author  wenzelm 
Fri, 02 Jun 2006 18:15:38 +0200  
changeset 19761  5cd82054c2c6 
parent 17782  b3846df9d643 
child 21210  c17fd2df4e9e 
permissions  rwrr 
17441  1 
(* Title: CTT/CTT.thy 
0  2 
ID: $Id$ 
3 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory 

4 
Copyright 1993 University of Cambridge 

5 
*) 

6 

17441  7 
header {* Constructive Type Theory *} 
0  8 

17441  9 
theory CTT 
10 
imports Pure 

19761  11 
uses "~~/src/Provers/typedsimp.ML" ("rew.ML") 
17441  12 
begin 
13 

14 
typedecl i 

15 
typedecl t 

16 
typedecl o 

0  17 

18 
consts 

19 
(*Types*) 

17441  20 
F :: "t" 
21 
T :: "t" (*F is empty, T contains one element*) 

0  22 
contr :: "i=>i" 
23 
tt :: "i" 

24 
(*Natural numbers*) 

25 
N :: "t" 

26 
succ :: "i=>i" 

27 
rec :: "[i, i, [i,i]=>i] => i" 

28 
(*Unions*) 

17441  29 
inl :: "i=>i" 
30 
inr :: "i=>i" 

0  31 
when :: "[i, i=>i, i=>i]=>i" 
32 
(*General Sum and Binary Product*) 

33 
Sum :: "[t, i=>t]=>t" 

17441  34 
fst :: "i=>i" 
35 
snd :: "i=>i" 

0  36 
split :: "[i, [i,i]=>i] =>i" 
37 
(*General Product and Function Space*) 

38 
Prod :: "[t, i=>t]=>t" 

14765  39 
(*Types*) 
40 
"+" :: "[t,t]=>t" (infixr 40) 

0  41 
(*Equality type*) 
42 
Eq :: "[t,i,i]=>t" 

43 
eq :: "i" 

44 
(*Judgements*) 

45 
Type :: "t => prop" ("(_ type)" [10] 5) 

10467
e6e7205e9e91
xsymbol support for Pi, Sigma, >, : (membership)
paulson
parents:
3837
diff
changeset

46 
Eqtype :: "[t,t]=>prop" ("(_ =/ _)" [10,10] 5) 
0  47 
Elem :: "[i, t]=>prop" ("(_ /: _)" [10,10] 5) 
10467
e6e7205e9e91
xsymbol support for Pi, Sigma, >, : (membership)
paulson
parents:
3837
diff
changeset

48 
Eqelem :: "[i,i,t]=>prop" ("(_ =/ _ :/ _)" [10,10,10] 5) 
0  49 
Reduce :: "[i,i]=>prop" ("Reduce[_,_]") 
50 
(*Types*) 

14765  51 

0  52 
(*Functions*) 
53 
lambda :: "(i => i) => i" (binder "lam " 10) 

54 
"`" :: "[i,i]=>i" (infixl 60) 

55 
(*Natural numbers*) 

56 
"0" :: "i" ("0") 

57 
(*Pairing*) 

58 
pair :: "[i,i]=>i" ("(1<_,/_>)") 

59 

14765  60 
syntax 
19761  61 
"_PROD" :: "[idt,t,t]=>t" ("(3PROD _:_./ _)" 10) 
62 
"_SUM" :: "[idt,t,t]=>t" ("(3SUM _:_./ _)" 10) 

0  63 
translations 
19761  64 
"PROD x:A. B" == "Prod(A, %x. B)" 
65 
"SUM x:A. B" == "Sum(A, %x. B)" 

66 

67 
abbreviation 

68 
Arrow :: "[t,t]=>t" (infixr ">" 30) 

69 
"A > B == PROD _:A. B" 

70 
Times :: "[t,t]=>t" (infixr "*" 50) 

71 
"A * B == SUM _:A. B" 

0  72 

19761  73 
const_syntax (xsymbols) 
74 
Elem ("(_ /\<in> _)" [10,10] 5) 

75 
Eqelem ("(2_ =/ _ \<in>/ _)" [10,10,10] 5) 

76 
Arrow (infixr "\<longrightarrow>" 30) 

77 
Times (infixr "\<times>" 50) 

17441  78 

19761  79 
const_syntax (HTML output) 
80 
Elem ("(_ /\<in> _)" [10,10] 5) 

81 
Eqelem ("(2_ =/ _ \<in>/ _)" [10,10,10] 5) 

82 
Times (infixr "\<times>" 50) 

17441  83 

10467
e6e7205e9e91
xsymbol support for Pi, Sigma, >, : (membership)
paulson
parents:
3837
diff
changeset

84 
syntax (xsymbols) 
17441  85 
"@SUM" :: "[idt,t,t] => t" ("(3\<Sigma> _\<in>_./ _)" 10) 
86 
"@PROD" :: "[idt,t,t] => t" ("(3\<Pi> _\<in>_./ _)" 10) 

87 
"lam " :: "[idts, i] => i" ("(3\<lambda>\<lambda>_./ _)" 10) 

10467
e6e7205e9e91
xsymbol support for Pi, Sigma, >, : (membership)
paulson
parents:
3837
diff
changeset

88 

14565  89 
syntax (HTML output) 
17441  90 
"@SUM" :: "[idt,t,t] => t" ("(3\<Sigma> _\<in>_./ _)" 10) 
91 
"@PROD" :: "[idt,t,t] => t" ("(3\<Pi> _\<in>_./ _)" 10) 

92 
"lam " :: "[idts, i] => i" ("(3\<lambda>\<lambda>_./ _)" 10) 

14565  93 

17441  94 
axioms 
0  95 

96 
(*Reduction: a weaker notion than equality; a hack for simplification. 

97 
Reduce[a,b] means either that a=b:A for some A or else that "a" and "b" 

98 
are textually identical.*) 

99 

100 
(*does not verify a:A! Sound because only trans_red uses a Reduce premise 

101 
No new theorems can be proved about the standard judgements.*) 

17441  102 
refl_red: "Reduce[a,a]" 
103 
red_if_equal: "a = b : A ==> Reduce[a,b]" 

104 
trans_red: "[ a = b : A; Reduce[b,c] ] ==> a = c : A" 

0  105 

106 
(*Reflexivity*) 

107 

17441  108 
refl_type: "A type ==> A = A" 
109 
refl_elem: "a : A ==> a = a : A" 

0  110 

111 
(*Symmetry*) 

112 

17441  113 
sym_type: "A = B ==> B = A" 
114 
sym_elem: "a = b : A ==> b = a : A" 

0  115 

116 
(*Transitivity*) 

117 

17441  118 
trans_type: "[ A = B; B = C ] ==> A = C" 
119 
trans_elem: "[ a = b : A; b = c : A ] ==> a = c : A" 

0  120 

17441  121 
equal_types: "[ a : A; A = B ] ==> a : B" 
122 
equal_typesL: "[ a = b : A; A = B ] ==> a = b : B" 

0  123 

124 
(*Substitution*) 

125 

17441  126 
subst_type: "[ a : A; !!z. z:A ==> B(z) type ] ==> B(a) type" 
127 
subst_typeL: "[ a = c : A; !!z. z:A ==> B(z) = D(z) ] ==> B(a) = D(c)" 

0  128 

17441  129 
subst_elem: "[ a : A; !!z. z:A ==> b(z):B(z) ] ==> b(a):B(a)" 
130 
subst_elemL: 

0  131 
"[ a=c : A; !!z. z:A ==> b(z)=d(z) : B(z) ] ==> b(a)=d(c) : B(a)" 
132 

133 

134 
(*The type N  natural numbers*) 

135 

17441  136 
NF: "N type" 
137 
NI0: "0 : N" 

138 
NI_succ: "a : N ==> succ(a) : N" 

139 
NI_succL: "a = b : N ==> succ(a) = succ(b) : N" 

0  140 

17441  141 
NE: 
142 
"[ p: N; a: C(0); !!u v. [ u: N; v: C(u) ] ==> b(u,v): C(succ(u)) ] 

3837  143 
==> rec(p, a, %u v. b(u,v)) : C(p)" 
0  144 

17441  145 
NEL: 
146 
"[ p = q : N; a = c : C(0); 

147 
!!u v. [ u: N; v: C(u) ] ==> b(u,v) = d(u,v): C(succ(u)) ] 

3837  148 
==> rec(p, a, %u v. b(u,v)) = rec(q,c,d) : C(p)" 
0  149 

17441  150 
NC0: 
151 
"[ a: C(0); !!u v. [ u: N; v: C(u) ] ==> b(u,v): C(succ(u)) ] 

3837  152 
==> rec(0, a, %u v. b(u,v)) = a : C(0)" 
0  153 

17441  154 
NC_succ: 
155 
"[ p: N; a: C(0); 

156 
!!u v. [ u: N; v: C(u) ] ==> b(u,v): C(succ(u)) ] ==> 

3837  157 
rec(succ(p), a, %u v. b(u,v)) = b(p, rec(p, a, %u v. b(u,v))) : C(succ(p))" 
0  158 

159 
(*The fourth Peano axiom. See page 91 of MartinLof's book*) 

17441  160 
zero_ne_succ: 
0  161 
"[ a: N; 0 = succ(a) : N ] ==> 0: F" 
162 

163 

164 
(*The Product of a family of types*) 

165 

17441  166 
ProdF: "[ A type; !!x. x:A ==> B(x) type ] ==> PROD x:A. B(x) type" 
0  167 

17441  168 
ProdFL: 
169 
"[ A = C; !!x. x:A ==> B(x) = D(x) ] ==> 

3837  170 
PROD x:A. B(x) = PROD x:C. D(x)" 
0  171 

17441  172 
ProdI: 
3837  173 
"[ A type; !!x. x:A ==> b(x):B(x)] ==> lam x. b(x) : PROD x:A. B(x)" 
0  174 

17441  175 
ProdIL: 
176 
"[ A type; !!x. x:A ==> b(x) = c(x) : B(x)] ==> 

3837  177 
lam x. b(x) = lam x. c(x) : PROD x:A. B(x)" 
0  178 

17441  179 
ProdE: "[ p : PROD x:A. B(x); a : A ] ==> p`a : B(a)" 
180 
ProdEL: "[ p=q: PROD x:A. B(x); a=b : A ] ==> p`a = q`b : B(a)" 

0  181 

17441  182 
ProdC: 
183 
"[ a : A; !!x. x:A ==> b(x) : B(x)] ==> 

3837  184 
(lam x. b(x)) ` a = b(a) : B(a)" 
0  185 

17441  186 
ProdC2: 
3837  187 
"p : PROD x:A. B(x) ==> (lam x. p`x) = p : PROD x:A. B(x)" 
0  188 

189 

190 
(*The Sum of a family of types*) 

191 

17441  192 
SumF: "[ A type; !!x. x:A ==> B(x) type ] ==> SUM x:A. B(x) type" 
193 
SumFL: 

3837  194 
"[ A = C; !!x. x:A ==> B(x) = D(x) ] ==> SUM x:A. B(x) = SUM x:C. D(x)" 
0  195 

17441  196 
SumI: "[ a : A; b : B(a) ] ==> <a,b> : SUM x:A. B(x)" 
197 
SumIL: "[ a=c:A; b=d:B(a) ] ==> <a,b> = <c,d> : SUM x:A. B(x)" 

0  198 

17441  199 
SumE: 
200 
"[ p: SUM x:A. B(x); !!x y. [ x:A; y:B(x) ] ==> c(x,y): C(<x,y>) ] 

3837  201 
==> split(p, %x y. c(x,y)) : C(p)" 
0  202 

17441  203 
SumEL: 
204 
"[ p=q : SUM x:A. B(x); 

205 
!!x y. [ x:A; y:B(x) ] ==> c(x,y)=d(x,y): C(<x,y>)] 

3837  206 
==> split(p, %x y. c(x,y)) = split(q, % x y. d(x,y)) : C(p)" 
0  207 

17441  208 
SumC: 
209 
"[ a: A; b: B(a); !!x y. [ x:A; y:B(x) ] ==> c(x,y): C(<x,y>) ] 

3837  210 
==> split(<a,b>, %x y. c(x,y)) = c(a,b) : C(<a,b>)" 
0  211 

17441  212 
fst_def: "fst(a) == split(a, %x y. x)" 
213 
snd_def: "snd(a) == split(a, %x y. y)" 

0  214 

215 

216 
(*The sum of two types*) 

217 

17441  218 
PlusF: "[ A type; B type ] ==> A+B type" 
219 
PlusFL: "[ A = C; B = D ] ==> A+B = C+D" 

0  220 

17441  221 
PlusI_inl: "[ a : A; B type ] ==> inl(a) : A+B" 
222 
PlusI_inlL: "[ a = c : A; B type ] ==> inl(a) = inl(c) : A+B" 

0  223 

17441  224 
PlusI_inr: "[ A type; b : B ] ==> inr(b) : A+B" 
225 
PlusI_inrL: "[ A type; b = d : B ] ==> inr(b) = inr(d) : A+B" 

0  226 

17441  227 
PlusE: 
228 
"[ p: A+B; !!x. x:A ==> c(x): C(inl(x)); 

229 
!!y. y:B ==> d(y): C(inr(y)) ] 

3837  230 
==> when(p, %x. c(x), %y. d(y)) : C(p)" 
0  231 

17441  232 
PlusEL: 
233 
"[ p = q : A+B; !!x. x: A ==> c(x) = e(x) : C(inl(x)); 

234 
!!y. y: B ==> d(y) = f(y) : C(inr(y)) ] 

3837  235 
==> when(p, %x. c(x), %y. d(y)) = when(q, %x. e(x), %y. f(y)) : C(p)" 
0  236 

17441  237 
PlusC_inl: 
238 
"[ a: A; !!x. x:A ==> c(x): C(inl(x)); 

239 
!!y. y:B ==> d(y): C(inr(y)) ] 

3837  240 
==> when(inl(a), %x. c(x), %y. d(y)) = c(a) : C(inl(a))" 
0  241 

17441  242 
PlusC_inr: 
243 
"[ b: B; !!x. x:A ==> c(x): C(inl(x)); 

244 
!!y. y:B ==> d(y): C(inr(y)) ] 

3837  245 
==> when(inr(b), %x. c(x), %y. d(y)) = d(b) : C(inr(b))" 
0  246 

247 

248 
(*The type Eq*) 

249 

17441  250 
EqF: "[ A type; a : A; b : A ] ==> Eq(A,a,b) type" 
251 
EqFL: "[ A=B; a=c: A; b=d : A ] ==> Eq(A,a,b) = Eq(B,c,d)" 

252 
EqI: "a = b : A ==> eq : Eq(A,a,b)" 

253 
EqE: "p : Eq(A,a,b) ==> a = b : A" 

0  254 

255 
(*By equality of types, can prove C(p) from C(eq), an elimination rule*) 

17441  256 
EqC: "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)" 
0  257 

258 
(*The type F*) 

259 

17441  260 
FF: "F type" 
261 
FE: "[ p: F; C type ] ==> contr(p) : C" 

262 
FEL: "[ p = q : F; C type ] ==> contr(p) = contr(q) : C" 

0  263 

264 
(*The type T 

265 
MartinLof's book (page 68) discusses elimination and computation. 

266 
Elimination can be derived by computation and equality of types, 

267 
but with an extra premise C(x) type x:T. 

268 
Also computation can be derived from elimination. *) 

269 

17441  270 
TF: "T type" 
271 
TI: "tt : T" 

272 
TE: "[ p : T; c : C(tt) ] ==> c : C(p)" 

273 
TEL: "[ p = q : T; c = d : C(tt) ] ==> c = d : C(p)" 

274 
TC: "p : T ==> p = tt : T" 

0  275 

19761  276 

277 
subsection "Tactics and derived rules for Constructive Type Theory" 

278 

279 
(*Formation rules*) 

280 
lemmas form_rls = NF ProdF SumF PlusF EqF FF TF 

281 
and formL_rls = ProdFL SumFL PlusFL EqFL 

282 

283 
(*Introduction rules 

284 
OMITTED: EqI, because its premise is an eqelem, not an elem*) 

285 
lemmas intr_rls = NI0 NI_succ ProdI SumI PlusI_inl PlusI_inr TI 

286 
and intrL_rls = NI_succL ProdIL SumIL PlusI_inlL PlusI_inrL 

287 

288 
(*Elimination rules 

289 
OMITTED: EqE, because its conclusion is an eqelem, not an elem 

290 
TE, because it does not involve a constructor *) 

291 
lemmas elim_rls = NE ProdE SumE PlusE FE 

292 
and elimL_rls = NEL ProdEL SumEL PlusEL FEL 

293 

294 
(*OMITTED: eqC are TC because they make rewriting loop: p = un = un = ... *) 

295 
lemmas comp_rls = NC0 NC_succ ProdC SumC PlusC_inl PlusC_inr 

296 

297 
(*rules with conclusion a:A, an elem judgement*) 

298 
lemmas element_rls = intr_rls elim_rls 

299 

300 
(*Definitions are (meta)equality axioms*) 

301 
lemmas basic_defs = fst_def snd_def 

302 

303 
(*Compare with standard version: B is applied to UNSIMPLIFIED expression! *) 

304 
lemma SumIL2: "[ c=a : A; d=b : B(a) ] ==> <c,d> = <a,b> : Sum(A,B)" 

305 
apply (rule sym_elem) 

306 
apply (rule SumIL) 

307 
apply (rule_tac [!] sym_elem) 

308 
apply assumption+ 

309 
done 

310 

311 
lemmas intrL2_rls = NI_succL ProdIL SumIL2 PlusI_inlL PlusI_inrL 

312 

313 
(*Exploit p:Prod(A,B) to create the assumption z:B(a). 

314 
A more natural form of product elimination. *) 

315 
lemma subst_prodE: 

316 
assumes "p: Prod(A,B)" 

317 
and "a: A" 

318 
and "!!z. z: B(a) ==> c(z): C(z)" 

319 
shows "c(p`a): C(p`a)" 

320 
apply (rule prems ProdE)+ 

321 
done 

322 

323 

324 
subsection {* Tactics for type checking *} 

325 

326 
ML {* 

327 

328 
local 

329 

330 
fun is_rigid_elem (Const("CTT.Elem",_) $ a $ _) = not(is_Var (head_of a)) 

331 
 is_rigid_elem (Const("CTT.Eqelem",_) $ a $ _ $ _) = not(is_Var (head_of a)) 

332 
 is_rigid_elem (Const("CTT.Type",_) $ a) = not(is_Var (head_of a)) 

333 
 is_rigid_elem _ = false 

334 

335 
in 

336 

337 
(*Try solving a:A or a=b:A by assumption provided a is rigid!*) 

338 
val test_assume_tac = SUBGOAL(fn (prem,i) => 

339 
if is_rigid_elem (Logic.strip_assums_concl prem) 

340 
then assume_tac i else no_tac) 

341 

342 
fun ASSUME tf i = test_assume_tac i ORELSE tf i 

343 

344 
end; 

345 

346 
*} 

347 

348 
(*For simplification: type formation and checking, 

349 
but no equalities between terms*) 

350 
lemmas routine_rls = form_rls formL_rls refl_type element_rls 

351 

352 
ML {* 

353 
local 

354 
val routine_rls = thms "routine_rls"; 

355 
val form_rls = thms "form_rls"; 

356 
val intr_rls = thms "intr_rls"; 

357 
val element_rls = thms "element_rls"; 

358 
val equal_rls = form_rls @ element_rls @ thms "intrL_rls" @ 

359 
thms "elimL_rls" @ thms "refl_elem" 

360 
in 

361 

362 
fun routine_tac rls prems = ASSUME (filt_resolve_tac (prems @ rls) 4); 

363 

364 
(*Solve all subgoals "A type" using formation rules. *) 

365 
val form_tac = REPEAT_FIRST (ASSUME (filt_resolve_tac(form_rls) 1)); 

366 

367 
(*Type checking: solve a:A (a rigid, A flexible) by intro and elim rules. *) 

368 
fun typechk_tac thms = 

369 
let val tac = filt_resolve_tac (thms @ form_rls @ element_rls) 3 

370 
in REPEAT_FIRST (ASSUME tac) end 

371 

372 
(*Solve a:A (a flexible, A rigid) by introduction rules. 

373 
Cannot use stringtrees (filt_resolve_tac) since 

374 
goals like ?a:SUM(A,B) have a trivial headstring *) 

375 
fun intr_tac thms = 

376 
let val tac = filt_resolve_tac(thms@form_rls@intr_rls) 1 

377 
in REPEAT_FIRST (ASSUME tac) end 

378 

379 
(*Equality proving: solve a=b:A (where a is rigid) by long rules. *) 

380 
fun equal_tac thms = 

381 
REPEAT_FIRST (ASSUME (filt_resolve_tac (thms @ equal_rls) 3)) 

0  382 

17441  383 
end 
19761  384 

385 
*} 

386 

387 

388 
subsection {* Simplification *} 

389 

390 
(*To simplify the type in a goal*) 

391 
lemma replace_type: "[ B = A; a : A ] ==> a : B" 

392 
apply (rule equal_types) 

393 
apply (rule_tac [2] sym_type) 

394 
apply assumption+ 

395 
done 

396 

397 
(*Simplify the parameter of a unary type operator.*) 

398 
lemma subst_eqtyparg: 

399 
assumes "a=c : A" 

400 
and "!!z. z:A ==> B(z) type" 

401 
shows "B(a)=B(c)" 

402 
apply (rule subst_typeL) 

403 
apply (rule_tac [2] refl_type) 

404 
apply (rule prems) 

405 
apply assumption 

406 
done 

407 

408 
(*Simplification rules for Constructive Type Theory*) 

409 
lemmas reduction_rls = comp_rls [THEN trans_elem] 

410 

411 
ML {* 

412 
local 

413 
val EqI = thm "EqI"; 

414 
val EqE = thm "EqE"; 

415 
val NE = thm "NE"; 

416 
val FE = thm "FE"; 

417 
val ProdI = thm "ProdI"; 

418 
val SumI = thm "SumI"; 

419 
val SumE = thm "SumE"; 

420 
val PlusE = thm "PlusE"; 

421 
val PlusI_inl = thm "PlusI_inl"; 

422 
val PlusI_inr = thm "PlusI_inr"; 

423 
val subst_prodE = thm "subst_prodE"; 

424 
val intr_rls = thms "intr_rls"; 

425 
in 

426 

427 
(*Converts each goal "e : Eq(A,a,b)" into "a=b:A" for simplification. 

428 
Uses other intro rules to avoid changing flexible goals.*) 

429 
val eqintr_tac = REPEAT_FIRST (ASSUME (filt_resolve_tac(EqI::intr_rls) 1)) 

430 

431 
(** Tactics that instantiate CTTrules. 

432 
Vars in the given terms will be incremented! 

433 
The (rtac EqE i) lets them apply to equality judgements. **) 

434 

435 
fun NE_tac (sp: string) i = 

436 
TRY (rtac EqE i) THEN res_inst_tac [ ("p",sp) ] NE i 

437 

438 
fun SumE_tac (sp: string) i = 

439 
TRY (rtac EqE i) THEN res_inst_tac [ ("p",sp) ] SumE i 

440 

441 
fun PlusE_tac (sp: string) i = 

442 
TRY (rtac EqE i) THEN res_inst_tac [ ("p",sp) ] PlusE i 

443 

444 
(** Predicate logic reasoning, WITH THINNING!! Procedures adapted from NJ. **) 

445 

446 
(*Finds f:Prod(A,B) and a:A in the assumptions, concludes there is z:B(a) *) 

447 
fun add_mp_tac i = 

448 
rtac subst_prodE i THEN assume_tac i THEN assume_tac i 

449 

450 
(*Finds P>Q and P in the assumptions, replaces implication by Q *) 

451 
fun mp_tac i = etac subst_prodE i THEN assume_tac i 

452 

453 
(*"safe" when regarded as predicate calculus rules*) 

454 
val safe_brls = sort (make_ord lessb) 

455 
[ (true,FE), (true,asm_rl), 

456 
(false,ProdI), (true,SumE), (true,PlusE) ] 

457 

458 
val unsafe_brls = 

459 
[ (false,PlusI_inl), (false,PlusI_inr), (false,SumI), 

460 
(true,subst_prodE) ] 

461 

462 
(*0 subgoals vs 1 or more*) 

463 
val (safe0_brls, safep_brls) = 

464 
List.partition (curry (op =) 0 o subgoals_of_brl) safe_brls 

465 

466 
fun safestep_tac thms i = 

467 
form_tac ORELSE 

468 
resolve_tac thms i ORELSE 

469 
biresolve_tac safe0_brls i ORELSE mp_tac i ORELSE 

470 
DETERM (biresolve_tac safep_brls i) 

471 

472 
fun safe_tac thms i = DEPTH_SOLVE_1 (safestep_tac thms i) 

473 

474 
fun step_tac thms = safestep_tac thms ORELSE' biresolve_tac unsafe_brls 

475 

476 
(*Fails unless it solves the goal!*) 

477 
fun pc_tac thms = DEPTH_SOLVE_1 o (step_tac thms) 

478 

479 
end 

480 
*} 

481 

482 
use "rew.ML" 

483 

484 

485 
subsection {* The elimination rules for fst/snd *} 

486 

487 
lemma SumE_fst: "p : Sum(A,B) ==> fst(p) : A" 

488 
apply (unfold basic_defs) 

489 
apply (erule SumE) 

490 
apply assumption 

491 
done 

492 

493 
(*The first premise must be p:Sum(A,B) !!*) 

494 
lemma SumE_snd: 

495 
assumes major: "p: Sum(A,B)" 

496 
and "A type" 

497 
and "!!x. x:A ==> B(x) type" 

498 
shows "snd(p) : B(fst(p))" 

499 
apply (unfold basic_defs) 

500 
apply (rule major [THEN SumE]) 

501 
apply (rule SumC [THEN subst_eqtyparg, THEN replace_type]) 

502 
apply (tactic {* typechk_tac (thms "prems") *}) 

503 
done 

504 

505 
end 