exists>r. r ^ n = a" |
14477 | 164 |
apply (frule nth_realpow_isLub_ex, auto) |
165 |
apply (auto intro: realpow_nth_le realpow_nth_ge order_antisym) |
|
14324 | 166 |
done |
167 |
||
168 |
(* positive only *) |
|
169 |
lemma realpow_pos_nth: "[| (0::real) < a; 0 < n |] ==> \<exists>r. 0 < r & r ^ n = a" |
|
14477 | 170 |
apply (frule nth_realpow_isLub_ex, auto) |
171 |
apply (auto intro: realpow_nth_le realpow_nth_ge order_antisym lemma_nth_realpow_isLub_gt_zero) |
|
14324 | 172 |
done |
173 |
||
174 |
lemma realpow_pos_nth2: "(0::real) < a ==> \<exists>r. 0 < r & r ^ Suc n = a" |
|
14477 | 175 |
by (blast intro: realpow_pos_nth) |
14324 | 176 |
|
177 |
(* uniqueness of nth positive root *) |
|
178 |
lemma realpow_pos_nth_unique: |
|
179 |
"[| (0::real) < a; 0 < n |] ==> EX! r. 0 < r & r ^ n = a" |
|
180 |
apply (auto intro!: realpow_pos_nth) |
|
14477 | 181 |
apply (cut_tac x = r and y = y in linorder_less_linear, auto) |
182 |
apply (drule_tac x = r in realpow_less) |
|
183 |
apply (drule_tac [4] x = y in realpow_less, auto) |
|
14324 | 184 |
done |
185 |
||
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
186 |
subsection {* Nth Root *} |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
187 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
188 |
lemma real_root_zero [simp]: "root (Suc n) 0 = 0" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
189 |
apply (simp add: root_def) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
190 |
apply (safe intro!: the_equality power_0_Suc elim!: realpow_zero_zero) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
191 |
done |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
192 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
193 |
lemma real_root_pow_pos: |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
194 |
"0 < x ==> (root (Suc n) x) ^ (Suc n) = x" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
195 |
apply (simp add: root_def del: realpow_Suc) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
196 |
apply (drule_tac n="Suc n" in realpow_pos_nth_unique, simp) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
197 |
apply (erule theI' [THEN conjunct2]) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
198 |
done |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
199 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
200 |
lemma real_root_pow_pos2: "0 \<le> x ==> (root (Suc n) x) ^ (Suc n) = x" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
201 |
by (auto dest!: real_le_imp_less_or_eq dest: real_root_pow_pos) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
202 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
203 |
lemma real_root_pos: |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
204 |
"0 < x ==> root(Suc n) (x ^ (Suc n)) = x" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
205 |
apply (simp add: root_def) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
206 |
apply (rule the_equality) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
207 |
apply (frule_tac [2] n = n in zero_less_power) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
208 |
apply (auto simp add: zero_less_mult_iff) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
209 |
apply (rule_tac x = u and y = x in linorder_cases) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
210 |
apply (drule_tac n1 = n and x = u in zero_less_Suc [THEN [3] realpow_less]) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
211 |
apply (drule_tac [4] n1 = n and x = x in zero_less_Suc [THEN [3] realpow_less]) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
212 |
apply (auto) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
213 |
done |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
214 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
215 |
lemma real_root_pos2: "0 \<le> x ==> root(Suc n) (x ^ (Suc n)) = x" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
216 |
by (auto dest!: real_le_imp_less_or_eq real_root_pos) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
217 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
218 |
lemma real_root_gt_zero: |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
219 |
"0 < x ==> 0 < root (Suc n) x" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
220 |
apply (simp add: root_def del: realpow_Suc) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
221 |
apply (drule_tac n="Suc n" in realpow_pos_nth_unique, simp) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
222 |
apply (erule theI' [THEN conjunct1]) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
223 |
done |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
224 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
225 |
lemma real_root_pos_pos: |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
226 |
"0 < x ==> 0 \<le> root(Suc n) x" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
227 |
by (rule real_root_gt_zero [THEN order_less_imp_le]) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
228 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
229 |
lemma real_root_pos_pos_le: "0 \<le> x ==> 0 \<le> root(Suc n) x" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
230 |
by (auto simp add: order_le_less real_root_gt_zero) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
231 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
232 |
lemma real_root_one [simp]: "root (Suc n) 1 = 1" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
233 |
apply (simp add: root_def) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
234 |
apply (rule the_equality, auto) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
235 |
apply (rule ccontr) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
236 |
apply (rule_tac x = u and y = 1 in linorder_cases) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
237 |
apply (drule_tac n = n in realpow_Suc_less_one) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
238 |
apply (drule_tac [4] n = n in power_gt1_lemma) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
239 |
apply (auto) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
240 |
done |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
241 |
|
22721
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
242 |
lemma real_root_less_mono: |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
243 |
"[| 0 \<le> x; x < y |] ==> root(Suc n) x < root(Suc n) y" |
22856 | 244 |
apply (subgoal_tac "0 \<le> y") |
245 |
apply (rule_tac n="Suc n" in power_less_imp_less_base) |
|
246 |
apply (simp only: real_root_pow_pos2) |
|
247 |
apply (erule real_root_pos_pos_le) |
|
248 |
apply (erule order_trans) |
|
249 |
apply (erule order_less_imp_le) |
|
22721
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
250 |
done |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
251 |
|
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
252 |
lemma real_root_le_mono: |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
253 |
"[| 0 \<le> x; x \<le> y |] ==> root(Suc n) x \<le> root(Suc n) y" |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
254 |
apply (drule_tac y = y in order_le_imp_less_or_eq) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
255 |
apply (auto dest: real_root_less_mono intro: order_less_imp_le) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
256 |
done |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
257 |
|
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
258 |
lemma real_root_less_iff [simp]: |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
259 |
"[| 0 \<le> x; 0 \<le> y |] ==> (root(Suc n) x < root(Suc n) y) = (x < y)" |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
260 |
apply (auto intro: real_root_less_mono) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
261 |
apply (rule ccontr, drule linorder_not_less [THEN iffD1]) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
262 |
apply (drule_tac x = y and n = n in real_root_le_mono, auto) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
263 |
done |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
264 |
|
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
265 |
lemma real_root_le_iff [simp]: |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
266 |
"[| 0 \<le> x; 0 \<le> y |] ==> (root(Suc n) x \<le> root(Suc n) y) = (x \<le> y)" |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
267 |
apply (auto intro: real_root_le_mono) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
268 |
apply (simp (no_asm) add: linorder_not_less [symmetric]) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
269 |
apply auto |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
270 |
apply (drule_tac x = y and n = n in real_root_less_mono, auto) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
271 |
done |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
272 |
|
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
273 |
lemma real_root_eq_iff [simp]: |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
274 |
"[| 0 \<le> x; 0 \<le> y |] ==> (root(Suc n) x = root(Suc n) y) = (x = y)" |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
275 |
apply (auto intro!: order_antisym [where 'a = real]) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
276 |
apply (rule_tac n1 = n in real_root_le_iff [THEN iffD1]) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
277 |
apply (rule_tac [4] n1 = n in real_root_le_iff [THEN iffD1], auto) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
278 |
done |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
279 |
|
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
280 |
lemma real_root_pos_unique: |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
281 |
"[| 0 \<le> x; 0 \<le> y; y ^ (Suc n) = x |] ==> root (Suc n) x = y" |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
282 |
by (auto dest: real_root_pos2 simp del: realpow_Suc) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
283 |
|
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
284 |
lemma real_root_mult: |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
285 |
"[| 0 \<le> x; 0 \<le> y |] |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
286 |
==> root(Suc n) (x * y) = root(Suc n) x * root(Suc n) y" |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
287 |
apply (rule real_root_pos_unique) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
288 |
apply (auto intro!: real_root_pos_pos_le |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
289 |
simp add: power_mult_distrib zero_le_mult_iff real_root_pow_pos2 |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
290 |
simp del: realpow_Suc) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
291 |
done |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
292 |
|
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
293 |
lemma real_root_inverse: |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
294 |
"0 \<le> x ==> (root(Suc n) (inverse x) = inverse(root(Suc n) x))" |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
295 |
apply (rule real_root_pos_unique) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
296 |
apply (auto intro: real_root_pos_pos_le |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
297 |
simp add: power_inverse [symmetric] real_root_pow_pos2 |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
298 |
simp del: realpow_Suc) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
299 |
done |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
300 |
|
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
301 |
lemma real_root_divide: |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
302 |
"[| 0 \<le> x; 0 \<le> y |] |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
303 |
==> (root(Suc n) (x / y) = root(Suc n) x / root(Suc n) y)" |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
304 |
apply (simp add: divide_inverse) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
305 |
apply (auto simp add: real_root_mult real_root_inverse) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
306 |
done |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
307 |
|
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
308 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
309 |
subsection{*Square Root*} |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
310 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
311 |
text{*needed because 2 is a binary numeral!*} |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
312 |
lemma root_2_eq [simp]: "root 2 = root (Suc (Suc 0))" |
22856 | 313 |
by (simp only: numeral_2_eq_2) |
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
314 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
315 |
lemma real_sqrt_zero [simp]: "sqrt 0 = 0" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
316 |
by (simp add: sqrt_def) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
317 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
318 |
lemma real_sqrt_one [simp]: "sqrt 1 = 1" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
319 |
by (simp add: sqrt_def) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
320 |
|
22856 | 321 |
lemma real_sqrt_pow2 [simp]: "0 \<le> x ==> (sqrt x)\<twosuperior> = x" |
322 |
unfolding sqrt_def numeral_2_eq_2 |
|
323 |
by (rule real_root_pow_pos2) |
|
324 |
||
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
325 |
lemma real_sqrt_pow2_iff [iff]: "((sqrt x)\<twosuperior> = x) = (0 \<le> x)" |
22856 | 326 |
apply (rule iffI) |
327 |
apply (erule subst) |
|
328 |
apply (rule zero_le_power2) |
|
329 |
apply (erule real_sqrt_pow2) |
|
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
330 |
done |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
331 |
|
22856 | 332 |
lemma real_sqrt_abs_abs [simp]: "(sqrt \<bar>x\<bar>)\<twosuperior> = \<bar>x\<bar>" (* TODO: delete *) |
333 |
by simp |
|
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
334 |
|
22856 | 335 |
lemma sqrt_eqI: "\<lbrakk>r\<twosuperior> = a; 0 \<le> r\<rbrakk> \<Longrightarrow> sqrt a = r" |
336 |
unfolding sqrt_def numeral_2_eq_2 |
|
337 |
by (erule subst, erule real_root_pos2) |
|
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
338 |
|
22856 | 339 |
lemma real_sqrt_abs [simp]: "sqrt (x\<twosuperior>) = \<bar>x\<bar>" |
340 |
apply (rule sqrt_eqI) |
|
341 |
apply (rule power2_abs) |
|
342 |
apply (rule abs_ge_zero) |
|
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
343 |
done |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
344 |
|
22856 | 345 |
lemma real_pow_sqrt_eq_sqrt_pow: (* TODO: delete *) |
346 |
"0 \<le> x ==> (sqrt x)\<twosuperior> = sqrt(x\<twosuperior>)" |
|
347 |
by simp |
|
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
348 |
|
22856 | 349 |
lemma real_pow_sqrt_eq_sqrt_abs_pow2: (* TODO: delete *) |
350 |
"0 \<le> x ==> (sqrt x)\<twosuperior> = sqrt(\<bar>x\<bar> ^ 2)" |
|
351 |
by simp |
|
352 |
||
353 |
lemma real_sqrt_pow_abs: "0 \<le> x ==> (sqrt x)\<twosuperior> = \<bar>x\<bar>" (* TODO: delete *) |
|
354 |
by simp |
|
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
355 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
356 |
lemma not_real_square_gt_zero [simp]: "(~ (0::real) < x*x) = (x = 0)" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
357 |
apply auto |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
358 |
apply (cut_tac x = x and y = 0 in linorder_less_linear) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
359 |
apply (simp add: zero_less_mult_iff) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
360 |
done |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
361 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
362 |
lemma real_sqrt_gt_zero: "0 < x ==> 0 < sqrt(x)" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
363 |
by (simp add: sqrt_def real_root_gt_zero) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
364 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
365 |
lemma real_sqrt_ge_zero: "0 \<le> x ==> 0 \<le> sqrt(x)" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
366 |
by (auto intro: real_sqrt_gt_zero simp add: order_le_less) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
367 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
368 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
369 |
(*we need to prove something like this: |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
370 |
lemma "[|r ^ n = a; 0<n; 0 < a \<longrightarrow> 0 < r|] ==> root n a = r" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
371 |
apply (case_tac n, simp) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
372 |
apply (simp add: root_def) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
373 |
apply (rule someI2 [of _ r], safe) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
374 |
apply (auto simp del: realpow_Suc dest: power_inject_base) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
375 |
*) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
376 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
377 |
lemma real_sqrt_mult_distrib: |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
378 |
"[| 0 \<le> x; 0 \<le> y |] ==> sqrt(x*y) = sqrt(x) * sqrt(y)" |
22856 | 379 |
unfolding sqrt_def numeral_2_eq_2 |
380 |
by (rule real_root_mult) |
|
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
381 |
|
22856 | 382 |
lemmas real_sqrt_mult_distrib2 = real_sqrt_mult_distrib |
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
383 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
384 |
lemma real_sqrt_abs2 [simp]: "sqrt(x*x) = \<bar>x\<bar>" |
22856 | 385 |
apply (subst power2_eq_square [symmetric]) |
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
386 |
apply (rule real_sqrt_abs) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
387 |
done |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
388 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
389 |
lemma real_sqrt_pow2_gt_zero: "0 < x ==> 0 < (sqrt x)\<twosuperior>" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
390 |
by simp |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
391 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
392 |
lemma real_sqrt_not_eq_zero: "0 < x ==> sqrt x \<noteq> 0" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
393 |
apply (frule real_sqrt_pow2_gt_zero) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
394 |
apply (auto simp add: numeral_2_eq_2) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
395 |
done |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
396 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
397 |
lemma real_inv_sqrt_pow2: "0 < x ==> inverse (sqrt(x)) ^ 2 = inverse x" |
22856 | 398 |
by (simp add: power_inverse [symmetric]) |
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
399 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
400 |
lemma real_sqrt_eq_zero_cancel: "[| 0 \<le> x; sqrt(x) = 0|] ==> x = 0" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
401 |
apply (drule real_le_imp_less_or_eq) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
402 |
apply (auto dest: real_sqrt_not_eq_zero) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
403 |
done |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
404 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
405 |
lemma real_sqrt_eq_zero_cancel_iff [simp]: "0 \<le> x ==> ((sqrt x = 0) = (x=0))" |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
406 |
by (auto simp add: real_sqrt_eq_zero_cancel) |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
407 |
|
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
408 |
lemma real_sqrt_ge_one: "1 \<le> x ==> 1 \<le> sqrt x" |
22856 | 409 |
apply (rule power2_le_imp_le, simp) |
410 |
apply (simp add: real_sqrt_ge_zero) |
|
20687
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
411 |
done |
fedb901be392
move root and sqrt stuff from Transcendental to NthRoot
huffman
parents:
20515
diff
changeset
|
412 |
|
22443 | 413 |
lemma sqrt_divide_self_eq: |
414 |
assumes nneg: "0 \<le> x" |
|
415 |
shows "sqrt x / x = inverse (sqrt x)" |
|
416 |
proof cases |
|
417 |
assume "x=0" thus ?thesis by simp |
|
418 |
next |
|
419 |
assume nz: "x\<noteq>0" |
|
420 |
hence pos: "0<x" using nneg by arith |
|
421 |
show ?thesis |
|
422 |
proof (rule right_inverse_eq [THEN iffD1, THEN sym]) |
|
423 |
show "sqrt x / x \<noteq> 0" by (simp add: divide_inverse nneg nz) |
|
424 |
show "inverse (sqrt x) / (sqrt x / x) = 1" |
|
425 |
by (simp add: divide_inverse mult_assoc [symmetric] |
|
426 |
power2_eq_square [symmetric] real_inv_sqrt_pow2 pos nz) |
|
427 |
qed |
|
428 |
qed |
|
429 |
||
22721
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
430 |
|
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
431 |
lemma real_sqrt_less_mono: "[| 0 \<le> x; x < y |] ==> sqrt(x) < sqrt(y)" |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
432 |
by (simp add: sqrt_def) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
433 |
|
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
434 |
lemma real_sqrt_le_mono: "[| 0 \<le> x; x \<le> y |] ==> sqrt(x) \<le> sqrt(y)" |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
435 |
by (simp add: sqrt_def) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
436 |
|
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
437 |
lemma real_sqrt_less_iff [simp]: |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
438 |
"[| 0 \<le> x; 0 \<le> y |] ==> (sqrt(x) < sqrt(y)) = (x < y)" |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
439 |
by (simp add: sqrt_def) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
440 |
|
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
441 |
lemma real_sqrt_le_iff [simp]: |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
442 |
"[| 0 \<le> x; 0 \<le> y |] ==> (sqrt(x) \<le> sqrt(y)) = (x \<le> y)" |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
443 |
by (simp add: sqrt_def) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
444 |
|
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
445 |
lemma real_sqrt_eq_iff [simp]: |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
446 |
"[| 0 \<le> x; 0 \<le> y |] ==> (sqrt(x) = sqrt(y)) = (x = y)" |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
447 |
by (simp add: sqrt_def) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
448 |
|
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
449 |
lemma real_divide_square_eq [simp]: "(((r::real) * a) / (r * r)) = a / r" |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
450 |
apply (simp add: divide_inverse) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
451 |
apply (case_tac "r=0") |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
452 |
apply (auto simp add: mult_ac) |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
453 |
done |
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
454 |
|
22856 | 455 |
subsection {* Square Root of Sum of Squares *} |
456 |
||
457 |
lemma "(sqrt (x\<twosuperior> + y\<twosuperior>))\<twosuperior> = x\<twosuperior> + y\<twosuperior>" |
|
458 |
by (rule realpow_two_le_add_order [THEN real_sqrt_pow2_iff [THEN iffD2]]) |
|
459 |
||
460 |
lemma real_sqrt_mult_self_sum_ge_zero [simp]: "0 \<le> sqrt(x*x + y*y)" |
|
461 |
by (rule real_sqrt_ge_zero [OF real_mult_self_sum_ge_zero]) |
|
462 |
||
463 |
lemma real_sqrt_sum_squares_ge_zero [simp]: "0 \<le> sqrt (x\<twosuperior> + y\<twosuperior>)" |
|
464 |
by (auto intro!: real_sqrt_ge_zero) |
|
465 |
||
466 |
lemma real_sqrt_sum_squares_mult_ge_zero [simp]: |
|
467 |
"0 \<le> sqrt ((x\<twosuperior> + y\<twosuperior>)*(xa\<twosuperior> + ya\<twosuperior>))" |
|
468 |
by (auto intro!: real_sqrt_ge_zero simp add: zero_le_mult_iff) |
|
469 |
||
470 |
lemma real_sqrt_sum_squares_mult_squared_eq [simp]: |
|
471 |
"sqrt ((x\<twosuperior> + y\<twosuperior>) * (xa\<twosuperior> + ya\<twosuperior>)) ^ 2 = (x\<twosuperior> + y\<twosuperior>) * (xa\<twosuperior> + ya\<twosuperior>)" |
|
472 |
by (auto simp add: zero_le_mult_iff simp del: realpow_Suc) |
|
473 |
||
474 |
lemma real_sqrt_sum_squares_ge1 [simp]: "x \<le> sqrt(x\<twosuperior> + y\<twosuperior>)" |
|
475 |
by (rule power2_le_imp_le, simp_all) |
|
476 |
||
477 |
lemma real_sqrt_sum_squares_ge2 [simp]: "y \<le> sqrt(x\<twosuperior> + y\<twosuperior>)" |
|
478 |
by (rule power2_le_imp_le, simp_all) |
|
479 |
||
480 |
lemma real_sqrt_sos_less_one_iff [simp]: "(sqrt(x\<twosuperior> + y\<twosuperior>) < 1) = (x\<twosuperior> + y\<twosuperior> < 1)" |
|
481 |
apply (subst real_sqrt_one [symmetric]) |
|
482 |
apply (rule real_sqrt_less_iff, auto) |
|
483 |
done |
|
484 |
||
485 |
lemma real_sqrt_sos_eq_one_iff [simp]: "(sqrt(x\<twosuperior> + y\<twosuperior>) = 1) = (x\<twosuperior> + y\<twosuperior> = 1)" |
|
486 |
apply (subst real_sqrt_one [symmetric]) |
|
487 |
apply (rule real_sqrt_eq_iff, auto) |
|
488 |
done |
|
22721
d9be18bd7a28
moved root and sqrt lemmas from Transcendental.thy to NthRoot.thy
huffman
parents:
22630
diff
changeset
|
489 |
|
22858 | 490 |
lemma power2_sum: |
491 |
fixes x y :: "'a::{number_ring,recpower}" |
|
492 |
shows "(x + y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> + 2 * x * y" |
|
493 |
by (simp add: left_distrib right_distrib power2_eq_square) |
|
494 |
||
495 |
lemma power2_diff: |
|
496 |
fixes x y :: "'a::{number_ring,recpower}" |
|
497 |
shows "(x - y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> - 2 * x * y" |
|
498 |
by (simp add: left_diff_distrib right_diff_distrib power2_eq_square) |
|
499 |
||
500 |
lemma real_sqrt_sum_squares_triangle_ineq: |
|
501 |
"sqrt ((a + c)\<twosuperior> + (b + d)\<twosuperior>) \<le> sqrt (a\<twosuperior> + b\<twosuperior>) + sqrt (c\<twosuperior> + d\<twosuperior>)" |
|
502 |
apply (rule power2_le_imp_le, simp) |
|
503 |
apply (simp add: power2_sum) |
|
504 |
apply (simp only: mult_assoc right_distrib [symmetric]) |
|
505 |
apply (rule mult_left_mono) |
|
506 |
apply (rule power2_le_imp_le) |
|
507 |
apply (simp add: power2_sum power_mult_distrib) |
|
508 |
apply (simp add: ring_distrib) |
|
509 |
apply (subgoal_tac "0 \<le> b\<twosuperior> * c\<twosuperior> + a\<twosuperior> * d\<twosuperior> - 2 * (a * c) * (b * d)", simp) |
|
510 |
apply (rule_tac b="(a * d - b * c)\<twosuperior>" in ord_le_eq_trans) |
|
511 |
apply (rule zero_le_power2) |
|
512 |
apply (simp add: power2_diff power_mult_distrib) |
|
513 |
apply (simp add: mult_nonneg_nonneg) |
|
514 |
apply simp |
|
515 |
apply (simp add: add_increasing) |
|
516 |
done |
|
517 |
||
14324 | 518 |
end |