src/HOL/Number_Theory/Factorial_Ring.thy
author wenzelm
Sun, 20 Nov 2016 19:08:14 +0100
changeset 64513 56972c755027
parent 64272 f76b6dda2e56
child 64631 7705926ee595
permissions -rw-r--r--
misc tuning and updates;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
     1
(*  Title:      HOL/Number_Theory/Factorial_Ring.thy
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
     2
    Author:     Manuel Eberl, TU Muenchen
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
     3
    Author:     Florian Haftmann, TU Muenchen
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
     4
*)
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
     5
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
     6
section \<open>Factorial (semi)rings\<close>
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
     7
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
     8
theory Factorial_Ring
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
     9
imports 
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
    10
  Main
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
    11
  "~~/src/HOL/GCD"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    12
  "~~/src/HOL/Library/Multiset"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    13
begin
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    14
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
    15
subsection \<open>Irreducible and prime elements\<close>
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    16
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    17
context comm_semiring_1
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
    18
begin
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
    19
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    20
definition irreducible :: "'a \<Rightarrow> bool" where
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    21
  "irreducible p \<longleftrightarrow> p \<noteq> 0 \<and> \<not>p dvd 1 \<and> (\<forall>a b. p = a * b \<longrightarrow> a dvd 1 \<or> b dvd 1)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    22
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    23
lemma not_irreducible_zero [simp]: "\<not>irreducible 0"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    24
  by (simp add: irreducible_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    25
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    26
lemma irreducible_not_unit: "irreducible p \<Longrightarrow> \<not>p dvd 1"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    27
  by (simp add: irreducible_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    28
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    29
lemma not_irreducible_one [simp]: "\<not>irreducible 1"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    30
  by (simp add: irreducible_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    31
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    32
lemma irreducibleI:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    33
  "p \<noteq> 0 \<Longrightarrow> \<not>p dvd 1 \<Longrightarrow> (\<And>a b. p = a * b \<Longrightarrow> a dvd 1 \<or> b dvd 1) \<Longrightarrow> irreducible p"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    34
  by (simp add: irreducible_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    35
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    36
lemma irreducibleD: "irreducible p \<Longrightarrow> p = a * b \<Longrightarrow> a dvd 1 \<or> b dvd 1"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    37
  by (simp add: irreducible_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    38
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    39
definition prime_elem :: "'a \<Rightarrow> bool" where
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    40
  "prime_elem p \<longleftrightarrow> p \<noteq> 0 \<and> \<not>p dvd 1 \<and> (\<forall>a b. p dvd (a * b) \<longrightarrow> p dvd a \<or> p dvd b)"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    41
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    42
lemma not_prime_elem_zero [simp]: "\<not>prime_elem 0"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    43
  by (simp add: prime_elem_def)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    44
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    45
lemma prime_elem_not_unit: "prime_elem p \<Longrightarrow> \<not>p dvd 1"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    46
  by (simp add: prime_elem_def)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    47
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    48
lemma prime_elemI:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    49
    "p \<noteq> 0 \<Longrightarrow> \<not>p dvd 1 \<Longrightarrow> (\<And>a b. p dvd (a * b) \<Longrightarrow> p dvd a \<or> p dvd b) \<Longrightarrow> prime_elem p"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    50
  by (simp add: prime_elem_def)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    51
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    52
lemma prime_elem_dvd_multD:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    53
    "prime_elem p \<Longrightarrow> p dvd (a * b) \<Longrightarrow> p dvd a \<or> p dvd b"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    54
  by (simp add: prime_elem_def)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    55
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    56
lemma prime_elem_dvd_mult_iff:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    57
  "prime_elem p \<Longrightarrow> p dvd (a * b) \<longleftrightarrow> p dvd a \<or> p dvd b"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    58
  by (auto simp: prime_elem_def)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    59
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    60
lemma not_prime_elem_one [simp]:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    61
  "\<not> prime_elem 1"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    62
  by (auto dest: prime_elem_not_unit)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    63
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    64
lemma prime_elem_not_zeroI:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    65
  assumes "prime_elem p"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    66
  shows "p \<noteq> 0"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    67
  using assms by (auto intro: ccontr)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    68
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    69
lemma prime_elem_dvd_power: 
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    70
  "prime_elem p \<Longrightarrow> p dvd x ^ n \<Longrightarrow> p dvd x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    71
  by (induction n) (auto dest: prime_elem_dvd_multD intro: dvd_trans[of _ 1])
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
    72
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    73
lemma prime_elem_dvd_power_iff:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    74
  "prime_elem p \<Longrightarrow> n > 0 \<Longrightarrow> p dvd x ^ n \<longleftrightarrow> p dvd x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    75
  by (auto dest: prime_elem_dvd_power intro: dvd_trans)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
    76
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    77
lemma prime_elem_imp_nonzero [simp]:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    78
  "ASSUMPTION (prime_elem x) \<Longrightarrow> x \<noteq> 0"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    79
  unfolding ASSUMPTION_def by (rule prime_elem_not_zeroI)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    80
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    81
lemma prime_elem_imp_not_one [simp]:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    82
  "ASSUMPTION (prime_elem x) \<Longrightarrow> x \<noteq> 1"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    83
  unfolding ASSUMPTION_def by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    84
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    85
end
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    86
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
    87
context algebraic_semidom
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
    88
begin
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
    89
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    90
lemma prime_elem_imp_irreducible:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    91
  assumes "prime_elem p"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    92
  shows   "irreducible p"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    93
proof (rule irreducibleI)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    94
  fix a b
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    95
  assume p_eq: "p = a * b"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    96
  with assms have nz: "a \<noteq> 0" "b \<noteq> 0" by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    97
  from p_eq have "p dvd a * b" by simp
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
    98
  with \<open>prime_elem p\<close> have "p dvd a \<or> p dvd b" by (rule prime_elem_dvd_multD)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
    99
  with \<open>p = a * b\<close> have "a * b dvd 1 * b \<or> a * b dvd a * 1" by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   100
  thus "a dvd 1 \<or> b dvd 1"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   101
    by (simp only: dvd_times_left_cancel_iff[OF nz(1)] dvd_times_right_cancel_iff[OF nz(2)])
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   102
qed (insert assms, simp_all add: prime_elem_def)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   103
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   104
lemma (in algebraic_semidom) unit_imp_no_irreducible_divisors:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   105
  assumes "is_unit x" "irreducible p"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   106
  shows   "\<not>p dvd x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   107
proof (rule notI)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   108
  assume "p dvd x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   109
  with \<open>is_unit x\<close> have "is_unit p"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   110
    by (auto intro: dvd_trans)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   111
  with \<open>irreducible p\<close> show False
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   112
    by (simp add: irreducible_not_unit)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   113
qed
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   114
   
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   115
lemma unit_imp_no_prime_divisors:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   116
  assumes "is_unit x" "prime_elem p"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   117
  shows   "\<not>p dvd x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   118
  using unit_imp_no_irreducible_divisors[OF assms(1) prime_elem_imp_irreducible[OF assms(2)]] .
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   119
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   120
lemma prime_elem_mono:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   121
  assumes "prime_elem p" "\<not>q dvd 1" "q dvd p"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   122
  shows   "prime_elem q"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   123
proof -
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   124
  from \<open>q dvd p\<close> obtain r where r: "p = q * r" by (elim dvdE)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   125
  hence "p dvd q * r" by simp
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   126
  with \<open>prime_elem p\<close> have "p dvd q \<or> p dvd r" by (rule prime_elem_dvd_multD)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   127
  hence "p dvd q"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   128
  proof
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   129
    assume "p dvd r"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   130
    then obtain s where s: "r = p * s" by (elim dvdE)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   131
    from r have "p * 1 = p * (q * s)" by (subst (asm) s) (simp add: mult_ac)
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   132
    with \<open>prime_elem p\<close> have "q dvd 1"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   133
      by (subst (asm) mult_cancel_left) auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   134
    with \<open>\<not>q dvd 1\<close> show ?thesis by contradiction
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   135
  qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   136
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   137
  show ?thesis
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   138
  proof (rule prime_elemI)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   139
    fix a b assume "q dvd (a * b)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   140
    with \<open>p dvd q\<close> have "p dvd (a * b)" by (rule dvd_trans)
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   141
    with \<open>prime_elem p\<close> have "p dvd a \<or> p dvd b" by (rule prime_elem_dvd_multD)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   142
    with \<open>q dvd p\<close> show "q dvd a \<or> q dvd b" by (blast intro: dvd_trans)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   143
  qed (insert assms, auto)
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   144
qed
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   145
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   146
lemma irreducibleD':
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   147
  assumes "irreducible a" "b dvd a"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   148
  shows   "a dvd b \<or> is_unit b"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   149
proof -
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   150
  from assms obtain c where c: "a = b * c" by (elim dvdE)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   151
  from irreducibleD[OF assms(1) this] have "is_unit b \<or> is_unit c" .
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   152
  thus ?thesis by (auto simp: c mult_unit_dvd_iff)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   153
qed
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   154
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   155
lemma irreducibleI':
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   156
  assumes "a \<noteq> 0" "\<not>is_unit a" "\<And>b. b dvd a \<Longrightarrow> a dvd b \<or> is_unit b"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   157
  shows   "irreducible a"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   158
proof (rule irreducibleI)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   159
  fix b c assume a_eq: "a = b * c"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   160
  hence "a dvd b \<or> is_unit b" by (intro assms) simp_all
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   161
  thus "is_unit b \<or> is_unit c"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   162
  proof
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   163
    assume "a dvd b"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   164
    hence "b * c dvd b * 1" by (simp add: a_eq)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   165
    moreover from \<open>a \<noteq> 0\<close> a_eq have "b \<noteq> 0" by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   166
    ultimately show ?thesis by (subst (asm) dvd_times_left_cancel_iff) auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   167
  qed blast
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   168
qed (simp_all add: assms(1,2))
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   169
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   170
lemma irreducible_altdef:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   171
  "irreducible x \<longleftrightarrow> x \<noteq> 0 \<and> \<not>is_unit x \<and> (\<forall>b. b dvd x \<longrightarrow> x dvd b \<or> is_unit b)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   172
  using irreducibleI'[of x] irreducibleD'[of x] irreducible_not_unit[of x] by auto
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   173
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   174
lemma prime_elem_multD:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   175
  assumes "prime_elem (a * b)"
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   176
  shows "is_unit a \<or> is_unit b"
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   177
proof -
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   178
  from assms have "a \<noteq> 0" "b \<noteq> 0" by (auto dest!: prime_elem_not_zeroI)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   179
  moreover from assms prime_elem_dvd_multD [of "a * b"] have "a * b dvd a \<or> a * b dvd b"
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   180
    by auto
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   181
  ultimately show ?thesis
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   182
    using dvd_times_left_cancel_iff [of a b 1]
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   183
      dvd_times_right_cancel_iff [of b a 1]
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   184
    by auto
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   185
qed
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   186
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   187
lemma prime_elemD2:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   188
  assumes "prime_elem p" and "a dvd p" and "\<not> is_unit a"
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   189
  shows "p dvd a"
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   190
proof -
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   191
  from \<open>a dvd p\<close> obtain b where "p = a * b" ..
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   192
  with \<open>prime_elem p\<close> prime_elem_multD \<open>\<not> is_unit a\<close> have "is_unit b" by auto
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   193
  with \<open>p = a * b\<close> show ?thesis
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   194
    by (auto simp add: mult_unit_dvd_iff)
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   195
qed
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   196
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   197
lemma prime_elem_dvd_prod_msetE:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   198
  assumes "prime_elem p"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   199
  assumes dvd: "p dvd prod_mset A"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   200
  obtains a where "a \<in># A" and "p dvd a"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   201
proof -
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   202
  from dvd have "\<exists>a. a \<in># A \<and> p dvd a"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   203
  proof (induct A)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   204
    case empty then show ?case
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   205
    using \<open>prime_elem p\<close> by (simp add: prime_elem_not_unit)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   206
  next
63793
e68a0b651eb5 add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63633
diff changeset
   207
    case (add a A)
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   208
    then have "p dvd a * prod_mset A" by simp
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   209
    with \<open>prime_elem p\<close> consider (A) "p dvd prod_mset A" | (B) "p dvd a"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   210
      by (blast dest: prime_elem_dvd_multD)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   211
    then show ?case proof cases
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   212
      case B then show ?thesis by auto
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   213
    next
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   214
      case A
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   215
      with add.hyps obtain b where "b \<in># A" "p dvd b"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   216
        by auto
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   217
      then show ?thesis by auto
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   218
    qed
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   219
  qed
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   220
  with that show thesis by blast
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   221
qed
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   222
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   223
context
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   224
begin
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   225
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   226
private lemma prime_elem_powerD:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   227
  assumes "prime_elem (p ^ n)"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   228
  shows   "prime_elem p \<and> n = 1"
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   229
proof (cases n)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   230
  case (Suc m)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   231
  note assms
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   232
  also from Suc have "p ^ n = p * p^m" by simp
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   233
  finally have "is_unit p \<or> is_unit (p^m)" by (rule prime_elem_multD)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   234
  moreover from assms have "\<not>is_unit p" by (simp add: prime_elem_def is_unit_power_iff)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   235
  ultimately have "is_unit (p ^ m)" by simp
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   236
  with \<open>\<not>is_unit p\<close> have "m = 0" by (simp add: is_unit_power_iff)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   237
  with Suc assms show ?thesis by simp
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   238
qed (insert assms, simp_all)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   239
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   240
lemma prime_elem_power_iff:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   241
  "prime_elem (p ^ n) \<longleftrightarrow> prime_elem p \<and> n = 1"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   242
  by (auto dest: prime_elem_powerD)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   243
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   244
end
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   245
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   246
lemma irreducible_mult_unit_left:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   247
  "is_unit a \<Longrightarrow> irreducible (a * p) \<longleftrightarrow> irreducible p"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   248
  by (auto simp: irreducible_altdef mult.commute[of a] is_unit_mult_iff
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   249
        mult_unit_dvd_iff dvd_mult_unit_iff)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   250
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   251
lemma prime_elem_mult_unit_left:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   252
  "is_unit a \<Longrightarrow> prime_elem (a * p) \<longleftrightarrow> prime_elem p"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   253
  by (auto simp: prime_elem_def mult.commute[of a] is_unit_mult_iff mult_unit_dvd_iff)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   254
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   255
lemma prime_elem_dvd_cases:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   256
  assumes pk: "p*k dvd m*n" and p: "prime_elem p"
63537
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   257
  shows "(\<exists>x. k dvd x*n \<and> m = p*x) \<or> (\<exists>y. k dvd m*y \<and> n = p*y)"
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   258
proof -
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   259
  have "p dvd m*n" using dvd_mult_left pk by blast
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   260
  then consider "p dvd m" | "p dvd n"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   261
    using p prime_elem_dvd_mult_iff by blast
63537
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   262
  then show ?thesis
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   263
  proof cases
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   264
    case 1 then obtain a where "m = p * a" by (metis dvd_mult_div_cancel) 
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   265
      then have "\<exists>x. k dvd x * n \<and> m = p * x"
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   266
        using p pk by (auto simp: mult.assoc)
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   267
    then show ?thesis ..
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   268
  next
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   269
    case 2 then obtain b where "n = p * b" by (metis dvd_mult_div_cancel) 
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   270
    with p pk have "\<exists>y. k dvd m*y \<and> n = p*y" 
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   271
      by (metis dvd_mult_right dvd_times_left_cancel_iff mult.left_commute mult_zero_left)
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   272
    then show ?thesis ..
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   273
  qed
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   274
qed
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   275
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   276
lemma prime_elem_power_dvd_prod:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   277
  assumes pc: "p^c dvd m*n" and p: "prime_elem p"
63537
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   278
  shows "\<exists>a b. a+b = c \<and> p^a dvd m \<and> p^b dvd n"
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   279
using pc
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   280
proof (induct c arbitrary: m n)
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   281
  case 0 show ?case by simp
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   282
next
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   283
  case (Suc c)
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   284
  consider x where "p^c dvd x*n" "m = p*x" | y where "p^c dvd m*y" "n = p*y"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   285
    using prime_elem_dvd_cases [of _ "p^c", OF _ p] Suc.prems by force
63537
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   286
  then show ?case
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   287
  proof cases
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   288
    case (1 x) 
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   289
    with Suc.hyps[of x n] obtain a b where "a + b = c \<and> p ^ a dvd x \<and> p ^ b dvd n" by blast
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   290
    with 1 have "Suc a + b = Suc c \<and> p ^ Suc a dvd m \<and> p ^ b dvd n"
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   291
      by (auto intro: mult_dvd_mono)
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   292
    thus ?thesis by blast
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   293
  next
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   294
    case (2 y) 
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   295
    with Suc.hyps[of m y] obtain a b where "a + b = c \<and> p ^ a dvd m \<and> p ^ b dvd y" by blast
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   296
    with 2 have "a + Suc b = Suc c \<and> p ^ a dvd m \<and> p ^ Suc b dvd n"
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   297
      by (auto intro: mult_dvd_mono)
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   298
    with Suc.hyps [of m y] show "\<exists>a b. a + b = Suc c \<and> p ^ a dvd m \<and> p ^ b dvd n"
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   299
      by force
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   300
  qed
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   301
qed
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
   302
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   303
lemma prime_elem_power_dvd_cases:
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   304
  assumes "p ^ c dvd m * n" and "a + b = Suc c" and "prime_elem p"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   305
  shows "p ^ a dvd m \<or> p ^ b dvd n"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   306
proof -
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   307
  from assms obtain r s
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   308
    where "r + s = c \<and> p ^ r dvd m \<and> p ^ s dvd n"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   309
    by (blast dest: prime_elem_power_dvd_prod)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   310
  moreover with assms have
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   311
    "a \<le> r \<or> b \<le> s" by arith
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   312
  ultimately show ?thesis by (auto intro: power_le_dvd)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   313
qed
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   314
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   315
lemma prime_elem_not_unit' [simp]:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   316
  "ASSUMPTION (prime_elem x) \<Longrightarrow> \<not>is_unit x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   317
  unfolding ASSUMPTION_def by (rule prime_elem_not_unit)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   318
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   319
lemma prime_elem_dvd_power_iff:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   320
  assumes "prime_elem p"
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   321
  shows "p dvd a ^ n \<longleftrightarrow> p dvd a \<and> n > 0"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   322
  using assms by (induct n) (auto dest: prime_elem_not_unit prime_elem_dvd_multD)
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   323
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   324
lemma prime_power_dvd_multD:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   325
  assumes "prime_elem p"
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   326
  assumes "p ^ n dvd a * b" and "n > 0" and "\<not> p dvd a"
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   327
  shows "p ^ n dvd b"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   328
  using \<open>p ^ n dvd a * b\<close> and \<open>n > 0\<close> 
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   329
proof (induct n arbitrary: b)
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   330
  case 0 then show ?case by simp
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   331
next
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   332
  case (Suc n) show ?case
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   333
  proof (cases "n = 0")
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   334
    case True with Suc \<open>prime_elem p\<close> \<open>\<not> p dvd a\<close> show ?thesis
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   335
      by (simp add: prime_elem_dvd_mult_iff)
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   336
  next
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   337
    case False then have "n > 0" by simp
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   338
    from \<open>prime_elem p\<close> have "p \<noteq> 0" by auto
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   339
    from Suc.prems have *: "p * p ^ n dvd a * b"
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   340
      by simp
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   341
    then have "p dvd a * b"
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   342
      by (rule dvd_mult_left)
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   343
    with Suc \<open>prime_elem p\<close> \<open>\<not> p dvd a\<close> have "p dvd b"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   344
      by (simp add: prime_elem_dvd_mult_iff)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62499
diff changeset
   345
    moreover define c where "c = b div p"
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   346
    ultimately have b: "b = p * c" by simp
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   347
    with * have "p * p ^ n dvd p * (a * c)"
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   348
      by (simp add: ac_simps)
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   349
    with \<open>p \<noteq> 0\<close> have "p ^ n dvd a * c"
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   350
      by simp
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   351
    with Suc.hyps \<open>n > 0\<close> have "p ^ n dvd c"
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   352
      by blast
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   353
    with \<open>p \<noteq> 0\<close> show ?thesis
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   354
      by (simp add: b)
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   355
  qed
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   356
qed
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   357
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   358
end
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   359
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   360
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   361
subsection \<open>Generalized primes: normalized prime elements\<close>
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   362
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   363
context normalization_semidom
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   364
begin
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   365
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   366
lemma irreducible_normalized_divisors:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   367
  assumes "irreducible x" "y dvd x" "normalize y = y"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   368
  shows   "y = 1 \<or> y = normalize x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   369
proof -
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   370
  from assms have "is_unit y \<or> x dvd y" by (auto simp: irreducible_altdef)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   371
  thus ?thesis
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   372
  proof (elim disjE)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   373
    assume "is_unit y"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   374
    hence "normalize y = 1" by (simp add: is_unit_normalize)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   375
    with assms show ?thesis by simp
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   376
  next
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   377
    assume "x dvd y"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   378
    with \<open>y dvd x\<close> have "normalize y = normalize x" by (rule associatedI)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   379
    with assms show ?thesis by simp
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   380
  qed
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   381
qed
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   382
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   383
lemma irreducible_normalize_iff [simp]: "irreducible (normalize x) = irreducible x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   384
  using irreducible_mult_unit_left[of "1 div unit_factor x" x]
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   385
  by (cases "x = 0") (simp_all add: unit_div_commute)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   386
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   387
lemma prime_elem_normalize_iff [simp]: "prime_elem (normalize x) = prime_elem x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   388
  using prime_elem_mult_unit_left[of "1 div unit_factor x" x]
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   389
  by (cases "x = 0") (simp_all add: unit_div_commute)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   390
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   391
lemma prime_elem_associated:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   392
  assumes "prime_elem p" and "prime_elem q" and "q dvd p"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   393
  shows "normalize q = normalize p"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   394
using \<open>q dvd p\<close> proof (rule associatedI)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   395
  from \<open>prime_elem q\<close> have "\<not> is_unit q"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   396
    by (auto simp add: prime_elem_not_unit)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   397
  with \<open>prime_elem p\<close> \<open>q dvd p\<close> show "p dvd q"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   398
    by (blast intro: prime_elemD2)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   399
qed
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   400
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   401
definition prime :: "'a \<Rightarrow> bool" where
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   402
  "prime p \<longleftrightarrow> prime_elem p \<and> normalize p = p"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   403
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   404
lemma not_prime_0 [simp]: "\<not>prime 0" by (simp add: prime_def)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   405
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   406
lemma not_prime_unit: "is_unit x \<Longrightarrow> \<not>prime x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   407
  using prime_elem_not_unit[of x] by (auto simp add: prime_def)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   408
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   409
lemma not_prime_1 [simp]: "\<not>prime 1" by (simp add: not_prime_unit)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   410
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   411
lemma primeI: "prime_elem x \<Longrightarrow> normalize x = x \<Longrightarrow> prime x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   412
  by (simp add: prime_def)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   413
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   414
lemma prime_imp_prime_elem [dest]: "prime p \<Longrightarrow> prime_elem p"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   415
  by (simp add: prime_def)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   416
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   417
lemma normalize_prime: "prime p \<Longrightarrow> normalize p = p"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   418
  by (simp add: prime_def)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   419
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   420
lemma prime_normalize_iff [simp]: "prime (normalize p) \<longleftrightarrow> prime_elem p"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   421
  by (auto simp add: prime_def)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   422
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   423
lemma prime_power_iff:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   424
  "prime (p ^ n) \<longleftrightarrow> prime p \<and> n = 1"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   425
  by (auto simp: prime_def prime_elem_power_iff)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   426
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   427
lemma prime_imp_nonzero [simp]:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   428
  "ASSUMPTION (prime x) \<Longrightarrow> x \<noteq> 0"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   429
  unfolding ASSUMPTION_def prime_def by auto
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   430
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   431
lemma prime_imp_not_one [simp]:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   432
  "ASSUMPTION (prime x) \<Longrightarrow> x \<noteq> 1"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   433
  unfolding ASSUMPTION_def by auto
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   434
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   435
lemma prime_not_unit' [simp]:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   436
  "ASSUMPTION (prime x) \<Longrightarrow> \<not>is_unit x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   437
  unfolding ASSUMPTION_def prime_def by auto
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   438
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   439
lemma prime_normalize' [simp]: "ASSUMPTION (prime x) \<Longrightarrow> normalize x = x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   440
  unfolding ASSUMPTION_def prime_def by simp
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   441
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   442
lemma unit_factor_prime: "prime x \<Longrightarrow> unit_factor x = 1"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   443
  using unit_factor_normalize[of x] unfolding prime_def by auto
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   444
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   445
lemma unit_factor_prime' [simp]: "ASSUMPTION (prime x) \<Longrightarrow> unit_factor x = 1"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   446
  unfolding ASSUMPTION_def by (rule unit_factor_prime)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   447
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   448
lemma prime_imp_prime_elem' [simp]: "ASSUMPTION (prime x) \<Longrightarrow> prime_elem x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   449
  by (simp add: prime_def ASSUMPTION_def)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   450
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   451
lemma prime_dvd_multD: "prime p \<Longrightarrow> p dvd a * b \<Longrightarrow> p dvd a \<or> p dvd b"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   452
  by (intro prime_elem_dvd_multD) simp_all
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   453
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   454
lemma prime_dvd_mult_iff [simp]: "prime p \<Longrightarrow> p dvd a * b \<longleftrightarrow> p dvd a \<or> p dvd b"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   455
  by (auto dest: prime_dvd_multD)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   456
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   457
lemma prime_dvd_power: 
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   458
  "prime p \<Longrightarrow> p dvd x ^ n \<Longrightarrow> p dvd x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   459
  by (auto dest!: prime_elem_dvd_power simp: prime_def)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   460
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   461
lemma prime_dvd_power_iff:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   462
  "prime p \<Longrightarrow> n > 0 \<Longrightarrow> p dvd x ^ n \<longleftrightarrow> p dvd x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   463
  by (subst prime_elem_dvd_power_iff) simp_all
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   464
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   465
lemma prime_dvd_prod_mset_iff: "prime p \<Longrightarrow> p dvd prod_mset A \<longleftrightarrow> (\<exists>x. x \<in># A \<and> p dvd x)"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   466
  by (induction A) (simp_all add: prime_elem_dvd_mult_iff prime_imp_prime_elem, blast+)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   467
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   468
lemma primes_dvd_imp_eq:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   469
  assumes "prime p" "prime q" "p dvd q"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   470
  shows   "p = q"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   471
proof -
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   472
  from assms have "irreducible q" by (simp add: prime_elem_imp_irreducible prime_def)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   473
  from irreducibleD'[OF this \<open>p dvd q\<close>] assms have "q dvd p" by simp
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   474
  with \<open>p dvd q\<close> have "normalize p = normalize q" by (rule associatedI)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   475
  with assms show "p = q" by simp
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   476
qed
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   477
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   478
lemma prime_dvd_prod_mset_primes_iff:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   479
  assumes "prime p" "\<And>q. q \<in># A \<Longrightarrow> prime q"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   480
  shows   "p dvd prod_mset A \<longleftrightarrow> p \<in># A"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   481
proof -
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   482
  from assms(1) have "p dvd prod_mset A \<longleftrightarrow> (\<exists>x. x \<in># A \<and> p dvd x)" by (rule prime_dvd_prod_mset_iff)
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   483
  also from assms have "\<dots> \<longleftrightarrow> p \<in># A" by (auto dest: primes_dvd_imp_eq)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   484
  finally show ?thesis .
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   485
qed
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   486
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   487
lemma prod_mset_primes_dvd_imp_subset:
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   488
  assumes "prod_mset A dvd prod_mset B" "\<And>p. p \<in># A \<Longrightarrow> prime p" "\<And>p. p \<in># B \<Longrightarrow> prime p"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   489
  shows   "A \<subseteq># B"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   490
using assms
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   491
proof (induction A arbitrary: B)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   492
  case empty
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   493
  thus ?case by simp
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   494
next
63793
e68a0b651eb5 add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63633
diff changeset
   495
  case (add p A B)
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   496
  hence p: "prime p" by simp
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   497
  define B' where "B' = B - {#p#}"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   498
  from add.prems have "p dvd prod_mset B" by (simp add: dvd_mult_left)
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   499
  with add.prems have "p \<in># B"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   500
    by (subst (asm) (2) prime_dvd_prod_mset_primes_iff) simp_all
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   501
  hence B: "B = B' + {#p#}" by (simp add: B'_def)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   502
  from add.prems p have "A \<subseteq># B'" by (intro add.IH) (simp_all add: B)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   503
  thus ?case by (simp add: B)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   504
qed
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   505
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   506
lemma normalize_prod_mset_primes:
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   507
  "(\<And>p. p \<in># A \<Longrightarrow> prime p) \<Longrightarrow> normalize (prod_mset A) = prod_mset A"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   508
proof (induction A)
63793
e68a0b651eb5 add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63633
diff changeset
   509
  case (add p A)
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   510
  hence "prime p" by simp
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   511
  hence "normalize p = p" by simp
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   512
  with add show ?case by (simp add: normalize_mult)
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   513
qed simp_all
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   514
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   515
lemma prod_mset_dvd_prod_mset_primes_iff:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   516
  assumes "\<And>x. x \<in># A \<Longrightarrow> prime x" "\<And>x. x \<in># B \<Longrightarrow> prime x"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   517
  shows   "prod_mset A dvd prod_mset B \<longleftrightarrow> A \<subseteq># B"
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   518
  using assms by (auto intro: prod_mset_subset_imp_dvd prod_mset_primes_dvd_imp_subset)
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   519
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   520
lemma is_unit_prod_mset_primes_iff:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   521
  assumes "\<And>x. x \<in># A \<Longrightarrow> prime x"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   522
  shows   "is_unit (prod_mset A) \<longleftrightarrow> A = {#}"
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   523
  by (auto simp add: is_unit_prod_mset_iff)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   524
    (meson all_not_in_conv assms not_prime_unit set_mset_eq_empty_iff)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   525
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   526
lemma prod_mset_primes_irreducible_imp_prime:
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   527
  assumes irred: "irreducible (prod_mset A)"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   528
  assumes A: "\<And>x. x \<in># A \<Longrightarrow> prime x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   529
  assumes B: "\<And>x. x \<in># B \<Longrightarrow> prime x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   530
  assumes C: "\<And>x. x \<in># C \<Longrightarrow> prime x"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   531
  assumes dvd: "prod_mset A dvd prod_mset B * prod_mset C"
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   532
  shows   "prod_mset A dvd prod_mset B \<or> prod_mset A dvd prod_mset C"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   533
proof -
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   534
  from dvd have "prod_mset A dvd prod_mset (B + C)"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   535
    by simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   536
  with A B C have subset: "A \<subseteq># B + C"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   537
    by (subst (asm) prod_mset_dvd_prod_mset_primes_iff) auto
63919
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
   538
  define A1 and A2 where "A1 = A \<inter># B" and "A2 = A - A1"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   539
  have "A = A1 + A2" unfolding A1_def A2_def
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   540
    by (rule sym, intro subset_mset.add_diff_inverse) simp_all
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   541
  from subset have "A1 \<subseteq># B" "A2 \<subseteq># C"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   542
    by (auto simp: A1_def A2_def Multiset.subset_eq_diff_conv Multiset.union_commute)
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   543
  from \<open>A = A1 + A2\<close> have "prod_mset A = prod_mset A1 * prod_mset A2" by simp
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   544
  from irred and this have "is_unit (prod_mset A1) \<or> is_unit (prod_mset A2)"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   545
    by (rule irreducibleD)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   546
  with A have "A1 = {#} \<or> A2 = {#}" unfolding A1_def A2_def
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   547
    by (subst (asm) (1 2) is_unit_prod_mset_primes_iff) (auto dest: Multiset.in_diffD)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   548
  with dvd \<open>A = A1 + A2\<close> \<open>A1 \<subseteq># B\<close> \<open>A2 \<subseteq># C\<close> show ?thesis
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   549
    by (auto intro: prod_mset_subset_imp_dvd)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   550
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   551
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   552
lemma prod_mset_primes_finite_divisor_powers:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   553
  assumes A: "\<And>x. x \<in># A \<Longrightarrow> prime x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   554
  assumes B: "\<And>x. x \<in># B \<Longrightarrow> prime x"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   555
  assumes "A \<noteq> {#}"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   556
  shows   "finite {n. prod_mset A ^ n dvd prod_mset B}"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   557
proof -
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   558
  from \<open>A \<noteq> {#}\<close> obtain x where x: "x \<in># A" by blast
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   559
  define m where "m = count B x"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   560
  have "{n. prod_mset A ^ n dvd prod_mset B} \<subseteq> {..m}"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   561
  proof safe
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   562
    fix n assume dvd: "prod_mset A ^ n dvd prod_mset B"
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   563
    from x have "x ^ n dvd prod_mset A ^ n" by (intro dvd_power_same dvd_prod_mset)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   564
    also note dvd
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   565
    also have "x ^ n = prod_mset (replicate_mset n x)" by simp
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   566
    finally have "replicate_mset n x \<subseteq># B"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   567
      by (rule prod_mset_primes_dvd_imp_subset) (insert A B x, simp_all split: if_splits)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   568
    thus "n \<le> m" by (simp add: count_le_replicate_mset_subset_eq m_def)
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   569
  qed
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   570
  moreover have "finite {..m}" by simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   571
  ultimately show ?thesis by (rule finite_subset)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   572
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   573
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   574
end
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   575
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   576
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   577
subsection \<open>In a semiring with GCD, each irreducible element is a prime elements\<close>
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   578
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   579
context semiring_gcd
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   580
begin
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   581
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   582
lemma irreducible_imp_prime_elem_gcd:
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   583
  assumes "irreducible x"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   584
  shows   "prime_elem x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   585
proof (rule prime_elemI)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   586
  fix a b assume "x dvd a * b"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   587
  from dvd_productE[OF this] obtain y z where yz: "x = y * z" "y dvd a" "z dvd b" .
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   588
  from \<open>irreducible x\<close> and \<open>x = y * z\<close> have "is_unit y \<or> is_unit z" by (rule irreducibleD)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   589
  with yz show "x dvd a \<or> x dvd b"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   590
    by (auto simp: mult_unit_dvd_iff mult_unit_dvd_iff')
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   591
qed (insert assms, auto simp: irreducible_not_unit)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   592
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   593
lemma prime_elem_imp_coprime:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   594
  assumes "prime_elem p" "\<not>p dvd n"
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   595
  shows   "coprime p n"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   596
proof (rule coprimeI)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   597
  fix d assume "d dvd p" "d dvd n"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   598
  show "is_unit d"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   599
  proof (rule ccontr)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   600
    assume "\<not>is_unit d"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   601
    from \<open>prime_elem p\<close> and \<open>d dvd p\<close> and this have "p dvd d"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   602
      by (rule prime_elemD2)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   603
    from this and \<open>d dvd n\<close> have "p dvd n" by (rule dvd_trans)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   604
    with \<open>\<not>p dvd n\<close> show False by contradiction
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   605
  qed
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   606
qed
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   607
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   608
lemma prime_imp_coprime:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   609
  assumes "prime p" "\<not>p dvd n"
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   610
  shows   "coprime p n"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   611
  using assms by (simp add: prime_elem_imp_coprime)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   612
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   613
lemma prime_elem_imp_power_coprime: 
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   614
  "prime_elem p \<Longrightarrow> \<not>p dvd a \<Longrightarrow> coprime a (p ^ m)"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   615
  by (auto intro!: coprime_exp dest: prime_elem_imp_coprime simp: gcd.commute)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   616
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   617
lemma prime_imp_power_coprime: 
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   618
  "prime p \<Longrightarrow> \<not>p dvd a \<Longrightarrow> coprime a (p ^ m)"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   619
  by (simp add: prime_elem_imp_power_coprime)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   620
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   621
lemma prime_elem_divprod_pow:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   622
  assumes p: "prime_elem p" and ab: "coprime a b" and pab: "p^n dvd a * b"
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   623
  shows   "p^n dvd a \<or> p^n dvd b"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   624
  using assms
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   625
proof -
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   626
  from ab p have "\<not>p dvd a \<or> \<not>p dvd b"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   627
    by (auto simp: coprime prime_elem_def)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   628
  with p have "coprime (p^n) a \<or> coprime (p^n) b" 
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   629
    by (auto intro: prime_elem_imp_coprime coprime_exp_left)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   630
  with pab show ?thesis by (auto intro: coprime_dvd_mult simp: mult_ac)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   631
qed
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   632
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   633
lemma primes_coprime: 
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   634
  "prime p \<Longrightarrow> prime q \<Longrightarrow> p \<noteq> q \<Longrightarrow> coprime p q"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   635
  using prime_imp_coprime primes_dvd_imp_eq by blast
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   636
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   637
end
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   638
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   639
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   640
subsection \<open>Factorial semirings: algebraic structures with unique prime factorizations\<close>
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   641
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   642
class factorial_semiring = normalization_semidom +
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   643
  assumes prime_factorization_exists:
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   644
    "x \<noteq> 0 \<Longrightarrow> \<exists>A. (\<forall>x. x \<in># A \<longrightarrow> prime_elem x) \<and> prod_mset A = normalize x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   645
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   646
text \<open>Alternative characterization\<close>
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   647
  
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   648
lemma (in normalization_semidom) factorial_semiring_altI_aux:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   649
  assumes finite_divisors: "\<And>x. x \<noteq> 0 \<Longrightarrow> finite {y. y dvd x \<and> normalize y = y}"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   650
  assumes irreducible_imp_prime_elem: "\<And>x. irreducible x \<Longrightarrow> prime_elem x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   651
  assumes "x \<noteq> 0"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   652
  shows   "\<exists>A. (\<forall>x. x \<in># A \<longrightarrow> prime_elem x) \<and> prod_mset A = normalize x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   653
using \<open>x \<noteq> 0\<close>
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   654
proof (induction "card {b. b dvd x \<and> normalize b = b}" arbitrary: x rule: less_induct)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   655
  case (less a)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   656
  let ?fctrs = "\<lambda>a. {b. b dvd a \<and> normalize b = b}"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   657
  show ?case
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   658
  proof (cases "is_unit a")
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   659
    case True
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   660
    thus ?thesis by (intro exI[of _ "{#}"]) (auto simp: is_unit_normalize)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   661
  next
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   662
    case False
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   663
    show ?thesis
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   664
    proof (cases "\<exists>b. b dvd a \<and> \<not>is_unit b \<and> \<not>a dvd b")
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   665
      case False
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   666
      with \<open>\<not>is_unit a\<close> less.prems have "irreducible a" by (auto simp: irreducible_altdef)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   667
      hence "prime_elem a" by (rule irreducible_imp_prime_elem)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   668
      thus ?thesis by (intro exI[of _ "{#normalize a#}"]) auto
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   669
    next
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   670
      case True
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   671
      then guess b by (elim exE conjE) note b = this
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   672
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   673
      from b have "?fctrs b \<subseteq> ?fctrs a" by (auto intro: dvd_trans)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   674
      moreover from b have "normalize a \<notin> ?fctrs b" "normalize a \<in> ?fctrs a" by simp_all
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   675
      hence "?fctrs b \<noteq> ?fctrs a" by blast
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   676
      ultimately have "?fctrs b \<subset> ?fctrs a" by (subst subset_not_subset_eq) blast
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   677
      with finite_divisors[OF \<open>a \<noteq> 0\<close>] have "card (?fctrs b) < card (?fctrs a)"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   678
        by (rule psubset_card_mono)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   679
      moreover from \<open>a \<noteq> 0\<close> b have "b \<noteq> 0" by auto
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   680
      ultimately have "\<exists>A. (\<forall>x. x \<in># A \<longrightarrow> prime_elem x) \<and> prod_mset A = normalize b"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   681
        by (intro less) auto
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   682
      then guess A .. note A = this
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   683
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   684
      define c where "c = a div b"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   685
      from b have c: "a = b * c" by (simp add: c_def)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   686
      from less.prems c have "c \<noteq> 0" by auto
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   687
      from b c have "?fctrs c \<subseteq> ?fctrs a" by (auto intro: dvd_trans)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   688
      moreover have "normalize a \<notin> ?fctrs c"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   689
      proof safe
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   690
        assume "normalize a dvd c"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   691
        hence "b * c dvd 1 * c" by (simp add: c)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   692
        hence "b dvd 1" by (subst (asm) dvd_times_right_cancel_iff) fact+
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   693
        with b show False by simp
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   694
      qed
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   695
      with \<open>normalize a \<in> ?fctrs a\<close> have "?fctrs a \<noteq> ?fctrs c" by blast
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   696
      ultimately have "?fctrs c \<subset> ?fctrs a" by (subst subset_not_subset_eq) blast
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   697
      with finite_divisors[OF \<open>a \<noteq> 0\<close>] have "card (?fctrs c) < card (?fctrs a)"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   698
        by (rule psubset_card_mono)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   699
      with \<open>c \<noteq> 0\<close> have "\<exists>A. (\<forall>x. x \<in># A \<longrightarrow> prime_elem x) \<and> prod_mset A = normalize c"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   700
        by (intro less) auto
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   701
      then guess B .. note B = this
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   702
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   703
      from A B show ?thesis by (intro exI[of _ "A + B"]) (auto simp: c normalize_mult)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   704
    qed
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   705
  qed
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   706
qed 
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   707
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   708
lemma factorial_semiring_altI:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   709
  assumes finite_divisors: "\<And>x::'a. x \<noteq> 0 \<Longrightarrow> finite {y. y dvd x \<and> normalize y = y}"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   710
  assumes irreducible_imp_prime: "\<And>x::'a. irreducible x \<Longrightarrow> prime_elem x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   711
  shows   "OFCLASS('a :: normalization_semidom, factorial_semiring_class)"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   712
  by intro_classes (rule factorial_semiring_altI_aux[OF assms])
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   713
  
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   714
text \<open>Properties\<close>
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   715
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
   716
context factorial_semiring
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   717
begin
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   718
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   719
lemma prime_factorization_exists':
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   720
  assumes "x \<noteq> 0"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   721
  obtains A where "\<And>x. x \<in># A \<Longrightarrow> prime x" "prod_mset A = normalize x"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   722
proof -
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   723
  from prime_factorization_exists[OF assms] obtain A
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   724
    where A: "\<And>x. x \<in># A \<Longrightarrow> prime_elem x" "prod_mset A = normalize x" by blast
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   725
  define A' where "A' = image_mset normalize A"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   726
  have "prod_mset A' = normalize (prod_mset A)"
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   727
    by (simp add: A'_def normalize_prod_mset)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   728
  also note A(2)
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   729
  finally have "prod_mset A' = normalize x" by simp
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   730
  moreover from A(1) have "\<forall>x. x \<in># A' \<longrightarrow> prime x" by (auto simp: prime_def A'_def)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   731
  ultimately show ?thesis by (intro that[of A']) blast
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   732
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   733
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   734
lemma irreducible_imp_prime_elem:
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   735
  assumes "irreducible x"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   736
  shows   "prime_elem x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   737
proof (rule prime_elemI)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   738
  fix a b assume dvd: "x dvd a * b"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   739
  from assms have "x \<noteq> 0" by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   740
  show "x dvd a \<or> x dvd b"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   741
  proof (cases "a = 0 \<or> b = 0")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   742
    case False
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   743
    hence "a \<noteq> 0" "b \<noteq> 0" by blast+
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   744
    note nz = \<open>x \<noteq> 0\<close> this
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   745
    from nz[THEN prime_factorization_exists'] guess A B C . note ABC = this
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   746
    from assms ABC have "irreducible (prod_mset A)" by simp
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   747
    from dvd prod_mset_primes_irreducible_imp_prime[of A B C, OF this ABC(1,3,5)] ABC(2,4,6)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   748
      show ?thesis by (simp add: normalize_mult [symmetric])
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   749
  qed auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   750
qed (insert assms, simp_all add: irreducible_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   751
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   752
lemma finite_divisor_powers:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   753
  assumes "y \<noteq> 0" "\<not>is_unit x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   754
  shows   "finite {n. x ^ n dvd y}"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   755
proof (cases "x = 0")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   756
  case True
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   757
  with assms have "{n. x ^ n dvd y} = {0}" by (auto simp: power_0_left)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   758
  thus ?thesis by simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   759
next
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   760
  case False
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   761
  note nz = this \<open>y \<noteq> 0\<close>
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   762
  from nz[THEN prime_factorization_exists'] guess A B . note AB = this
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   763
  from AB assms have "A \<noteq> {#}" by (auto simp: normalize_1_iff)
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   764
  from AB(2,4) prod_mset_primes_finite_divisor_powers [of A B, OF AB(1,3) this]
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   765
    show ?thesis by (simp add: normalize_power [symmetric])
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   766
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   767
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   768
lemma finite_prime_divisors:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   769
  assumes "x \<noteq> 0"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   770
  shows   "finite {p. prime p \<and> p dvd x}"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   771
proof -
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   772
  from prime_factorization_exists'[OF assms] guess A . note A = this
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   773
  have "{p. prime p \<and> p dvd x} \<subseteq> set_mset A"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   774
  proof safe
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   775
    fix p assume p: "prime p" and dvd: "p dvd x"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   776
    from dvd have "p dvd normalize x" by simp
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   777
    also from A have "normalize x = prod_mset A" by simp
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   778
    finally show "p \<in># A" using p A by (subst (asm) prime_dvd_prod_mset_primes_iff)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   779
  qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   780
  moreover have "finite (set_mset A)" by simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   781
  ultimately show ?thesis by (rule finite_subset)
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   782
qed
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   783
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   784
lemma prime_elem_iff_irreducible: "prime_elem x \<longleftrightarrow> irreducible x"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   785
  by (blast intro: irreducible_imp_prime_elem prime_elem_imp_irreducible)
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   786
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   787
lemma prime_divisor_exists:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   788
  assumes "a \<noteq> 0" "\<not>is_unit a"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   789
  shows   "\<exists>b. b dvd a \<and> prime b"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   790
proof -
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   791
  from prime_factorization_exists'[OF assms(1)] guess A . note A = this
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   792
  moreover from A and assms have "A \<noteq> {#}" by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   793
  then obtain x where "x \<in># A" by blast
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   794
  with A(1) have *: "x dvd prod_mset A" "prime x" by (auto simp: dvd_prod_mset)
63539
70d4d9e5707b tuned proofs -- avoid improper use of "this";
wenzelm
parents: 63498
diff changeset
   795
  with A have "x dvd a" by simp
70d4d9e5707b tuned proofs -- avoid improper use of "this";
wenzelm
parents: 63498
diff changeset
   796
  with * show ?thesis by blast
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   797
qed
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   798
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   799
lemma prime_divisors_induct [case_names zero unit factor]:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   800
  assumes "P 0" "\<And>x. is_unit x \<Longrightarrow> P x" "\<And>p x. prime p \<Longrightarrow> P x \<Longrightarrow> P (p * x)"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   801
  shows   "P x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   802
proof (cases "x = 0")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   803
  case False
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   804
  from prime_factorization_exists'[OF this] guess A . note A = this
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   805
  from A(1) have "P (unit_factor x * prod_mset A)"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   806
  proof (induction A)
63793
e68a0b651eb5 add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63633
diff changeset
   807
    case (add p A)
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   808
    from add.prems have "prime p" by simp
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   809
    moreover from add.prems have "P (unit_factor x * prod_mset A)" by (intro add.IH) simp_all
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
   810
    ultimately have "P (p * (unit_factor x * prod_mset A))" by (rule assms(3))
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   811
    thus ?case by (simp add: mult_ac)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   812
  qed (simp_all add: assms False)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   813
  with A show ?thesis by simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   814
qed (simp_all add: assms(1))
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   815
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   816
lemma no_prime_divisors_imp_unit:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   817
  assumes "a \<noteq> 0" "\<And>b. b dvd a \<Longrightarrow> normalize b = b \<Longrightarrow> \<not> prime_elem b"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   818
  shows "is_unit a"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   819
proof (rule ccontr)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   820
  assume "\<not>is_unit a"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   821
  from prime_divisor_exists[OF assms(1) this] guess b by (elim exE conjE)
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   822
  with assms(2)[of b] show False by (simp add: prime_def)
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
   823
qed
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   824
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   825
lemma prime_divisorE:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   826
  assumes "a \<noteq> 0" and "\<not> is_unit a"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   827
  obtains p where "prime p" and "p dvd a"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   828
  using assms no_prime_divisors_imp_unit unfolding prime_def by blast
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   829
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   830
definition multiplicity :: "'a \<Rightarrow> 'a \<Rightarrow> nat" where
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   831
  "multiplicity p x = (if finite {n. p ^ n dvd x} then Max {n. p ^ n dvd x} else 0)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   832
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   833
lemma multiplicity_dvd: "p ^ multiplicity p x dvd x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   834
proof (cases "finite {n. p ^ n dvd x}")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   835
  case True
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   836
  hence "multiplicity p x = Max {n. p ^ n dvd x}"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   837
    by (simp add: multiplicity_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   838
  also have "\<dots> \<in> {n. p ^ n dvd x}"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   839
    by (rule Max_in) (auto intro!: True exI[of _ "0::nat"])
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   840
  finally show ?thesis by simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   841
qed (simp add: multiplicity_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   842
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   843
lemma multiplicity_dvd': "n \<le> multiplicity p x \<Longrightarrow> p ^ n dvd x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   844
  by (rule dvd_trans[OF le_imp_power_dvd multiplicity_dvd])
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   845
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   846
context
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   847
  fixes x p :: 'a
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   848
  assumes xp: "x \<noteq> 0" "\<not>is_unit p"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   849
begin
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   850
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   851
lemma multiplicity_eq_Max: "multiplicity p x = Max {n. p ^ n dvd x}"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   852
  using finite_divisor_powers[OF xp] by (simp add: multiplicity_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   853
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   854
lemma multiplicity_geI:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   855
  assumes "p ^ n dvd x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   856
  shows   "multiplicity p x \<ge> n"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   857
proof -
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   858
  from assms have "n \<le> Max {n. p ^ n dvd x}"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   859
    by (intro Max_ge finite_divisor_powers xp) simp_all
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   860
  thus ?thesis by (subst multiplicity_eq_Max)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   861
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   862
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   863
lemma multiplicity_lessI:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   864
  assumes "\<not>p ^ n dvd x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   865
  shows   "multiplicity p x < n"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   866
proof (rule ccontr)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   867
  assume "\<not>(n > multiplicity p x)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   868
  hence "p ^ n dvd x" by (intro multiplicity_dvd') simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   869
  with assms show False by contradiction
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   870
qed
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   871
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   872
lemma power_dvd_iff_le_multiplicity:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   873
  "p ^ n dvd x \<longleftrightarrow> n \<le> multiplicity p x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   874
  using multiplicity_geI[of n] multiplicity_lessI[of n] by (cases "p ^ n dvd x") auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   875
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   876
lemma multiplicity_eq_zero_iff:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   877
  shows   "multiplicity p x = 0 \<longleftrightarrow> \<not>p dvd x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   878
  using power_dvd_iff_le_multiplicity[of 1] by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   879
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   880
lemma multiplicity_gt_zero_iff:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   881
  shows   "multiplicity p x > 0 \<longleftrightarrow> p dvd x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   882
  using power_dvd_iff_le_multiplicity[of 1] by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   883
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   884
lemma multiplicity_decompose:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   885
  "\<not>p dvd (x div p ^ multiplicity p x)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   886
proof
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   887
  assume *: "p dvd x div p ^ multiplicity p x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   888
  have "x = x div p ^ multiplicity p x * (p ^ multiplicity p x)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   889
    using multiplicity_dvd[of p x] by simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   890
  also from * have "x div p ^ multiplicity p x = (x div p ^ multiplicity p x div p) * p" by simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   891
  also have "x div p ^ multiplicity p x div p * p * p ^ multiplicity p x =
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   892
               x div p ^ multiplicity p x div p * p ^ Suc (multiplicity p x)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   893
    by (simp add: mult_assoc)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   894
  also have "p ^ Suc (multiplicity p x) dvd \<dots>" by (rule dvd_triv_right)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   895
  finally show False by (subst (asm) power_dvd_iff_le_multiplicity) simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   896
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   897
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   898
lemma multiplicity_decompose':
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   899
  obtains y where "x = p ^ multiplicity p x * y" "\<not>p dvd y"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   900
  using that[of "x div p ^ multiplicity p x"]
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   901
  by (simp add: multiplicity_decompose multiplicity_dvd)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   902
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   903
end
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   904
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   905
lemma multiplicity_zero [simp]: "multiplicity p 0 = 0"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   906
  by (simp add: multiplicity_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   907
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   908
lemma prime_elem_multiplicity_eq_zero_iff:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   909
  "prime_elem p \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> multiplicity p x = 0 \<longleftrightarrow> \<not>p dvd x"
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   910
  by (rule multiplicity_eq_zero_iff) simp_all
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   911
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   912
lemma prime_multiplicity_other:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   913
  assumes "prime p" "prime q" "p \<noteq> q"
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   914
  shows   "multiplicity p q = 0"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   915
  using assms by (subst prime_elem_multiplicity_eq_zero_iff) (auto dest: primes_dvd_imp_eq)  
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   916
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   917
lemma prime_multiplicity_gt_zero_iff:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   918
  "prime_elem p \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> multiplicity p x > 0 \<longleftrightarrow> p dvd x"
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   919
  by (rule multiplicity_gt_zero_iff) simp_all
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
   920
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   921
lemma multiplicity_unit_left: "is_unit p \<Longrightarrow> multiplicity p x = 0"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   922
  by (simp add: multiplicity_def is_unit_power_iff unit_imp_dvd)
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   923
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   924
lemma multiplicity_unit_right:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   925
  assumes "is_unit x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   926
  shows   "multiplicity p x = 0"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   927
proof (cases "is_unit p \<or> x = 0")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   928
  case False
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   929
  with multiplicity_lessI[of x p 1] this assms
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   930
    show ?thesis by (auto dest: dvd_unit_imp_unit)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   931
qed (auto simp: multiplicity_unit_left)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   932
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   933
lemma multiplicity_one [simp]: "multiplicity p 1 = 0"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   934
  by (rule multiplicity_unit_right) simp_all
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   935
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   936
lemma multiplicity_eqI:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   937
  assumes "p ^ n dvd x" "\<not>p ^ Suc n dvd x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   938
  shows   "multiplicity p x = n"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   939
proof -
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   940
  consider "x = 0" | "is_unit p" | "x \<noteq> 0" "\<not>is_unit p" by blast
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   941
  thus ?thesis
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   942
  proof cases
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   943
    assume xp: "x \<noteq> 0" "\<not>is_unit p"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   944
    from xp assms(1) have "multiplicity p x \<ge> n" by (intro multiplicity_geI)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   945
    moreover from assms(2) xp have "multiplicity p x < Suc n" by (intro multiplicity_lessI)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   946
    ultimately show ?thesis by simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   947
  next
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   948
    assume "is_unit p"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   949
    hence "is_unit (p ^ Suc n)" by (simp add: is_unit_power_iff del: power_Suc)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   950
    hence "p ^ Suc n dvd x" by (rule unit_imp_dvd)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   951
    with \<open>\<not>p ^ Suc n dvd x\<close> show ?thesis by contradiction
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   952
  qed (insert assms, simp_all)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   953
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   954
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   955
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   956
context
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   957
  fixes x p :: 'a
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   958
  assumes xp: "x \<noteq> 0" "\<not>is_unit p"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   959
begin
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   960
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   961
lemma multiplicity_times_same:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   962
  assumes "p \<noteq> 0"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   963
  shows   "multiplicity p (p * x) = Suc (multiplicity p x)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   964
proof (rule multiplicity_eqI)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   965
  show "p ^ Suc (multiplicity p x) dvd p * x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   966
    by (auto intro!: mult_dvd_mono multiplicity_dvd)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   967
  from xp assms show "\<not> p ^ Suc (Suc (multiplicity p x)) dvd p * x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   968
    using power_dvd_iff_le_multiplicity[OF xp, of "Suc (multiplicity p x)"] by simp
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   969
qed
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   970
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   971
end
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   972
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   973
lemma multiplicity_same_power': "multiplicity p (p ^ n) = (if p = 0 \<or> is_unit p then 0 else n)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   974
proof -
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   975
  consider "p = 0" | "is_unit p" |"p \<noteq> 0" "\<not>is_unit p" by blast
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   976
  thus ?thesis
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   977
  proof cases
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   978
    assume "p \<noteq> 0" "\<not>is_unit p"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   979
    thus ?thesis by (induction n) (simp_all add: multiplicity_times_same)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   980
  qed (simp_all add: power_0_left multiplicity_unit_left)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   981
qed
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   982
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   983
lemma multiplicity_same_power:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   984
  "p \<noteq> 0 \<Longrightarrow> \<not>is_unit p \<Longrightarrow> multiplicity p (p ^ n) = n"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   985
  by (simp add: multiplicity_same_power')
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   986
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   987
lemma multiplicity_prime_elem_times_other:
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
   988
  assumes "prime_elem p" "\<not>p dvd q"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   989
  shows   "multiplicity p (q * x) = multiplicity p x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   990
proof (cases "x = 0")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   991
  case False
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   992
  show ?thesis
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   993
  proof (rule multiplicity_eqI)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   994
    have "1 * p ^ multiplicity p x dvd q * x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   995
      by (intro mult_dvd_mono multiplicity_dvd) simp_all
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   996
    thus "p ^ multiplicity p x dvd q * x" by simp
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
   997
  next
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   998
    define n where "n = multiplicity p x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
   999
    from assms have "\<not>is_unit p" by simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1000
    from multiplicity_decompose'[OF False this] guess y . note y = this [folded n_def]
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1001
    from y have "p ^ Suc n dvd q * x \<longleftrightarrow> p ^ n * p dvd p ^ n * (q * y)" by (simp add: mult_ac)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1002
    also from assms have "\<dots> \<longleftrightarrow> p dvd q * y" by simp
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1003
    also have "\<dots> \<longleftrightarrow> p dvd q \<or> p dvd y" by (rule prime_elem_dvd_mult_iff) fact+
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1004
    also from assms y have "\<dots> \<longleftrightarrow> False" by simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1005
    finally show "\<not>(p ^ Suc n dvd q * x)" by blast
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
  1006
  qed
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1007
qed simp_all
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1008
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1009
lemma multiplicity_self:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1010
  assumes "p \<noteq> 0" "\<not>is_unit p"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1011
  shows   "multiplicity p p = 1"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1012
proof -
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1013
  from assms have "multiplicity p p = Max {n. p ^ n dvd p}"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1014
    by (simp add: multiplicity_eq_Max)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1015
  also from assms have "p ^ n dvd p \<longleftrightarrow> n \<le> 1" for n
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1016
    using dvd_power_iff[of p n 1] by auto
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1017
  hence "{n. p ^ n dvd p} = {..1}" by auto
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1018
  also have "\<dots> = {0,1}" by auto
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1019
  finally show ?thesis by simp
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1020
qed
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1021
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1022
lemma multiplicity_times_unit_left:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1023
  assumes "is_unit c"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1024
  shows   "multiplicity (c * p) x = multiplicity p x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1025
proof -
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1026
  from assms have "{n. (c * p) ^ n dvd x} = {n. p ^ n dvd x}"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1027
    by (subst mult.commute) (simp add: mult_unit_dvd_iff power_mult_distrib is_unit_power_iff)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1028
  thus ?thesis by (simp add: multiplicity_def)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1029
qed
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1030
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1031
lemma multiplicity_times_unit_right:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1032
  assumes "is_unit c"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1033
  shows   "multiplicity p (c * x) = multiplicity p x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1034
proof -
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1035
  from assms have "{n. p ^ n dvd c * x} = {n. p ^ n dvd x}"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1036
    by (subst mult.commute) (simp add: dvd_mult_unit_iff)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1037
  thus ?thesis by (simp add: multiplicity_def)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1038
qed
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1039
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1040
lemma multiplicity_normalize_left [simp]:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1041
  "multiplicity (normalize p) x = multiplicity p x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1042
proof (cases "p = 0")
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1043
  case [simp]: False
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1044
  have "normalize p = (1 div unit_factor p) * p"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1045
    by (simp add: unit_div_commute is_unit_unit_factor)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1046
  also have "multiplicity \<dots> x = multiplicity p x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1047
    by (rule multiplicity_times_unit_left) (simp add: is_unit_unit_factor)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1048
  finally show ?thesis .
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1049
qed simp_all
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1050
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1051
lemma multiplicity_normalize_right [simp]:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1052
  "multiplicity p (normalize x) = multiplicity p x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1053
proof (cases "x = 0")
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1054
  case [simp]: False
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1055
  have "normalize x = (1 div unit_factor x) * x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1056
    by (simp add: unit_div_commute is_unit_unit_factor)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1057
  also have "multiplicity p \<dots> = multiplicity p x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1058
    by (rule multiplicity_times_unit_right) (simp add: is_unit_unit_factor)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1059
  finally show ?thesis .
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1060
qed simp_all   
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1061
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1062
lemma multiplicity_prime [simp]: "prime_elem p \<Longrightarrow> multiplicity p p = 1"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1063
  by (rule multiplicity_self) auto
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1064
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1065
lemma multiplicity_prime_power [simp]: "prime_elem p \<Longrightarrow> multiplicity p (p ^ n) = n"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1066
  by (subst multiplicity_same_power') auto
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1067
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1068
lift_definition prime_factorization :: "'a \<Rightarrow> 'a multiset" is
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1069
  "\<lambda>x p. if prime p then multiplicity p x else 0"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1070
  unfolding multiset_def
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1071
proof clarify
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1072
  fix x :: 'a
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1073
  show "finite {p. 0 < (if prime p then multiplicity p x else 0)}" (is "finite ?A")
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1074
  proof (cases "x = 0")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1075
    case False
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1076
    from False have "?A \<subseteq> {p. prime p \<and> p dvd x}"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1077
      by (auto simp: multiplicity_gt_zero_iff)
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1078
    moreover from False have "finite {p. prime p \<and> p dvd x}"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1079
      by (rule finite_prime_divisors)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1080
    ultimately show ?thesis by (rule finite_subset)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1081
  qed simp_all
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1082
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1083
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1084
abbreviation prime_factors :: "'a \<Rightarrow> 'a set" where
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1085
  "prime_factors a \<equiv> set_mset (prime_factorization a)"
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1086
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1087
lemma count_prime_factorization_nonprime:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1088
  "\<not>prime p \<Longrightarrow> count (prime_factorization x) p = 0"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1089
  by transfer simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1090
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1091
lemma count_prime_factorization_prime:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1092
  "prime p \<Longrightarrow> count (prime_factorization x) p = multiplicity p x"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1093
  by transfer simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1094
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1095
lemma count_prime_factorization:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1096
  "count (prime_factorization x) p = (if prime p then multiplicity p x else 0)"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1097
  by transfer simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1098
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1099
lemma dvd_imp_multiplicity_le:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1100
  assumes "a dvd b" "b \<noteq> 0"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1101
  shows   "multiplicity p a \<le> multiplicity p b"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1102
proof (cases "is_unit p")
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1103
  case False
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1104
  with assms show ?thesis
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1105
    by (intro multiplicity_geI ) (auto intro: dvd_trans[OF multiplicity_dvd' assms(1)])
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1106
qed (insert assms, auto simp: multiplicity_unit_left)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1107
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1108
lemma prime_factorization_0 [simp]: "prime_factorization 0 = {#}"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1109
  by (simp add: multiset_eq_iff count_prime_factorization)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1110
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1111
lemma prime_factorization_empty_iff:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1112
  "prime_factorization x = {#} \<longleftrightarrow> x = 0 \<or> is_unit x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1113
proof
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1114
  assume *: "prime_factorization x = {#}"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1115
  {
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1116
    assume x: "x \<noteq> 0" "\<not>is_unit x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1117
    {
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1118
      fix p assume p: "prime p"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1119
      have "count (prime_factorization x) p = 0" by (simp add: *)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1120
      also from p have "count (prime_factorization x) p = multiplicity p x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1121
        by (rule count_prime_factorization_prime)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1122
      also from x p have "\<dots> = 0 \<longleftrightarrow> \<not>p dvd x" by (simp add: multiplicity_eq_zero_iff)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1123
      finally have "\<not>p dvd x" .
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1124
    }
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1125
    with prime_divisor_exists[OF x] have False by blast
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1126
  }
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1127
  thus "x = 0 \<or> is_unit x" by blast
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1128
next
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1129
  assume "x = 0 \<or> is_unit x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1130
  thus "prime_factorization x = {#}"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1131
  proof
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1132
    assume x: "is_unit x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1133
    {
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1134
      fix p assume p: "prime p"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1135
      from p x have "multiplicity p x = 0"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1136
        by (subst multiplicity_eq_zero_iff)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1137
           (auto simp: multiplicity_eq_zero_iff dest: unit_imp_no_prime_divisors)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1138
    }
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1139
    thus ?thesis by (simp add: multiset_eq_iff count_prime_factorization)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1140
  qed simp_all
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1141
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1142
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1143
lemma prime_factorization_unit:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1144
  assumes "is_unit x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1145
  shows   "prime_factorization x = {#}"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1146
proof (rule multiset_eqI)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1147
  fix p :: 'a
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1148
  show "count (prime_factorization x) p = count {#} p"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1149
  proof (cases "prime p")
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1150
    case True
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1151
    with assms have "multiplicity p x = 0"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1152
      by (subst multiplicity_eq_zero_iff)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1153
         (auto simp: multiplicity_eq_zero_iff dest: unit_imp_no_prime_divisors)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1154
    with True show ?thesis by (simp add: count_prime_factorization_prime)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1155
  qed (simp_all add: count_prime_factorization_nonprime)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1156
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1157
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1158
lemma prime_factorization_1 [simp]: "prime_factorization 1 = {#}"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1159
  by (simp add: prime_factorization_unit)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1160
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1161
lemma prime_factorization_times_prime:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1162
  assumes "x \<noteq> 0" "prime p"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1163
  shows   "prime_factorization (p * x) = {#p#} + prime_factorization x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1164
proof (rule multiset_eqI)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1165
  fix q :: 'a
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1166
  consider "\<not>prime q" | "p = q" | "prime q" "p \<noteq> q" by blast
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1167
  thus "count (prime_factorization (p * x)) q = count ({#p#} + prime_factorization x) q"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1168
  proof cases
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1169
    assume q: "prime q" "p \<noteq> q"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1170
    with assms primes_dvd_imp_eq[of q p] have "\<not>q dvd p" by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1171
    with q assms show ?thesis
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1172
      by (simp add: multiplicity_prime_elem_times_other count_prime_factorization)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1173
  qed (insert assms, auto simp: count_prime_factorization multiplicity_times_same)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1174
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1175
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1176
lemma prod_mset_prime_factorization:
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1177
  assumes "x \<noteq> 0"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1178
  shows   "prod_mset (prime_factorization x) = normalize x"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1179
  using assms
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1180
  by (induction x rule: prime_divisors_induct)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1181
     (simp_all add: prime_factorization_unit prime_factorization_times_prime
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1182
                    is_unit_normalize normalize_mult)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1183
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1184
lemma in_prime_factors_iff:
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1185
  "p \<in> prime_factors x \<longleftrightarrow> x \<noteq> 0 \<and> p dvd x \<and> prime p"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1186
proof -
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1187
  have "p \<in> prime_factors x \<longleftrightarrow> count (prime_factorization x) p > 0" by simp
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1188
  also have "\<dots> \<longleftrightarrow> x \<noteq> 0 \<and> p dvd x \<and> prime p"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1189
   by (subst count_prime_factorization, cases "x = 0")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1190
      (auto simp: multiplicity_eq_zero_iff multiplicity_gt_zero_iff)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1191
  finally show ?thesis .
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1192
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1193
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1194
lemma in_prime_factors_imp_prime [intro]:
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1195
  "p \<in> prime_factors x \<Longrightarrow> prime p"
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1196
  by (simp add: in_prime_factors_iff)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1197
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1198
lemma in_prime_factors_imp_dvd [dest]:
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1199
  "p \<in> prime_factors x \<Longrightarrow> p dvd x"
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1200
  by (simp add: in_prime_factors_iff)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1201
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1202
lemma prime_factorsI:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1203
  "x \<noteq> 0 \<Longrightarrow> prime p \<Longrightarrow> p dvd x \<Longrightarrow> p \<in> prime_factors x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1204
  by (auto simp: in_prime_factors_iff)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1205
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1206
lemma prime_factors_dvd:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1207
  "x \<noteq> 0 \<Longrightarrow> prime_factors x = {p. prime p \<and> p dvd x}"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1208
  by (auto intro: prime_factorsI)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1209
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1210
lemma prime_factors_multiplicity:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1211
  "prime_factors n = {p. prime p \<and> multiplicity p n > 0}"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1212
  by (cases "n = 0") (auto simp add: prime_factors_dvd prime_multiplicity_gt_zero_iff)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1213
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1214
lemma prime_factorization_prime:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1215
  assumes "prime p"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1216
  shows   "prime_factorization p = {#p#}"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1217
proof (rule multiset_eqI)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1218
  fix q :: 'a
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1219
  consider "\<not>prime q" | "q = p" | "prime q" "q \<noteq> p" by blast
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1220
  thus "count (prime_factorization p) q = count {#p#} q"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1221
    by cases (insert assms, auto dest: primes_dvd_imp_eq
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1222
                simp: count_prime_factorization multiplicity_self multiplicity_eq_zero_iff)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1223
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1224
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1225
lemma prime_factorization_prod_mset_primes:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1226
  assumes "\<And>p. p \<in># A \<Longrightarrow> prime p"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1227
  shows   "prime_factorization (prod_mset A) = A"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1228
  using assms
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1229
proof (induction A)
63793
e68a0b651eb5 add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63633
diff changeset
  1230
  case (add p A)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1231
  from add.prems[of 0] have "0 \<notin># A" by auto
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1232
  hence "prod_mset A \<noteq> 0" by auto
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1233
  with add show ?case
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1234
    by (simp_all add: mult_ac prime_factorization_times_prime Multiset.union_commute)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1235
qed simp_all
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1236
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1237
lemma prime_factorization_cong:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1238
  "normalize x = normalize y \<Longrightarrow> prime_factorization x = prime_factorization y"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1239
  by (simp add: multiset_eq_iff count_prime_factorization
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1240
                multiplicity_normalize_right [of _ x, symmetric]
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1241
                multiplicity_normalize_right [of _ y, symmetric]
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1242
           del:  multiplicity_normalize_right)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1243
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1244
lemma prime_factorization_unique:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1245
  assumes "x \<noteq> 0" "y \<noteq> 0"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1246
  shows   "prime_factorization x = prime_factorization y \<longleftrightarrow> normalize x = normalize y"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1247
proof
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1248
  assume "prime_factorization x = prime_factorization y"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1249
  hence "prod_mset (prime_factorization x) = prod_mset (prime_factorization y)" by simp
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1250
  with assms show "normalize x = normalize y" by (simp add: prod_mset_prime_factorization)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1251
qed (rule prime_factorization_cong)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1252
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1253
lemma prime_factorization_mult:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1254
  assumes "x \<noteq> 0" "y \<noteq> 0"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1255
  shows   "prime_factorization (x * y) = prime_factorization x + prime_factorization y"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1256
proof -
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1257
  have "prime_factorization (prod_mset (prime_factorization (x * y))) =
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1258
          prime_factorization (prod_mset (prime_factorization x + prime_factorization y))"
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1259
    by (simp add: prod_mset_prime_factorization assms normalize_mult)
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1260
  also have "prime_factorization (prod_mset (prime_factorization (x * y))) =
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1261
               prime_factorization (x * y)"
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1262
    by (rule prime_factorization_prod_mset_primes) (simp_all add: in_prime_factors_imp_prime)
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1263
  also have "prime_factorization (prod_mset (prime_factorization x + prime_factorization y)) =
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1264
               prime_factorization x + prime_factorization y"
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1265
    by (rule prime_factorization_prod_mset_primes) (auto simp: in_prime_factors_imp_prime)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1266
  finally show ?thesis .
62499
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
  1267
qed
4a5b81ff5992 constructive formulation of factorization
haftmann
parents: 62366
diff changeset
  1268
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1269
lemma prime_elem_multiplicity_mult_distrib:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1270
  assumes "prime_elem p" "x \<noteq> 0" "y \<noteq> 0"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1271
  shows   "multiplicity p (x * y) = multiplicity p x + multiplicity p y"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1272
proof -
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1273
  have "multiplicity p (x * y) = count (prime_factorization (x * y)) (normalize p)"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1274
    by (subst count_prime_factorization_prime) (simp_all add: assms)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1275
  also from assms 
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1276
    have "prime_factorization (x * y) = prime_factorization x + prime_factorization y"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1277
      by (intro prime_factorization_mult)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1278
  also have "count \<dots> (normalize p) = 
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1279
    count (prime_factorization x) (normalize p) + count (prime_factorization y) (normalize p)"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1280
    by simp
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1281
  also have "\<dots> = multiplicity p x + multiplicity p y" 
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1282
    by (subst (1 2) count_prime_factorization_prime) (simp_all add: assms)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1283
  finally show ?thesis .
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1284
qed
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1285
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1286
lemma prime_elem_multiplicity_prod_mset_distrib:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1287
  assumes "prime_elem p" "0 \<notin># A"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1288
  shows   "multiplicity p (prod_mset A) = sum_mset (image_mset (multiplicity p) A)"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1289
  using assms by (induction A) (auto simp: prime_elem_multiplicity_mult_distrib)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1290
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1291
lemma prime_elem_multiplicity_power_distrib:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1292
  assumes "prime_elem p" "x \<noteq> 0"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1293
  shows   "multiplicity p (x ^ n) = n * multiplicity p x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1294
  using assms prime_elem_multiplicity_prod_mset_distrib [of p "replicate_mset n x"]
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1295
  by simp
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1296
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1297
lemma prime_elem_multiplicity_prod_distrib:
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1298
  assumes "prime_elem p" "0 \<notin> f ` A" "finite A"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1299
  shows   "multiplicity p (prod f A) = (\<Sum>x\<in>A. multiplicity p (f x))"
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1300
proof -
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1301
  have "multiplicity p (prod f A) = (\<Sum>x\<in>#mset_set A. multiplicity p (f x))"
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1302
    using assms by (subst prod_unfold_prod_mset)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63924
diff changeset
  1303
                   (simp_all add: prime_elem_multiplicity_prod_mset_distrib sum_unfold_sum_mset 
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1304
                      multiset.map_comp o_def)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1305
  also from \<open>finite A\<close> have "\<dots> = (\<Sum>x\<in>A. multiplicity p (f x))"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1306
    by (induction A rule: finite_induct) simp_all
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1307
  finally show ?thesis .
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1308
qed
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1309
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1310
lemma multiplicity_distinct_prime_power:
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1311
  "prime p \<Longrightarrow> prime q \<Longrightarrow> p \<noteq> q \<Longrightarrow> multiplicity p (q ^ n) = 0"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1312
  by (subst prime_elem_multiplicity_power_distrib) (auto simp: prime_multiplicity_other)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1313
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1314
lemma prime_factorization_prime_power:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1315
  "prime p \<Longrightarrow> prime_factorization (p ^ n) = replicate_mset n p"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1316
  by (induction n)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1317
     (simp_all add: prime_factorization_mult prime_factorization_prime Multiset.union_commute)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1318
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1319
lemma prime_decomposition: "unit_factor x * prod_mset (prime_factorization x) = x"
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1320
  by (cases "x = 0") (simp_all add: prod_mset_prime_factorization)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1321
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1322
lemma prime_factorization_subset_iff_dvd:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1323
  assumes [simp]: "x \<noteq> 0" "y \<noteq> 0"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1324
  shows   "prime_factorization x \<subseteq># prime_factorization y \<longleftrightarrow> x dvd y"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1325
proof -
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1326
  have "x dvd y \<longleftrightarrow> prod_mset (prime_factorization x) dvd prod_mset (prime_factorization y)"
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1327
    by (simp add: prod_mset_prime_factorization)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1328
  also have "\<dots> \<longleftrightarrow> prime_factorization x \<subseteq># prime_factorization y"
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1329
    by (auto intro!: prod_mset_primes_dvd_imp_subset prod_mset_subset_imp_dvd)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1330
  finally show ?thesis ..
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1331
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1332
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1333
lemma prime_factorization_subset_imp_dvd: 
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1334
  "x \<noteq> 0 \<Longrightarrow> (prime_factorization x \<subseteq># prime_factorization y) \<Longrightarrow> x dvd y"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1335
  by (cases "y = 0") (simp_all add: prime_factorization_subset_iff_dvd)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1336
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1337
lemma prime_factorization_divide:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1338
  assumes "b dvd a"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1339
  shows   "prime_factorization (a div b) = prime_factorization a - prime_factorization b"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1340
proof (cases "a = 0")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1341
  case [simp]: False
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1342
  from assms have [simp]: "b \<noteq> 0" by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1343
  have "prime_factorization ((a div b) * b) = prime_factorization (a div b) + prime_factorization b"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1344
    by (intro prime_factorization_mult) (insert assms, auto elim!: dvdE)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1345
  with assms show ?thesis by simp
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1346
qed simp_all
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1347
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1348
lemma zero_not_in_prime_factors [simp]: "0 \<notin> prime_factors x"
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1349
  by (auto dest: in_prime_factors_imp_prime)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1350
63904
b8482e12a2a8 more lemmas
haftmann
parents: 63830
diff changeset
  1351
lemma prime_prime_factors:
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1352
  "prime p \<Longrightarrow> prime_factors p = {p}"
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1353
  by (drule prime_factorization_prime) simp
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1354
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1355
lemma prod_prime_factors:
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1356
  assumes "x \<noteq> 0"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1357
  shows   "(\<Prod>p \<in> prime_factors x. p ^ multiplicity p x) = normalize x"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1358
proof -
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1359
  have "normalize x = prod_mset (prime_factorization x)"
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1360
    by (simp add: prod_mset_prime_factorization assms)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1361
  also have "\<dots> = (\<Prod>p \<in> prime_factors x. p ^ count (prime_factorization x) p)"
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1362
    by (subst prod_mset_multiplicity) simp_all
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1363
  also have "\<dots> = (\<Prod>p \<in> prime_factors x. p ^ multiplicity p x)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1364
    by (intro prod.cong) 
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1365
      (simp_all add: assms count_prime_factorization_prime in_prime_factors_imp_prime)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1366
  finally show ?thesis ..
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1367
qed
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1368
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1369
lemma prime_factorization_unique'':
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1370
  assumes S_eq: "S = {p. 0 < f p}"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1371
    and "finite S"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1372
    and S: "\<forall>p\<in>S. prime p" "normalize n = (\<Prod>p\<in>S. p ^ f p)"
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1373
  shows "S = prime_factors n \<and> (\<forall>p. prime p \<longrightarrow> f p = multiplicity p n)"
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1374
proof
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1375
  define A where "A = Abs_multiset f"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1376
  from \<open>finite S\<close> S(1) have "(\<Prod>p\<in>S. p ^ f p) \<noteq> 0" by auto
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1377
  with S(2) have nz: "n \<noteq> 0" by auto
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1378
  from S_eq \<open>finite S\<close> have count_A: "count A x = f x" for x
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1379
    unfolding A_def by (subst multiset.Abs_multiset_inverse) (simp_all add: multiset_def)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1380
  from S_eq count_A have set_mset_A: "set_mset A = S"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1381
    by (simp only: set_mset_def)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1382
  from S(2) have "normalize n = (\<Prod>p\<in>S. p ^ f p)" .
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1383
  also have "\<dots> = prod_mset A" by (simp add: prod_mset_multiplicity S_eq set_mset_A count_A)
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1384
  also from nz have "normalize n = prod_mset (prime_factorization n)" 
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1385
    by (simp add: prod_mset_prime_factorization)
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1386
  finally have "prime_factorization (prod_mset A) = 
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1387
                  prime_factorization (prod_mset (prime_factorization n))" by simp
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1388
  also from S(1) have "prime_factorization (prod_mset A) = A"
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1389
    by (intro prime_factorization_prod_mset_primes) (auto simp: set_mset_A)
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1390
  also have "prime_factorization (prod_mset (prime_factorization n)) = prime_factorization n"
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1391
    by (intro prime_factorization_prod_mset_primes) auto
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1392
  finally show "S = prime_factors n" by (simp add: set_mset_A [symmetric])
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1393
  
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1394
  show "(\<forall>p. prime p \<longrightarrow> f p = multiplicity p n)"
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1395
  proof safe
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1396
    fix p :: 'a assume p: "prime p"
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1397
    have "multiplicity p n = multiplicity p (normalize n)" by simp
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1398
    also have "normalize n = prod_mset A" 
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1399
      by (simp add: prod_mset_multiplicity S_eq set_mset_A count_A S)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1400
    also from p set_mset_A S(1) 
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1401
    have "multiplicity p \<dots> = sum_mset (image_mset (multiplicity p) A)"
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1402
      by (intro prime_elem_multiplicity_prod_mset_distrib) auto
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1403
    also from S(1) p
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1404
    have "image_mset (multiplicity p) A = image_mset (\<lambda>q. if p = q then 1 else 0) A"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1405
      by (intro image_mset_cong) (auto simp: set_mset_A multiplicity_self prime_multiplicity_other)
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1406
    also have "sum_mset \<dots> = f p" by (simp add: sum_mset_delta' count_A)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1407
    finally show "f p = multiplicity p n" ..
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1408
  qed
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1409
qed
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1410
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1411
lemma prime_factors_product: 
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1412
  "x \<noteq> 0 \<Longrightarrow> y \<noteq> 0 \<Longrightarrow> prime_factors (x * y) = prime_factors x \<union> prime_factors y"
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1413
  by (simp add: prime_factorization_mult)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1414
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1415
lemma dvd_prime_factors [intro]:
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1416
  "y \<noteq> 0 \<Longrightarrow> x dvd y \<Longrightarrow> prime_factors x \<subseteq> prime_factors y"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1417
  by (intro set_mset_mono, subst prime_factorization_subset_iff_dvd) auto
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1418
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1419
(* RENAMED multiplicity_dvd *)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1420
lemma multiplicity_le_imp_dvd:
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1421
  assumes "x \<noteq> 0" "\<And>p. prime p \<Longrightarrow> multiplicity p x \<le> multiplicity p y"
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1422
  shows   "x dvd y"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1423
proof (cases "y = 0")
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1424
  case False
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1425
  from assms this have "prime_factorization x \<subseteq># prime_factorization y"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1426
    by (intro mset_subset_eqI) (auto simp: count_prime_factorization)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1427
  with assms False show ?thesis by (subst (asm) prime_factorization_subset_iff_dvd)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1428
qed auto
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1429
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1430
lemma dvd_multiplicity_eq:
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1431
  "x \<noteq> 0 \<Longrightarrow> y \<noteq> 0 \<Longrightarrow> x dvd y \<longleftrightarrow> (\<forall>p. multiplicity p x \<le> multiplicity p y)"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1432
  by (auto intro: dvd_imp_multiplicity_le multiplicity_le_imp_dvd)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1433
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1434
lemma multiplicity_eq_imp_eq:
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1435
  assumes "x \<noteq> 0" "y \<noteq> 0"
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1436
  assumes "\<And>p. prime p \<Longrightarrow> multiplicity p x = multiplicity p y"
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1437
  shows   "normalize x = normalize y"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1438
  using assms by (intro associatedI multiplicity_le_imp_dvd) simp_all
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1439
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1440
lemma prime_factorization_unique':
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1441
  assumes "\<forall>p \<in># M. prime p" "\<forall>p \<in># N. prime p" "(\<Prod>i \<in># M. i) = (\<Prod>i \<in># N. i)"
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1442
  shows   "M = N"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1443
proof -
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1444
  have "prime_factorization (\<Prod>i \<in># M. i) = prime_factorization (\<Prod>i \<in># N. i)"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1445
    by (simp only: assms)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1446
  also from assms have "prime_factorization (\<Prod>i \<in># M. i) = M"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1447
    by (subst prime_factorization_prod_mset_primes) simp_all
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1448
  also from assms have "prime_factorization (\<Prod>i \<in># N. i) = N"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1449
    by (subst prime_factorization_prod_mset_primes) simp_all
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1450
  finally show ?thesis .
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1451
qed
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1452
63537
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
  1453
lemma multiplicity_cong:
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
  1454
  "(\<And>r. p ^ r dvd a \<longleftrightarrow> p ^ r dvd b) \<Longrightarrow> multiplicity p a = multiplicity p b"
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
  1455
  by (simp add: multiplicity_def)
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
  1456
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
  1457
lemma not_dvd_imp_multiplicity_0: 
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
  1458
  assumes "\<not>p dvd x"
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
  1459
  shows   "multiplicity p x = 0"
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
  1460
proof -
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
  1461
  from assms have "multiplicity p x < 1"
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
  1462
    by (intro multiplicity_lessI) auto
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
  1463
  thus ?thesis by simp
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
  1464
qed
831816778409 Removed redundant material related to primes
eberlm <eberlm@in.tum.de>
parents: 63534
diff changeset
  1465
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1466
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1467
subsection \<open>GCD and LCM computation with unique factorizations\<close>
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63919
diff changeset
  1468
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1469
definition "gcd_factorial a b = (if a = 0 then normalize b
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1470
     else if b = 0 then normalize a
63919
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
  1471
     else prod_mset (prime_factorization a \<inter># prime_factorization b))"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1472
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1473
definition "lcm_factorial a b = (if a = 0 \<or> b = 0 then 0
63919
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
  1474
     else prod_mset (prime_factorization a \<union># prime_factorization b))"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1475
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1476
definition "Gcd_factorial A =
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1477
  (if A \<subseteq> {0} then 0 else prod_mset (Inf (prime_factorization ` (A - {0}))))"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1478
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1479
definition "Lcm_factorial A =
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1480
  (if A = {} then 1
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1481
   else if 0 \<notin> A \<and> subset_mset.bdd_above (prime_factorization ` (A - {0})) then
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1482
     prod_mset (Sup (prime_factorization ` A))
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1483
   else
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1484
     0)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1485
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1486
lemma prime_factorization_gcd_factorial:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1487
  assumes [simp]: "a \<noteq> 0" "b \<noteq> 0"
63919
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
  1488
  shows   "prime_factorization (gcd_factorial a b) = prime_factorization a \<inter># prime_factorization b"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1489
proof -
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1490
  have "prime_factorization (gcd_factorial a b) =
63919
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
  1491
          prime_factorization (prod_mset (prime_factorization a \<inter># prime_factorization b))"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1492
    by (simp add: gcd_factorial_def)
63919
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
  1493
  also have "\<dots> = prime_factorization a \<inter># prime_factorization b"
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1494
    by (subst prime_factorization_prod_mset_primes) auto
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1495
  finally show ?thesis .
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1496
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1497
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1498
lemma prime_factorization_lcm_factorial:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1499
  assumes [simp]: "a \<noteq> 0" "b \<noteq> 0"
63919
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
  1500
  shows   "prime_factorization (lcm_factorial a b) = prime_factorization a \<union># prime_factorization b"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1501
proof -
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1502
  have "prime_factorization (lcm_factorial a b) =
63919
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
  1503
          prime_factorization (prod_mset (prime_factorization a \<union># prime_factorization b))"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1504
    by (simp add: lcm_factorial_def)
63919
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
  1505
  also have "\<dots> = prime_factorization a \<union># prime_factorization b"
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1506
    by (subst prime_factorization_prod_mset_primes) auto
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1507
  finally show ?thesis .
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1508
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1509
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1510
lemma prime_factorization_Gcd_factorial:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1511
  assumes "\<not>A \<subseteq> {0}"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1512
  shows   "prime_factorization (Gcd_factorial A) = Inf (prime_factorization ` (A - {0}))"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1513
proof -
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1514
  from assms obtain x where x: "x \<in> A - {0}" by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1515
  hence "Inf (prime_factorization ` (A - {0})) \<subseteq># prime_factorization x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1516
    by (intro subset_mset.cInf_lower) simp_all
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1517
  hence "\<forall>y. y \<in># Inf (prime_factorization ` (A - {0})) \<longrightarrow> y \<in> prime_factors x"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1518
    by (auto dest: mset_subset_eqD)
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1519
  with in_prime_factors_imp_prime[of _ x]
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1520
    have "\<forall>p. p \<in># Inf (prime_factorization ` (A - {0})) \<longrightarrow> prime p" by blast
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1521
  with assms show ?thesis
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1522
    by (simp add: Gcd_factorial_def prime_factorization_prod_mset_primes)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1523
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1524
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1525
lemma prime_factorization_Lcm_factorial:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1526
  assumes "0 \<notin> A" "subset_mset.bdd_above (prime_factorization ` A)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1527
  shows   "prime_factorization (Lcm_factorial A) = Sup (prime_factorization ` A)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1528
proof (cases "A = {}")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1529
  case True
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1530
  hence "prime_factorization ` A = {}" by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1531
  also have "Sup \<dots> = {#}" by (simp add: Sup_multiset_empty)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1532
  finally show ?thesis by (simp add: Lcm_factorial_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1533
next
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1534
  case False
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1535
  have "\<forall>y. y \<in># Sup (prime_factorization ` A) \<longrightarrow> prime y"
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1536
    by (auto simp: in_Sup_multiset_iff assms)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1537
  with assms False show ?thesis
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1538
    by (simp add: Lcm_factorial_def prime_factorization_prod_mset_primes)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1539
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1540
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1541
lemma gcd_factorial_commute: "gcd_factorial a b = gcd_factorial b a"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1542
  by (simp add: gcd_factorial_def multiset_inter_commute)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1543
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1544
lemma gcd_factorial_dvd1: "gcd_factorial a b dvd a"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1545
proof (cases "a = 0 \<or> b = 0")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1546
  case False
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1547
  hence "gcd_factorial a b \<noteq> 0" by (auto simp: gcd_factorial_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1548
  with False show ?thesis
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1549
    by (subst prime_factorization_subset_iff_dvd [symmetric])
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1550
       (auto simp: prime_factorization_gcd_factorial)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1551
qed (auto simp: gcd_factorial_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1552
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1553
lemma gcd_factorial_dvd2: "gcd_factorial a b dvd b"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1554
  by (subst gcd_factorial_commute) (rule gcd_factorial_dvd1)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1555
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1556
lemma normalize_gcd_factorial: "normalize (gcd_factorial a b) = gcd_factorial a b"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1557
proof -
63919
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
  1558
  have "normalize (prod_mset (prime_factorization a \<inter># prime_factorization b)) =
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
  1559
          prod_mset (prime_factorization a \<inter># prime_factorization b)"
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1560
    by (intro normalize_prod_mset_primes) auto
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1561
  thus ?thesis by (simp add: gcd_factorial_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1562
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1563
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1564
lemma gcd_factorial_greatest: "c dvd gcd_factorial a b" if "c dvd a" "c dvd b" for a b c
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1565
proof (cases "a = 0 \<or> b = 0")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1566
  case False
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1567
  with that have [simp]: "c \<noteq> 0" by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1568
  let ?p = "prime_factorization"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1569
  from that False have "?p c \<subseteq># ?p a" "?p c \<subseteq># ?p b"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1570
    by (simp_all add: prime_factorization_subset_iff_dvd)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1571
  hence "prime_factorization c \<subseteq>#
63919
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
  1572
           prime_factorization (prod_mset (prime_factorization a \<inter># prime_factorization b))"
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1573
    using False by (subst prime_factorization_prod_mset_primes) auto
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1574
  with False show ?thesis
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1575
    by (auto simp: gcd_factorial_def prime_factorization_subset_iff_dvd [symmetric])
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1576
qed (auto simp: gcd_factorial_def that)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1577
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1578
lemma lcm_factorial_gcd_factorial:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1579
  "lcm_factorial a b = normalize (a * b) div gcd_factorial a b" for a b
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1580
proof (cases "a = 0 \<or> b = 0")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1581
  case False
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1582
  let ?p = "prime_factorization"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1583
  from False have "prod_mset (?p (a * b)) div gcd_factorial a b =
63919
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
  1584
                     prod_mset (?p a + ?p b - ?p a \<inter># ?p b)"
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1585
    by (subst prod_mset_diff) (auto simp: lcm_factorial_def gcd_factorial_def
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1586
                                prime_factorization_mult subset_mset.le_infI1)
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1587
  also from False have "prod_mset (?p (a * b)) = normalize (a * b)"
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1588
    by (intro prod_mset_prime_factorization) simp_all
63919
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
  1589
  also from False have "prod_mset (?p a + ?p b - ?p a \<inter># ?p b) = lcm_factorial a b"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1590
    by (simp add: union_diff_inter_eq_sup lcm_factorial_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1591
  finally show ?thesis ..
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1592
qed (auto simp: lcm_factorial_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1593
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1594
lemma normalize_Gcd_factorial:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1595
  "normalize (Gcd_factorial A) = Gcd_factorial A"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1596
proof (cases "A \<subseteq> {0}")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1597
  case False
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1598
  then obtain x where "x \<in> A" "x \<noteq> 0" by blast
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1599
  hence "Inf (prime_factorization ` (A - {0})) \<subseteq># prime_factorization x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1600
    by (intro subset_mset.cInf_lower) auto
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1601
  hence "prime p" if "p \<in># Inf (prime_factorization ` (A - {0}))" for p
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1602
    using that by (auto dest: mset_subset_eqD)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1603
  with False show ?thesis
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1604
    by (auto simp add: Gcd_factorial_def normalize_prod_mset_primes)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1605
qed (simp_all add: Gcd_factorial_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1606
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1607
lemma Gcd_factorial_eq_0_iff:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1608
  "Gcd_factorial A = 0 \<longleftrightarrow> A \<subseteq> {0}"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1609
  by (auto simp: Gcd_factorial_def in_Inf_multiset_iff split: if_splits)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1610
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1611
lemma Gcd_factorial_dvd:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1612
  assumes "x \<in> A"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1613
  shows   "Gcd_factorial A dvd x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1614
proof (cases "x = 0")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1615
  case False
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1616
  with assms have "prime_factorization (Gcd_factorial A) = Inf (prime_factorization ` (A - {0}))"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1617
    by (intro prime_factorization_Gcd_factorial) auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1618
  also from False assms have "\<dots> \<subseteq># prime_factorization x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1619
    by (intro subset_mset.cInf_lower) auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1620
  finally show ?thesis
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1621
    by (subst (asm) prime_factorization_subset_iff_dvd)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1622
       (insert assms False, auto simp: Gcd_factorial_eq_0_iff)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1623
qed simp_all
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1624
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1625
lemma Gcd_factorial_greatest:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1626
  assumes "\<And>y. y \<in> A \<Longrightarrow> x dvd y"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1627
  shows   "x dvd Gcd_factorial A"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1628
proof (cases "A \<subseteq> {0}")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1629
  case False
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1630
  from False obtain y where "y \<in> A" "y \<noteq> 0" by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1631
  with assms[of y] have nz: "x \<noteq> 0" by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1632
  from nz assms have "prime_factorization x \<subseteq># prime_factorization y" if "y \<in> A - {0}" for y
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1633
    using that by (subst prime_factorization_subset_iff_dvd) auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1634
  with False have "prime_factorization x \<subseteq># Inf (prime_factorization ` (A - {0}))"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1635
    by (intro subset_mset.cInf_greatest) auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1636
  also from False have "\<dots> = prime_factorization (Gcd_factorial A)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1637
    by (rule prime_factorization_Gcd_factorial [symmetric])
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1638
  finally show ?thesis
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1639
    by (subst (asm) prime_factorization_subset_iff_dvd)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1640
       (insert nz False, auto simp: Gcd_factorial_eq_0_iff)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1641
qed (simp_all add: Gcd_factorial_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1642
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1643
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1644
lemma normalize_Lcm_factorial:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1645
  "normalize (Lcm_factorial A) = Lcm_factorial A"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1646
proof (cases "subset_mset.bdd_above (prime_factorization ` A)")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1647
  case True
63830
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1648
  hence "normalize (prod_mset (Sup (prime_factorization ` A))) =
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1649
           prod_mset (Sup (prime_factorization ` A))"
2ea3725a34bd msetsum -> set_mset, msetprod -> prod_mset
nipkow
parents: 63793
diff changeset
  1650
    by (intro normalize_prod_mset_primes)
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1651
       (auto simp: in_Sup_multiset_iff)
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1652
  with True show ?thesis by (simp add: Lcm_factorial_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1653
qed (auto simp: Lcm_factorial_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1654
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1655
lemma Lcm_factorial_eq_0_iff:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1656
  "Lcm_factorial A = 0 \<longleftrightarrow> 0 \<in> A \<or> \<not>subset_mset.bdd_above (prime_factorization ` A)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1657
  by (auto simp: Lcm_factorial_def in_Sup_multiset_iff)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1658
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1659
lemma dvd_Lcm_factorial:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1660
  assumes "x \<in> A"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1661
  shows   "x dvd Lcm_factorial A"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1662
proof (cases "0 \<notin> A \<and> subset_mset.bdd_above (prime_factorization ` A)")
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1663
  case True
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1664
  with assms have [simp]: "0 \<notin> A" "x \<noteq> 0" "A \<noteq> {}" by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1665
  from assms True have "prime_factorization x \<subseteq># Sup (prime_factorization ` A)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1666
    by (intro subset_mset.cSup_upper) auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1667
  also have "\<dots> = prime_factorization (Lcm_factorial A)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1668
    by (rule prime_factorization_Lcm_factorial [symmetric]) (insert True, simp_all)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1669
  finally show ?thesis
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1670
    by (subst (asm) prime_factorization_subset_iff_dvd)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1671
       (insert True, auto simp: Lcm_factorial_eq_0_iff)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1672
qed (insert assms, auto simp: Lcm_factorial_def)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1673
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1674
lemma Lcm_factorial_least:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1675
  assumes "\<And>y. y \<in> A \<Longrightarrow> y dvd x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1676
  shows   "Lcm_factorial A dvd x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1677
proof -
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1678
  consider "A = {}" | "0 \<in> A" | "x = 0" | "A \<noteq> {}" "0 \<notin> A" "x \<noteq> 0" by blast
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1679
  thus ?thesis
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1680
  proof cases
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1681
    assume *: "A \<noteq> {}" "0 \<notin> A" "x \<noteq> 0"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1682
    hence nz: "x \<noteq> 0" if "x \<in> A" for x using that by auto
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1683
    from * have bdd: "subset_mset.bdd_above (prime_factorization ` A)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1684
      by (intro subset_mset.bdd_aboveI[of _ "prime_factorization x"])
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1685
         (auto simp: prime_factorization_subset_iff_dvd nz dest: assms)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1686
    have "prime_factorization (Lcm_factorial A) = Sup (prime_factorization ` A)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1687
      by (rule prime_factorization_Lcm_factorial) fact+
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1688
    also from * have "\<dots> \<subseteq># prime_factorization x"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1689
      by (intro subset_mset.cSup_least)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1690
         (auto simp: prime_factorization_subset_iff_dvd nz dest: assms)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1691
    finally show ?thesis
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1692
      by (subst (asm) prime_factorization_subset_iff_dvd)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1693
         (insert * bdd, auto simp: Lcm_factorial_eq_0_iff)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1694
  qed (auto simp: Lcm_factorial_def dest: assms)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1695
qed
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1696
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1697
lemmas gcd_lcm_factorial =
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1698
  gcd_factorial_dvd1 gcd_factorial_dvd2 gcd_factorial_greatest
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1699
  normalize_gcd_factorial lcm_factorial_gcd_factorial
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1700
  normalize_Gcd_factorial Gcd_factorial_dvd Gcd_factorial_greatest
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1701
  normalize_Lcm_factorial dvd_Lcm_factorial Lcm_factorial_least
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1702
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1703
end
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1704
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1705
class factorial_semiring_gcd = factorial_semiring + gcd + Gcd +
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1706
  assumes gcd_eq_gcd_factorial: "gcd a b = gcd_factorial a b"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1707
  and     lcm_eq_lcm_factorial: "lcm a b = lcm_factorial a b"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1708
  and     Gcd_eq_Gcd_factorial: "Gcd A = Gcd_factorial A"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1709
  and     Lcm_eq_Lcm_factorial: "Lcm A = Lcm_factorial A"
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1710
begin
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1711
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1712
lemma prime_factorization_gcd:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1713
  assumes [simp]: "a \<noteq> 0" "b \<noteq> 0"
63919
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
  1714
  shows   "prime_factorization (gcd a b) = prime_factorization a \<inter># prime_factorization b"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1715
  by (simp add: gcd_eq_gcd_factorial prime_factorization_gcd_factorial)
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1716
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1717
lemma prime_factorization_lcm:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1718
  assumes [simp]: "a \<noteq> 0" "b \<noteq> 0"
63919
9aed2da07200 # after multiset intersection and union symbol
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63905
diff changeset
  1719
  shows   "prime_factorization (lcm a b) = prime_factorization a \<union># prime_factorization b"
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1720
  by (simp add: lcm_eq_lcm_factorial prime_factorization_lcm_factorial)
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1721
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1722
lemma prime_factorization_Gcd:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1723
  assumes "Gcd A \<noteq> 0"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1724
  shows   "prime_factorization (Gcd A) = Inf (prime_factorization ` (A - {0}))"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1725
  using assms
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1726
  by (simp add: prime_factorization_Gcd_factorial Gcd_eq_Gcd_factorial Gcd_factorial_eq_0_iff)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1727
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1728
lemma prime_factorization_Lcm:
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1729
  assumes "Lcm A \<noteq> 0"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1730
  shows   "prime_factorization (Lcm A) = Sup (prime_factorization ` A)"
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1731
  using assms
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1732
  by (simp add: prime_factorization_Lcm_factorial Lcm_eq_Lcm_factorial Lcm_factorial_eq_0_iff)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1733
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1734
subclass semiring_gcd
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1735
  by (standard, unfold gcd_eq_gcd_factorial lcm_eq_lcm_factorial)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1736
     (rule gcd_lcm_factorial; assumption)+
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1737
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1738
subclass semiring_Gcd
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1739
  by (standard, unfold Gcd_eq_Gcd_factorial Lcm_eq_Lcm_factorial)
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1740
     (rule gcd_lcm_factorial; assumption)+
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1741
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1742
lemma
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1743
  assumes "x \<noteq> 0" "y \<noteq> 0"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1744
  shows gcd_eq_factorial': 
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1745
          "gcd x y = (\<Prod>p \<in> prime_factors x \<inter> prime_factors y. 
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1746
                          p ^ min (multiplicity p x) (multiplicity p y))" (is "_ = ?rhs1")
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1747
    and lcm_eq_factorial':
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1748
          "lcm x y = (\<Prod>p \<in> prime_factors x \<union> prime_factors y. 
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1749
                          p ^ max (multiplicity p x) (multiplicity p y))" (is "_ = ?rhs2")
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1750
proof -
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1751
  have "gcd x y = gcd_factorial x y" by (rule gcd_eq_gcd_factorial)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1752
  also have "\<dots> = ?rhs1"
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1753
    by (auto simp: gcd_factorial_def assms prod_mset_multiplicity
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1754
          count_prime_factorization_prime dest: in_prime_factors_imp_prime intro!: prod.cong)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1755
  finally show "gcd x y = ?rhs1" .
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1756
  have "lcm x y = lcm_factorial x y" by (rule lcm_eq_lcm_factorial)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1757
  also have "\<dots> = ?rhs2"
63905
1c3dcb5fe6cb prefer abbreviation for trivial set conversion
haftmann
parents: 63904
diff changeset
  1758
    by (auto simp: lcm_factorial_def assms prod_mset_multiplicity
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1759
          count_prime_factorization_prime dest: in_prime_factors_imp_prime intro!: prod.cong)
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1760
  finally show "lcm x y = ?rhs2" .
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1761
qed
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1762
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1763
lemma
63633
2accfb71e33b is_prime -> prime
eberlm <eberlm@in.tum.de>
parents: 63547
diff changeset
  1764
  assumes "x \<noteq> 0" "y \<noteq> 0" "prime p"
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1765
  shows   multiplicity_gcd: "multiplicity p (gcd x y) = min (multiplicity p x) (multiplicity p y)"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1766
    and   multiplicity_lcm: "multiplicity p (lcm x y) = max (multiplicity p x) (multiplicity p y)"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1767
proof -
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1768
  have "gcd x y = gcd_factorial x y" by (rule gcd_eq_gcd_factorial)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1769
  also from assms have "multiplicity p \<dots> = min (multiplicity p x) (multiplicity p y)"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1770
    by (simp add: count_prime_factorization_prime [symmetric] prime_factorization_gcd_factorial)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1771
  finally show "multiplicity p (gcd x y) = min (multiplicity p x) (multiplicity p y)" .
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1772
  have "lcm x y = lcm_factorial x y" by (rule lcm_eq_lcm_factorial)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1773
  also from assms have "multiplicity p \<dots> = max (multiplicity p x) (multiplicity p y)"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1774
    by (simp add: count_prime_factorization_prime [symmetric] prime_factorization_lcm_factorial)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1775
  finally show "multiplicity p (lcm x y) = max (multiplicity p x) (multiplicity p y)" .
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1776
qed
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1777
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1778
lemma gcd_lcm_distrib:
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1779
  "gcd x (lcm y z) = lcm (gcd x y) (gcd x z)"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1780
proof (cases "x = 0 \<or> y = 0 \<or> z = 0")
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1781
  case True
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1782
  thus ?thesis
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1783
    by (auto simp: lcm_proj1_if_dvd lcm_proj2_if_dvd)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1784
next
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1785
  case False
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1786
  hence "normalize (gcd x (lcm y z)) = normalize (lcm (gcd x y) (gcd x z))"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1787
    by (intro associatedI prime_factorization_subset_imp_dvd)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1788
       (auto simp: lcm_eq_0_iff prime_factorization_gcd prime_factorization_lcm 
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1789
          subset_mset.inf_sup_distrib1)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1790
  thus ?thesis by simp
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1791
qed
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1792
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1793
lemma lcm_gcd_distrib:
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1794
  "lcm x (gcd y z) = gcd (lcm x y) (lcm x z)"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1795
proof (cases "x = 0 \<or> y = 0 \<or> z = 0")
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1796
  case True
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1797
  thus ?thesis
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1798
    by (auto simp: lcm_proj1_if_dvd lcm_proj2_if_dvd)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1799
next
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1800
  case False
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1801
  hence "normalize (lcm x (gcd y z)) = normalize (gcd (lcm x y) (lcm x z))"
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1802
    by (intro associatedI prime_factorization_subset_imp_dvd)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1803
       (auto simp: lcm_eq_0_iff prime_factorization_gcd prime_factorization_lcm 
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1804
          subset_mset.sup_inf_distrib1)
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1805
  thus ?thesis by simp
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1806
qed
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63498
diff changeset
  1807
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1808
end
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1809
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1810
class factorial_ring_gcd = factorial_semiring_gcd + idom
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1811
begin
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1812
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1813
subclass ring_gcd ..
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1814
63498
a3fe3250d05d Reformed factorial rings
eberlm <eberlm@in.tum.de>
parents: 63133
diff changeset
  1815
subclass idom_divide ..
60804
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1816
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1817
end
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1818
080a979a985b formal class for factorial (semi)rings
haftmann
parents:
diff changeset
  1819
end