author | paulson |
Tue, 03 Feb 2004 15:58:31 +0100 | |
changeset 14374 | 61de62096768 |
parent 14373 | 67a628beb981 |
child 14377 | f454b3004f8f |
permissions | -rw-r--r-- |
13957 | 1 |
(* Title: Complex.thy |
2 |
Author: Jacques D. Fleuriot |
|
3 |
Copyright: 2001 University of Edinburgh |
|
4 |
*) |
|
5 |
||
14373 | 6 |
header {* Complex numbers *} |
7 |
||
14323 | 8 |
theory Complex = HLog: |
13957 | 9 |
|
14373 | 10 |
subsection {* Representation of complex numbers *} |
11 |
||
12 |
datatype complex = Complex real real |
|
13957 | 13 |
|
14323 | 14 |
instance complex :: zero .. |
15 |
instance complex :: one .. |
|
16 |
instance complex :: plus .. |
|
17 |
instance complex :: times .. |
|
18 |
instance complex :: minus .. |
|
19 |
instance complex :: inverse .. |
|
20 |
instance complex :: power .. |
|
13957 | 21 |
|
22 |
consts |
|
14373 | 23 |
"ii" :: complex ("\<i>") |
24 |
||
25 |
consts Re :: "complex => real" |
|
26 |
primrec "Re (Complex x y) = x" |
|
27 |
||
28 |
consts Im :: "complex => real" |
|
29 |
primrec "Im (Complex x y) = y" |
|
30 |
||
31 |
lemma complex_surj [simp]: "Complex (Re z) (Im z) = z" |
|
32 |
by (induct z) simp |
|
13957 | 33 |
|
34 |
constdefs |
|
35 |
||
36 |
(*----------- modulus ------------*) |
|
37 |
||
14323 | 38 |
cmod :: "complex => real" |
39 |
"cmod z == sqrt(Re(z) ^ 2 + Im(z) ^ 2)" |
|
13957 | 40 |
|
14323 | 41 |
(*----- injection from reals -----*) |
42 |
||
43 |
complex_of_real :: "real => complex" |
|
14373 | 44 |
"complex_of_real r == Complex r 0" |
14323 | 45 |
|
13957 | 46 |
(*------- complex conjugate ------*) |
47 |
||
14323 | 48 |
cnj :: "complex => complex" |
14373 | 49 |
"cnj z == Complex (Re z) (-Im z)" |
13957 | 50 |
|
14323 | 51 |
(*------------ Argand -------------*) |
13957 | 52 |
|
14323 | 53 |
sgn :: "complex => complex" |
13957 | 54 |
"sgn z == z / complex_of_real(cmod z)" |
55 |
||
14323 | 56 |
arg :: "complex => real" |
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
57 |
"arg z == @a. Re(sgn z) = cos a & Im(sgn z) = sin a & -pi < a & a \<le> pi" |
14323 | 58 |
|
13957 | 59 |
|
14323 | 60 |
defs (overloaded) |
61 |
||
62 |
complex_zero_def: |
|
14373 | 63 |
"0 == Complex 0 0" |
13957 | 64 |
|
14323 | 65 |
complex_one_def: |
14373 | 66 |
"1 == Complex 1 0" |
14323 | 67 |
|
14373 | 68 |
i_def: "ii == Complex 0 1" |
14323 | 69 |
|
14373 | 70 |
complex_minus_def: "- z == Complex (- Re z) (- Im z)" |
14323 | 71 |
|
72 |
complex_inverse_def: |
|
14373 | 73 |
"inverse z == |
74 |
Complex (Re z / ((Re z)\<twosuperior> + (Im z)\<twosuperior>)) (- Im z / ((Re z)\<twosuperior> + (Im z)\<twosuperior>))" |
|
13957 | 75 |
|
14323 | 76 |
complex_add_def: |
14373 | 77 |
"z + w == Complex (Re z + Re w) (Im z + Im w)" |
13957 | 78 |
|
14323 | 79 |
complex_diff_def: |
14373 | 80 |
"z - w == z + - (w::complex)" |
13957 | 81 |
|
14374 | 82 |
complex_mult_def: |
14373 | 83 |
"z * w == Complex (Re z * Re w - Im z * Im w) (Re z * Im w + Im z * Re w)" |
13957 | 84 |
|
14373 | 85 |
complex_divide_def: "w / (z::complex) == w * inverse z" |
14323 | 86 |
|
13957 | 87 |
|
88 |
constdefs |
|
89 |
||
90 |
(* abbreviation for (cos a + i sin a) *) |
|
14323 | 91 |
cis :: "real => complex" |
13957 | 92 |
"cis a == complex_of_real(cos a) + ii * complex_of_real(sin a)" |
93 |
||
94 |
(* abbreviation for r*(cos a + i sin a) *) |
|
14323 | 95 |
rcis :: "[real, real] => complex" |
13957 | 96 |
"rcis r a == complex_of_real r * cis a" |
97 |
||
98 |
(* e ^ (x + iy) *) |
|
14323 | 99 |
expi :: "complex => complex" |
13957 | 100 |
"expi z == complex_of_real(exp (Re z)) * cis (Im z)" |
14323 | 101 |
|
102 |
||
14373 | 103 |
lemma complex_equality [intro?]: "Re z = Re w ==> Im z = Im w ==> z = w" |
104 |
by (induct z, induct w) simp |
|
14323 | 105 |
|
14374 | 106 |
lemma Re [simp]: "Re(Complex x y) = x" |
14373 | 107 |
by simp |
14323 | 108 |
|
14374 | 109 |
lemma Im [simp]: "Im(Complex x y) = y" |
14373 | 110 |
by simp |
14323 | 111 |
|
112 |
lemma complex_Re_Im_cancel_iff: "(w=z) = (Re(w) = Re(z) & Im(w) = Im(z))" |
|
14373 | 113 |
by (induct w, induct z, simp) |
14323 | 114 |
|
14374 | 115 |
lemma complex_Re_zero [simp]: "Re 0 = 0" |
116 |
by (simp add: complex_zero_def) |
|
117 |
||
118 |
lemma complex_Im_zero [simp]: "Im 0 = 0" |
|
14373 | 119 |
by (simp add: complex_zero_def) |
14323 | 120 |
|
14374 | 121 |
lemma complex_Re_one [simp]: "Re 1 = 1" |
122 |
by (simp add: complex_one_def) |
|
14323 | 123 |
|
14374 | 124 |
lemma complex_Im_one [simp]: "Im 1 = 0" |
14373 | 125 |
by (simp add: complex_one_def) |
14323 | 126 |
|
14374 | 127 |
lemma complex_Re_i [simp]: "Re(ii) = 0" |
14373 | 128 |
by (simp add: i_def) |
14323 | 129 |
|
14374 | 130 |
lemma complex_Im_i [simp]: "Im(ii) = 1" |
14373 | 131 |
by (simp add: i_def) |
14323 | 132 |
|
14374 | 133 |
lemma Re_complex_of_real [simp]: "Re(complex_of_real z) = z" |
14373 | 134 |
by (simp add: complex_of_real_def) |
14323 | 135 |
|
14374 | 136 |
lemma Im_complex_of_real [simp]: "Im(complex_of_real z) = 0" |
14373 | 137 |
by (simp add: complex_of_real_def) |
14323 | 138 |
|
139 |
||
14374 | 140 |
subsection{*Unary Minus*} |
14323 | 141 |
|
14373 | 142 |
lemma complex_minus: "- (Complex x y) = Complex (-x) (-y)" |
143 |
by (simp add: complex_minus_def) |
|
14323 | 144 |
|
14374 | 145 |
lemma complex_Re_minus [simp]: "Re (-z) = - Re z" |
14373 | 146 |
by (simp add: complex_minus_def) |
14323 | 147 |
|
14374 | 148 |
lemma complex_Im_minus [simp]: "Im (-z) = - Im z" |
149 |
by (simp add: complex_minus_def) |
|
14323 | 150 |
|
151 |
||
152 |
subsection{*Addition*} |
|
153 |
||
14373 | 154 |
lemma complex_add: "Complex x1 y1 + Complex x2 y2 = Complex (x1+x2) (y1+y2)" |
155 |
by (simp add: complex_add_def) |
|
14323 | 156 |
|
14374 | 157 |
lemma complex_Re_add [simp]: "Re(x + y) = Re(x) + Re(y)" |
14373 | 158 |
by (simp add: complex_add_def) |
14323 | 159 |
|
14374 | 160 |
lemma complex_Im_add [simp]: "Im(x + y) = Im(x) + Im(y)" |
14373 | 161 |
by (simp add: complex_add_def) |
14323 | 162 |
|
163 |
lemma complex_add_commute: "(u::complex) + v = v + u" |
|
14373 | 164 |
by (simp add: complex_add_def add_commute) |
14323 | 165 |
|
166 |
lemma complex_add_assoc: "((u::complex) + v) + w = u + (v + w)" |
|
14373 | 167 |
by (simp add: complex_add_def add_assoc) |
14323 | 168 |
|
169 |
lemma complex_add_zero_left: "(0::complex) + z = z" |
|
14373 | 170 |
by (simp add: complex_add_def complex_zero_def) |
14323 | 171 |
|
172 |
lemma complex_add_zero_right: "z + (0::complex) = z" |
|
14373 | 173 |
by (simp add: complex_add_def complex_zero_def) |
14323 | 174 |
|
14373 | 175 |
lemma complex_add_minus_left: "-z + z = (0::complex)" |
176 |
by (simp add: complex_add_def complex_minus_def complex_zero_def) |
|
14323 | 177 |
|
178 |
lemma complex_diff: |
|
14373 | 179 |
"Complex x1 y1 - Complex x2 y2 = Complex (x1-x2) (y1-y2)" |
180 |
by (simp add: complex_add_def complex_minus_def complex_diff_def) |
|
14323 | 181 |
|
14374 | 182 |
lemma complex_Re_diff [simp]: "Re(x - y) = Re(x) - Re(y)" |
183 |
by (simp add: complex_diff_def) |
|
184 |
||
185 |
lemma complex_Im_diff [simp]: "Im(x - y) = Im(x) - Im(y)" |
|
186 |
by (simp add: complex_diff_def) |
|
187 |
||
188 |
||
14323 | 189 |
subsection{*Multiplication*} |
190 |
||
191 |
lemma complex_mult: |
|
14373 | 192 |
"Complex x1 y1 * Complex x2 y2 = Complex (x1*x2 - y1*y2) (x1*y2 + y1*x2)" |
193 |
by (simp add: complex_mult_def) |
|
14323 | 194 |
|
195 |
lemma complex_mult_commute: "(w::complex) * z = z * w" |
|
14373 | 196 |
by (simp add: complex_mult_def mult_commute add_commute) |
14323 | 197 |
|
198 |
lemma complex_mult_assoc: "((u::complex) * v) * w = u * (v * w)" |
|
14374 | 199 |
by (simp add: complex_mult_def mult_ac add_ac |
14373 | 200 |
right_diff_distrib right_distrib left_diff_distrib left_distrib) |
14323 | 201 |
|
202 |
lemma complex_mult_one_left: "(1::complex) * z = z" |
|
14373 | 203 |
by (simp add: complex_mult_def complex_one_def) |
14323 | 204 |
|
205 |
lemma complex_mult_one_right: "z * (1::complex) = z" |
|
14373 | 206 |
by (simp add: complex_mult_def complex_one_def) |
14323 | 207 |
|
208 |
||
209 |
subsection{*Inverse*} |
|
210 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
211 |
lemma complex_inverse: |
14373 | 212 |
"inverse (Complex x y) = Complex (x/(x ^ 2 + y ^ 2)) (-y/(x ^ 2 + y ^ 2))" |
213 |
by (simp add: complex_inverse_def) |
|
14335 | 214 |
|
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
215 |
lemma complex_mult_inv_left: "z \<noteq> (0::complex) ==> inverse(z) * z = 1" |
14374 | 216 |
apply (induct z) |
217 |
apply (rename_tac x y) |
|
218 |
apply (auto simp add: complex_mult complex_inverse complex_one_def |
|
14353
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents:
14348
diff
changeset
|
219 |
complex_zero_def add_divide_distrib [symmetric] power2_eq_square mult_ac) |
14334 | 220 |
apply (drule_tac y = y in real_sum_squares_not_zero) |
221 |
apply (drule_tac [2] x = x in real_sum_squares_not_zero2, auto) |
|
14323 | 222 |
done |
223 |
||
14335 | 224 |
|
225 |
subsection {* The field of complex numbers *} |
|
226 |
||
227 |
instance complex :: field |
|
228 |
proof |
|
229 |
fix z u v w :: complex |
|
230 |
show "(u + v) + w = u + (v + w)" |
|
14374 | 231 |
by (rule complex_add_assoc) |
14335 | 232 |
show "z + w = w + z" |
14374 | 233 |
by (rule complex_add_commute) |
14335 | 234 |
show "0 + z = z" |
14374 | 235 |
by (rule complex_add_zero_left) |
14335 | 236 |
show "-z + z = 0" |
14374 | 237 |
by (rule complex_add_minus_left) |
14335 | 238 |
show "z - w = z + -w" |
239 |
by (simp add: complex_diff_def) |
|
240 |
show "(u * v) * w = u * (v * w)" |
|
14374 | 241 |
by (rule complex_mult_assoc) |
14335 | 242 |
show "z * w = w * z" |
14374 | 243 |
by (rule complex_mult_commute) |
14335 | 244 |
show "1 * z = z" |
14374 | 245 |
by (rule complex_mult_one_left) |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14335
diff
changeset
|
246 |
show "0 \<noteq> (1::complex)" |
14373 | 247 |
by (simp add: complex_zero_def complex_one_def) |
14335 | 248 |
show "(u + v) * w = u * w + v * w" |
14373 | 249 |
by (simp add: complex_mult_def complex_add_def left_distrib real_diff_def add_ac) |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14335
diff
changeset
|
250 |
show "z+u = z+v ==> u=v" |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14335
diff
changeset
|
251 |
proof - |
14374 | 252 |
assume eq: "z+u = z+v" |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14335
diff
changeset
|
253 |
hence "(-z + z) + u = (-z + z) + v" by (simp only: eq complex_add_assoc) |
14373 | 254 |
thus "u = v" by (simp add: complex_add_minus_left complex_add_zero_left) |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14335
diff
changeset
|
255 |
qed |
14335 | 256 |
assume neq: "w \<noteq> 0" |
257 |
thus "z / w = z * inverse w" |
|
258 |
by (simp add: complex_divide_def) |
|
259 |
show "inverse w * w = 1" |
|
14374 | 260 |
by (simp add: neq complex_mult_inv_left) |
14335 | 261 |
qed |
262 |
||
14373 | 263 |
instance complex :: division_by_zero |
264 |
proof |
|
265 |
show inv: "inverse 0 = (0::complex)" |
|
266 |
by (simp add: complex_inverse_def complex_zero_def) |
|
267 |
fix x :: complex |
|
14374 | 268 |
show "x/0 = 0" |
14373 | 269 |
by (simp add: complex_divide_def inv) |
270 |
qed |
|
14335 | 271 |
|
14323 | 272 |
|
273 |
subsection{*Embedding Properties for @{term complex_of_real} Map*} |
|
274 |
||
14374 | 275 |
lemma complex_of_real_one [simp]: "complex_of_real 1 = 1" |
14373 | 276 |
by (simp add: complex_one_def complex_of_real_def) |
14323 | 277 |
|
14374 | 278 |
lemma complex_of_real_zero [simp]: "complex_of_real 0 = 0" |
14373 | 279 |
by (simp add: complex_zero_def complex_of_real_def) |
14323 | 280 |
|
14374 | 281 |
lemma complex_of_real_eq_iff [iff]: |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
282 |
"(complex_of_real x = complex_of_real y) = (x = y)" |
14374 | 283 |
by (simp add: complex_of_real_def) |
14323 | 284 |
|
285 |
lemma complex_of_real_minus: "complex_of_real(-x) = - complex_of_real x" |
|
14373 | 286 |
by (simp add: complex_of_real_def complex_minus) |
14323 | 287 |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
288 |
lemma complex_of_real_inverse: |
14374 | 289 |
"complex_of_real(inverse x) = inverse(complex_of_real x)" |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
290 |
apply (case_tac "x=0", simp) |
14374 | 291 |
apply (simp add: complex_inverse complex_of_real_def real_divide_def |
14353
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents:
14348
diff
changeset
|
292 |
inverse_mult_distrib power2_eq_square) |
14323 | 293 |
done |
294 |
||
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
295 |
lemma complex_of_real_add: |
14373 | 296 |
"complex_of_real x + complex_of_real y = complex_of_real (x + y)" |
297 |
by (simp add: complex_add complex_of_real_def) |
|
14323 | 298 |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
299 |
lemma complex_of_real_diff: |
14373 | 300 |
"complex_of_real x - complex_of_real y = complex_of_real (x - y)" |
14374 | 301 |
by (simp add: complex_of_real_minus [symmetric] complex_diff_def |
302 |
complex_of_real_add) |
|
14323 | 303 |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
304 |
lemma complex_of_real_mult: |
14373 | 305 |
"complex_of_real x * complex_of_real y = complex_of_real (x * y)" |
306 |
by (simp add: complex_mult complex_of_real_def) |
|
14323 | 307 |
|
308 |
lemma complex_of_real_divide: |
|
309 |
"complex_of_real x / complex_of_real y = complex_of_real(x/y)" |
|
14373 | 310 |
apply (simp add: complex_divide_def) |
311 |
apply (case_tac "y=0", simp) |
|
14374 | 312 |
apply (simp add: complex_of_real_mult [symmetric] complex_of_real_inverse |
313 |
real_divide_def) |
|
14323 | 314 |
done |
315 |
||
14373 | 316 |
lemma complex_mod: "cmod (Complex x y) = sqrt(x ^ 2 + y ^ 2)" |
317 |
by (simp add: cmod_def) |
|
14323 | 318 |
|
14374 | 319 |
lemma complex_mod_zero [simp]: "cmod(0) = 0" |
14373 | 320 |
by (simp add: cmod_def) |
14323 | 321 |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
322 |
lemma complex_mod_one [simp]: "cmod(1) = 1" |
14353
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents:
14348
diff
changeset
|
323 |
by (simp add: cmod_def power2_eq_square) |
14323 | 324 |
|
14374 | 325 |
lemma complex_mod_complex_of_real [simp]: "cmod(complex_of_real x) = abs x" |
14373 | 326 |
by (simp add: complex_of_real_def power2_eq_square complex_mod) |
14323 | 327 |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
328 |
lemma complex_of_real_abs: |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
329 |
"complex_of_real (abs x) = complex_of_real(cmod(complex_of_real x))" |
14373 | 330 |
by simp |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
331 |
|
14323 | 332 |
|
333 |
subsection{*Conjugation is an Automorphism*} |
|
334 |
||
14373 | 335 |
lemma complex_cnj: "cnj (Complex x y) = Complex x (-y)" |
336 |
by (simp add: cnj_def) |
|
14323 | 337 |
|
14374 | 338 |
lemma complex_cnj_cancel_iff [simp]: "(cnj x = cnj y) = (x = y)" |
14373 | 339 |
by (simp add: cnj_def complex_Re_Im_cancel_iff) |
14323 | 340 |
|
14374 | 341 |
lemma complex_cnj_cnj [simp]: "cnj (cnj z) = z" |
14373 | 342 |
by (simp add: cnj_def) |
14323 | 343 |
|
14374 | 344 |
lemma complex_cnj_complex_of_real [simp]: |
14373 | 345 |
"cnj (complex_of_real x) = complex_of_real x" |
346 |
by (simp add: complex_of_real_def complex_cnj) |
|
14323 | 347 |
|
14374 | 348 |
lemma complex_mod_cnj [simp]: "cmod (cnj z) = cmod z" |
14373 | 349 |
by (induct z, simp add: complex_cnj complex_mod power2_eq_square) |
14323 | 350 |
|
351 |
lemma complex_cnj_minus: "cnj (-z) = - cnj z" |
|
14373 | 352 |
by (simp add: cnj_def complex_minus complex_Re_minus complex_Im_minus) |
14323 | 353 |
|
354 |
lemma complex_cnj_inverse: "cnj(inverse z) = inverse(cnj z)" |
|
14373 | 355 |
by (induct z, simp add: complex_cnj complex_inverse power2_eq_square) |
14323 | 356 |
|
357 |
lemma complex_cnj_add: "cnj(w + z) = cnj(w) + cnj(z)" |
|
14373 | 358 |
by (induct w, induct z, simp add: complex_cnj complex_add) |
14323 | 359 |
|
360 |
lemma complex_cnj_diff: "cnj(w - z) = cnj(w) - cnj(z)" |
|
14373 | 361 |
by (simp add: complex_diff_def complex_cnj_add complex_cnj_minus) |
14323 | 362 |
|
363 |
lemma complex_cnj_mult: "cnj(w * z) = cnj(w) * cnj(z)" |
|
14373 | 364 |
by (induct w, induct z, simp add: complex_cnj complex_mult) |
14323 | 365 |
|
366 |
lemma complex_cnj_divide: "cnj(w / z) = (cnj w)/(cnj z)" |
|
14373 | 367 |
by (simp add: complex_divide_def complex_cnj_mult complex_cnj_inverse) |
14323 | 368 |
|
14374 | 369 |
lemma complex_cnj_one [simp]: "cnj 1 = 1" |
14373 | 370 |
by (simp add: cnj_def complex_one_def) |
14323 | 371 |
|
372 |
lemma complex_add_cnj: "z + cnj z = complex_of_real (2 * Re(z))" |
|
14373 | 373 |
by (induct z, simp add: complex_add complex_cnj complex_of_real_def) |
14323 | 374 |
|
375 |
lemma complex_diff_cnj: "z - cnj z = complex_of_real (2 * Im(z)) * ii" |
|
14373 | 376 |
apply (induct z) |
14374 | 377 |
apply (simp add: complex_add complex_cnj complex_of_real_def complex_diff_def |
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
378 |
complex_minus i_def complex_mult) |
14323 | 379 |
done |
380 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
381 |
lemma complex_cnj_zero [simp]: "cnj 0 = 0" |
14334 | 382 |
by (simp add: cnj_def complex_zero_def) |
14323 | 383 |
|
14374 | 384 |
lemma complex_cnj_zero_iff [iff]: "(cnj z = 0) = (z = 0)" |
14373 | 385 |
by (induct z, simp add: complex_zero_def complex_cnj) |
14323 | 386 |
|
387 |
lemma complex_mult_cnj: "z * cnj z = complex_of_real (Re(z) ^ 2 + Im(z) ^ 2)" |
|
14374 | 388 |
by (induct z, |
389 |
simp add: complex_cnj complex_mult complex_of_real_def power2_eq_square) |
|
14323 | 390 |
|
391 |
||
392 |
subsection{*Modulus*} |
|
393 |
||
14374 | 394 |
lemma complex_mod_eq_zero_cancel [simp]: "(cmod x = 0) = (x = 0)" |
14373 | 395 |
apply (induct x) |
14374 | 396 |
apply (auto intro: real_sum_squares_cancel real_sum_squares_cancel2 |
14373 | 397 |
simp add: complex_mod complex_zero_def power2_eq_square) |
14323 | 398 |
done |
399 |
||
14374 | 400 |
lemma complex_mod_complex_of_real_of_nat [simp]: |
14373 | 401 |
"cmod (complex_of_real(real (n::nat))) = real n" |
402 |
by simp |
|
14323 | 403 |
|
14374 | 404 |
lemma complex_mod_minus [simp]: "cmod (-x) = cmod(x)" |
14373 | 405 |
by (induct x, simp add: complex_mod complex_minus power2_eq_square) |
14323 | 406 |
|
407 |
lemma complex_mod_mult_cnj: "cmod(z * cnj(z)) = cmod(z) ^ 2" |
|
14373 | 408 |
apply (induct z, simp add: complex_mod complex_cnj complex_mult) |
409 |
apply (simp add: power2_eq_square real_abs_def) |
|
14323 | 410 |
done |
411 |
||
14373 | 412 |
lemma complex_mod_squared: "cmod(Complex x y) ^ 2 = x ^ 2 + y ^ 2" |
413 |
by (simp add: cmod_def) |
|
14323 | 414 |
|
14374 | 415 |
lemma complex_mod_ge_zero [simp]: "0 \<le> cmod x" |
14373 | 416 |
by (simp add: cmod_def) |
14323 | 417 |
|
14374 | 418 |
lemma abs_cmod_cancel [simp]: "abs(cmod x) = cmod x" |
419 |
by (simp add: abs_if linorder_not_less) |
|
14323 | 420 |
|
421 |
lemma complex_mod_mult: "cmod(x*y) = cmod(x) * cmod(y)" |
|
14373 | 422 |
apply (induct x, induct y) |
14374 | 423 |
apply (auto simp add: complex_mult complex_mod real_sqrt_mult_distrib2[symmetric] |
424 |
simp del: realpow_Suc) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
425 |
apply (rule_tac n = 1 in power_inject_base) |
14353
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents:
14348
diff
changeset
|
426 |
apply (auto simp add: power2_eq_square [symmetric] simp del: realpow_Suc) |
14374 | 427 |
apply (auto simp add: real_diff_def power2_eq_square right_distrib left_distrib |
428 |
add_ac mult_ac) |
|
14323 | 429 |
done |
430 |
||
14374 | 431 |
lemma complex_mod_add_squared_eq: |
432 |
"cmod(x + y) ^ 2 = cmod(x) ^ 2 + cmod(y) ^ 2 + 2 * Re(x * cnj y)" |
|
14373 | 433 |
apply (induct x, induct y) |
14323 | 434 |
apply (auto simp add: complex_add complex_mod_squared complex_mult complex_cnj real_diff_def simp del: realpow_Suc) |
14353
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents:
14348
diff
changeset
|
435 |
apply (auto simp add: right_distrib left_distrib power2_eq_square mult_ac add_ac) |
14323 | 436 |
done |
437 |
||
14374 | 438 |
lemma complex_Re_mult_cnj_le_cmod [simp]: "Re(x * cnj y) \<le> cmod(x * cnj y)" |
14373 | 439 |
apply (induct x, induct y) |
14323 | 440 |
apply (auto simp add: complex_mod complex_mult complex_cnj real_diff_def simp del: realpow_Suc) |
441 |
done |
|
442 |
||
14374 | 443 |
lemma complex_Re_mult_cnj_le_cmod2 [simp]: "Re(x * cnj y) \<le> cmod(x * y)" |
14373 | 444 |
by (insert complex_Re_mult_cnj_le_cmod [of x y], simp add: complex_mod_mult) |
14323 | 445 |
|
14374 | 446 |
lemma real_sum_squared_expand: |
447 |
"((x::real) + y) ^ 2 = x ^ 2 + y ^ 2 + 2 * x * y" |
|
14373 | 448 |
by (simp add: left_distrib right_distrib power2_eq_square) |
14323 | 449 |
|
14374 | 450 |
lemma complex_mod_triangle_squared [simp]: |
451 |
"cmod (x + y) ^ 2 \<le> (cmod(x) + cmod(y)) ^ 2" |
|
14373 | 452 |
by (simp add: real_sum_squared_expand complex_mod_add_squared_eq real_mult_assoc complex_mod_mult [symmetric]) |
14323 | 453 |
|
14374 | 454 |
lemma complex_mod_minus_le_complex_mod [simp]: "- cmod x \<le> cmod x" |
14373 | 455 |
by (rule order_trans [OF _ complex_mod_ge_zero], simp) |
14323 | 456 |
|
14374 | 457 |
lemma complex_mod_triangle_ineq [simp]: "cmod (x + y) \<le> cmod(x) + cmod(y)" |
14334 | 458 |
apply (rule_tac n = 1 in realpow_increasing) |
14323 | 459 |
apply (auto intro: order_trans [OF _ complex_mod_ge_zero] |
14353
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents:
14348
diff
changeset
|
460 |
simp add: power2_eq_square [symmetric]) |
14323 | 461 |
done |
462 |
||
14374 | 463 |
lemma complex_mod_triangle_ineq2 [simp]: "cmod(b + a) - cmod b \<le> cmod a" |
14373 | 464 |
by (insert complex_mod_triangle_ineq [THEN add_right_mono, of b a"-cmod b"], simp) |
14323 | 465 |
|
466 |
lemma complex_mod_diff_commute: "cmod (x - y) = cmod (y - x)" |
|
14373 | 467 |
apply (induct x, induct y) |
14353
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents:
14348
diff
changeset
|
468 |
apply (auto simp add: complex_diff complex_mod right_diff_distrib power2_eq_square left_diff_distrib add_ac mult_ac) |
14323 | 469 |
done |
470 |
||
14374 | 471 |
lemma complex_mod_add_less: |
472 |
"[| cmod x < r; cmod y < s |] ==> cmod (x + y) < r + s" |
|
14334 | 473 |
by (auto intro: order_le_less_trans complex_mod_triangle_ineq) |
14323 | 474 |
|
14374 | 475 |
lemma complex_mod_mult_less: |
476 |
"[| cmod x < r; cmod y < s |] ==> cmod (x * y) < r * s" |
|
14334 | 477 |
by (auto intro: real_mult_less_mono' simp add: complex_mod_mult) |
14323 | 478 |
|
14374 | 479 |
lemma complex_mod_diff_ineq [simp]: "cmod(a) - cmod(b) \<le> cmod(a + b)" |
14323 | 480 |
apply (rule linorder_cases [of "cmod(a)" "cmod (b)"]) |
481 |
apply auto |
|
14334 | 482 |
apply (rule order_trans [of _ 0], rule order_less_imp_le) |
14374 | 483 |
apply (simp add: compare_rls, simp) |
14323 | 484 |
apply (simp add: compare_rls) |
485 |
apply (rule complex_mod_minus [THEN subst]) |
|
486 |
apply (rule order_trans) |
|
487 |
apply (rule_tac [2] complex_mod_triangle_ineq) |
|
14373 | 488 |
apply (auto simp add: add_ac) |
14323 | 489 |
done |
490 |
||
14374 | 491 |
lemma complex_Re_le_cmod [simp]: "Re z \<le> cmod z" |
14373 | 492 |
by (induct z, simp add: complex_mod del: realpow_Suc) |
14323 | 493 |
|
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
494 |
lemma complex_mod_gt_zero: "z \<noteq> 0 ==> 0 < cmod z" |
14373 | 495 |
apply (insert complex_mod_ge_zero [of z]) |
14334 | 496 |
apply (drule order_le_imp_less_or_eq, auto) |
14323 | 497 |
done |
498 |
||
499 |
||
500 |
subsection{*A Few More Theorems*} |
|
501 |
||
502 |
lemma complex_mod_inverse: "cmod(inverse x) = inverse(cmod x)" |
|
14373 | 503 |
apply (case_tac "x=0", simp) |
14323 | 504 |
apply (rule_tac c1 = "cmod x" in real_mult_left_cancel [THEN iffD1]) |
505 |
apply (auto simp add: complex_mod_mult [symmetric]) |
|
506 |
done |
|
507 |
||
14373 | 508 |
lemma complex_mod_divide: "cmod(x/y) = cmod(x)/(cmod y)" |
509 |
by (simp add: complex_divide_def real_divide_def, simp add: complex_mod_mult complex_mod_inverse) |
|
14323 | 510 |
|
14374 | 511 |
lemma complex_inverse_divide [simp]: "inverse(x/y) = y/(x::complex)" |
14373 | 512 |
by (simp add: complex_divide_def inverse_mult_distrib mult_commute) |
14323 | 513 |
|
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
514 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
515 |
subsection{*Exponentiation*} |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
516 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
517 |
primrec |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
518 |
complexpow_0: "z ^ 0 = 1" |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
519 |
complexpow_Suc: "z ^ (Suc n) = (z::complex) * (z ^ n)" |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
520 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
521 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
522 |
instance complex :: ringpower |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
523 |
proof |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
524 |
fix z :: complex |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
525 |
fix n :: nat |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
526 |
show "z^0 = 1" by simp |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
527 |
show "z^(Suc n) = z * (z^n)" by simp |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
528 |
qed |
14323 | 529 |
|
530 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
531 |
lemma complex_of_real_pow: "complex_of_real (x ^ n) = (complex_of_real x) ^ n" |
14323 | 532 |
apply (induct_tac "n") |
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
533 |
apply (auto simp add: complex_of_real_mult [symmetric]) |
14323 | 534 |
done |
535 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
536 |
lemma complex_cnj_pow: "cnj(z ^ n) = cnj(z) ^ n" |
14323 | 537 |
apply (induct_tac "n") |
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
538 |
apply (auto simp add: complex_cnj_mult) |
14323 | 539 |
done |
540 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
541 |
lemma complex_mod_complexpow: "cmod(x ^ n) = cmod(x) ^ n" |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
542 |
apply (induct_tac "n") |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
543 |
apply (auto simp add: complex_mod_mult) |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
544 |
done |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
545 |
|
14374 | 546 |
lemma complexpow_minus: |
547 |
"(-x::complex) ^ n = (if even n then (x ^ n) else -(x ^ n))" |
|
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
548 |
by (induct_tac "n", auto) |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
549 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
550 |
lemma complexpow_i_squared [simp]: "ii ^ 2 = -(1::complex)" |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
551 |
by (simp add: i_def complex_mult complex_one_def complex_minus numeral_2_eq_2) |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
552 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
553 |
lemma complex_i_not_zero [simp]: "ii \<noteq> 0" |
14373 | 554 |
by (simp add: i_def complex_zero_def) |
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
555 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
556 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
557 |
subsection{*The Function @{term sgn}*} |
14323 | 558 |
|
14374 | 559 |
lemma sgn_zero [simp]: "sgn 0 = 0" |
14373 | 560 |
by (simp add: sgn_def) |
14323 | 561 |
|
14374 | 562 |
lemma sgn_one [simp]: "sgn 1 = 1" |
14373 | 563 |
by (simp add: sgn_def) |
14323 | 564 |
|
565 |
lemma sgn_minus: "sgn (-z) = - sgn(z)" |
|
14373 | 566 |
by (simp add: sgn_def) |
14323 | 567 |
|
14374 | 568 |
lemma sgn_eq: "sgn z = z / complex_of_real (cmod z)" |
14373 | 569 |
apply (simp add: sgn_def) |
14323 | 570 |
done |
571 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
572 |
lemma complex_split: "\<exists>x y. z = complex_of_real(x) + ii * complex_of_real(y)" |
14373 | 573 |
apply (induct z) |
14323 | 574 |
apply (auto simp add: complex_of_real_def i_def complex_mult complex_add) |
575 |
done |
|
576 |
||
14374 | 577 |
(*????delete????*) |
578 |
lemma Re_complex_i [simp]: "Re(complex_of_real(x) + ii * complex_of_real(y)) = x" |
|
14334 | 579 |
by (auto simp add: complex_of_real_def i_def complex_mult complex_add) |
14323 | 580 |
|
14374 | 581 |
lemma Im_complex_i [simp]: "Im(complex_of_real(x) + ii * complex_of_real(y)) = y" |
14334 | 582 |
by (auto simp add: complex_of_real_def i_def complex_mult complex_add) |
14323 | 583 |
|
584 |
lemma i_mult_eq: "ii * ii = complex_of_real (-1)" |
|
14373 | 585 |
by (simp add: i_def complex_of_real_def complex_mult complex_add) |
14323 | 586 |
|
14374 | 587 |
lemma i_mult_eq2 [simp]: "ii * ii = -(1::complex)" |
14373 | 588 |
by (simp add: i_def complex_one_def complex_mult complex_minus) |
14323 | 589 |
|
590 |
lemma cmod_i: "cmod (complex_of_real(x) + ii * complex_of_real(y)) = |
|
591 |
sqrt (x ^ 2 + y ^ 2)" |
|
14373 | 592 |
by (simp add: complex_mult complex_add i_def complex_of_real_def cmod_def) |
14323 | 593 |
|
594 |
lemma complex_eq_Re_eq: |
|
595 |
"complex_of_real xa + ii * complex_of_real ya = |
|
596 |
complex_of_real xb + ii * complex_of_real yb |
|
597 |
==> xa = xb" |
|
14373 | 598 |
by (simp add: complex_of_real_def i_def complex_mult complex_add) |
14323 | 599 |
|
600 |
lemma complex_eq_Im_eq: |
|
601 |
"complex_of_real xa + ii * complex_of_real ya = |
|
602 |
complex_of_real xb + ii * complex_of_real yb |
|
603 |
==> ya = yb" |
|
14373 | 604 |
by (simp add: complex_of_real_def i_def complex_mult complex_add) |
14323 | 605 |
|
14374 | 606 |
(*FIXME: tidy up this mess by fixing a canonical form for complex expressions, |
607 |
e.g. x + y*ii*) |
|
608 |
||
609 |
lemma complex_eq_cancel_iff [iff]: |
|
610 |
"(complex_of_real xa + ii * complex_of_real ya = |
|
14323 | 611 |
complex_of_real xb + ii * complex_of_real yb) = ((xa = xb) & (ya = yb))" |
14373 | 612 |
by (auto intro: complex_eq_Im_eq complex_eq_Re_eq) |
14323 | 613 |
|
14374 | 614 |
lemma complex_eq_cancel_iffA [iff]: |
615 |
"(complex_of_real xa + complex_of_real ya * ii = |
|
14373 | 616 |
complex_of_real xb + complex_of_real yb * ii) = ((xa = xb) & (ya = yb))" |
617 |
by (simp add: mult_commute) |
|
14323 | 618 |
|
14374 | 619 |
lemma complex_eq_cancel_iffB [iff]: |
620 |
"(complex_of_real xa + complex_of_real ya * ii = |
|
14323 | 621 |
complex_of_real xb + ii * complex_of_real yb) = ((xa = xb) & (ya = yb))" |
14373 | 622 |
by (auto simp add: mult_commute) |
14323 | 623 |
|
14374 | 624 |
lemma complex_eq_cancel_iffC [iff]: |
625 |
"(complex_of_real xa + ii * complex_of_real ya = |
|
14323 | 626 |
complex_of_real xb + complex_of_real yb * ii) = ((xa = xb) & (ya = yb))" |
14373 | 627 |
by (auto simp add: mult_commute) |
14323 | 628 |
|
14374 | 629 |
lemma complex_eq_cancel_iff2 [simp]: |
630 |
"(complex_of_real x + ii * complex_of_real y = |
|
14323 | 631 |
complex_of_real xa) = (x = xa & y = 0)" |
14334 | 632 |
apply (cut_tac xa = x and ya = y and xb = xa and yb = 0 in complex_eq_cancel_iff) |
14323 | 633 |
apply (simp del: complex_eq_cancel_iff) |
634 |
done |
|
635 |
||
14374 | 636 |
lemma complex_eq_cancel_iff2a [simp]: |
637 |
"(complex_of_real x + complex_of_real y * ii = |
|
14323 | 638 |
complex_of_real xa) = (x = xa & y = 0)" |
14373 | 639 |
by (auto simp add: mult_commute) |
14323 | 640 |
|
14374 | 641 |
lemma complex_eq_cancel_iff3 [simp]: |
642 |
"(complex_of_real x + ii * complex_of_real y = |
|
14323 | 643 |
ii * complex_of_real ya) = (x = 0 & y = ya)" |
14334 | 644 |
apply (cut_tac xa = x and ya = y and xb = 0 and yb = ya in complex_eq_cancel_iff) |
14323 | 645 |
apply (simp del: complex_eq_cancel_iff) |
646 |
done |
|
647 |
||
14374 | 648 |
lemma complex_eq_cancel_iff3a [simp]: |
649 |
"(complex_of_real x + complex_of_real y * ii = |
|
14323 | 650 |
ii * complex_of_real ya) = (x = 0 & y = ya)" |
14373 | 651 |
by (auto simp add: mult_commute) |
14323 | 652 |
|
653 |
lemma complex_split_Re_zero: |
|
654 |
"complex_of_real x + ii * complex_of_real y = 0 |
|
655 |
==> x = 0" |
|
14373 | 656 |
by (simp add: complex_of_real_def i_def complex_zero_def complex_mult complex_add) |
14323 | 657 |
|
658 |
lemma complex_split_Im_zero: |
|
659 |
"complex_of_real x + ii * complex_of_real y = 0 |
|
660 |
==> y = 0" |
|
14373 | 661 |
by (simp add: complex_of_real_def i_def complex_zero_def complex_mult complex_add) |
14323 | 662 |
|
14374 | 663 |
lemma Re_sgn [simp]: "Re(sgn z) = Re(z)/cmod z" |
14373 | 664 |
apply (induct z) |
665 |
apply (simp add: sgn_def complex_divide_def complex_of_real_inverse [symmetric]) |
|
666 |
apply (simp add: complex_of_real_def complex_mult real_divide_def) |
|
14323 | 667 |
done |
668 |
||
14374 | 669 |
lemma Im_sgn [simp]: "Im(sgn z) = Im(z)/cmod z" |
14373 | 670 |
apply (induct z) |
671 |
apply (simp add: sgn_def complex_divide_def complex_of_real_inverse [symmetric]) |
|
672 |
apply (simp add: complex_of_real_def complex_mult real_divide_def) |
|
14323 | 673 |
done |
674 |
||
675 |
lemma complex_inverse_complex_split: |
|
676 |
"inverse(complex_of_real x + ii * complex_of_real y) = |
|
677 |
complex_of_real(x/(x ^ 2 + y ^ 2)) - |
|
678 |
ii * complex_of_real(y/(x ^ 2 + y ^ 2))" |
|
14374 | 679 |
by (simp add: complex_of_real_def i_def complex_mult complex_add |
14373 | 680 |
complex_diff_def complex_minus complex_inverse real_divide_def) |
14323 | 681 |
|
682 |
(*----------------------------------------------------------------------------*) |
|
683 |
(* Many of the theorems below need to be moved elsewhere e.g. Transc. Also *) |
|
684 |
(* many of the theorems are not used - so should they be kept? *) |
|
685 |
(*----------------------------------------------------------------------------*) |
|
686 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
687 |
lemma complex_of_real_zero_iff [simp]: "(complex_of_real y = 0) = (y = 0)" |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
688 |
by (auto simp add: complex_zero_def complex_of_real_def) |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
689 |
|
14374 | 690 |
lemma Re_mult_i_eq [simp]: "Re (ii * complex_of_real y) = 0" |
14373 | 691 |
by (simp add: i_def complex_of_real_def complex_mult) |
14323 | 692 |
|
14374 | 693 |
lemma Im_mult_i_eq [simp]: "Im (ii * complex_of_real y) = y" |
694 |
by (simp add: i_def complex_of_real_def complex_mult) |
|
695 |
||
696 |
lemma complex_mod_mult_i [simp]: "cmod (ii * complex_of_real y) = abs y" |
|
14373 | 697 |
by (simp add: i_def complex_of_real_def complex_mult complex_mod power2_eq_square) |
14323 | 698 |
|
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
699 |
lemma cos_arg_i_mult_zero_pos: |
14323 | 700 |
"0 < y ==> cos (arg(ii * complex_of_real y)) = 0" |
14373 | 701 |
apply (simp add: arg_def abs_if) |
14334 | 702 |
apply (rule_tac a = "pi/2" in someI2, auto) |
703 |
apply (rule order_less_trans [of _ 0], auto) |
|
14323 | 704 |
done |
705 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
706 |
lemma cos_arg_i_mult_zero_neg: |
14323 | 707 |
"y < 0 ==> cos (arg(ii * complex_of_real y)) = 0" |
14373 | 708 |
apply (simp add: arg_def abs_if) |
14334 | 709 |
apply (rule_tac a = "- pi/2" in someI2, auto) |
710 |
apply (rule order_trans [of _ 0], auto) |
|
14323 | 711 |
done |
712 |
||
14374 | 713 |
lemma cos_arg_i_mult_zero [simp]: |
714 |
"y \<noteq> 0 ==> cos (arg(ii * complex_of_real y)) = 0" |
|
715 |
apply (insert linorder_less_linear [of y 0]) |
|
14373 | 716 |
apply (auto simp add: cos_arg_i_mult_zero_pos cos_arg_i_mult_zero_neg) |
717 |
done |
|
14323 | 718 |
|
719 |
||
720 |
subsection{*Finally! Polar Form for Complex Numbers*} |
|
721 |
||
14374 | 722 |
lemma complex_split_polar: |
723 |
"\<exists>r a. z = complex_of_real r * |
|
14323 | 724 |
(complex_of_real(cos a) + ii * complex_of_real(sin a))" |
14334 | 725 |
apply (cut_tac z = z in complex_split) |
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
726 |
apply (auto simp add: polar_Ex right_distrib complex_of_real_mult mult_ac) |
14323 | 727 |
done |
728 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
729 |
lemma rcis_Ex: "\<exists>r a. z = rcis r a" |
14373 | 730 |
apply (simp add: rcis_def cis_def) |
14323 | 731 |
apply (rule complex_split_polar) |
732 |
done |
|
733 |
||
14374 | 734 |
lemma Re_complex_polar [simp]: |
735 |
"Re(complex_of_real r * |
|
14323 | 736 |
(complex_of_real(cos a) + ii * complex_of_real(sin a))) = r * cos a" |
14373 | 737 |
by (auto simp add: right_distrib complex_of_real_mult mult_ac) |
14323 | 738 |
|
14374 | 739 |
lemma Re_rcis [simp]: "Re(rcis r a) = r * cos a" |
14373 | 740 |
by (simp add: rcis_def cis_def) |
14323 | 741 |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
742 |
lemma Im_complex_polar [simp]: |
14374 | 743 |
"Im(complex_of_real r * |
744 |
(complex_of_real(cos a) + ii * complex_of_real(sin a))) = |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
745 |
r * sin a" |
14373 | 746 |
by (auto simp add: right_distrib complex_of_real_mult mult_ac) |
14323 | 747 |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
748 |
lemma Im_rcis [simp]: "Im(rcis r a) = r * sin a" |
14373 | 749 |
by (simp add: rcis_def cis_def) |
14323 | 750 |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
751 |
lemma complex_mod_complex_polar [simp]: |
14374 | 752 |
"cmod (complex_of_real r * |
753 |
(complex_of_real(cos a) + ii * complex_of_real(sin a))) = |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
754 |
abs r" |
14373 | 755 |
by (auto simp add: right_distrib cmod_i complex_of_real_mult |
14374 | 756 |
right_distrib [symmetric] power_mult_distrib mult_ac |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
757 |
simp del: realpow_Suc) |
14323 | 758 |
|
14374 | 759 |
lemma complex_mod_rcis [simp]: "cmod(rcis r a) = abs r" |
14373 | 760 |
by (simp add: rcis_def cis_def) |
14323 | 761 |
|
762 |
lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))" |
|
14373 | 763 |
apply (simp add: cmod_def) |
14323 | 764 |
apply (rule real_sqrt_eq_iff [THEN iffD2]) |
765 |
apply (auto simp add: complex_mult_cnj) |
|
766 |
done |
|
767 |
||
14374 | 768 |
lemma complex_Re_cnj [simp]: "Re(cnj z) = Re z" |
14373 | 769 |
by (induct z, simp add: complex_cnj) |
14323 | 770 |
|
14374 | 771 |
lemma complex_Im_cnj [simp]: "Im(cnj z) = - Im z" |
772 |
by (induct z, simp add: complex_cnj) |
|
773 |
||
774 |
lemma complex_In_mult_cnj_zero [simp]: "Im (z * cnj z) = 0" |
|
14373 | 775 |
by (induct z, simp add: complex_cnj complex_mult) |
14323 | 776 |
|
777 |
lemma complex_Re_mult: "[| Im w = 0; Im z = 0 |] ==> Re(w * z) = Re(w) * Re(z)" |
|
14373 | 778 |
by (induct z, induct w, simp add: complex_mult) |
14323 | 779 |
|
14374 | 780 |
lemma complex_Re_mult_complex_of_real [simp]: |
781 |
"Re (z * complex_of_real c) = Re(z) * c" |
|
14373 | 782 |
by (induct z, simp add: complex_of_real_def complex_mult) |
14323 | 783 |
|
14374 | 784 |
lemma complex_Im_mult_complex_of_real [simp]: |
785 |
"Im (z * complex_of_real c) = Im(z) * c" |
|
14373 | 786 |
by (induct z, simp add: complex_of_real_def complex_mult) |
14323 | 787 |
|
14374 | 788 |
lemma complex_Re_mult_complex_of_real2 [simp]: |
789 |
"Re (complex_of_real c * z) = c * Re(z)" |
|
14373 | 790 |
by (induct z, simp add: complex_of_real_def complex_mult) |
14323 | 791 |
|
14374 | 792 |
lemma complex_Im_mult_complex_of_real2 [simp]: |
793 |
"Im (complex_of_real c * z) = c * Im(z)" |
|
14373 | 794 |
by (induct z, simp add: complex_of_real_def complex_mult) |
14323 | 795 |
|
796 |
(*---------------------------------------------------------------------------*) |
|
797 |
(* (r1 * cis a) * (r2 * cis b) = r1 * r2 * cis (a + b) *) |
|
798 |
(*---------------------------------------------------------------------------*) |
|
799 |
||
800 |
lemma cis_rcis_eq: "cis a = rcis 1 a" |
|
14373 | 801 |
by (simp add: rcis_def) |
14323 | 802 |
|
14374 | 803 |
lemma rcis_mult: "rcis r1 a * rcis r2 b = rcis (r1*r2) (a + b)" |
804 |
apply (simp add: rcis_def cis_def cos_add sin_add right_distrib left_distrib |
|
14373 | 805 |
mult_ac add_ac) |
806 |
apply (auto simp add: right_distrib [symmetric] complex_mult_assoc [symmetric] complex_of_real_mult complex_of_real_add complex_add_assoc [symmetric] i_mult_eq simp del: i_mult_eq2) |
|
807 |
apply (auto simp add: add_ac) |
|
14334 | 808 |
apply (auto simp add: complex_add_assoc [symmetric] complex_of_real_add right_distrib real_diff_def mult_ac add_ac) |
14323 | 809 |
done |
810 |
||
811 |
lemma cis_mult: "cis a * cis b = cis (a + b)" |
|
14373 | 812 |
by (simp add: cis_rcis_eq rcis_mult) |
14323 | 813 |
|
14374 | 814 |
lemma cis_zero [simp]: "cis 0 = 1" |
14373 | 815 |
by (simp add: cis_def) |
14323 | 816 |
|
14374 | 817 |
lemma cis_zero2 [simp]: "cis 0 = complex_of_real 1" |
14373 | 818 |
by (simp add: cis_def) |
14323 | 819 |
|
14374 | 820 |
lemma rcis_zero_mod [simp]: "rcis 0 a = 0" |
14373 | 821 |
by (simp add: rcis_def) |
14323 | 822 |
|
14374 | 823 |
lemma rcis_zero_arg [simp]: "rcis r 0 = complex_of_real r" |
14373 | 824 |
by (simp add: rcis_def) |
14323 | 825 |
|
826 |
lemma complex_of_real_minus_one: |
|
827 |
"complex_of_real (-(1::real)) = -(1::complex)" |
|
14373 | 828 |
apply (simp add: complex_of_real_def complex_one_def complex_minus) |
14323 | 829 |
done |
830 |
||
14374 | 831 |
lemma complex_i_mult_minus [simp]: "ii * (ii * x) = - x" |
14373 | 832 |
by (simp add: complex_mult_assoc [symmetric]) |
14323 | 833 |
|
834 |
||
835 |
lemma cis_real_of_nat_Suc_mult: |
|
836 |
"cis (real (Suc n) * a) = cis a * cis (real n * a)" |
|
14373 | 837 |
apply (simp add: cis_def) |
838 |
apply (auto simp add: real_of_nat_Suc left_distrib cos_add sin_add left_distrib right_distrib complex_of_real_add complex_of_real_mult mult_ac add_ac) |
|
839 |
apply (auto simp add: right_distrib [symmetric] complex_mult_assoc [symmetric] i_mult_eq complex_of_real_mult complex_of_real_add complex_add_assoc [symmetric] complex_of_real_minus [symmetric] real_diff_def mult_ac simp del: i_mult_eq2) |
|
14323 | 840 |
done |
841 |
||
842 |
lemma DeMoivre: "(cis a) ^ n = cis (real n * a)" |
|
843 |
apply (induct_tac "n") |
|
844 |
apply (auto simp add: cis_real_of_nat_Suc_mult) |
|
845 |
done |
|
846 |
||
14374 | 847 |
lemma DeMoivre2: "(rcis r a) ^ n = rcis (r ^ n) (real n * a)" |
848 |
by (simp add: rcis_def power_mult_distrib DeMoivre complex_of_real_pow) |
|
14323 | 849 |
|
14374 | 850 |
lemma cis_inverse [simp]: "inverse(cis a) = cis (-a)" |
851 |
by (simp add: cis_def complex_inverse_complex_split complex_of_real_minus |
|
852 |
complex_diff_def) |
|
14323 | 853 |
|
854 |
lemma rcis_inverse: "inverse(rcis r a) = rcis (1/r) (-a)" |
|
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
855 |
apply (case_tac "r=0", simp) |
14374 | 856 |
apply (auto simp add: complex_inverse_complex_split right_distrib |
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
857 |
complex_of_real_mult rcis_def cis_def power2_eq_square mult_ac) |
14374 | 858 |
apply (auto simp add: right_distrib [symmetric] complex_of_real_minus |
859 |
complex_diff_def) |
|
14323 | 860 |
done |
861 |
||
862 |
lemma cis_divide: "cis a / cis b = cis (a - b)" |
|
14373 | 863 |
by (simp add: complex_divide_def cis_mult real_diff_def) |
14323 | 864 |
|
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
865 |
lemma rcis_divide: "rcis r1 a / rcis r2 b = rcis (r1/r2) (a - b)" |
14373 | 866 |
apply (simp add: complex_divide_def) |
867 |
apply (case_tac "r2=0", simp) |
|
868 |
apply (simp add: rcis_inverse rcis_mult real_diff_def) |
|
14323 | 869 |
done |
870 |
||
14374 | 871 |
lemma Re_cis [simp]: "Re(cis a) = cos a" |
14373 | 872 |
by (simp add: cis_def) |
14323 | 873 |
|
14374 | 874 |
lemma Im_cis [simp]: "Im(cis a) = sin a" |
14373 | 875 |
by (simp add: cis_def) |
14323 | 876 |
|
877 |
lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re(cis a ^ n)" |
|
14334 | 878 |
by (auto simp add: DeMoivre) |
14323 | 879 |
|
880 |
lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im(cis a ^ n)" |
|
14334 | 881 |
by (auto simp add: DeMoivre) |
14323 | 882 |
|
883 |
lemma expi_Im_split: |
|
884 |
"expi (ii * complex_of_real y) = |
|
885 |
complex_of_real (cos y) + ii * complex_of_real (sin y)" |
|
14373 | 886 |
by (simp add: expi_def cis_def) |
14323 | 887 |
|
888 |
lemma expi_Im_cis: |
|
889 |
"expi (ii * complex_of_real y) = cis y" |
|
14373 | 890 |
by (simp add: expi_def) |
14323 | 891 |
|
892 |
lemma expi_add: "expi(a + b) = expi(a) * expi(b)" |
|
14374 | 893 |
by (simp add: expi_def complex_Re_add exp_add complex_Im_add |
894 |
cis_mult [symmetric] complex_of_real_mult mult_ac) |
|
14323 | 895 |
|
896 |
lemma expi_complex_split: |
|
897 |
"expi(complex_of_real x + ii * complex_of_real y) = |
|
898 |
complex_of_real (exp(x)) * cis y" |
|
14373 | 899 |
by (simp add: expi_def) |
14323 | 900 |
|
14374 | 901 |
lemma expi_zero [simp]: "expi (0::complex) = 1" |
14373 | 902 |
by (simp add: expi_def) |
14323 | 903 |
|
904 |
lemma complex_Re_mult_eq: "Re (w * z) = Re w * Re z - Im w * Im z" |
|
14373 | 905 |
by (induct z, induct w, simp add: complex_mult) |
14323 | 906 |
|
907 |
lemma complex_Im_mult_eq: |
|
908 |
"Im (w * z) = Re w * Im z + Im w * Re z" |
|
14373 | 909 |
apply (induct z, induct w, simp add: complex_mult) |
14323 | 910 |
done |
911 |
||
14374 | 912 |
lemma complex_expi_Ex: "\<exists>a r. z = complex_of_real r * expi a" |
14373 | 913 |
apply (insert rcis_Ex [of z]) |
14323 | 914 |
apply (auto simp add: expi_def rcis_def complex_mult_assoc [symmetric] complex_of_real_mult) |
14334 | 915 |
apply (rule_tac x = "ii * complex_of_real a" in exI, auto) |
14323 | 916 |
done |
917 |
||
918 |
||
919 |
||
920 |
ML |
|
921 |
{* |
|
922 |
val complex_zero_def = thm"complex_zero_def"; |
|
923 |
val complex_one_def = thm"complex_one_def"; |
|
924 |
val complex_minus_def = thm"complex_minus_def"; |
|
925 |
val complex_diff_def = thm"complex_diff_def"; |
|
926 |
val complex_divide_def = thm"complex_divide_def"; |
|
927 |
val complex_mult_def = thm"complex_mult_def"; |
|
928 |
val complex_add_def = thm"complex_add_def"; |
|
929 |
val complex_of_real_def = thm"complex_of_real_def"; |
|
930 |
val i_def = thm"i_def"; |
|
931 |
val expi_def = thm"expi_def"; |
|
932 |
val cis_def = thm"cis_def"; |
|
933 |
val rcis_def = thm"rcis_def"; |
|
934 |
val cmod_def = thm"cmod_def"; |
|
935 |
val cnj_def = thm"cnj_def"; |
|
936 |
val sgn_def = thm"sgn_def"; |
|
937 |
val arg_def = thm"arg_def"; |
|
938 |
val complexpow_0 = thm"complexpow_0"; |
|
939 |
val complexpow_Suc = thm"complexpow_Suc"; |
|
940 |
||
941 |
val Re = thm"Re"; |
|
942 |
val Im = thm"Im"; |
|
943 |
val complex_Re_Im_cancel_iff = thm"complex_Re_Im_cancel_iff"; |
|
944 |
val complex_Re_zero = thm"complex_Re_zero"; |
|
945 |
val complex_Im_zero = thm"complex_Im_zero"; |
|
946 |
val complex_Re_one = thm"complex_Re_one"; |
|
947 |
val complex_Im_one = thm"complex_Im_one"; |
|
948 |
val complex_Re_i = thm"complex_Re_i"; |
|
949 |
val complex_Im_i = thm"complex_Im_i"; |
|
950 |
val Re_complex_of_real = thm"Re_complex_of_real"; |
|
951 |
val Im_complex_of_real = thm"Im_complex_of_real"; |
|
952 |
val complex_minus = thm"complex_minus"; |
|
953 |
val complex_Re_minus = thm"complex_Re_minus"; |
|
954 |
val complex_Im_minus = thm"complex_Im_minus"; |
|
955 |
val complex_add = thm"complex_add"; |
|
956 |
val complex_Re_add = thm"complex_Re_add"; |
|
957 |
val complex_Im_add = thm"complex_Im_add"; |
|
958 |
val complex_add_commute = thm"complex_add_commute"; |
|
959 |
val complex_add_assoc = thm"complex_add_assoc"; |
|
960 |
val complex_add_zero_left = thm"complex_add_zero_left"; |
|
961 |
val complex_add_zero_right = thm"complex_add_zero_right"; |
|
962 |
val complex_diff = thm"complex_diff"; |
|
963 |
val complex_mult = thm"complex_mult"; |
|
964 |
val complex_mult_one_left = thm"complex_mult_one_left"; |
|
965 |
val complex_mult_one_right = thm"complex_mult_one_right"; |
|
966 |
val complex_inverse = thm"complex_inverse"; |
|
967 |
val complex_of_real_one = thm"complex_of_real_one"; |
|
968 |
val complex_of_real_zero = thm"complex_of_real_zero"; |
|
969 |
val complex_of_real_eq_iff = thm"complex_of_real_eq_iff"; |
|
970 |
val complex_of_real_minus = thm"complex_of_real_minus"; |
|
971 |
val complex_of_real_inverse = thm"complex_of_real_inverse"; |
|
972 |
val complex_of_real_add = thm"complex_of_real_add"; |
|
973 |
val complex_of_real_diff = thm"complex_of_real_diff"; |
|
974 |
val complex_of_real_mult = thm"complex_of_real_mult"; |
|
975 |
val complex_of_real_divide = thm"complex_of_real_divide"; |
|
976 |
val complex_of_real_pow = thm"complex_of_real_pow"; |
|
977 |
val complex_mod = thm"complex_mod"; |
|
978 |
val complex_mod_zero = thm"complex_mod_zero"; |
|
979 |
val complex_mod_one = thm"complex_mod_one"; |
|
980 |
val complex_mod_complex_of_real = thm"complex_mod_complex_of_real"; |
|
981 |
val complex_of_real_abs = thm"complex_of_real_abs"; |
|
982 |
val complex_cnj = thm"complex_cnj"; |
|
983 |
val complex_cnj_cancel_iff = thm"complex_cnj_cancel_iff"; |
|
984 |
val complex_cnj_cnj = thm"complex_cnj_cnj"; |
|
985 |
val complex_cnj_complex_of_real = thm"complex_cnj_complex_of_real"; |
|
986 |
val complex_mod_cnj = thm"complex_mod_cnj"; |
|
987 |
val complex_cnj_minus = thm"complex_cnj_minus"; |
|
988 |
val complex_cnj_inverse = thm"complex_cnj_inverse"; |
|
989 |
val complex_cnj_add = thm"complex_cnj_add"; |
|
990 |
val complex_cnj_diff = thm"complex_cnj_diff"; |
|
991 |
val complex_cnj_mult = thm"complex_cnj_mult"; |
|
992 |
val complex_cnj_divide = thm"complex_cnj_divide"; |
|
993 |
val complex_cnj_one = thm"complex_cnj_one"; |
|
994 |
val complex_cnj_pow = thm"complex_cnj_pow"; |
|
995 |
val complex_add_cnj = thm"complex_add_cnj"; |
|
996 |
val complex_diff_cnj = thm"complex_diff_cnj"; |
|
997 |
val complex_cnj_zero = thm"complex_cnj_zero"; |
|
998 |
val complex_cnj_zero_iff = thm"complex_cnj_zero_iff"; |
|
999 |
val complex_mult_cnj = thm"complex_mult_cnj"; |
|
1000 |
val complex_mod_eq_zero_cancel = thm"complex_mod_eq_zero_cancel"; |
|
1001 |
val complex_mod_complex_of_real_of_nat = thm"complex_mod_complex_of_real_of_nat"; |
|
1002 |
val complex_mod_minus = thm"complex_mod_minus"; |
|
1003 |
val complex_mod_mult_cnj = thm"complex_mod_mult_cnj"; |
|
1004 |
val complex_mod_squared = thm"complex_mod_squared"; |
|
1005 |
val complex_mod_ge_zero = thm"complex_mod_ge_zero"; |
|
1006 |
val abs_cmod_cancel = thm"abs_cmod_cancel"; |
|
1007 |
val complex_mod_mult = thm"complex_mod_mult"; |
|
1008 |
val complex_mod_add_squared_eq = thm"complex_mod_add_squared_eq"; |
|
1009 |
val complex_Re_mult_cnj_le_cmod = thm"complex_Re_mult_cnj_le_cmod"; |
|
1010 |
val complex_Re_mult_cnj_le_cmod2 = thm"complex_Re_mult_cnj_le_cmod2"; |
|
1011 |
val real_sum_squared_expand = thm"real_sum_squared_expand"; |
|
1012 |
val complex_mod_triangle_squared = thm"complex_mod_triangle_squared"; |
|
1013 |
val complex_mod_minus_le_complex_mod = thm"complex_mod_minus_le_complex_mod"; |
|
1014 |
val complex_mod_triangle_ineq = thm"complex_mod_triangle_ineq"; |
|
1015 |
val complex_mod_triangle_ineq2 = thm"complex_mod_triangle_ineq2"; |
|
1016 |
val complex_mod_diff_commute = thm"complex_mod_diff_commute"; |
|
1017 |
val complex_mod_add_less = thm"complex_mod_add_less"; |
|
1018 |
val complex_mod_mult_less = thm"complex_mod_mult_less"; |
|
1019 |
val complex_mod_diff_ineq = thm"complex_mod_diff_ineq"; |
|
1020 |
val complex_Re_le_cmod = thm"complex_Re_le_cmod"; |
|
1021 |
val complex_mod_gt_zero = thm"complex_mod_gt_zero"; |
|
1022 |
val complex_mod_complexpow = thm"complex_mod_complexpow"; |
|
1023 |
val complexpow_minus = thm"complexpow_minus"; |
|
1024 |
val complex_mod_inverse = thm"complex_mod_inverse"; |
|
1025 |
val complex_mod_divide = thm"complex_mod_divide"; |
|
1026 |
val complex_inverse_divide = thm"complex_inverse_divide"; |
|
1027 |
val complexpow_i_squared = thm"complexpow_i_squared"; |
|
1028 |
val complex_i_not_zero = thm"complex_i_not_zero"; |
|
1029 |
val sgn_zero = thm"sgn_zero"; |
|
1030 |
val sgn_one = thm"sgn_one"; |
|
1031 |
val sgn_minus = thm"sgn_minus"; |
|
1032 |
val sgn_eq = thm"sgn_eq"; |
|
1033 |
val complex_split = thm"complex_split"; |
|
1034 |
val Re_complex_i = thm"Re_complex_i"; |
|
1035 |
val Im_complex_i = thm"Im_complex_i"; |
|
1036 |
val i_mult_eq = thm"i_mult_eq"; |
|
1037 |
val i_mult_eq2 = thm"i_mult_eq2"; |
|
1038 |
val cmod_i = thm"cmod_i"; |
|
1039 |
val complex_eq_Re_eq = thm"complex_eq_Re_eq"; |
|
1040 |
val complex_eq_Im_eq = thm"complex_eq_Im_eq"; |
|
1041 |
val complex_eq_cancel_iff = thm"complex_eq_cancel_iff"; |
|
1042 |
val complex_eq_cancel_iffA = thm"complex_eq_cancel_iffA"; |
|
1043 |
val complex_eq_cancel_iffB = thm"complex_eq_cancel_iffB"; |
|
1044 |
val complex_eq_cancel_iffC = thm"complex_eq_cancel_iffC"; |
|
1045 |
val complex_eq_cancel_iff2 = thm"complex_eq_cancel_iff2"; |
|
1046 |
val complex_eq_cancel_iff2a = thm"complex_eq_cancel_iff2a"; |
|
1047 |
val complex_eq_cancel_iff3 = thm"complex_eq_cancel_iff3"; |
|
1048 |
val complex_eq_cancel_iff3a = thm"complex_eq_cancel_iff3a"; |
|
1049 |
val complex_split_Re_zero = thm"complex_split_Re_zero"; |
|
1050 |
val complex_split_Im_zero = thm"complex_split_Im_zero"; |
|
1051 |
val Re_sgn = thm"Re_sgn"; |
|
1052 |
val Im_sgn = thm"Im_sgn"; |
|
1053 |
val complex_inverse_complex_split = thm"complex_inverse_complex_split"; |
|
1054 |
val Re_mult_i_eq = thm"Re_mult_i_eq"; |
|
1055 |
val Im_mult_i_eq = thm"Im_mult_i_eq"; |
|
1056 |
val complex_mod_mult_i = thm"complex_mod_mult_i"; |
|
1057 |
val cos_arg_i_mult_zero = thm"cos_arg_i_mult_zero"; |
|
1058 |
val complex_of_real_zero_iff = thm"complex_of_real_zero_iff"; |
|
1059 |
val complex_split_polar = thm"complex_split_polar"; |
|
1060 |
val rcis_Ex = thm"rcis_Ex"; |
|
1061 |
val Re_complex_polar = thm"Re_complex_polar"; |
|
1062 |
val Re_rcis = thm"Re_rcis"; |
|
1063 |
val Im_complex_polar = thm"Im_complex_polar"; |
|
1064 |
val Im_rcis = thm"Im_rcis"; |
|
1065 |
val complex_mod_complex_polar = thm"complex_mod_complex_polar"; |
|
1066 |
val complex_mod_rcis = thm"complex_mod_rcis"; |
|
1067 |
val complex_mod_sqrt_Re_mult_cnj = thm"complex_mod_sqrt_Re_mult_cnj"; |
|
1068 |
val complex_Re_cnj = thm"complex_Re_cnj"; |
|
1069 |
val complex_Im_cnj = thm"complex_Im_cnj"; |
|
1070 |
val complex_In_mult_cnj_zero = thm"complex_In_mult_cnj_zero"; |
|
1071 |
val complex_Re_mult = thm"complex_Re_mult"; |
|
1072 |
val complex_Re_mult_complex_of_real = thm"complex_Re_mult_complex_of_real"; |
|
1073 |
val complex_Im_mult_complex_of_real = thm"complex_Im_mult_complex_of_real"; |
|
1074 |
val complex_Re_mult_complex_of_real2 = thm"complex_Re_mult_complex_of_real2"; |
|
1075 |
val complex_Im_mult_complex_of_real2 = thm"complex_Im_mult_complex_of_real2"; |
|
1076 |
val cis_rcis_eq = thm"cis_rcis_eq"; |
|
1077 |
val rcis_mult = thm"rcis_mult"; |
|
1078 |
val cis_mult = thm"cis_mult"; |
|
1079 |
val cis_zero = thm"cis_zero"; |
|
1080 |
val cis_zero2 = thm"cis_zero2"; |
|
1081 |
val rcis_zero_mod = thm"rcis_zero_mod"; |
|
1082 |
val rcis_zero_arg = thm"rcis_zero_arg"; |
|
1083 |
val complex_of_real_minus_one = thm"complex_of_real_minus_one"; |
|
1084 |
val complex_i_mult_minus = thm"complex_i_mult_minus"; |
|
1085 |
val cis_real_of_nat_Suc_mult = thm"cis_real_of_nat_Suc_mult"; |
|
1086 |
val DeMoivre = thm"DeMoivre"; |
|
1087 |
val DeMoivre2 = thm"DeMoivre2"; |
|
1088 |
val cis_inverse = thm"cis_inverse"; |
|
1089 |
val rcis_inverse = thm"rcis_inverse"; |
|
1090 |
val cis_divide = thm"cis_divide"; |
|
1091 |
val rcis_divide = thm"rcis_divide"; |
|
1092 |
val Re_cis = thm"Re_cis"; |
|
1093 |
val Im_cis = thm"Im_cis"; |
|
1094 |
val cos_n_Re_cis_pow_n = thm"cos_n_Re_cis_pow_n"; |
|
1095 |
val sin_n_Im_cis_pow_n = thm"sin_n_Im_cis_pow_n"; |
|
1096 |
val expi_Im_split = thm"expi_Im_split"; |
|
1097 |
val expi_Im_cis = thm"expi_Im_cis"; |
|
1098 |
val expi_add = thm"expi_add"; |
|
1099 |
val expi_complex_split = thm"expi_complex_split"; |
|
1100 |
val expi_zero = thm"expi_zero"; |
|
1101 |
val complex_Re_mult_eq = thm"complex_Re_mult_eq"; |
|
1102 |
val complex_Im_mult_eq = thm"complex_Im_mult_eq"; |
|
1103 |
val complex_expi_Ex = thm"complex_expi_Ex"; |
|
1104 |
*} |
|
1105 |
||
13957 | 1106 |
end |
1107 |
||
1108 |