19761
|
1 |
(* Title: CTT/ex/Synthesis.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1991 University of Cambridge
|
|
5 |
*)
|
|
6 |
|
|
7 |
header "Synthesis examples, using a crude form of narrowing"
|
|
8 |
|
|
9 |
theory Synthesis
|
|
10 |
imports Arith
|
|
11 |
begin
|
|
12 |
|
|
13 |
text "discovery of predecessor function"
|
|
14 |
lemma "?a : SUM pred:?A . Eq(N, pred`0, 0)
|
|
15 |
* (PROD n:N. Eq(N, pred ` succ(n), n))"
|
|
16 |
apply (tactic "intr_tac []")
|
|
17 |
apply (tactic eqintr_tac)
|
|
18 |
apply (rule_tac [3] reduction_rls)
|
|
19 |
apply (rule_tac [5] comp_rls)
|
|
20 |
apply (tactic "rew_tac []")
|
|
21 |
done
|
|
22 |
|
|
23 |
text "the function fst as an element of a function type"
|
|
24 |
lemma [folded basic_defs]:
|
|
25 |
"A type ==> ?a: SUM f:?B . PROD i:A. PROD j:A. Eq(A, f ` <i,j>, i)"
|
|
26 |
apply (tactic "intr_tac []")
|
|
27 |
apply (tactic eqintr_tac)
|
|
28 |
apply (rule_tac [2] reduction_rls)
|
|
29 |
apply (rule_tac [4] comp_rls)
|
|
30 |
apply (tactic "typechk_tac []")
|
|
31 |
txt "now put in A everywhere"
|
|
32 |
apply assumption+
|
|
33 |
done
|
|
34 |
|
|
35 |
text "An interesting use of the eliminator, when"
|
|
36 |
(*The early implementation of unification caused non-rigid path in occur check
|
|
37 |
See following example.*)
|
|
38 |
lemma "?a : PROD i:N. Eq(?A, ?b(inl(i)), <0 , i>)
|
|
39 |
* Eq(?A, ?b(inr(i)), <succ(0), i>)"
|
|
40 |
apply (tactic "intr_tac []")
|
|
41 |
apply (tactic eqintr_tac)
|
|
42 |
apply (rule comp_rls)
|
|
43 |
apply (tactic "rew_tac []")
|
|
44 |
oops
|
|
45 |
|
|
46 |
(*Here we allow the type to depend on i.
|
|
47 |
This prevents the cycle in the first unification (no longer needed).
|
|
48 |
Requires flex-flex to preserve the dependence.
|
|
49 |
Simpler still: make ?A into a constant type N*N.*)
|
|
50 |
lemma "?a : PROD i:N. Eq(?A(i), ?b(inl(i)), <0 , i>)
|
|
51 |
* Eq(?A(i), ?b(inr(i)), <succ(0),i>)"
|
|
52 |
oops
|
|
53 |
|
|
54 |
text "A tricky combination of when and split"
|
|
55 |
(*Now handled easily, but caused great problems once*)
|
|
56 |
lemma [folded basic_defs]:
|
|
57 |
"?a : PROD i:N. PROD j:N. Eq(?A, ?b(inl(<i,j>)), i)
|
|
58 |
* Eq(?A, ?b(inr(<i,j>)), j)"
|
|
59 |
apply (tactic "intr_tac []")
|
|
60 |
apply (tactic eqintr_tac)
|
|
61 |
apply (rule PlusC_inl [THEN trans_elem])
|
|
62 |
apply (rule_tac [4] comp_rls)
|
|
63 |
apply (rule_tac [7] reduction_rls)
|
|
64 |
apply (rule_tac [10] comp_rls)
|
|
65 |
apply (tactic "typechk_tac []")
|
|
66 |
oops
|
|
67 |
|
|
68 |
(*similar but allows the type to depend on i and j*)
|
|
69 |
lemma "?a : PROD i:N. PROD j:N. Eq(?A(i,j), ?b(inl(<i,j>)), i)
|
|
70 |
* Eq(?A(i,j), ?b(inr(<i,j>)), j)"
|
|
71 |
oops
|
|
72 |
|
|
73 |
(*similar but specifying the type N simplifies the unification problems*)
|
|
74 |
lemma "?a : PROD i:N. PROD j:N. Eq(N, ?b(inl(<i,j>)), i)
|
|
75 |
* Eq(N, ?b(inr(<i,j>)), j)"
|
|
76 |
oops
|
|
77 |
|
|
78 |
|
|
79 |
text "Deriving the addition operator"
|
|
80 |
lemma [folded arith_defs]:
|
|
81 |
"?c : PROD n:N. Eq(N, ?f(0,n), n)
|
|
82 |
* (PROD m:N. Eq(N, ?f(succ(m), n), succ(?f(m,n))))"
|
|
83 |
apply (tactic "intr_tac []")
|
|
84 |
apply (tactic eqintr_tac)
|
|
85 |
apply (rule comp_rls)
|
|
86 |
apply (tactic "rew_tac []")
|
|
87 |
oops
|
|
88 |
|
|
89 |
text "The addition function -- using explicit lambdas"
|
|
90 |
lemma [folded arith_defs]:
|
|
91 |
"?c : SUM plus : ?A .
|
|
92 |
PROD x:N. Eq(N, plus`0`x, x)
|
|
93 |
* (PROD y:N. Eq(N, plus`succ(y)`x, succ(plus`y`x)))"
|
|
94 |
apply (tactic "intr_tac []")
|
|
95 |
apply (tactic eqintr_tac)
|
|
96 |
apply (tactic "resolve_tac [TSimp.split_eqn] 3")
|
|
97 |
apply (tactic "SELECT_GOAL (rew_tac []) 4")
|
|
98 |
apply (tactic "resolve_tac [TSimp.split_eqn] 3")
|
|
99 |
apply (tactic "SELECT_GOAL (rew_tac []) 4")
|
|
100 |
apply (rule_tac [3] p = "y" in NC_succ)
|
|
101 |
(** by (resolve_tac comp_rls 3); caused excessive branching **)
|
|
102 |
apply (tactic "rew_tac []")
|
|
103 |
done
|
|
104 |
|
|
105 |
end
|
|
106 |
|