src/Pure/type.ML
author wenzelm
Fri Aug 19 15:42:13 1994 +0200 (1994-08-19)
changeset 565 653b752e2ddb
parent 450 382b5368ec21
child 582 8f1f1fab70ad
permissions -rw-r--r--
slightly changed args of infer_types;
replaced parents by enclose;
renamed 2nd add_types to attach_types and fixed the
typevar-sort-constraint BUG;
various minor internal changes;
wenzelm@256
     1
(*  Title:      Pure/type.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@416
     3
    Author:     Tobias Nipkow & Lawrence C Paulson
clasohm@0
     4
wenzelm@416
     5
Type classes and sorts. Type signatures. Type unification and inference.
wenzelm@256
     6
wenzelm@256
     7
TODO:
wenzelm@416
     8
  move type unification and inference to type_unify.ML (TypeUnify) (?)
wenzelm@416
     9
  rename args -> tycons, coreg -> arities (?)
wenzelm@416
    10
  clean err msgs
clasohm@0
    11
*)
clasohm@0
    12
clasohm@0
    13
signature TYPE =
clasohm@0
    14
sig
wenzelm@256
    15
  structure Symtab: SYMTAB
wenzelm@416
    16
  val str_of_sort: sort -> string
wenzelm@416
    17
  val str_of_arity: string * sort list * sort -> string
clasohm@0
    18
  type type_sig
nipkow@200
    19
  val rep_tsig: type_sig ->
wenzelm@256
    20
    {classes: class list,
wenzelm@256
    21
     subclass: (class * class list) list,
wenzelm@256
    22
     default: sort,
wenzelm@256
    23
     args: (string * int) list,
wenzelm@256
    24
     abbrs: (string * (indexname list * typ)) list,
wenzelm@256
    25
     coreg: (string * (class * sort list) list) list}
clasohm@0
    26
  val defaultS: type_sig -> sort
wenzelm@416
    27
  val tsig0: type_sig
wenzelm@256
    28
  val logical_types: type_sig -> string list
wenzelm@256
    29
  val extend_tsig: type_sig ->
wenzelm@256
    30
    (class * class list) list * sort * (string list * int) list *
wenzelm@256
    31
    (string list * (sort list * class)) list -> type_sig
wenzelm@422
    32
  val ext_tsig_subclass: type_sig -> (class * class) list -> type_sig
wenzelm@422
    33
  val ext_tsig_defsort: type_sig -> sort -> type_sig
wenzelm@256
    34
  val ext_tsig_abbrs: type_sig -> (string * (indexname list * typ)) list
wenzelm@256
    35
    -> type_sig
wenzelm@256
    36
  val merge_tsigs: type_sig * type_sig -> type_sig
wenzelm@416
    37
  val subsort: type_sig -> sort * sort -> bool
wenzelm@416
    38
  val norm_sort: type_sig -> sort -> sort
wenzelm@416
    39
  val rem_sorts: typ -> typ
wenzelm@256
    40
  val cert_typ: type_sig -> typ -> typ
wenzelm@256
    41
  val norm_typ: type_sig -> typ -> typ
clasohm@0
    42
  val freeze: (indexname -> bool) -> term -> term
clasohm@0
    43
  val freeze_vars: typ -> typ
wenzelm@565
    44
  val infer_types: type_sig * (string -> typ option) * (indexname -> typ option) *
wenzelm@256
    45
    (indexname -> sort option) * typ * term -> term * (indexname * typ) list
wenzelm@256
    46
  val inst_term_tvars: type_sig * (indexname * typ) list -> term -> term
clasohm@0
    47
  val thaw_vars: typ -> typ
wenzelm@256
    48
  val typ_errors: type_sig -> typ * string list -> string list
clasohm@0
    49
  val typ_instance: type_sig * typ * typ -> bool
wenzelm@256
    50
  val typ_match: type_sig -> (indexname * typ) list * (typ * typ)
wenzelm@256
    51
    -> (indexname * typ) list
wenzelm@256
    52
  val unify: type_sig -> (typ * typ) * (indexname * typ) list
wenzelm@256
    53
    -> (indexname * typ) list
wenzelm@450
    54
  val raw_unify: typ * typ -> bool
clasohm@0
    55
  val varifyT: typ -> typ
clasohm@0
    56
  val varify: term * string list -> term
clasohm@0
    57
  exception TUNIFY
wenzelm@256
    58
  exception TYPE_MATCH
clasohm@0
    59
end;
clasohm@0
    60
wenzelm@416
    61
functor TypeFun(structure Symtab: SYMTAB and Syntax: SYNTAX): TYPE =
clasohm@0
    62
struct
clasohm@0
    63
wenzelm@256
    64
structure Symtab = Symtab;
clasohm@0
    65
clasohm@0
    66
wenzelm@416
    67
(*** type classes and sorts ***)
wenzelm@416
    68
wenzelm@416
    69
(*
wenzelm@416
    70
  Classes denote (possibly empty) collections of types (e.g. sets of types)
wenzelm@416
    71
  and are partially ordered by 'inclusion'. They are represented by strings.
wenzelm@416
    72
wenzelm@416
    73
  Sorts are intersections of finitely many classes. They are represented by
wenzelm@416
    74
  lists of classes.
wenzelm@416
    75
*)
clasohm@0
    76
clasohm@0
    77
type domain = sort list;
wenzelm@416
    78
wenzelm@416
    79
wenzelm@416
    80
(* print sorts and arities *)
clasohm@0
    81
wenzelm@416
    82
fun str_of_sort [c] = c
wenzelm@565
    83
  | str_of_sort cs = enclose "{" "}" (commas cs);
wenzelm@416
    84
wenzelm@565
    85
fun str_of_dom dom = enclose "(" ")" (commas (map str_of_sort dom));
wenzelm@416
    86
wenzelm@416
    87
fun str_of_arity (t, [], S) = t ^ " :: " ^ str_of_sort S
wenzelm@416
    88
  | str_of_arity (t, SS, S) =
wenzelm@416
    89
      t ^ " :: " ^ str_of_dom SS ^ " " ^ str_of_sort S;
wenzelm@256
    90
wenzelm@256
    91
wenzelm@256
    92
wenzelm@416
    93
(*** type signatures ***)
wenzelm@256
    94
wenzelm@256
    95
(*
wenzelm@256
    96
  classes:
wenzelm@256
    97
    a list of all declared classes;
clasohm@0
    98
wenzelm@256
    99
  subclass:
wenzelm@416
   100
    an association list representing the subclass relation; (c, cs) is
wenzelm@256
   101
    interpreted as "c is a proper subclass of all elemenst of cs"; note that
wenzelm@256
   102
    c itself is not a memeber of cs;
wenzelm@256
   103
wenzelm@256
   104
  default:
wenzelm@256
   105
    the default sort attached to all unconstrained type vars;
wenzelm@256
   106
wenzelm@256
   107
  args:
wenzelm@256
   108
    an association list of all declared types with the number of their
wenzelm@256
   109
    arguments;
wenzelm@256
   110
wenzelm@256
   111
  abbrs:
wenzelm@256
   112
    an association list of type abbreviations;
wenzelm@256
   113
wenzelm@256
   114
  coreg:
wenzelm@256
   115
    a two-fold association list of all type arities; (t, al) means that type
wenzelm@256
   116
    constructor t has the arities in al; an element (c, ss) of al represents
wenzelm@256
   117
    the arity (ss)c;
clasohm@0
   118
*)
clasohm@0
   119
wenzelm@256
   120
datatype type_sig =
wenzelm@256
   121
  TySg of {
wenzelm@256
   122
    classes: class list,
wenzelm@256
   123
    subclass: (class * class list) list,
wenzelm@256
   124
    default: sort,
wenzelm@256
   125
    args: (string * int) list,
wenzelm@256
   126
    abbrs: (string * (indexname list * typ)) list,
wenzelm@256
   127
    coreg: (string * (class * domain) list) list};
wenzelm@256
   128
nipkow@189
   129
fun rep_tsig (TySg comps) = comps;
clasohm@0
   130
wenzelm@256
   131
fun defaultS (TySg {default, ...}) = default;
wenzelm@256
   132
wenzelm@256
   133
wenzelm@416
   134
(* error messages *)    (* FIXME move? *)
wenzelm@256
   135
wenzelm@416
   136
fun undcl_class c = "Undeclared class " ^ quote c;
wenzelm@256
   137
val err_undcl_class = error o undcl_class;
clasohm@0
   138
wenzelm@422
   139
fun err_dup_classes cs =
wenzelm@422
   140
  error ("Duplicate declaration of class(es) " ^ commas_quote cs);
wenzelm@416
   141
wenzelm@416
   142
fun undcl_type c = "Undeclared type constructor " ^ quote c;
wenzelm@256
   143
val err_undcl_type = error o undcl_type;
wenzelm@256
   144
wenzelm@416
   145
fun err_dup_tycon c =
wenzelm@416
   146
  error ("Duplicate declaration of type constructor " ^ quote c);
wenzelm@416
   147
wenzelm@416
   148
fun err_neg_args c =
wenzelm@416
   149
  error ("Negative number of arguments of type constructor " ^ quote c);
wenzelm@416
   150
wenzelm@416
   151
fun err_dup_tyabbr c =
wenzelm@416
   152
  error ("Duplicate declaration of type abbreviation " ^ quote c);
wenzelm@416
   153
wenzelm@416
   154
fun ty_confl c = "Conflicting type constructor and abbreviation " ^ quote c;
wenzelm@416
   155
val err_ty_confl = error o ty_confl;
clasohm@0
   156
clasohm@0
   157
clasohm@0
   158
(* 'leq' checks the partial order on classes according to the
clasohm@0
   159
   statements in the association list 'a' (i.e.'subclass')
clasohm@0
   160
*)
clasohm@0
   161
wenzelm@256
   162
fun less a (C, D) = case assoc (a, C) of
clasohm@0
   163
     Some(ss) => D mem ss
wenzelm@256
   164
   | None => err_undcl_class (C) ;
clasohm@0
   165
wenzelm@256
   166
fun leq a (C, D)  =  C = D orelse less a (C, D);
clasohm@0
   167
clasohm@0
   168
wenzelm@416
   169
(* logical_types *)
clasohm@0
   170
wenzelm@416
   171
(*return all logical types of tsig, i.e. all types t with some arity t::(ss)c
wenzelm@416
   172
  and c <= logic*)
clasohm@0
   173
wenzelm@416
   174
fun logical_types tsig =
wenzelm@416
   175
  let
wenzelm@416
   176
    val TySg {subclass, coreg, args, ...} = tsig;
wenzelm@416
   177
wenzelm@416
   178
    fun log_class c = leq subclass (c, logicC);
wenzelm@416
   179
    fun log_type t = exists (log_class o #1) (assocs coreg t);
wenzelm@416
   180
  in
wenzelm@416
   181
    filter log_type (map #1 args)
clasohm@0
   182
  end;
clasohm@0
   183
nipkow@162
   184
wenzelm@256
   185
(* 'sortorder' checks the ordering on sets of classes, i.e. on sorts:
wenzelm@256
   186
   S1 <= S2 , iff for every class C2 in S2 there exists a class C1 in S1
clasohm@0
   187
   with C1 <= C2 (according to an association list 'a')
clasohm@0
   188
*)
clasohm@0
   189
wenzelm@256
   190
fun sortorder a (S1, S2) =
wenzelm@256
   191
  forall  (fn C2 => exists  (fn C1 => leq a (C1, C2))  S1)  S2;
clasohm@0
   192
clasohm@0
   193
clasohm@0
   194
(* 'inj' inserts a new class C into a given class set S (i.e.sort) only if
clasohm@0
   195
  there exists no class in S which is <= C;
clasohm@0
   196
  the resulting set is minimal if S was minimal
clasohm@0
   197
*)
clasohm@0
   198
wenzelm@256
   199
fun inj a (C, S) =
clasohm@0
   200
  let fun inj1 [] = [C]
wenzelm@256
   201
        | inj1 (D::T) = if leq a (D, C) then D::T
wenzelm@256
   202
                        else if leq a (C, D) then inj1 T
clasohm@0
   203
                             else D::(inj1 T)
clasohm@0
   204
  in inj1 S end;
clasohm@0
   205
clasohm@0
   206
clasohm@0
   207
(* 'union_sort' forms the minimal union set of two sorts S1 and S2
clasohm@0
   208
   under the assumption that S2 is minimal *)
wenzelm@256
   209
(* FIXME rename to inter_sort (?) *)
clasohm@0
   210
clasohm@0
   211
fun union_sort a = foldr (inj a);
clasohm@0
   212
clasohm@0
   213
clasohm@0
   214
(* 'elementwise_union' forms elementwise the minimal union set of two
clasohm@0
   215
   sort lists under the assumption that the two lists have the same length
wenzelm@256
   216
*)
clasohm@0
   217
wenzelm@256
   218
fun elementwise_union a (Ss1, Ss2) = map (union_sort a) (Ss1~~Ss2);
wenzelm@256
   219
clasohm@0
   220
clasohm@0
   221
(* 'lew' checks for two sort lists the ordering for all corresponding list
clasohm@0
   222
   elements (i.e. sorts) *)
clasohm@0
   223
wenzelm@256
   224
fun lew a (w1, w2) = forall (sortorder a)  (w1~~w2);
wenzelm@256
   225
clasohm@0
   226
wenzelm@256
   227
(* 'is_min' checks if a class C is minimal in a given sort S under the
wenzelm@256
   228
   assumption that S contains C *)
clasohm@0
   229
wenzelm@256
   230
fun is_min a S C = not (exists (fn (D) => less a (D, C)) S);
clasohm@0
   231
clasohm@0
   232
clasohm@0
   233
(* 'min_sort' reduces a sort to its minimal classes *)
clasohm@0
   234
clasohm@0
   235
fun min_sort a S = distinct(filter (is_min a S) S);
clasohm@0
   236
clasohm@0
   237
clasohm@0
   238
(* 'min_domain' minimizes the domain sorts of type declarationsl;
wenzelm@256
   239
   the function will be applied on the type declarations in extensions *)
clasohm@0
   240
clasohm@0
   241
fun min_domain subclass =
wenzelm@256
   242
  let fun one_min (f, (doms, ran)) = (f, (map (min_sort subclass) doms, ran))
clasohm@0
   243
  in map one_min end;
clasohm@0
   244
clasohm@0
   245
clasohm@0
   246
(* 'min_filter' filters a list 'ars' consisting of arities (domain * class)
wenzelm@256
   247
   and gives back a list of those range classes whose domains meet the
clasohm@0
   248
   predicate 'pred' *)
wenzelm@256
   249
clasohm@0
   250
fun min_filter a pred ars =
wenzelm@256
   251
  let fun filt ([], l) = l
wenzelm@256
   252
        | filt ((c, x)::xs, l) = if pred(x) then filt (xs, inj a (c, l))
wenzelm@256
   253
                               else filt (xs, l)
wenzelm@256
   254
  in filt (ars, []) end;
clasohm@0
   255
clasohm@0
   256
clasohm@0
   257
(* 'cod_above' filters all arities whose domains are elementwise >= than
wenzelm@256
   258
   a given domain 'w' and gives back a list of the corresponding range
clasohm@0
   259
   classes *)
clasohm@0
   260
wenzelm@256
   261
fun cod_above (a, w, ars) = min_filter a (fn w' => lew a (w, w')) ars;
wenzelm@256
   262
wenzelm@256
   263
clasohm@0
   264
nipkow@200
   265
(*Instantiation of type variables in types*)
nipkow@200
   266
(*Pre: instantiations obey restrictions! *)
nipkow@200
   267
fun inst_typ tye =
wenzelm@256
   268
  let fun inst(Type(a, Ts)) = Type(a, map inst Ts)
nipkow@200
   269
        | inst(T as TFree _) = T
wenzelm@256
   270
        | inst(T as TVar(v, _)) =
wenzelm@256
   271
            (case assoc(tye, v) of Some U => inst U | None => T)
nipkow@200
   272
  in inst end;
clasohm@0
   273
clasohm@0
   274
(* 'least_sort' returns for a given type its maximum sort:
clasohm@0
   275
   - type variables, free types: the sort brought with
clasohm@0
   276
   - type constructors: recursive determination of the maximum sort of the
wenzelm@256
   277
                    arguments if the type is declared in 'coreg' of the
wenzelm@256
   278
                    given type signature  *)
clasohm@0
   279
wenzelm@256
   280
fun least_sort (tsig as TySg{subclass, coreg, ...}) =
wenzelm@256
   281
  let fun ls(T as Type(a, Ts)) =
wenzelm@256
   282
                 (case assoc (coreg, a) of
wenzelm@256
   283
                          Some(ars) => cod_above(subclass, map ls Ts, ars)
wenzelm@256
   284
                        | None => raise TYPE(undcl_type a, [T], []))
wenzelm@256
   285
        | ls(TFree(a, S)) = S
wenzelm@256
   286
        | ls(TVar(a, S)) = S
clasohm@0
   287
  in ls end;
clasohm@0
   288
clasohm@0
   289
wenzelm@256
   290
fun check_has_sort(tsig as TySg{subclass, coreg, ...}, T, S) =
wenzelm@256
   291
  if sortorder subclass ((least_sort tsig T), S) then ()
wenzelm@256
   292
  else raise TYPE("Type not of sort " ^ (str_of_sort S), [T], [])
clasohm@0
   293
clasohm@0
   294
clasohm@0
   295
(*Instantiation of type variables in types *)
wenzelm@256
   296
fun inst_typ_tvars(tsig, tye) =
wenzelm@256
   297
  let fun inst(Type(a, Ts)) = Type(a, map inst Ts)
wenzelm@256
   298
        | inst(T as TFree _) = T
wenzelm@256
   299
        | inst(T as TVar(v, S)) = (case assoc(tye, v) of
wenzelm@256
   300
                None => T | Some(U) => (check_has_sort(tsig, U, S); U))
clasohm@0
   301
  in inst end;
clasohm@0
   302
clasohm@0
   303
(*Instantiation of type variables in terms *)
wenzelm@256
   304
fun inst_term_tvars(tsig, tye) = map_term_types (inst_typ_tvars(tsig, tye));
nipkow@200
   305
nipkow@200
   306
nipkow@200
   307
(* expand_typ *)
nipkow@200
   308
wenzelm@256
   309
fun expand_typ (TySg {abbrs, ...}) ty =
wenzelm@256
   310
  let
wenzelm@256
   311
    fun exptyp (Type (a, Ts)) =
wenzelm@256
   312
          (case assoc (abbrs, a) of
wenzelm@256
   313
            Some (vs, U) => exptyp (inst_typ (vs ~~ Ts) U)
wenzelm@256
   314
          | None => Type (a, map exptyp Ts))
wenzelm@256
   315
      | exptyp T = T
wenzelm@256
   316
  in
wenzelm@256
   317
    exptyp ty
wenzelm@256
   318
  end;
wenzelm@256
   319
wenzelm@256
   320
wenzelm@256
   321
(* norm_typ *)      (* FIXME norm sorts *)
wenzelm@256
   322
wenzelm@256
   323
val norm_typ = expand_typ;
wenzelm@256
   324
wenzelm@256
   325
wenzelm@256
   326
wenzelm@256
   327
(** type matching **)
nipkow@200
   328
clasohm@0
   329
exception TYPE_MATCH;
clasohm@0
   330
wenzelm@256
   331
(*typ_match (s, (U, T)) = s' <==> s'(U) = T and s' is an extension of s*)
wenzelm@256
   332
fun typ_match tsig =
wenzelm@256
   333
  let
wenzelm@256
   334
    fun match (subs, (TVar (v, S), T)) =
wenzelm@256
   335
          (case assoc (subs, v) of
wenzelm@256
   336
            None => ((v, (check_has_sort (tsig, T, S); T)) :: subs
wenzelm@256
   337
              handle TYPE _ => raise TYPE_MATCH)
wenzelm@422
   338
          | Some U => if U = T then subs else raise TYPE_MATCH)
wenzelm@256
   339
      | match (subs, (Type (a, Ts), Type (b, Us))) =
wenzelm@256
   340
          if a <> b then raise TYPE_MATCH
wenzelm@256
   341
          else foldl match (subs, Ts ~~ Us)
wenzelm@422
   342
      | match (subs, (TFree x, TFree y)) =
wenzelm@256
   343
          if x = y then subs else raise TYPE_MATCH
wenzelm@256
   344
      | match _ = raise TYPE_MATCH;
wenzelm@256
   345
  in match end;
clasohm@0
   346
clasohm@0
   347
wenzelm@256
   348
fun typ_instance (tsig, T, U) =
wenzelm@256
   349
  (typ_match tsig ([], (U, T)); true) handle TYPE_MATCH => false;
wenzelm@256
   350
wenzelm@256
   351
wenzelm@256
   352
wenzelm@256
   353
(** build type signatures **)
wenzelm@256
   354
wenzelm@416
   355
fun make_tsig (classes, subclass, default, args, abbrs, coreg) =
wenzelm@416
   356
  TySg {classes = classes, subclass = subclass, default = default,
wenzelm@416
   357
    args = args, abbrs = abbrs, coreg = coreg};
wenzelm@416
   358
wenzelm@416
   359
val tsig0 = make_tsig ([], [], [], [], [], []);
wenzelm@256
   360
clasohm@0
   361
wenzelm@401
   362
(* sorts *)
wenzelm@401
   363
wenzelm@416
   364
fun subsort (TySg {subclass, ...}) (S1, S2) =
wenzelm@416
   365
  sortorder subclass (S1, S2);
wenzelm@416
   366
wenzelm@401
   367
fun norm_sort (TySg {subclass, ...}) S =
wenzelm@401
   368
  sort_strings (min_sort subclass S);
wenzelm@401
   369
wenzelm@416
   370
fun rem_sorts (Type (a, tys)) = Type (a, map rem_sorts tys)
wenzelm@416
   371
  | rem_sorts (TFree (x, _)) = TFree (x, [])
wenzelm@416
   372
  | rem_sorts (TVar (xi, _)) = TVar (xi, []);
wenzelm@401
   373
wenzelm@401
   374
clasohm@0
   375
clasohm@0
   376
fun twice(a) = error("Type constructor " ^a^ " has already been declared.");
clasohm@0
   377
wenzelm@256
   378
fun tyab_conflict(a) = error("Can't declare type "^(quote a)^"!\nAn abbreviation with this name exists already.");
clasohm@0
   379
clasohm@0
   380
wenzelm@416
   381
(* typ_errors *)
wenzelm@256
   382
wenzelm@416
   383
(*check validity of (not necessarily normal) type; accumulate error messages*)
wenzelm@256
   384
wenzelm@416
   385
fun typ_errors tsig (typ, errors) =
wenzelm@256
   386
  let
wenzelm@416
   387
    val TySg {classes, args, abbrs, ...} = tsig;
wenzelm@416
   388
wenzelm@416
   389
    fun class_err (errs, c) =
wenzelm@416
   390
      if c mem classes then errs
wenzelm@416
   391
      else undcl_class c ins errs;
wenzelm@256
   392
wenzelm@256
   393
    val sort_err = foldl class_err;
clasohm@0
   394
wenzelm@256
   395
    fun typ_errs (Type (c, Us), errs) =
wenzelm@256
   396
          let
wenzelm@256
   397
            val errs' = foldr typ_errs (Us, errs);
wenzelm@256
   398
            fun nargs n =
wenzelm@256
   399
              if n = length Us then errs'
wenzelm@416
   400
              else ("Wrong number of arguments: " ^ quote c) ins errs';
wenzelm@256
   401
          in
wenzelm@256
   402
            (case assoc (args, c) of
wenzelm@256
   403
              Some n => nargs n
wenzelm@256
   404
            | None =>
wenzelm@256
   405
                (case assoc (abbrs, c) of
wenzelm@256
   406
                  Some (vs, _) => nargs (length vs)
wenzelm@416
   407
                | None => undcl_type c ins errs))
wenzelm@256
   408
          end
wenzelm@256
   409
    | typ_errs (TFree (_, S), errs) = sort_err (errs, S)
wenzelm@416
   410
    | typ_errs (TVar ((x, i), S), errs) =
wenzelm@416
   411
        if i < 0 then
wenzelm@416
   412
          ("Negative index for TVar " ^ quote x) ins sort_err (errs, S)
wenzelm@416
   413
        else sort_err (errs, S);
wenzelm@256
   414
  in
wenzelm@416
   415
    typ_errs (typ, errors)
wenzelm@256
   416
  end;
wenzelm@256
   417
wenzelm@256
   418
wenzelm@256
   419
(* cert_typ *)
wenzelm@256
   420
wenzelm@256
   421
(*check and normalize typ wrt. tsig; errors are indicated by exception TYPE*)
wenzelm@256
   422
wenzelm@256
   423
fun cert_typ tsig ty =
wenzelm@256
   424
  (case typ_errors tsig (ty, []) of
wenzelm@256
   425
    [] => norm_typ tsig ty
wenzelm@256
   426
  | errs => raise_type (cat_lines errs) [ty] []);
wenzelm@256
   427
wenzelm@256
   428
wenzelm@256
   429
wenzelm@422
   430
(** merge type signatures **)
wenzelm@256
   431
wenzelm@422
   432
(*'assoc_union' merges two association lists if the contents associated
wenzelm@422
   433
  the keys are lists*)
clasohm@0
   434
wenzelm@422
   435
fun assoc_union (as1, []) = as1
wenzelm@422
   436
  | assoc_union (as1, (key, l2) :: as2) =
wenzelm@422
   437
      (case assoc (as1, key) of
wenzelm@422
   438
        Some l1 => assoc_union (overwrite (as1, (key, l1 union l2)), as2)
wenzelm@422
   439
      | None => assoc_union ((key, l2) :: as1, as2));
clasohm@0
   440
clasohm@0
   441
wenzelm@422
   442
(* merge subclass *)
clasohm@0
   443
wenzelm@422
   444
fun merge_subclass (subclass1, subclass2) =
wenzelm@422
   445
  let val subclass = transitive_closure (assoc_union (subclass1, subclass2)) in
wenzelm@422
   446
    if exists (op mem) subclass then
wenzelm@422
   447
      error ("Cyclic class structure!")   (* FIXME improve msg, raise TERM *)
wenzelm@422
   448
    else subclass
wenzelm@416
   449
  end;
wenzelm@416
   450
wenzelm@416
   451
wenzelm@422
   452
(* coregularity *)
clasohm@0
   453
clasohm@0
   454
(* 'is_unique_decl' checks if there exists just one declaration t:(Ss)C *)
clasohm@0
   455
wenzelm@256
   456
fun is_unique_decl coreg (t, (s, w)) = case assoc2 (coreg, (t, s)) of
clasohm@0
   457
      Some(w1) => if w = w1 then () else
wenzelm@256
   458
        error("There are two declarations\n" ^
wenzelm@416
   459
              str_of_arity(t, w, [s]) ^ " and\n" ^
wenzelm@416
   460
              str_of_arity(t, w1, [s]) ^ "\n" ^
clasohm@0
   461
              "with the same result class.")
clasohm@0
   462
    | None => ();
clasohm@0
   463
clasohm@0
   464
(* 'restr2' checks if there are two declarations t:(Ss1)C1 and t:(Ss2)C2
clasohm@0
   465
   such that C1 >= C2 then Ss1 >= Ss2 (elementwise) *)
clasohm@0
   466
wenzelm@256
   467
fun subs (classes, subclass) C =
wenzelm@256
   468
  let fun sub (rl, l) = if leq subclass (l, C) then l::rl else rl
wenzelm@256
   469
  in foldl sub ([], classes) end;
clasohm@0
   470
wenzelm@256
   471
fun coreg_err(t, (w1, C), (w2, D)) =
wenzelm@416
   472
    error("Declarations " ^ str_of_arity(t, w1, [C]) ^ " and "
wenzelm@416
   473
                          ^ str_of_arity(t, w2, [D]) ^ " are in conflict");
clasohm@0
   474
wenzelm@256
   475
fun restr2 classes (subclass, coreg) (t, (s, w)) =
wenzelm@256
   476
  let fun restr ([], test) = ()
wenzelm@416
   477
        | restr (s1::Ss, test) =
wenzelm@416
   478
            (case assoc2 (coreg, (t, s1)) of
wenzelm@416
   479
              Some dom =>
wenzelm@416
   480
                if lew subclass (test (w, dom))
wenzelm@416
   481
                then restr (Ss, test)
wenzelm@416
   482
                else coreg_err (t, (w, s), (dom, s1))
wenzelm@256
   483
            | None => restr (Ss, test))
wenzelm@256
   484
      fun forward (t, (s, w)) =
wenzelm@256
   485
        let val s_sups = case assoc (subclass, s) of
wenzelm@256
   486
                   Some(s_sups) => s_sups | None => err_undcl_class(s);
wenzelm@256
   487
        in restr (s_sups, I) end
wenzelm@256
   488
      fun backward (t, (s, w)) =
wenzelm@256
   489
        let val s_subs = subs (classes, subclass) s
wenzelm@256
   490
        in restr (s_subs, fn (x, y) => (y, x)) end
wenzelm@256
   491
  in (backward (t, (s, w)); forward (t, (s, w))) end;
clasohm@0
   492
clasohm@0
   493
wenzelm@256
   494
fun varying_decls t =
wenzelm@256
   495
  error ("Type constructor " ^ quote t ^ " has varying number of arguments");
clasohm@0
   496
clasohm@0
   497
wenzelm@422
   498
(* 'merge_coreg' builds the union of two 'coreg' lists;
wenzelm@422
   499
   it only checks the two restriction conditions and inserts afterwards
wenzelm@422
   500
   all elements of the second list into the first one *)
wenzelm@422
   501
wenzelm@422
   502
fun merge_coreg classes subclass1 =
wenzelm@422
   503
  let fun test_ar classes (t, ars1) (coreg1, (s, w)) =
wenzelm@422
   504
        (is_unique_decl coreg1 (t, (s, w));
wenzelm@422
   505
         restr2 classes (subclass1, coreg1) (t, (s, w));
wenzelm@422
   506
         overwrite (coreg1, (t, (s, w) ins ars1)));
wenzelm@422
   507
wenzelm@422
   508
      fun merge_c (coreg1, (c as (t, ars2))) = case assoc (coreg1, t) of
wenzelm@422
   509
          Some(ars1) => foldl (test_ar classes (t, ars1)) (coreg1, ars2)
wenzelm@422
   510
        | None => c::coreg1
wenzelm@422
   511
  in foldl merge_c end;
wenzelm@422
   512
wenzelm@422
   513
fun merge_args (args, (t, n)) =
wenzelm@422
   514
  (case assoc (args, t) of
wenzelm@422
   515
    Some m => if m = n then args else varying_decls t
wenzelm@422
   516
  | None => (t, n) :: args);
wenzelm@422
   517
wenzelm@422
   518
(* FIXME raise TERM *)
wenzelm@422
   519
fun merge_abbrs (abbrs1, abbrs2) =
wenzelm@422
   520
  let
wenzelm@422
   521
    val abbrs = abbrs1 union abbrs2;
wenzelm@422
   522
    val names = map fst abbrs;
wenzelm@422
   523
  in
wenzelm@422
   524
    (case duplicates names of
wenzelm@422
   525
      [] => abbrs
wenzelm@422
   526
    | dups => error ("Duplicate declaration of type abbreviations: " ^
wenzelm@422
   527
        commas_quote dups))
wenzelm@422
   528
  end;
wenzelm@422
   529
wenzelm@422
   530
wenzelm@422
   531
(* 'merge_tsigs' takes the above declared functions to merge two type
wenzelm@422
   532
  signatures *)
wenzelm@422
   533
wenzelm@422
   534
fun merge_tsigs(TySg{classes=classes1, default=default1, subclass=subclass1, args=args1,
wenzelm@422
   535
           coreg=coreg1, abbrs=abbrs1},
wenzelm@422
   536
          TySg{classes=classes2, default=default2, subclass=subclass2, args=args2,
wenzelm@422
   537
           coreg=coreg2, abbrs=abbrs2}) =
wenzelm@422
   538
  let val classes' = classes1 union classes2;
wenzelm@422
   539
      val subclass' = merge_subclass (subclass1, subclass2);
wenzelm@422
   540
      val args' = foldl merge_args (args1, args2)
wenzelm@422
   541
      val coreg' = merge_coreg classes' subclass' (coreg1, coreg2);
wenzelm@422
   542
      val default' = min_sort subclass' (default1 @ default2);
wenzelm@422
   543
      val abbrs' = merge_abbrs(abbrs1, abbrs2);
wenzelm@422
   544
  in TySg{classes=classes' , default=default', subclass=subclass', args=args',
wenzelm@422
   545
          coreg=coreg' , abbrs = abbrs' }
wenzelm@422
   546
  end;
wenzelm@422
   547
wenzelm@422
   548
wenzelm@422
   549
wenzelm@422
   550
(*** extend type signatures ***)
wenzelm@422
   551
wenzelm@422
   552
(** add classes **)
wenzelm@422
   553
wenzelm@422
   554
(* FIXME use? *)
wenzelm@422
   555
fun add_classes classes cs =
wenzelm@422
   556
  (case cs inter classes of
wenzelm@422
   557
    [] => cs @ classes
wenzelm@422
   558
  | dups => err_dup_classes cs);
wenzelm@422
   559
wenzelm@422
   560
wenzelm@422
   561
(* 'add_class' adds a new class to the list of all existing classes *)
wenzelm@422
   562
wenzelm@422
   563
fun add_class (classes, (s, _)) =
wenzelm@422
   564
  if s mem classes then error("Class " ^ s ^ " declared twice.")
wenzelm@422
   565
  else s :: classes;
wenzelm@422
   566
wenzelm@422
   567
wenzelm@422
   568
(*'add_subclass' adds a tuple consisting of a new class (the new class has
wenzelm@422
   569
  already been inserted into the 'classes' list) and its superclasses (they
wenzelm@422
   570
  must be declared in 'classes' too) to the 'subclass' list of the given type
wenzelm@422
   571
  signature; furthermore all inherited superclasses according to the
wenzelm@422
   572
  superclasses brought with are inserted and there is a check that there are
wenzelm@422
   573
  no cycles (i.e. C <= D <= C, with C <> D);*)
wenzelm@422
   574
wenzelm@422
   575
fun add_subclass classes (subclass, (s, ges)) =
wenzelm@422
   576
let fun upd (subclass, s') = if s' mem classes then
wenzelm@422
   577
        let val ges' = the (assoc (subclass, s))
wenzelm@422
   578
        in case assoc (subclass, s') of
wenzelm@422
   579
             Some sups => if s mem sups
wenzelm@422
   580
                           then error(" Cycle :" ^ s^" <= "^ s'^" <= "^ s )
wenzelm@422
   581
                           else overwrite (subclass, (s, sups union ges'))
wenzelm@422
   582
           | None => subclass
wenzelm@422
   583
         end
wenzelm@422
   584
         else err_undcl_class(s')
wenzelm@422
   585
in foldl upd (subclass@[(s, ges)], ges) end;
wenzelm@422
   586
wenzelm@422
   587
wenzelm@422
   588
(* 'extend_classes' inserts all new classes into the corresponding
wenzelm@422
   589
   lists ('classes', 'subclass') if possible *)
wenzelm@422
   590
wenzelm@422
   591
fun extend_classes (classes, subclass, newclasses) =
wenzelm@422
   592
  if newclasses = [] then (classes, subclass) else
wenzelm@422
   593
  let val classes' = foldl add_class (classes, newclasses);
wenzelm@422
   594
      val subclass' = foldl (add_subclass classes') (subclass, newclasses);
wenzelm@422
   595
  in (classes', subclass') end;
wenzelm@422
   596
wenzelm@422
   597
wenzelm@422
   598
(* ext_tsig_subclass *)
wenzelm@422
   599
wenzelm@422
   600
fun ext_tsig_subclass tsig pairs =
wenzelm@422
   601
  let
wenzelm@422
   602
    val TySg {classes, subclass, default, args, abbrs, coreg} = tsig;
wenzelm@422
   603
wenzelm@422
   604
    (* FIXME clean! *)
wenzelm@422
   605
    val subclass' =
wenzelm@422
   606
      merge_subclass (subclass, map (fn (c1, c2) => (c1, [c2])) pairs);
wenzelm@422
   607
  in
wenzelm@422
   608
    make_tsig (classes, subclass', default, args, abbrs, coreg)
wenzelm@422
   609
  end;
wenzelm@422
   610
wenzelm@422
   611
wenzelm@422
   612
(* ext_tsig_defsort *)
wenzelm@422
   613
wenzelm@422
   614
fun ext_tsig_defsort (TySg {classes, subclass, args, abbrs, coreg, ...}) default =
wenzelm@422
   615
  make_tsig (classes, subclass, default, args, abbrs, coreg);
wenzelm@422
   616
wenzelm@422
   617
wenzelm@422
   618
wenzelm@422
   619
(** add arities **)
wenzelm@422
   620
clasohm@0
   621
(* 'coregular' checks
clasohm@0
   622
   - the two restriction conditions 'is_unique_decl' and 'restr2'
wenzelm@256
   623
   - if the classes in the new type declarations are known in the
clasohm@0
   624
     given type signature
clasohm@0
   625
   - if one type constructor has always the same number of arguments;
wenzelm@256
   626
   if one type declaration has passed all checks it is inserted into
clasohm@0
   627
   the 'coreg' association list of the given type signatrure  *)
clasohm@0
   628
wenzelm@256
   629
fun coregular (classes, subclass, args) =
wenzelm@256
   630
  let fun ex C = if C mem classes then () else err_undcl_class(C);
clasohm@0
   631
wenzelm@256
   632
      fun addar(w, C) (coreg, t) = case assoc(args, t) of
clasohm@0
   633
            Some(n) => if n <> length w then varying_decls(t) else
wenzelm@256
   634
                     (is_unique_decl coreg (t, (C, w));
wenzelm@256
   635
                      (seq o seq) ex w;
wenzelm@256
   636
                      restr2 classes (subclass, coreg) (t, (C, w));
wenzelm@416
   637
                      let val ars = the (assoc(coreg, t))
wenzelm@256
   638
                      in overwrite(coreg, (t, (C, w) ins ars)) end)
wenzelm@256
   639
          | None => err_undcl_type(t);
clasohm@0
   640
wenzelm@256
   641
      fun addts(coreg, (ts, ar)) = foldl (addar ar) (coreg, ts)
clasohm@0
   642
clasohm@0
   643
  in addts end;
clasohm@0
   644
clasohm@0
   645
clasohm@0
   646
(* 'close' extends the 'coreg' association list after all new type
clasohm@0
   647
   declarations have been inserted successfully:
clasohm@0
   648
   for every declaration t:(Ss)C , for all classses D with C <= D:
clasohm@0
   649
      if there is no declaration t:(Ss')C' with C < C' and C' <= D
clasohm@0
   650
      then insert the declaration t:(Ss)D into 'coreg'
clasohm@0
   651
   this means, if there exists a declaration t:(Ss)C and there is
clasohm@0
   652
   no declaration t:(Ss')D with C <=D then the declaration holds
wenzelm@256
   653
   for all range classes more general than C *)
wenzelm@256
   654
wenzelm@256
   655
fun close (coreg, subclass) =
wenzelm@256
   656
  let fun check sl (l, (s, dom)) = case assoc (subclass, s) of
clasohm@0
   657
          Some(sups) =>
wenzelm@256
   658
            let fun close_sup (l, sup) =
wenzelm@256
   659
                  if exists (fn s'' => less subclass (s, s'') andalso
wenzelm@256
   660
                                       leq subclass (s'', sup)) sl
clasohm@0
   661
                  then l
wenzelm@256
   662
                  else (sup, dom)::l
wenzelm@256
   663
            in foldl close_sup (l, sups) end
clasohm@0
   664
        | None => l;
wenzelm@256
   665
      fun ext (s, l) = (s, foldl (check (map #1 l)) (l, l));
clasohm@0
   666
  in map ext coreg end;
clasohm@0
   667
wenzelm@422
   668
wenzelm@422
   669
(** add types **)
wenzelm@422
   670
wenzelm@416
   671
fun add_types (aca, (ts, n)) =
wenzelm@416
   672
  let
wenzelm@416
   673
    fun add_type ((args, coreg, abbrs), t) =
wenzelm@416
   674
      case assoc(args, t) of              (* FIXME from new *)
wenzelm@416
   675
        Some _ => twice(t)
wenzelm@416
   676
      | None =>
wenzelm@416
   677
          (case assoc(abbrs, t) of
wenzelm@416
   678
            Some _ => tyab_conflict(t)
wenzelm@416
   679
          | None => ((t, n)::args, (t, [])::coreg, abbrs))
wenzelm@416
   680
  in
wenzelm@416
   681
    if n < 0 then     (* FIXME err_neg_args *)
wenzelm@416
   682
      error ("Type constructor cannot have negative number of arguments")
wenzelm@416
   683
    else foldl add_type (aca, ts)
clasohm@0
   684
  end;
clasohm@0
   685
wenzelm@256
   686
wenzelm@422
   687
wenzelm@422
   688
(** add type abbreviations **)
wenzelm@256
   689
wenzelm@416
   690
fun abbr_errors tsig (a, (lhs_vs, rhs)) =
wenzelm@416
   691
  let
wenzelm@416
   692
    val TySg {args, abbrs, ...} = tsig;
wenzelm@416
   693
    val rhs_vs = map #1 (typ_tvars rhs);
wenzelm@416
   694
    val show_idxs = commas_quote o map fst;
wenzelm@416
   695
wenzelm@416
   696
    val dup_lhs_vars =
wenzelm@416
   697
      (case duplicates lhs_vs of
wenzelm@416
   698
        [] => []
wenzelm@416
   699
      | vs => ["Duplicate variables on lhs: " ^ show_idxs vs]);
wenzelm@416
   700
wenzelm@416
   701
    val extra_rhs_vars =
wenzelm@416
   702
      (case gen_rems (op =) (rhs_vs, lhs_vs) of
wenzelm@416
   703
        [] => []
wenzelm@416
   704
      | vs => ["Extra variables on rhs: " ^ show_idxs vs]);
wenzelm@416
   705
wenzelm@416
   706
    val tycon_confl =
wenzelm@416
   707
      if is_none (assoc (args, a)) then []
wenzelm@416
   708
      else [ty_confl a];
wenzelm@416
   709
wenzelm@416
   710
    val dup_abbr =
wenzelm@416
   711
      if is_none (assoc (abbrs, a)) then []
wenzelm@416
   712
      else ["Duplicate declaration of abbreviation"];
wenzelm@416
   713
  in
wenzelm@416
   714
    dup_lhs_vars @ extra_rhs_vars @ tycon_confl @ dup_abbr @
wenzelm@416
   715
      typ_errors tsig (rhs, [])
wenzelm@416
   716
  end;
wenzelm@416
   717
wenzelm@416
   718
fun add_abbr (tsig, abbr as (a, _)) =
wenzelm@422
   719
  let val TySg {classes, subclass, default, args, coreg, abbrs} = tsig in
wenzelm@416
   720
    (case abbr_errors tsig abbr of
wenzelm@416
   721
      [] => make_tsig (classes, subclass, default, args, abbr :: abbrs, coreg)
wenzelm@416
   722
    | errs => (seq writeln errs;
wenzelm@416
   723
        error ("The error(s) above occurred in type abbreviation " ^ quote a)))
wenzelm@416
   724
  end;
wenzelm@416
   725
wenzelm@416
   726
fun ext_tsig_abbrs tsig abbrs = foldl add_abbr (tsig, abbrs);
wenzelm@416
   727
wenzelm@416
   728
nipkow@200
   729
wenzelm@256
   730
(* 'extend_tsig' takes the above described check- and extend-functions to
clasohm@0
   731
   extend a given type signature with new classes and new type declarations *)
clasohm@0
   732
wenzelm@256
   733
fun extend_tsig (TySg{classes, default, subclass, args, coreg, abbrs})
wenzelm@256
   734
            (newclasses, newdefault, types, arities) =
wenzelm@416
   735
  let
wenzelm@416
   736
    val (classes', subclass') = extend_classes(classes, subclass, newclasses);
wenzelm@256
   737
    val (args', coreg', _) = foldl add_types ((args, coreg, abbrs), types);
wenzelm@422
   738
clasohm@0
   739
    val old_coreg = map #1 coreg;
wenzelm@416
   740
    val coreg'' =
wenzelm@416
   741
      foldl (coregular (classes', subclass', args'))
wenzelm@416
   742
        (coreg', min_domain subclass' arities);
wenzelm@256
   743
    val coreg''' = close (coreg'', subclass');
wenzelm@422
   744
clasohm@0
   745
    val default' = if null newdefault then default else newdefault;
wenzelm@416
   746
  in
wenzelm@416
   747
    TySg {classes = classes', subclass = subclass', default = default',
wenzelm@416
   748
      args = args', coreg = coreg''', abbrs = abbrs}
wenzelm@416
   749
  end;
clasohm@0
   750
clasohm@0
   751
wenzelm@416
   752
wenzelm@416
   753
wenzelm@416
   754
(*** type unification and inference ***)
clasohm@0
   755
clasohm@0
   756
(*
clasohm@0
   757
clasohm@0
   758
Input:
clasohm@0
   759
- a 'raw' term which contains only dummy types and some explicit type
clasohm@0
   760
  constraints encoded as terms.
clasohm@0
   761
- the expected type of the term.
clasohm@0
   762
clasohm@0
   763
Output:
clasohm@0
   764
- the correctly typed term
clasohm@0
   765
- the substitution needed to unify the actual type of the term with its
clasohm@0
   766
  expected type; only the TVars in the expected type are included.
clasohm@0
   767
clasohm@0
   768
During type inference all TVars in the term have negative index. This keeps
clasohm@0
   769
them apart from normal TVars, which is essential, because at the end the type
clasohm@0
   770
of the term is unified with the expected type, which contains normal TVars.
clasohm@0
   771
wenzelm@565
   772
1. Add initial type information to the term (attach_types).
clasohm@0
   773
   This freezes (freeze_vars) TVars in explicitly provided types (eg
clasohm@0
   774
   constraints or defaults) by turning them into TFrees.
clasohm@0
   775
2. Carry out type inference, possibly introducing new negative TVars.
clasohm@0
   776
3. Unify actual and expected type.
clasohm@0
   777
4. Turn all (negative) TVars into unique new TFrees (freeze).
clasohm@0
   778
5. Thaw all TVars frozen in step 1 (thaw_vars).
clasohm@0
   779
clasohm@0
   780
*)
clasohm@0
   781
clasohm@0
   782
(*Raised if types are not unifiable*)
clasohm@0
   783
exception TUNIFY;
clasohm@0
   784
clasohm@0
   785
val tyvar_count = ref(~1);
clasohm@0
   786
clasohm@0
   787
fun tyinit() = (tyvar_count := ~1);
clasohm@0
   788
clasohm@0
   789
fun new_tvar_inx() = (tyvar_count := !tyvar_count-1; !tyvar_count)
clasohm@0
   790
clasohm@0
   791
(*
clasohm@0
   792
Generate new TVar.  Index is < ~1 to distinguish it from TVars generated from
clasohm@0
   793
variable names (see id_type).  Name is arbitrary because index is new.
clasohm@0
   794
*)
clasohm@0
   795
wenzelm@256
   796
fun gen_tyvar(S) = TVar(("'a", new_tvar_inx()), S);
clasohm@0
   797
clasohm@0
   798
(*Occurs check: type variable occurs in type?*)
clasohm@0
   799
fun occ v tye =
wenzelm@256
   800
  let fun occ(Type(_, Ts)) = exists occ Ts
clasohm@0
   801
        | occ(TFree _) = false
wenzelm@256
   802
        | occ(TVar(w, _)) = v=w orelse
wenzelm@256
   803
                           (case assoc(tye, w) of
clasohm@0
   804
                              None   => false
clasohm@0
   805
                            | Some U => occ U);
clasohm@0
   806
  in occ end;
clasohm@0
   807
wenzelm@256
   808
(*Chase variable assignments in tye.
wenzelm@256
   809
  If devar (T, tye) returns a type var then it must be unassigned.*)
wenzelm@256
   810
fun devar (T as TVar(v, _), tye) = (case  assoc(tye, v)  of
wenzelm@256
   811
          Some U =>  devar (U, tye)
clasohm@0
   812
        | None   =>  T)
wenzelm@256
   813
  | devar (T, tye) = T;
clasohm@0
   814
clasohm@0
   815
clasohm@0
   816
(* 'dom' returns for a type constructor t the list of those domains
clasohm@0
   817
   which deliver a given range class C *)
clasohm@0
   818
wenzelm@256
   819
fun dom coreg t C = case assoc2 (coreg, (t, C)) of
clasohm@0
   820
    Some(Ss) => Ss
clasohm@0
   821
  | None => raise TUNIFY;
clasohm@0
   822
clasohm@0
   823
clasohm@0
   824
(* 'Dom' returns the union of all domain lists of 'dom' for a given sort S
clasohm@0
   825
   (i.e. a set of range classes ); the union is carried out elementwise
clasohm@0
   826
   for the seperate sorts in the domains *)
clasohm@0
   827
wenzelm@256
   828
fun Dom (subclass, coreg) (t, S) =
clasohm@0
   829
  let val domlist = map (dom coreg t) S;
clasohm@0
   830
  in if null domlist then []
wenzelm@256
   831
     else foldl (elementwise_union subclass) (hd domlist, tl domlist)
clasohm@0
   832
  end;
clasohm@0
   833
clasohm@0
   834
wenzelm@256
   835
fun W ((T, S), tsig as TySg{subclass, coreg, ...}, tye) =
wenzelm@256
   836
  let fun Wd ((T, S), tye) = W ((devar (T, tye), S), tsig, tye)
wenzelm@256
   837
      fun Wk(T as TVar(v, S')) =
wenzelm@256
   838
              if sortorder subclass (S', S) then tye
wenzelm@256
   839
              else (v, gen_tyvar(union_sort subclass (S', S)))::tye
wenzelm@256
   840
        | Wk(T as TFree(v, S')) = if sortorder subclass (S', S) then tye
wenzelm@256
   841
                                 else raise TUNIFY
wenzelm@256
   842
        | Wk(T as Type(f, Ts)) =
wenzelm@256
   843
           if null S then tye
wenzelm@256
   844
           else foldr Wd (Ts~~(Dom (subclass, coreg) (f, S)) , tye)
clasohm@0
   845
  in Wk(T) end;
clasohm@0
   846
clasohm@0
   847
clasohm@0
   848
(* Order-sorted Unification of Types (U)  *)
clasohm@0
   849
clasohm@0
   850
(* Precondition: both types are well-formed w.r.t. type constructor arities *)
wenzelm@256
   851
fun unify (tsig as TySg{subclass, coreg, ...}) =
wenzelm@256
   852
  let fun unif ((T, U), tye) =
wenzelm@256
   853
        case (devar(T, tye), devar(U, tye)) of
wenzelm@256
   854
          (T as TVar(v, S1), U as TVar(w, S2)) =>
clasohm@0
   855
             if v=w then tye else
wenzelm@256
   856
             if sortorder subclass (S1, S2) then (w, T)::tye else
wenzelm@256
   857
             if sortorder subclass (S2, S1) then (v, U)::tye
wenzelm@256
   858
             else let val nu = gen_tyvar (union_sort subclass (S1, S2))
wenzelm@256
   859
                  in (v, nu)::(w, nu)::tye end
wenzelm@256
   860
        | (T as TVar(v, S), U) =>
wenzelm@256
   861
             if occ v tye U then raise TUNIFY else W ((U, S), tsig, (v, U)::tye)
wenzelm@256
   862
        | (U, T as TVar (v, S)) =>
wenzelm@256
   863
             if occ v tye U then raise TUNIFY else W ((U, S), tsig, (v, U)::tye)
wenzelm@256
   864
        | (Type(a, Ts), Type(b, Us)) =>
wenzelm@256
   865
             if a<>b then raise TUNIFY else foldr unif (Ts~~Us, tye)
wenzelm@256
   866
        | (T, U) => if T=U then tye else raise TUNIFY
clasohm@0
   867
  in unif end;
clasohm@0
   868
clasohm@0
   869
wenzelm@450
   870
(* raw_unify (ignores sorts) *)
wenzelm@450
   871
wenzelm@450
   872
fun raw_unify (ty1, ty2) =
wenzelm@450
   873
  (unify tsig0 ((rem_sorts ty1, rem_sorts ty2), []); true)
wenzelm@450
   874
    handle TUNIFY => false;
wenzelm@450
   875
wenzelm@450
   876
clasohm@0
   877
(*Type inference for polymorphic term*)
clasohm@0
   878
fun infer tsig =
wenzelm@256
   879
  let fun inf(Ts, Const (_, T), tye) = (T, tye)
wenzelm@256
   880
        | inf(Ts, Free  (_, T), tye) = (T, tye)
wenzelm@256
   881
        | inf(Ts, Bound i, tye) = ((nth_elem(i, Ts) , tye)
clasohm@0
   882
          handle LIST _=> raise TYPE ("loose bound variable", [], [Bound i]))
wenzelm@256
   883
        | inf(Ts, Var (_, T), tye) = (T, tye)
wenzelm@256
   884
        | inf(Ts, Abs (_, T, body), tye) =
wenzelm@256
   885
            let val (U, tye') = inf(T::Ts, body, tye) in  (T-->U, tye')  end
clasohm@0
   886
        | inf(Ts, f$u, tye) =
wenzelm@256
   887
            let val (U, tyeU) = inf(Ts, u, tye);
wenzelm@256
   888
                val (T, tyeT) = inf(Ts, f, tyeU);
clasohm@0
   889
                fun err s =
clasohm@0
   890
                  raise TYPE(s, [inst_typ tyeT T, inst_typ tyeT U], [f$u])
wenzelm@256
   891
            in case T of
wenzelm@256
   892
                 Type("fun", [T1, T2]) =>
wenzelm@256
   893
                   ( (T2, unify tsig ((T1, U), tyeT))
clasohm@0
   894
                     handle TUNIFY => err"type mismatch in application" )
wenzelm@256
   895
               | TVar _ =>
clasohm@0
   896
                   let val T2 = gen_tyvar([])
clasohm@0
   897
                   in (T2, unify tsig ((T, U-->T2), tyeT))
clasohm@0
   898
                      handle TUNIFY => err"type mismatch in application"
clasohm@0
   899
                   end
clasohm@0
   900
               | _ => err"rator must have function type"
clasohm@0
   901
           end
clasohm@0
   902
  in inf end;
clasohm@0
   903
wenzelm@256
   904
fun freeze_vars(Type(a, Ts)) = Type(a, map freeze_vars Ts)
clasohm@0
   905
  | freeze_vars(T as TFree _) = T
wenzelm@256
   906
  | freeze_vars(TVar(v, S)) = TFree(Syntax.string_of_vname v, S);
clasohm@0
   907
clasohm@0
   908
(* Attach a type to a constant *)
wenzelm@256
   909
fun type_const (a, T) = Const(a, incr_tvar (new_tvar_inx()) T);
clasohm@0
   910
clasohm@0
   911
(*Find type of ident.  If not in table then use ident's name for tyvar
clasohm@0
   912
  to get consistent typing.*)
wenzelm@256
   913
fun new_id_type a = TVar(("'"^a, new_tvar_inx()), []);
wenzelm@256
   914
fun type_of_ixn(types, ixn as (a, _)) =
wenzelm@565
   915
  case types ixn of Some T => freeze_vars T | None => TVar(("'"^a, ~1), []);
wenzelm@565
   916
wenzelm@565
   917
fun constrain (term, T) = Const (Syntax.constrainC, T --> T) $ term;
clasohm@0
   918
wenzelm@565
   919
fun constrainAbs (Abs (a, _, body), T) = Abs (a, T, body)
wenzelm@565
   920
  | constrainAbs _ = sys_error "constrainAbs";
wenzelm@256
   921
clasohm@0
   922
wenzelm@565
   923
(* attach_types *)
wenzelm@565
   924
clasohm@0
   925
(*
wenzelm@256
   926
  Attach types to a term. Input is a "parse tree" containing dummy types.
wenzelm@256
   927
  Type constraints are translated and checked for validity wrt tsig. TVars in
wenzelm@256
   928
  constraints are frozen.
clasohm@0
   929
wenzelm@256
   930
  The atoms in the resulting term satisfy the following spec:
clasohm@0
   931
wenzelm@256
   932
  Const (a, T):
wenzelm@256
   933
    T is a renamed copy of the generic type of a; renaming decreases index of
wenzelm@256
   934
    all TVars by new_tvar_inx(), which is less than ~1. The index of all
wenzelm@256
   935
    TVars in the generic type must be 0 for this to work!
clasohm@0
   936
wenzelm@256
   937
  Free (a, T), Var (ixn, T):
wenzelm@256
   938
    T is either the frozen default type of a or TVar (("'"^a, ~1), [])
clasohm@0
   939
wenzelm@256
   940
  Abs (a, T, _):
wenzelm@256
   941
    T is either a type constraint or TVar (("'" ^ a, i), []), where i is
wenzelm@256
   942
    generated by new_tvar_inx(). Thus different abstractions can have the
wenzelm@256
   943
    bound variables of the same name but different types.
clasohm@0
   944
*)
clasohm@0
   945
wenzelm@565
   946
(* FIXME consitency of sort_env / sorts (!?) *)
wenzelm@256
   947
wenzelm@565
   948
(* FIXME check *)
wenzelm@565
   949
wenzelm@565
   950
fun attach_types (tsig, const_type, types, sorts) tm =
wenzelm@256
   951
  let
wenzelm@565
   952
    val sort_env = Syntax.raw_term_sorts tm;
wenzelm@565
   953
    fun def_sort xi = if_none (sorts xi) (defaultS tsig);
wenzelm@256
   954
wenzelm@565
   955
    fun prepareT t =
wenzelm@565
   956
      freeze_vars (cert_typ tsig (Syntax.typ_of_term sort_env def_sort t));
wenzelm@256
   957
wenzelm@256
   958
    fun add (Const (a, _)) =
wenzelm@565
   959
          (case const_type a of
wenzelm@256
   960
            Some T => type_const (a, T)
wenzelm@256
   961
          | None => raise_type ("No such constant: " ^ quote a) [] [])
wenzelm@256
   962
      | add (Free (a, _)) =
wenzelm@565
   963
          (case const_type a of
wenzelm@256
   964
            Some T => type_const (a, T)
wenzelm@256
   965
          | None => Free (a, type_of_ixn (types, (a, ~1))))
wenzelm@256
   966
      | add (Var (ixn, _)) = Var (ixn, type_of_ixn (types, ixn))
wenzelm@565
   967
      | add (Bound i) = Bound i
wenzelm@256
   968
      | add (Abs (a, _, body)) = Abs (a, new_id_type a, add body)
wenzelm@256
   969
      | add ((f as Const (a, _) $ t1) $ t2) =
wenzelm@256
   970
          if a = Syntax.constrainC then
wenzelm@256
   971
            constrain (add t1, prepareT t2)
wenzelm@256
   972
          else if a = Syntax.constrainAbsC then
wenzelm@256
   973
            constrainAbs (add t1, prepareT t2)
wenzelm@256
   974
          else add f $ add t2
wenzelm@256
   975
      | add (f $ t) = add f $ add t;
wenzelm@565
   976
  in add tm end;
clasohm@0
   977
clasohm@0
   978
clasohm@0
   979
(* Post-Processing *)
clasohm@0
   980
clasohm@0
   981
(*Instantiation of type variables in terms*)
clasohm@0
   982
fun inst_types tye = map_term_types (inst_typ tye);
clasohm@0
   983
clasohm@0
   984
(*Delete explicit constraints -- occurrences of "_constrain" *)
wenzelm@256
   985
fun unconstrain (Abs(a, T, t)) = Abs(a, T, unconstrain t)
wenzelm@256
   986
  | unconstrain ((f as Const(a, _)) $ t) =
clasohm@0
   987
      if a=Syntax.constrainC then unconstrain t
clasohm@0
   988
      else unconstrain f $ unconstrain t
clasohm@0
   989
  | unconstrain (f$t) = unconstrain f $ unconstrain t
clasohm@0
   990
  | unconstrain (t) = t;
clasohm@0
   991
clasohm@0
   992
clasohm@0
   993
(* Turn all TVars which satisfy p into new TFrees *)
clasohm@0
   994
fun freeze p t =
wenzelm@256
   995
  let val fs = add_term_tfree_names(t, []);
wenzelm@256
   996
      val inxs = filter p (add_term_tvar_ixns(t, []));
clasohm@0
   997
      val vmap = inxs ~~ variantlist(map #1 inxs, fs);
wenzelm@256
   998
      fun free(Type(a, Ts)) = Type(a, map free Ts)
wenzelm@256
   999
        | free(T as TVar(v, S)) =
wenzelm@256
  1000
            (case assoc(vmap, v) of None => T | Some(a) => TFree(a, S))
clasohm@0
  1001
        | free(T as TFree _) = T
clasohm@0
  1002
  in map_term_types free t end;
clasohm@0
  1003
clasohm@0
  1004
(* Thaw all TVars that were frozen in freeze_vars *)
wenzelm@256
  1005
fun thaw_vars(Type(a, Ts)) = Type(a, map thaw_vars Ts)
wenzelm@256
  1006
  | thaw_vars(T as TFree(a, S)) = (case explode a of
wenzelm@256
  1007
          "?"::"'"::vn => let val ((b, i), _) = Syntax.scan_varname vn
wenzelm@256
  1008
                          in TVar(("'"^b, i), S) end
wenzelm@256
  1009
        | _ => T)
clasohm@0
  1010
  | thaw_vars(T) = T;
clasohm@0
  1011
clasohm@0
  1012
clasohm@0
  1013
fun restrict tye =
wenzelm@256
  1014
  let fun clean(tye1, ((a, i), T)) =
wenzelm@256
  1015
        if i < 0 then tye1 else ((a, i), inst_typ tye T) :: tye1
wenzelm@256
  1016
  in foldl clean ([], tye) end
clasohm@0
  1017
clasohm@0
  1018
clasohm@0
  1019
(*Infer types for term t using tables. Check that t's type and T unify *)
clasohm@0
  1020
wenzelm@565
  1021
fun infer_term (tsig, const_type, types, sorts, T, t) =
wenzelm@565
  1022
  let
wenzelm@565
  1023
    val u = attach_types (tsig, const_type, types, sorts) t;
wenzelm@565
  1024
    val (U, tye) = infer tsig ([], u, []);
wenzelm@565
  1025
    val uu = unconstrain u;
wenzelm@565
  1026
    val tye' = unify tsig ((T, U), tye) handle TUNIFY => raise TYPE
wenzelm@565
  1027
      ("Term does not have expected type", [T, U], [inst_types tye uu])
wenzelm@565
  1028
    val Ttye = restrict tye' (*restriction to TVars in T*)
wenzelm@565
  1029
    val all = Const("", Type("", map snd Ttye)) $ (inst_types tye' uu)
wenzelm@565
  1030
      (*all is a dummy term which contains all exported TVars*)
wenzelm@565
  1031
    val Const(_, Type(_, Ts)) $ u'' =
wenzelm@565
  1032
      map_term_types thaw_vars (freeze (fn (_, i) => i < 0) all)
wenzelm@565
  1033
      (*turn all internally generated TVars into TFrees
wenzelm@565
  1034
        and thaw all initially frozen TVars*)
wenzelm@565
  1035
  in
wenzelm@565
  1036
    (u'', (map fst Ttye) ~~ Ts)
wenzelm@565
  1037
  end;
clasohm@0
  1038
clasohm@0
  1039
fun infer_types args = (tyinit(); infer_term args);
clasohm@0
  1040
clasohm@0
  1041
clasohm@0
  1042
(* Turn TFrees into TVars to allow types & axioms to be written without "?" *)
wenzelm@256
  1043
fun varifyT (Type (a, Ts)) = Type (a, map varifyT Ts)
wenzelm@256
  1044
  | varifyT (TFree (a, S)) = TVar ((a, 0), S)
wenzelm@256
  1045
  | varifyT T = T;
clasohm@0
  1046
clasohm@0
  1047
(* Turn TFrees except those in fixed into new TVars *)
wenzelm@256
  1048
fun varify (t, fixed) =
wenzelm@256
  1049
  let val fs = add_term_tfree_names(t, []) \\ fixed;
wenzelm@256
  1050
      val ixns = add_term_tvar_ixns(t, []);
clasohm@0
  1051
      val fmap = fs ~~ variantlist(fs, map #1 ixns)
wenzelm@256
  1052
      fun thaw(Type(a, Ts)) = Type(a, map thaw Ts)
clasohm@0
  1053
        | thaw(T as TVar _) = T
wenzelm@256
  1054
        | thaw(T as TFree(a, S)) =
wenzelm@256
  1055
            (case assoc(fmap, a) of None => T | Some b => TVar((b, 0), S))
clasohm@0
  1056
  in map_term_types thaw t end;
clasohm@0
  1057
clasohm@0
  1058
clasohm@0
  1059
end;
wenzelm@256
  1060