src/HOL/List.thy
author nipkow
Mon Jun 04 22:27:18 2007 +0200 (2007-06-04)
changeset 23240 7077dc80a14b
parent 23235 eb365b39b36d
child 23245 57aee3d85ff3
permissions -rw-r--r--
tuned list comprehension
wenzelm@13462
     1
(*  Title:      HOL/List.thy
wenzelm@13462
     2
    ID:         $Id$
wenzelm@13462
     3
    Author:     Tobias Nipkow
clasohm@923
     4
*)
clasohm@923
     5
wenzelm@13114
     6
header {* The datatype of finite lists *}
wenzelm@13122
     7
nipkow@15131
     8
theory List
haftmann@22844
     9
imports PreList
wenzelm@21754
    10
uses "Tools/string_syntax.ML"
nipkow@15131
    11
begin
clasohm@923
    12
wenzelm@13142
    13
datatype 'a list =
wenzelm@13366
    14
    Nil    ("[]")
wenzelm@13366
    15
  | Cons 'a  "'a list"    (infixr "#" 65)
clasohm@923
    16
nipkow@15392
    17
subsection{*Basic list processing functions*}
nipkow@15302
    18
clasohm@923
    19
consts
wenzelm@13366
    20
  filter:: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    21
  concat:: "'a list list => 'a list"
wenzelm@13366
    22
  foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b"
wenzelm@13366
    23
  foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b"
wenzelm@13366
    24
  hd:: "'a list => 'a"
wenzelm@13366
    25
  tl:: "'a list => 'a list"
wenzelm@13366
    26
  last:: "'a list => 'a"
wenzelm@13366
    27
  butlast :: "'a list => 'a list"
wenzelm@13366
    28
  set :: "'a list => 'a set"
wenzelm@13366
    29
  map :: "('a=>'b) => ('a list => 'b list)"
nipkow@23096
    30
  listsum ::  "'a list => 'a::monoid_add"
wenzelm@13366
    31
  nth :: "'a list => nat => 'a"    (infixl "!" 100)
wenzelm@13366
    32
  list_update :: "'a list => nat => 'a => 'a list"
wenzelm@13366
    33
  take:: "nat => 'a list => 'a list"
wenzelm@13366
    34
  drop:: "nat => 'a list => 'a list"
wenzelm@13366
    35
  takeWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    36
  dropWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    37
  rev :: "'a list => 'a list"
wenzelm@13366
    38
  zip :: "'a list => 'b list => ('a * 'b) list"
nipkow@15425
    39
  upt :: "nat => nat => nat list" ("(1[_..</_'])")
wenzelm@13366
    40
  remdups :: "'a list => 'a list"
nipkow@15110
    41
  remove1 :: "'a => 'a list => 'a list"
wenzelm@13366
    42
  "distinct":: "'a list => bool"
wenzelm@13366
    43
  replicate :: "nat => 'a => 'a list"
nipkow@19390
    44
  splice :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
nipkow@22830
    45
  allpairs :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list"
nipkow@15302
    46
wenzelm@19363
    47
abbreviation
wenzelm@21404
    48
  upto:: "nat => nat => nat list"  ("(1[_../_])") where
wenzelm@19363
    49
  "[i..j] == [i..<(Suc j)]"
wenzelm@19302
    50
clasohm@923
    51
nipkow@13146
    52
nonterminals lupdbinds lupdbind
nipkow@5077
    53
clasohm@923
    54
syntax
wenzelm@13366
    55
  -- {* list Enumeration *}
wenzelm@13366
    56
  "@list" :: "args => 'a list"    ("[(_)]")
clasohm@923
    57
wenzelm@13366
    58
  -- {* Special syntax for filter *}
wenzelm@13366
    59
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_:_./ _])")
clasohm@923
    60
wenzelm@13366
    61
  -- {* list update *}
wenzelm@13366
    62
  "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
wenzelm@13366
    63
  "" :: "lupdbind => lupdbinds"    ("_")
wenzelm@13366
    64
  "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
wenzelm@13366
    65
  "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
nipkow@5077
    66
clasohm@923
    67
translations
wenzelm@13366
    68
  "[x, xs]" == "x#[xs]"
wenzelm@13366
    69
  "[x]" == "x#[]"
wenzelm@13366
    70
  "[x:xs . P]"== "filter (%x. P) xs"
clasohm@923
    71
wenzelm@13366
    72
  "_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs"
wenzelm@13366
    73
  "xs[i:=x]" == "list_update xs i x"
nipkow@5077
    74
nipkow@5427
    75
wenzelm@12114
    76
syntax (xsymbols)
wenzelm@13366
    77
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
kleing@14565
    78
syntax (HTML output)
kleing@14565
    79
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
paulson@3342
    80
paulson@3342
    81
wenzelm@13142
    82
text {*
wenzelm@14589
    83
  Function @{text size} is overloaded for all datatypes. Users may
wenzelm@13366
    84
  refer to the list version as @{text length}. *}
wenzelm@13142
    85
wenzelm@19363
    86
abbreviation
wenzelm@21404
    87
  length :: "'a list => nat" where
wenzelm@19363
    88
  "length == size"
nipkow@15302
    89
berghofe@5183
    90
primrec
paulson@15307
    91
  "hd(x#xs) = x"
paulson@15307
    92
berghofe@5183
    93
primrec
paulson@15307
    94
  "tl([]) = []"
paulson@15307
    95
  "tl(x#xs) = xs"
paulson@15307
    96
berghofe@5183
    97
primrec
paulson@15307
    98
  "last(x#xs) = (if xs=[] then x else last xs)"
paulson@15307
    99
berghofe@5183
   100
primrec
paulson@15307
   101
  "butlast []= []"
paulson@15307
   102
  "butlast(x#xs) = (if xs=[] then [] else x#butlast xs)"
paulson@15307
   103
berghofe@5183
   104
primrec
paulson@15307
   105
  "set [] = {}"
paulson@15307
   106
  "set (x#xs) = insert x (set xs)"
paulson@15307
   107
berghofe@5183
   108
primrec
paulson@15307
   109
  "map f [] = []"
paulson@15307
   110
  "map f (x#xs) = f(x)#map f xs"
paulson@15307
   111
haftmann@23235
   112
function (*authentic syntax for append -- revert to primrec
haftmann@23235
   113
  as soon as "authentic" primrec is available*)
haftmann@23235
   114
  append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65)
haftmann@23235
   115
where
haftmann@23235
   116
  append_Nil: "[] @ ys = ys"
haftmann@23235
   117
  | append_Cons: "(x # xs) @ ys = x # (xs @ ys)"
haftmann@23235
   118
by (auto, case_tac a, auto)
haftmann@23235
   119
termination by (relation "measure (size o fst)") auto
paulson@15307
   120
berghofe@5183
   121
primrec
paulson@15307
   122
  "rev([]) = []"
paulson@15307
   123
  "rev(x#xs) = rev(xs) @ [x]"
paulson@15307
   124
berghofe@5183
   125
primrec
paulson@15307
   126
  "filter P [] = []"
paulson@15307
   127
  "filter P (x#xs) = (if P x then x#filter P xs else filter P xs)"
paulson@15307
   128
berghofe@5183
   129
primrec
paulson@15307
   130
  foldl_Nil:"foldl f a [] = a"
paulson@15307
   131
  foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs"
paulson@15307
   132
paulson@8000
   133
primrec
paulson@15307
   134
  "foldr f [] a = a"
paulson@15307
   135
  "foldr f (x#xs) a = f x (foldr f xs a)"
paulson@15307
   136
berghofe@5183
   137
primrec
paulson@15307
   138
  "concat([]) = []"
paulson@15307
   139
  "concat(x#xs) = x @ concat(xs)"
paulson@15307
   140
berghofe@5183
   141
primrec
nipkow@23096
   142
"listsum [] = 0"
nipkow@23096
   143
"listsum (x # xs) = x + listsum xs"
nipkow@23096
   144
nipkow@23096
   145
primrec
paulson@15307
   146
  drop_Nil:"drop n [] = []"
paulson@15307
   147
  drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)"
paulson@15307
   148
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   149
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
paulson@15307
   150
berghofe@5183
   151
primrec
paulson@15307
   152
  take_Nil:"take n [] = []"
paulson@15307
   153
  take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)"
paulson@15307
   154
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   155
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
paulson@15307
   156
wenzelm@13142
   157
primrec
paulson@15307
   158
  nth_Cons:"(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)"
paulson@15307
   159
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   160
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
paulson@15307
   161
berghofe@5183
   162
primrec
paulson@15307
   163
  "[][i:=v] = []"
paulson@15307
   164
  "(x#xs)[i:=v] = (case i of 0 => v # xs | Suc j => x # xs[j:=v])"
paulson@15307
   165
paulson@15307
   166
primrec
paulson@15307
   167
  "takeWhile P [] = []"
paulson@15307
   168
  "takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])"
paulson@15307
   169
berghofe@5183
   170
primrec
paulson@15307
   171
  "dropWhile P [] = []"
paulson@15307
   172
  "dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)"
paulson@15307
   173
berghofe@5183
   174
primrec
paulson@15307
   175
  "zip xs [] = []"
paulson@15307
   176
  zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)"
paulson@15307
   177
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   178
       theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
paulson@15307
   179
nipkow@5427
   180
primrec
nipkow@15425
   181
  upt_0: "[i..<0] = []"
nipkow@15425
   182
  upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])"
paulson@15307
   183
berghofe@5183
   184
primrec
paulson@15307
   185
  "distinct [] = True"
paulson@15307
   186
  "distinct (x#xs) = (x ~: set xs \<and> distinct xs)"
paulson@15307
   187
berghofe@5183
   188
primrec
paulson@15307
   189
  "remdups [] = []"
paulson@15307
   190
  "remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)"
paulson@15307
   191
berghofe@5183
   192
primrec
paulson@15307
   193
  "remove1 x [] = []"
paulson@15307
   194
  "remove1 x (y#xs) = (if x=y then xs else y # remove1 x xs)"
paulson@15307
   195
nipkow@15110
   196
primrec
paulson@15307
   197
  replicate_0: "replicate 0 x = []"
paulson@15307
   198
  replicate_Suc: "replicate (Suc n) x = x # replicate n x"
paulson@15307
   199
haftmann@21061
   200
definition
wenzelm@21404
   201
  rotate1 :: "'a list \<Rightarrow> 'a list" where
wenzelm@21404
   202
  "rotate1 xs = (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])"
wenzelm@21404
   203
wenzelm@21404
   204
definition
wenzelm@21404
   205
  rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
wenzelm@21404
   206
  "rotate n = rotate1 ^ n"
wenzelm@21404
   207
wenzelm@21404
   208
definition
wenzelm@21404
   209
  list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool" where
wenzelm@21404
   210
  "list_all2 P xs ys =
haftmann@21061
   211
    (length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y))"
wenzelm@21404
   212
wenzelm@21404
   213
definition
wenzelm@21404
   214
  sublist :: "'a list => nat set => 'a list" where
wenzelm@21404
   215
  "sublist xs A = map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [0..<size xs]))"
nipkow@17086
   216
nipkow@17086
   217
primrec
haftmann@21061
   218
  "splice [] ys = ys"
haftmann@21061
   219
  "splice (x#xs) ys = (if ys=[] then x#xs else x # hd ys # splice xs (tl ys))"
haftmann@21061
   220
    -- {*Warning: simpset does not contain the second eqn but a derived one. *}
haftmann@21061
   221
nipkow@22828
   222
primrec
nipkow@22830
   223
"allpairs f [] ys = []"
nipkow@22830
   224
"allpairs f (x # xs) ys = map (f x) ys @ allpairs f xs ys"
haftmann@21061
   225
nipkow@23192
   226
subsubsection {* List comprehehsion *}
nipkow@23192
   227
nipkow@23209
   228
text{* Input syntax for Haskell-like list comprehension
nipkow@23209
   229
notation. Typical example: @{text"[(x,y). x \<leftarrow> xs, y \<leftarrow> ys, x \<noteq> y]"}, the list of all pairs of distinct elements from @{text xs} and @{text ys}.
nipkow@23209
   230
nipkow@23240
   231
There are two differences to Haskell.  The general synatx is
nipkow@23240
   232
@{text"[e. p \<leftarrow> xs, \<dots>]"} rather than \verb![x| x <- xs, ...]!. Patterns in
nipkow@23240
   233
generators can only be tuples (at the moment).
nipkow@23240
   234
nipkow@23240
   235
To avoid misunderstandings, the translation is not reversed upon
nipkow@23240
   236
output. You can add the inverse translations in your own theory if you
nipkow@23240
   237
desire.
nipkow@23240
   238
nipkow@23240
   239
Hint: formulae containing complex list comprehensions may become quite
nipkow@23240
   240
unreadable after the simplifier has finished with them. It can be
nipkow@23240
   241
helpful to introduce definitions for such list comprehensions and
nipkow@23240
   242
treat them separately in suitable lemmas.
nipkow@23209
   243
*}
nipkow@23209
   244
(*
nipkow@23240
   245
Proper theorem proving support would be nice. For example, if
nipkow@23192
   246
@{text"set[f x y. x \<leftarrow> xs, y \<leftarrow> ys, P x y]"}
nipkow@23192
   247
produced something like
nipkow@23209
   248
@{term"{z. EX x: set xs. EX y:set ys. P x y \<and> z = f x y}"}.
nipkow@23209
   249
*)
nipkow@23209
   250
nipkow@23240
   251
nonterminals lc_qual lc_quals
nipkow@23192
   252
nipkow@23192
   253
syntax
nipkow@23240
   254
"_listcompr" :: "'a \<Rightarrow> lc_qual \<Rightarrow> lc_quals \<Rightarrow> 'a list"  ("[_ . __")
nipkow@23240
   255
"_lc_gen" :: "pttrn \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
nipkow@23240
   256
"_lc_gen" :: "pttrn \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ <- _")
nipkow@23240
   257
"_lc_test" :: "bool \<Rightarrow> lc_qual" ("_")
nipkow@23240
   258
"_lc_end" :: "lc_quals" ("]")
nipkow@23240
   259
"_lc_quals" :: "lc_qual \<Rightarrow> lc_quals \<Rightarrow> lc_quals" (", __")
nipkow@23192
   260
nipkow@23192
   261
translations
nipkow@23192
   262
"[e. p\<leftarrow>xs]" => "map (%p. e) xs"
nipkow@23240
   263
"_listcompr e (_lc_gen p xs) (_lc_quals Q Qs)"
nipkow@23240
   264
 => "concat (map (%p. _listcompr e Q Qs) xs)"
nipkow@23240
   265
"[e. P]" => "if P then [e] else []"
nipkow@23240
   266
"_listcompr e (_lc_test P) (_lc_quals Q Qs)"
nipkow@23240
   267
 => "if P then (_listcompr e Q Qs) else []"
nipkow@23240
   268
nipkow@23240
   269
(*
nipkow@23240
   270
term "[(x,y,z). b]"
nipkow@23240
   271
term "[(x,y,z). x \<leftarrow> xs]"
nipkow@23240
   272
term "[(x,y,z). x<a, x>b]"
nipkow@23240
   273
term "[(x,y,z). x<a, x\<leftarrow>xs]"
nipkow@23240
   274
term "[(x,y,z). x\<leftarrow>xs, x>b]"
nipkow@23240
   275
term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys]"
nipkow@23240
   276
term "[(x,y,z). x<a, x>b, x=d]"
nipkow@23240
   277
term "[(x,y,z). x<a, x>b, y\<leftarrow>ys]"
nipkow@23240
   278
term "[(x,y,z). x<a, x\<leftarrow>xs,y>b]"
nipkow@23240
   279
term "[(x,y,z). x<a, x\<leftarrow>xs, y\<leftarrow>ys]"
nipkow@23240
   280
term "[(x,y,z). x\<leftarrow>xs, x>b, y<a]"
nipkow@23240
   281
term "[(x,y,z). x\<leftarrow>xs, x>b, y\<leftarrow>ys]"
nipkow@23240
   282
term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,y>x]"
nipkow@23240
   283
term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,z\<leftarrow>zs]"
nipkow@23192
   284
*)
nipkow@23192
   285
nipkow@23240
   286
haftmann@21061
   287
subsubsection {* @{const Nil} and @{const Cons} *}
haftmann@21061
   288
haftmann@21061
   289
lemma not_Cons_self [simp]:
haftmann@21061
   290
  "xs \<noteq> x # xs"
nipkow@13145
   291
by (induct xs) auto
wenzelm@13114
   292
wenzelm@13142
   293
lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric]
wenzelm@13114
   294
wenzelm@13142
   295
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)"
nipkow@13145
   296
by (induct xs) auto
wenzelm@13114
   297
wenzelm@13142
   298
lemma length_induct:
haftmann@21061
   299
  "(\<And>xs. \<forall>ys. length ys < length xs \<longrightarrow> P ys \<Longrightarrow> P xs) \<Longrightarrow> P xs"
nipkow@17589
   300
by (rule measure_induct [of length]) iprover
wenzelm@13114
   301
wenzelm@13114
   302
haftmann@21061
   303
subsubsection {* @{const length} *}
wenzelm@13114
   304
wenzelm@13142
   305
text {*
haftmann@21061
   306
  Needs to come before @{text "@"} because of theorem @{text
haftmann@21061
   307
  append_eq_append_conv}.
wenzelm@13142
   308
*}
wenzelm@13114
   309
wenzelm@13142
   310
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys"
nipkow@13145
   311
by (induct xs) auto
wenzelm@13114
   312
wenzelm@13142
   313
lemma length_map [simp]: "length (map f xs) = length xs"
nipkow@13145
   314
by (induct xs) auto
wenzelm@13114
   315
wenzelm@13142
   316
lemma length_rev [simp]: "length (rev xs) = length xs"
nipkow@13145
   317
by (induct xs) auto
wenzelm@13114
   318
wenzelm@13142
   319
lemma length_tl [simp]: "length (tl xs) = length xs - 1"
nipkow@13145
   320
by (cases xs) auto
wenzelm@13114
   321
nipkow@22828
   322
lemma length_allpairs[simp]:
nipkow@22830
   323
 "length(allpairs f xs ys) = length xs * length ys"
nipkow@22828
   324
by(induct xs) auto
nipkow@22828
   325
wenzelm@13142
   326
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])"
nipkow@13145
   327
by (induct xs) auto
wenzelm@13114
   328
wenzelm@13142
   329
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])"
nipkow@13145
   330
by (induct xs) auto
wenzelm@13114
   331
wenzelm@13114
   332
lemma length_Suc_conv:
nipkow@13145
   333
"(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
nipkow@13145
   334
by (induct xs) auto
wenzelm@13142
   335
nipkow@14025
   336
lemma Suc_length_conv:
nipkow@14025
   337
"(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
paulson@14208
   338
apply (induct xs, simp, simp)
nipkow@14025
   339
apply blast
nipkow@14025
   340
done
nipkow@14025
   341
oheimb@14099
   342
lemma impossible_Cons [rule_format]: 
oheimb@14099
   343
  "length xs <= length ys --> xs = x # ys = False"
wenzelm@20503
   344
apply (induct xs)
wenzelm@20503
   345
apply auto
oheimb@14099
   346
done
oheimb@14099
   347
nipkow@14247
   348
lemma list_induct2[consumes 1]: "\<And>ys.
nipkow@14247
   349
 \<lbrakk> length xs = length ys;
nipkow@14247
   350
   P [] [];
nipkow@14247
   351
   \<And>x xs y ys. \<lbrakk> length xs = length ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
nipkow@14247
   352
 \<Longrightarrow> P xs ys"
nipkow@14247
   353
apply(induct xs)
nipkow@14247
   354
 apply simp
nipkow@14247
   355
apply(case_tac ys)
nipkow@14247
   356
 apply simp
nipkow@14247
   357
apply(simp)
nipkow@14247
   358
done
wenzelm@13114
   359
krauss@22493
   360
lemma list_induct2': 
krauss@22493
   361
  "\<lbrakk> P [] [];
krauss@22493
   362
  \<And>x xs. P (x#xs) [];
krauss@22493
   363
  \<And>y ys. P [] (y#ys);
krauss@22493
   364
   \<And>x xs y ys. P xs ys  \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
krauss@22493
   365
 \<Longrightarrow> P xs ys"
krauss@22493
   366
by (induct xs arbitrary: ys) (case_tac x, auto)+
krauss@22493
   367
nipkow@22143
   368
lemma neq_if_length_neq: "length xs \<noteq> length ys \<Longrightarrow> (xs = ys) == False"
nipkow@22143
   369
apply(rule Eq_FalseI)
nipkow@22143
   370
by auto
nipkow@22143
   371
nipkow@22143
   372
(*
nipkow@22143
   373
Reduces xs=ys to False if xs and ys cannot be of the same length.
nipkow@22143
   374
This is the case if the atomic sublists of one are a submultiset
nipkow@22143
   375
of those of the other list and there are fewer Cons's in one than the other.
nipkow@22143
   376
*)
nipkow@22143
   377
ML_setup {*
nipkow@22143
   378
local
nipkow@22143
   379
nipkow@22143
   380
fun len (Const("List.list.Nil",_)) acc = acc
nipkow@22143
   381
  | len (Const("List.list.Cons",_) $ _ $ xs) (ts,n) = len xs (ts,n+1)
haftmann@23029
   382
  | len (Const("List.append",_) $ xs $ ys) acc = len xs (len ys acc)
nipkow@22143
   383
  | len (Const("List.rev",_) $ xs) acc = len xs acc
nipkow@22143
   384
  | len (Const("List.map",_) $ _ $ xs) acc = len xs acc
nipkow@22143
   385
  | len t (ts,n) = (t::ts,n);
nipkow@22143
   386
nipkow@22143
   387
fun list_eq ss (Const(_,eqT) $ lhs $ rhs) =
nipkow@22143
   388
  let
nipkow@22143
   389
    val (ls,m) = len lhs ([],0) and (rs,n) = len rhs ([],0);
nipkow@22143
   390
    fun prove_neq() =
nipkow@22143
   391
      let
nipkow@22143
   392
        val Type(_,listT::_) = eqT;
haftmann@22994
   393
        val size = HOLogic.size_const listT;
nipkow@22143
   394
        val eq_len = HOLogic.mk_eq (size $ lhs, size $ rhs);
nipkow@22143
   395
        val neq_len = HOLogic.mk_Trueprop (HOLogic.Not $ eq_len);
nipkow@22143
   396
        val thm = Goal.prove (Simplifier.the_context ss) [] [] neq_len
haftmann@22633
   397
          (K (simp_tac (Simplifier.inherit_context ss @{simpset}) 1));
haftmann@22633
   398
      in SOME (thm RS @{thm neq_if_length_neq}) end
nipkow@22143
   399
  in
wenzelm@23214
   400
    if m < n andalso submultiset (op aconv) (ls,rs) orelse
wenzelm@23214
   401
       n < m andalso submultiset (op aconv) (rs,ls)
nipkow@22143
   402
    then prove_neq() else NONE
nipkow@22143
   403
  end;
nipkow@22143
   404
nipkow@22143
   405
in
nipkow@22143
   406
nipkow@22143
   407
val list_neq_simproc =
haftmann@22633
   408
  Simplifier.simproc @{theory} "list_neq" ["(xs::'a list) = ys"] (K list_eq);
nipkow@22143
   409
nipkow@22143
   410
end;
nipkow@22143
   411
nipkow@22143
   412
Addsimprocs [list_neq_simproc];
nipkow@22143
   413
*}
nipkow@22143
   414
nipkow@22143
   415
nipkow@15392
   416
subsubsection {* @{text "@"} -- append *}
wenzelm@13114
   417
wenzelm@13142
   418
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
nipkow@13145
   419
by (induct xs) auto
wenzelm@13114
   420
wenzelm@13142
   421
lemma append_Nil2 [simp]: "xs @ [] = xs"
nipkow@13145
   422
by (induct xs) auto
nipkow@3507
   423
wenzelm@13142
   424
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])"
nipkow@13145
   425
by (induct xs) auto
wenzelm@13114
   426
wenzelm@13142
   427
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])"
nipkow@13145
   428
by (induct xs) auto
wenzelm@13114
   429
wenzelm@13142
   430
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])"
nipkow@13145
   431
by (induct xs) auto
wenzelm@13114
   432
wenzelm@13142
   433
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])"
nipkow@13145
   434
by (induct xs) auto
wenzelm@13114
   435
berghofe@13883
   436
lemma append_eq_append_conv [simp]:
berghofe@13883
   437
 "!!ys. length xs = length ys \<or> length us = length vs
berghofe@13883
   438
 ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
berghofe@13883
   439
apply (induct xs)
paulson@14208
   440
 apply (case_tac ys, simp, force)
paulson@14208
   441
apply (case_tac ys, force, simp)
nipkow@13145
   442
done
wenzelm@13142
   443
nipkow@14495
   444
lemma append_eq_append_conv2: "!!ys zs ts.
nipkow@14495
   445
 (xs @ ys = zs @ ts) =
nipkow@14495
   446
 (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)"
nipkow@14495
   447
apply (induct xs)
nipkow@14495
   448
 apply fastsimp
nipkow@14495
   449
apply(case_tac zs)
nipkow@14495
   450
 apply simp
nipkow@14495
   451
apply fastsimp
nipkow@14495
   452
done
nipkow@14495
   453
wenzelm@13142
   454
lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)"
nipkow@13145
   455
by simp
wenzelm@13142
   456
wenzelm@13142
   457
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)"
nipkow@13145
   458
by simp
wenzelm@13114
   459
wenzelm@13142
   460
lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)"
nipkow@13145
   461
by simp
wenzelm@13114
   462
wenzelm@13142
   463
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])"
nipkow@13145
   464
using append_same_eq [of _ _ "[]"] by auto
nipkow@3507
   465
wenzelm@13142
   466
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])"
nipkow@13145
   467
using append_same_eq [of "[]"] by auto
wenzelm@13114
   468
wenzelm@13142
   469
lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
nipkow@13145
   470
by (induct xs) auto
wenzelm@13114
   471
wenzelm@13142
   472
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
nipkow@13145
   473
by (induct xs) auto
wenzelm@13114
   474
wenzelm@13142
   475
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs"
nipkow@13145
   476
by (simp add: hd_append split: list.split)
wenzelm@13114
   477
wenzelm@13142
   478
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)"
nipkow@13145
   479
by (simp split: list.split)
wenzelm@13114
   480
wenzelm@13142
   481
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys"
nipkow@13145
   482
by (simp add: tl_append split: list.split)
wenzelm@13114
   483
wenzelm@13114
   484
nipkow@14300
   485
lemma Cons_eq_append_conv: "x#xs = ys@zs =
nipkow@14300
   486
 (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))"
nipkow@14300
   487
by(cases ys) auto
nipkow@14300
   488
nipkow@15281
   489
lemma append_eq_Cons_conv: "(ys@zs = x#xs) =
nipkow@15281
   490
 (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))"
nipkow@15281
   491
by(cases ys) auto
nipkow@15281
   492
nipkow@14300
   493
wenzelm@13142
   494
text {* Trivial rules for solving @{text "@"}-equations automatically. *}
wenzelm@13114
   495
wenzelm@13114
   496
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys"
nipkow@13145
   497
by simp
wenzelm@13114
   498
wenzelm@13142
   499
lemma Cons_eq_appendI:
nipkow@13145
   500
"[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs"
nipkow@13145
   501
by (drule sym) simp
wenzelm@13114
   502
wenzelm@13142
   503
lemma append_eq_appendI:
nipkow@13145
   504
"[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us"
nipkow@13145
   505
by (drule sym) simp
wenzelm@13114
   506
wenzelm@13114
   507
wenzelm@13142
   508
text {*
nipkow@13145
   509
Simplification procedure for all list equalities.
nipkow@13145
   510
Currently only tries to rearrange @{text "@"} to see if
nipkow@13145
   511
- both lists end in a singleton list,
nipkow@13145
   512
- or both lists end in the same list.
wenzelm@13142
   513
*}
wenzelm@13142
   514
wenzelm@13142
   515
ML_setup {*
nipkow@3507
   516
local
nipkow@3507
   517
wenzelm@13114
   518
fun last (cons as Const("List.list.Cons",_) $ _ $ xs) =
wenzelm@13462
   519
  (case xs of Const("List.list.Nil",_) => cons | _ => last xs)
haftmann@23029
   520
  | last (Const("List.append",_) $ _ $ ys) = last ys
wenzelm@13462
   521
  | last t = t;
wenzelm@13114
   522
wenzelm@13114
   523
fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true
wenzelm@13462
   524
  | list1 _ = false;
wenzelm@13114
   525
wenzelm@13114
   526
fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) =
wenzelm@13462
   527
  (case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs)
haftmann@23029
   528
  | butlast ((app as Const("List.append",_) $ xs) $ ys) = app $ butlast ys
wenzelm@13462
   529
  | butlast xs = Const("List.list.Nil",fastype_of xs);
wenzelm@13114
   530
haftmann@22633
   531
val rearr_ss = HOL_basic_ss addsimps [@{thm append_assoc},
haftmann@22633
   532
  @{thm append_Nil}, @{thm append_Cons}];
wenzelm@16973
   533
wenzelm@20044
   534
fun list_eq ss (F as (eq as Const(_,eqT)) $ lhs $ rhs) =
wenzelm@13462
   535
  let
wenzelm@13462
   536
    val lastl = last lhs and lastr = last rhs;
wenzelm@13462
   537
    fun rearr conv =
wenzelm@13462
   538
      let
wenzelm@13462
   539
        val lhs1 = butlast lhs and rhs1 = butlast rhs;
wenzelm@13462
   540
        val Type(_,listT::_) = eqT
wenzelm@13462
   541
        val appT = [listT,listT] ---> listT
haftmann@23029
   542
        val app = Const("List.append",appT)
wenzelm@13462
   543
        val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr)
wenzelm@13480
   544
        val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2));
wenzelm@20044
   545
        val thm = Goal.prove (Simplifier.the_context ss) [] [] eq
wenzelm@17877
   546
          (K (simp_tac (Simplifier.inherit_context ss rearr_ss) 1));
skalberg@15531
   547
      in SOME ((conv RS (thm RS trans)) RS eq_reflection) end;
wenzelm@13114
   548
wenzelm@13462
   549
  in
haftmann@22633
   550
    if list1 lastl andalso list1 lastr then rearr @{thm append1_eq_conv}
haftmann@22633
   551
    else if lastl aconv lastr then rearr @{thm append_same_eq}
skalberg@15531
   552
    else NONE
wenzelm@13462
   553
  end;
wenzelm@13462
   554
wenzelm@13114
   555
in
wenzelm@13462
   556
wenzelm@13462
   557
val list_eq_simproc =
haftmann@22633
   558
  Simplifier.simproc @{theory} "list_eq" ["(xs::'a list) = ys"] (K list_eq);
wenzelm@13462
   559
wenzelm@13114
   560
end;
wenzelm@13114
   561
wenzelm@13114
   562
Addsimprocs [list_eq_simproc];
wenzelm@13114
   563
*}
wenzelm@13114
   564
wenzelm@13114
   565
nipkow@15392
   566
subsubsection {* @{text map} *}
wenzelm@13114
   567
wenzelm@13142
   568
lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs"
nipkow@13145
   569
by (induct xs) simp_all
wenzelm@13114
   570
wenzelm@13142
   571
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)"
nipkow@13145
   572
by (rule ext, induct_tac xs) auto
wenzelm@13114
   573
wenzelm@13142
   574
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys"
nipkow@13145
   575
by (induct xs) auto
wenzelm@13114
   576
wenzelm@13142
   577
lemma map_compose: "map (f o g) xs = map f (map g xs)"
nipkow@13145
   578
by (induct xs) (auto simp add: o_def)
wenzelm@13114
   579
wenzelm@13142
   580
lemma rev_map: "rev (map f xs) = map f (rev xs)"
nipkow@13145
   581
by (induct xs) auto
wenzelm@13114
   582
nipkow@13737
   583
lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)"
nipkow@13737
   584
by (induct xs) auto
nipkow@13737
   585
krauss@19770
   586
lemma map_cong [fundef_cong, recdef_cong]:
nipkow@13145
   587
"xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys"
nipkow@13145
   588
-- {* a congruence rule for @{text map} *}
nipkow@13737
   589
by simp
wenzelm@13114
   590
wenzelm@13142
   591
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])"
nipkow@13145
   592
by (cases xs) auto
wenzelm@13114
   593
wenzelm@13142
   594
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])"
nipkow@13145
   595
by (cases xs) auto
wenzelm@13114
   596
paulson@18447
   597
lemma map_eq_Cons_conv:
nipkow@14025
   598
 "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)"
nipkow@13145
   599
by (cases xs) auto
wenzelm@13114
   600
paulson@18447
   601
lemma Cons_eq_map_conv:
nipkow@14025
   602
 "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)"
nipkow@14025
   603
by (cases ys) auto
nipkow@14025
   604
paulson@18447
   605
lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1]
paulson@18447
   606
lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1]
paulson@18447
   607
declare map_eq_Cons_D [dest!]  Cons_eq_map_D [dest!]
paulson@18447
   608
nipkow@14111
   609
lemma ex_map_conv:
nipkow@14111
   610
  "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)"
paulson@18447
   611
by(induct ys, auto simp add: Cons_eq_map_conv)
nipkow@14111
   612
nipkow@15110
   613
lemma map_eq_imp_length_eq:
nipkow@15110
   614
  "!!xs. map f xs = map f ys ==> length xs = length ys"
nipkow@15110
   615
apply (induct ys)
nipkow@15110
   616
 apply simp
nipkow@15110
   617
apply(simp (no_asm_use))
nipkow@15110
   618
apply clarify
nipkow@15110
   619
apply(simp (no_asm_use))
nipkow@15110
   620
apply fast
nipkow@15110
   621
done
nipkow@15110
   622
nipkow@15110
   623
lemma map_inj_on:
nipkow@15110
   624
 "[| map f xs = map f ys; inj_on f (set xs Un set ys) |]
nipkow@15110
   625
  ==> xs = ys"
nipkow@15110
   626
apply(frule map_eq_imp_length_eq)
nipkow@15110
   627
apply(rotate_tac -1)
nipkow@15110
   628
apply(induct rule:list_induct2)
nipkow@15110
   629
 apply simp
nipkow@15110
   630
apply(simp)
nipkow@15110
   631
apply (blast intro:sym)
nipkow@15110
   632
done
nipkow@15110
   633
nipkow@15110
   634
lemma inj_on_map_eq_map:
nipkow@15110
   635
 "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@15110
   636
by(blast dest:map_inj_on)
nipkow@15110
   637
wenzelm@13114
   638
lemma map_injective:
nipkow@14338
   639
 "!!xs. map f xs = map f ys ==> inj f ==> xs = ys"
nipkow@14338
   640
by (induct ys) (auto dest!:injD)
wenzelm@13114
   641
nipkow@14339
   642
lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@14339
   643
by(blast dest:map_injective)
nipkow@14339
   644
wenzelm@13114
   645
lemma inj_mapI: "inj f ==> inj (map f)"
nipkow@17589
   646
by (iprover dest: map_injective injD intro: inj_onI)
wenzelm@13114
   647
wenzelm@13114
   648
lemma inj_mapD: "inj (map f) ==> inj f"
paulson@14208
   649
apply (unfold inj_on_def, clarify)
nipkow@13145
   650
apply (erule_tac x = "[x]" in ballE)
paulson@14208
   651
 apply (erule_tac x = "[y]" in ballE, simp, blast)
nipkow@13145
   652
apply blast
nipkow@13145
   653
done
wenzelm@13114
   654
nipkow@14339
   655
lemma inj_map[iff]: "inj (map f) = inj f"
nipkow@13145
   656
by (blast dest: inj_mapD intro: inj_mapI)
wenzelm@13114
   657
nipkow@15303
   658
lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A"
nipkow@15303
   659
apply(rule inj_onI)
nipkow@15303
   660
apply(erule map_inj_on)
nipkow@15303
   661
apply(blast intro:inj_onI dest:inj_onD)
nipkow@15303
   662
done
nipkow@15303
   663
kleing@14343
   664
lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs"
kleing@14343
   665
by (induct xs, auto)
wenzelm@13114
   666
nipkow@14402
   667
lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs"
nipkow@14402
   668
by (induct xs) auto
nipkow@14402
   669
nipkow@15110
   670
lemma map_fst_zip[simp]:
nipkow@15110
   671
  "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs"
nipkow@15110
   672
by (induct rule:list_induct2, simp_all)
nipkow@15110
   673
nipkow@15110
   674
lemma map_snd_zip[simp]:
nipkow@15110
   675
  "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys"
nipkow@15110
   676
by (induct rule:list_induct2, simp_all)
nipkow@15110
   677
nipkow@15110
   678
nipkow@15392
   679
subsubsection {* @{text rev} *}
wenzelm@13114
   680
wenzelm@13142
   681
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
nipkow@13145
   682
by (induct xs) auto
wenzelm@13114
   683
wenzelm@13142
   684
lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
nipkow@13145
   685
by (induct xs) auto
wenzelm@13114
   686
kleing@15870
   687
lemma rev_swap: "(rev xs = ys) = (xs = rev ys)"
kleing@15870
   688
by auto
kleing@15870
   689
wenzelm@13142
   690
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])"
nipkow@13145
   691
by (induct xs) auto
wenzelm@13114
   692
wenzelm@13142
   693
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])"
nipkow@13145
   694
by (induct xs) auto
wenzelm@13114
   695
kleing@15870
   696
lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])"
kleing@15870
   697
by (cases xs) auto
kleing@15870
   698
kleing@15870
   699
lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])"
kleing@15870
   700
by (cases xs) auto
kleing@15870
   701
haftmann@21061
   702
lemma rev_is_rev_conv [iff]: "(rev xs = rev ys) = (xs = ys)"
haftmann@21061
   703
apply (induct xs arbitrary: ys, force)
paulson@14208
   704
apply (case_tac ys, simp, force)
nipkow@13145
   705
done
wenzelm@13114
   706
nipkow@15439
   707
lemma inj_on_rev[iff]: "inj_on rev A"
nipkow@15439
   708
by(simp add:inj_on_def)
nipkow@15439
   709
wenzelm@13366
   710
lemma rev_induct [case_names Nil snoc]:
wenzelm@13366
   711
  "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs"
berghofe@15489
   712
apply(simplesubst rev_rev_ident[symmetric])
nipkow@13145
   713
apply(rule_tac list = "rev xs" in list.induct, simp_all)
nipkow@13145
   714
done
wenzelm@13114
   715
nipkow@13145
   716
ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *}-- "compatibility"
wenzelm@13114
   717
wenzelm@13366
   718
lemma rev_exhaust [case_names Nil snoc]:
wenzelm@13366
   719
  "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P"
nipkow@13145
   720
by (induct xs rule: rev_induct) auto
wenzelm@13114
   721
wenzelm@13366
   722
lemmas rev_cases = rev_exhaust
wenzelm@13366
   723
nipkow@18423
   724
lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])"
nipkow@18423
   725
by(rule rev_cases[of xs]) auto
nipkow@18423
   726
wenzelm@13114
   727
nipkow@15392
   728
subsubsection {* @{text set} *}
wenzelm@13114
   729
wenzelm@13142
   730
lemma finite_set [iff]: "finite (set xs)"
nipkow@13145
   731
by (induct xs) auto
wenzelm@13114
   732
wenzelm@13142
   733
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)"
nipkow@13145
   734
by (induct xs) auto
wenzelm@13114
   735
nipkow@17830
   736
lemma hd_in_set[simp]: "xs \<noteq> [] \<Longrightarrow> hd xs : set xs"
nipkow@17830
   737
by(cases xs) auto
oheimb@14099
   738
wenzelm@13142
   739
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)"
nipkow@13145
   740
by auto
wenzelm@13114
   741
oheimb@14099
   742
lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" 
oheimb@14099
   743
by auto
oheimb@14099
   744
wenzelm@13142
   745
lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
nipkow@13145
   746
by (induct xs) auto
wenzelm@13114
   747
nipkow@15245
   748
lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
nipkow@15245
   749
by(induct xs) auto
nipkow@15245
   750
wenzelm@13142
   751
lemma set_rev [simp]: "set (rev xs) = set xs"
nipkow@13145
   752
by (induct xs) auto
wenzelm@13114
   753
wenzelm@13142
   754
lemma set_map [simp]: "set (map f xs) = f`(set xs)"
nipkow@13145
   755
by (induct xs) auto
wenzelm@13114
   756
nipkow@22828
   757
lemma set_allpairs[simp]:
nipkow@22830
   758
 "set(allpairs f xs ys) = {z. EX x : set xs. EX y : set ys. z = f x y}"
nipkow@22828
   759
by(induct xs) auto
nipkow@22828
   760
wenzelm@13142
   761
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
nipkow@13145
   762
by (induct xs) auto
wenzelm@13114
   763
nipkow@15425
   764
lemma set_upt [simp]: "set[i..<j] = {k. i \<le> k \<and> k < j}"
paulson@14208
   765
apply (induct j, simp_all)
paulson@14208
   766
apply (erule ssubst, auto)
nipkow@13145
   767
done
wenzelm@13114
   768
wenzelm@13142
   769
lemma in_set_conv_decomp: "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs)"
paulson@15113
   770
proof (induct xs)
paulson@15113
   771
  case Nil show ?case by simp
paulson@15113
   772
  case (Cons a xs)
paulson@15113
   773
  show ?case
paulson@15113
   774
  proof 
paulson@15113
   775
    assume "x \<in> set (a # xs)"
paulson@15113
   776
    with prems show "\<exists>ys zs. a # xs = ys @ x # zs"
paulson@15113
   777
      by (simp, blast intro: Cons_eq_appendI)
paulson@15113
   778
  next
paulson@15113
   779
    assume "\<exists>ys zs. a # xs = ys @ x # zs"
paulson@15113
   780
    then obtain ys zs where eq: "a # xs = ys @ x # zs" by blast
paulson@15113
   781
    show "x \<in> set (a # xs)" 
paulson@15113
   782
      by (cases ys, auto simp add: eq)
paulson@15113
   783
  qed
paulson@15113
   784
qed
wenzelm@13142
   785
nipkow@18049
   786
lemma in_set_conv_decomp_first:
nipkow@18049
   787
 "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys)"
nipkow@18049
   788
proof (induct xs)
nipkow@18049
   789
  case Nil show ?case by simp
nipkow@18049
   790
next
nipkow@18049
   791
  case (Cons a xs)
nipkow@18049
   792
  show ?case
nipkow@18049
   793
  proof cases
nipkow@18049
   794
    assume "x = a" thus ?case using Cons by force
nipkow@18049
   795
  next
nipkow@18049
   796
    assume "x \<noteq> a"
nipkow@18049
   797
    show ?case
nipkow@18049
   798
    proof
nipkow@18049
   799
      assume "x \<in> set (a # xs)"
nipkow@18049
   800
      from prems show "\<exists>ys zs. a # xs = ys @ x # zs \<and> x \<notin> set ys"
nipkow@18049
   801
	by(fastsimp intro!: Cons_eq_appendI)
nipkow@18049
   802
    next
nipkow@18049
   803
      assume "\<exists>ys zs. a # xs = ys @ x # zs \<and> x \<notin> set ys"
nipkow@18049
   804
      then obtain ys zs where eq: "a # xs = ys @ x # zs" by blast
nipkow@18049
   805
      show "x \<in> set (a # xs)" by (cases ys, auto simp add: eq)
nipkow@18049
   806
    qed
nipkow@18049
   807
  qed
nipkow@18049
   808
qed
nipkow@18049
   809
nipkow@18049
   810
lemmas split_list       = in_set_conv_decomp[THEN iffD1, standard]
nipkow@18049
   811
lemmas split_list_first = in_set_conv_decomp_first[THEN iffD1, standard]
nipkow@18049
   812
nipkow@18049
   813
paulson@13508
   814
lemma finite_list: "finite A ==> EX l. set l = A"
paulson@13508
   815
apply (erule finite_induct, auto)
paulson@13508
   816
apply (rule_tac x="x#l" in exI, auto)
paulson@13508
   817
done
paulson@13508
   818
kleing@14388
   819
lemma card_length: "card (set xs) \<le> length xs"
kleing@14388
   820
by (induct xs) (auto simp add: card_insert_if)
wenzelm@13114
   821
paulson@15168
   822
nipkow@15392
   823
subsubsection {* @{text filter} *}
wenzelm@13114
   824
wenzelm@13142
   825
lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys"
nipkow@13145
   826
by (induct xs) auto
wenzelm@13114
   827
nipkow@15305
   828
lemma rev_filter: "rev (filter P xs) = filter P (rev xs)"
nipkow@15305
   829
by (induct xs) simp_all
nipkow@15305
   830
wenzelm@13142
   831
lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs"
nipkow@13145
   832
by (induct xs) auto
wenzelm@13114
   833
nipkow@16998
   834
lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs"
nipkow@16998
   835
by (induct xs) (auto simp add: le_SucI)
nipkow@16998
   836
nipkow@18423
   837
lemma sum_length_filter_compl:
nipkow@18423
   838
  "length(filter P xs) + length(filter (%x. ~P x) xs) = length xs"
nipkow@18423
   839
by(induct xs) simp_all
nipkow@18423
   840
wenzelm@13142
   841
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs"
nipkow@13145
   842
by (induct xs) auto
wenzelm@13114
   843
wenzelm@13142
   844
lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []"
nipkow@13145
   845
by (induct xs) auto
wenzelm@13114
   846
nipkow@16998
   847
lemma filter_empty_conv: "(filter P xs = []) = (\<forall>x\<in>set xs. \<not> P x)" 
nipkow@16998
   848
  by (induct xs) simp_all
nipkow@16998
   849
nipkow@16998
   850
lemma filter_id_conv: "(filter P xs = xs) = (\<forall>x\<in>set xs. P x)"
nipkow@16998
   851
apply (induct xs)
nipkow@16998
   852
 apply auto
nipkow@16998
   853
apply(cut_tac P=P and xs=xs in length_filter_le)
nipkow@16998
   854
apply simp
nipkow@16998
   855
done
wenzelm@13114
   856
nipkow@16965
   857
lemma filter_map:
nipkow@16965
   858
  "filter P (map f xs) = map f (filter (P o f) xs)"
nipkow@16965
   859
by (induct xs) simp_all
nipkow@16965
   860
nipkow@16965
   861
lemma length_filter_map[simp]:
nipkow@16965
   862
  "length (filter P (map f xs)) = length(filter (P o f) xs)"
nipkow@16965
   863
by (simp add:filter_map)
nipkow@16965
   864
wenzelm@13142
   865
lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs"
nipkow@13145
   866
by auto
wenzelm@13114
   867
nipkow@15246
   868
lemma length_filter_less:
nipkow@15246
   869
  "\<lbrakk> x : set xs; ~ P x \<rbrakk> \<Longrightarrow> length(filter P xs) < length xs"
nipkow@15246
   870
proof (induct xs)
nipkow@15246
   871
  case Nil thus ?case by simp
nipkow@15246
   872
next
nipkow@15246
   873
  case (Cons x xs) thus ?case
nipkow@15246
   874
    apply (auto split:split_if_asm)
nipkow@15246
   875
    using length_filter_le[of P xs] apply arith
nipkow@15246
   876
  done
nipkow@15246
   877
qed
wenzelm@13114
   878
nipkow@15281
   879
lemma length_filter_conv_card:
nipkow@15281
   880
 "length(filter p xs) = card{i. i < length xs & p(xs!i)}"
nipkow@15281
   881
proof (induct xs)
nipkow@15281
   882
  case Nil thus ?case by simp
nipkow@15281
   883
next
nipkow@15281
   884
  case (Cons x xs)
nipkow@15281
   885
  let ?S = "{i. i < length xs & p(xs!i)}"
nipkow@15281
   886
  have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite)
nipkow@15281
   887
  show ?case (is "?l = card ?S'")
nipkow@15281
   888
  proof (cases)
nipkow@15281
   889
    assume "p x"
nipkow@15281
   890
    hence eq: "?S' = insert 0 (Suc ` ?S)"
nipkow@15281
   891
      by(auto simp add: nth_Cons image_def split:nat.split elim:lessE)
nipkow@15281
   892
    have "length (filter p (x # xs)) = Suc(card ?S)"
nipkow@15281
   893
      using Cons by simp
nipkow@15281
   894
    also have "\<dots> = Suc(card(Suc ` ?S))" using fin
nipkow@15281
   895
      by (simp add: card_image inj_Suc)
nipkow@15281
   896
    also have "\<dots> = card ?S'" using eq fin
nipkow@15281
   897
      by (simp add:card_insert_if) (simp add:image_def)
nipkow@15281
   898
    finally show ?thesis .
nipkow@15281
   899
  next
nipkow@15281
   900
    assume "\<not> p x"
nipkow@15281
   901
    hence eq: "?S' = Suc ` ?S"
nipkow@15281
   902
      by(auto simp add: nth_Cons image_def split:nat.split elim:lessE)
nipkow@15281
   903
    have "length (filter p (x # xs)) = card ?S"
nipkow@15281
   904
      using Cons by simp
nipkow@15281
   905
    also have "\<dots> = card(Suc ` ?S)" using fin
nipkow@15281
   906
      by (simp add: card_image inj_Suc)
nipkow@15281
   907
    also have "\<dots> = card ?S'" using eq fin
nipkow@15281
   908
      by (simp add:card_insert_if)
nipkow@15281
   909
    finally show ?thesis .
nipkow@15281
   910
  qed
nipkow@15281
   911
qed
nipkow@15281
   912
nipkow@17629
   913
lemma Cons_eq_filterD:
nipkow@17629
   914
 "x#xs = filter P ys \<Longrightarrow>
nipkow@17629
   915
  \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs"
wenzelm@19585
   916
  (is "_ \<Longrightarrow> \<exists>us vs. ?P ys us vs")
nipkow@17629
   917
proof(induct ys)
nipkow@17629
   918
  case Nil thus ?case by simp
nipkow@17629
   919
next
nipkow@17629
   920
  case (Cons y ys)
nipkow@17629
   921
  show ?case (is "\<exists>x. ?Q x")
nipkow@17629
   922
  proof cases
nipkow@17629
   923
    assume Py: "P y"
nipkow@17629
   924
    show ?thesis
nipkow@17629
   925
    proof cases
nipkow@17629
   926
      assume xy: "x = y"
nipkow@17629
   927
      show ?thesis
nipkow@17629
   928
      proof from Py xy Cons(2) show "?Q []" by simp qed
nipkow@17629
   929
    next
nipkow@17629
   930
      assume "x \<noteq> y" with Py Cons(2) show ?thesis by simp
nipkow@17629
   931
    qed
nipkow@17629
   932
  next
nipkow@17629
   933
    assume Py: "\<not> P y"
nipkow@17629
   934
    with Cons obtain us vs where 1 : "?P (y#ys) (y#us) vs" by fastsimp
nipkow@17629
   935
    show ?thesis (is "? us. ?Q us")
nipkow@17629
   936
    proof show "?Q (y#us)" using 1 by simp qed
nipkow@17629
   937
  qed
nipkow@17629
   938
qed
nipkow@17629
   939
nipkow@17629
   940
lemma filter_eq_ConsD:
nipkow@17629
   941
 "filter P ys = x#xs \<Longrightarrow>
nipkow@17629
   942
  \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs"
nipkow@17629
   943
by(rule Cons_eq_filterD) simp
nipkow@17629
   944
nipkow@17629
   945
lemma filter_eq_Cons_iff:
nipkow@17629
   946
 "(filter P ys = x#xs) =
nipkow@17629
   947
  (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
nipkow@17629
   948
by(auto dest:filter_eq_ConsD)
nipkow@17629
   949
nipkow@17629
   950
lemma Cons_eq_filter_iff:
nipkow@17629
   951
 "(x#xs = filter P ys) =
nipkow@17629
   952
  (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
nipkow@17629
   953
by(auto dest:Cons_eq_filterD)
nipkow@17629
   954
krauss@19770
   955
lemma filter_cong[fundef_cong, recdef_cong]:
nipkow@17501
   956
 "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> P x = Q x) \<Longrightarrow> filter P xs = filter Q ys"
nipkow@17501
   957
apply simp
nipkow@17501
   958
apply(erule thin_rl)
nipkow@17501
   959
by (induct ys) simp_all
nipkow@17501
   960
nipkow@15281
   961
nipkow@15392
   962
subsubsection {* @{text concat} *}
wenzelm@13114
   963
wenzelm@13142
   964
lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys"
nipkow@13145
   965
by (induct xs) auto
wenzelm@13114
   966
paulson@18447
   967
lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   968
by (induct xss) auto
wenzelm@13114
   969
paulson@18447
   970
lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   971
by (induct xss) auto
wenzelm@13114
   972
wenzelm@13142
   973
lemma set_concat [simp]: "set (concat xs) = \<Union>(set ` set xs)"
nipkow@13145
   974
by (induct xs) auto
wenzelm@13114
   975
wenzelm@13142
   976
lemma map_concat: "map f (concat xs) = concat (map (map f) xs)"
nipkow@13145
   977
by (induct xs) auto
wenzelm@13114
   978
wenzelm@13142
   979
lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)"
nipkow@13145
   980
by (induct xs) auto
wenzelm@13114
   981
wenzelm@13142
   982
lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))"
nipkow@13145
   983
by (induct xs) auto
wenzelm@13114
   984
wenzelm@13114
   985
nipkow@15392
   986
subsubsection {* @{text nth} *}
wenzelm@13114
   987
wenzelm@13142
   988
lemma nth_Cons_0 [simp]: "(x # xs)!0 = x"
nipkow@13145
   989
by auto
wenzelm@13114
   990
wenzelm@13142
   991
lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n"
nipkow@13145
   992
by auto
wenzelm@13114
   993
wenzelm@13142
   994
declare nth.simps [simp del]
wenzelm@13114
   995
wenzelm@13114
   996
lemma nth_append:
nipkow@13145
   997
"!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"
paulson@14208
   998
apply (induct "xs", simp)
paulson@14208
   999
apply (case_tac n, auto)
nipkow@13145
  1000
done
wenzelm@13114
  1001
nipkow@14402
  1002
lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x"
nipkow@14402
  1003
by (induct "xs") auto
nipkow@14402
  1004
nipkow@14402
  1005
lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n"
nipkow@14402
  1006
by (induct "xs") auto
nipkow@14402
  1007
wenzelm@13142
  1008
lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)"
paulson@14208
  1009
apply (induct xs, simp)
paulson@14208
  1010
apply (case_tac n, auto)
nipkow@13145
  1011
done
wenzelm@13114
  1012
nipkow@18423
  1013
lemma hd_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd xs = xs!0"
nipkow@18423
  1014
by(cases xs) simp_all
nipkow@18423
  1015
nipkow@18049
  1016
nipkow@18049
  1017
lemma list_eq_iff_nth_eq:
nipkow@18049
  1018
 "!!ys. (xs = ys) = (length xs = length ys \<and> (ALL i<length xs. xs!i = ys!i))"
nipkow@18049
  1019
apply(induct xs)
nipkow@18049
  1020
 apply simp apply blast
nipkow@18049
  1021
apply(case_tac ys)
nipkow@18049
  1022
 apply simp
nipkow@18049
  1023
apply(simp add:nth_Cons split:nat.split)apply blast
nipkow@18049
  1024
done
nipkow@18049
  1025
wenzelm@13142
  1026
lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
paulson@15251
  1027
apply (induct xs, simp, simp)
nipkow@13145
  1028
apply safe
paulson@14208
  1029
apply (rule_tac x = 0 in exI, simp)
paulson@14208
  1030
 apply (rule_tac x = "Suc i" in exI, simp)
paulson@14208
  1031
apply (case_tac i, simp)
nipkow@13145
  1032
apply (rename_tac j)
paulson@14208
  1033
apply (rule_tac x = j in exI, simp)
nipkow@13145
  1034
done
wenzelm@13114
  1035
nipkow@17501
  1036
lemma in_set_conv_nth: "(x \<in> set xs) = (\<exists>i < length xs. xs!i = x)"
nipkow@17501
  1037
by(auto simp:set_conv_nth)
nipkow@17501
  1038
nipkow@13145
  1039
lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)"
nipkow@13145
  1040
by (auto simp add: set_conv_nth)
wenzelm@13114
  1041
wenzelm@13142
  1042
lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs"
nipkow@13145
  1043
by (auto simp add: set_conv_nth)
wenzelm@13114
  1044
wenzelm@13114
  1045
lemma all_nth_imp_all_set:
nipkow@13145
  1046
"[| !i < length xs. P(xs!i); x : set xs|] ==> P x"
nipkow@13145
  1047
by (auto simp add: set_conv_nth)
wenzelm@13114
  1048
wenzelm@13114
  1049
lemma all_set_conv_all_nth:
nipkow@13145
  1050
"(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))"
nipkow@13145
  1051
by (auto simp add: set_conv_nth)
wenzelm@13114
  1052
wenzelm@13114
  1053
nipkow@15392
  1054
subsubsection {* @{text list_update} *}
wenzelm@13114
  1055
wenzelm@13142
  1056
lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs"
nipkow@13145
  1057
by (induct xs) (auto split: nat.split)
wenzelm@13114
  1058
wenzelm@13114
  1059
lemma nth_list_update:
nipkow@13145
  1060
"!!i j. i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)"
nipkow@13145
  1061
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
  1062
wenzelm@13142
  1063
lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x"
nipkow@13145
  1064
by (simp add: nth_list_update)
wenzelm@13114
  1065
wenzelm@13142
  1066
lemma nth_list_update_neq [simp]: "!!i j. i \<noteq> j ==> xs[i:=x]!j = xs!j"
nipkow@13145
  1067
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
  1068
wenzelm@13142
  1069
lemma list_update_overwrite [simp]:
nipkow@13145
  1070
"!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]"
nipkow@13145
  1071
by (induct xs) (auto split: nat.split)
wenzelm@13114
  1072
nipkow@14402
  1073
lemma list_update_id[simp]: "!!i. i < length xs ==> xs[i := xs!i] = xs"
paulson@14208
  1074
apply (induct xs, simp)
nipkow@14187
  1075
apply(simp split:nat.splits)
nipkow@14187
  1076
done
nipkow@14187
  1077
nipkow@17501
  1078
lemma list_update_beyond[simp]: "\<And>i. length xs \<le> i \<Longrightarrow> xs[i:=x] = xs"
nipkow@17501
  1079
apply (induct xs)
nipkow@17501
  1080
 apply simp
nipkow@17501
  1081
apply (case_tac i)
nipkow@17501
  1082
apply simp_all
nipkow@17501
  1083
done
nipkow@17501
  1084
wenzelm@13114
  1085
lemma list_update_same_conv:
nipkow@13145
  1086
"!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)"
nipkow@13145
  1087
by (induct xs) (auto split: nat.split)
wenzelm@13114
  1088
nipkow@14187
  1089
lemma list_update_append1:
nipkow@14187
  1090
 "!!i. i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys"
paulson@14208
  1091
apply (induct xs, simp)
nipkow@14187
  1092
apply(simp split:nat.split)
nipkow@14187
  1093
done
nipkow@14187
  1094
kleing@15868
  1095
lemma list_update_append:
kleing@15868
  1096
  "!!n. (xs @ ys) [n:= x] = 
kleing@15868
  1097
  (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))"
kleing@15868
  1098
by (induct xs) (auto split:nat.splits)
kleing@15868
  1099
nipkow@14402
  1100
lemma list_update_length [simp]:
nipkow@14402
  1101
 "(xs @ x # ys)[length xs := y] = (xs @ y # ys)"
nipkow@14402
  1102
by (induct xs, auto)
nipkow@14402
  1103
wenzelm@13114
  1104
lemma update_zip:
nipkow@13145
  1105
"!!i xy xs. length xs = length ys ==>
nipkow@13145
  1106
(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"
nipkow@13145
  1107
by (induct ys) (auto, case_tac xs, auto split: nat.split)
wenzelm@13114
  1108
wenzelm@13114
  1109
lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)"
nipkow@13145
  1110
by (induct xs) (auto split: nat.split)
wenzelm@13114
  1111
wenzelm@13114
  1112
lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A"
nipkow@13145
  1113
by (blast dest!: set_update_subset_insert [THEN subsetD])
wenzelm@13114
  1114
kleing@15868
  1115
lemma set_update_memI: "!!n. n < length xs \<Longrightarrow> x \<in> set (xs[n := x])"
kleing@15868
  1116
by (induct xs) (auto split:nat.splits)
kleing@15868
  1117
wenzelm@13114
  1118
nipkow@15392
  1119
subsubsection {* @{text last} and @{text butlast} *}
wenzelm@13114
  1120
wenzelm@13142
  1121
lemma last_snoc [simp]: "last (xs @ [x]) = x"
nipkow@13145
  1122
by (induct xs) auto
wenzelm@13114
  1123
wenzelm@13142
  1124
lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs"
nipkow@13145
  1125
by (induct xs) auto
wenzelm@13114
  1126
nipkow@14302
  1127
lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x"
nipkow@14302
  1128
by(simp add:last.simps)
nipkow@14302
  1129
nipkow@14302
  1130
lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs"
nipkow@14302
  1131
by(simp add:last.simps)
nipkow@14302
  1132
nipkow@14302
  1133
lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)"
nipkow@14302
  1134
by (induct xs) (auto)
nipkow@14302
  1135
nipkow@14302
  1136
lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs"
nipkow@14302
  1137
by(simp add:last_append)
nipkow@14302
  1138
nipkow@14302
  1139
lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys"
nipkow@14302
  1140
by(simp add:last_append)
nipkow@14302
  1141
nipkow@17762
  1142
lemma hd_rev: "xs \<noteq> [] \<Longrightarrow> hd(rev xs) = last xs"
nipkow@17762
  1143
by(rule rev_exhaust[of xs]) simp_all
nipkow@17762
  1144
nipkow@17762
  1145
lemma last_rev: "xs \<noteq> [] \<Longrightarrow> last(rev xs) = hd xs"
nipkow@17762
  1146
by(cases xs) simp_all
nipkow@17762
  1147
nipkow@17765
  1148
lemma last_in_set[simp]: "as \<noteq> [] \<Longrightarrow> last as \<in> set as"
nipkow@17765
  1149
by (induct as) auto
nipkow@17762
  1150
wenzelm@13142
  1151
lemma length_butlast [simp]: "length (butlast xs) = length xs - 1"
nipkow@13145
  1152
by (induct xs rule: rev_induct) auto
wenzelm@13114
  1153
wenzelm@13114
  1154
lemma butlast_append:
nipkow@13145
  1155
"!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)"
nipkow@13145
  1156
by (induct xs) auto
wenzelm@13114
  1157
wenzelm@13142
  1158
lemma append_butlast_last_id [simp]:
nipkow@13145
  1159
"xs \<noteq> [] ==> butlast xs @ [last xs] = xs"
nipkow@13145
  1160
by (induct xs) auto
wenzelm@13114
  1161
wenzelm@13142
  1162
lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs"
nipkow@13145
  1163
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
  1164
wenzelm@13114
  1165
lemma in_set_butlast_appendI:
nipkow@13145
  1166
"x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))"
nipkow@13145
  1167
by (auto dest: in_set_butlastD simp add: butlast_append)
wenzelm@13114
  1168
nipkow@17501
  1169
lemma last_drop[simp]: "!!n. n < length xs \<Longrightarrow> last (drop n xs) = last xs"
nipkow@17501
  1170
apply (induct xs)
nipkow@17501
  1171
 apply simp
nipkow@17501
  1172
apply (auto split:nat.split)
nipkow@17501
  1173
done
nipkow@17501
  1174
nipkow@17589
  1175
lemma last_conv_nth: "xs\<noteq>[] \<Longrightarrow> last xs = xs!(length xs - 1)"
nipkow@17589
  1176
by(induct xs)(auto simp:neq_Nil_conv)
nipkow@17589
  1177
nipkow@15392
  1178
subsubsection {* @{text take} and @{text drop} *}
wenzelm@13114
  1179
wenzelm@13142
  1180
lemma take_0 [simp]: "take 0 xs = []"
nipkow@13145
  1181
by (induct xs) auto
wenzelm@13114
  1182
wenzelm@13142
  1183
lemma drop_0 [simp]: "drop 0 xs = xs"
nipkow@13145
  1184
by (induct xs) auto
wenzelm@13114
  1185
wenzelm@13142
  1186
lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs"
nipkow@13145
  1187
by simp
wenzelm@13114
  1188
wenzelm@13142
  1189
lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs"
nipkow@13145
  1190
by simp
wenzelm@13114
  1191
wenzelm@13142
  1192
declare take_Cons [simp del] and drop_Cons [simp del]
wenzelm@13114
  1193
nipkow@15110
  1194
lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)"
nipkow@15110
  1195
by(clarsimp simp add:neq_Nil_conv)
nipkow@15110
  1196
nipkow@14187
  1197
lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)"
nipkow@14187
  1198
by(cases xs, simp_all)
nipkow@14187
  1199
nipkow@14187
  1200
lemma drop_tl: "!!n. drop n (tl xs) = tl(drop n xs)"
nipkow@14187
  1201
by(induct xs, simp_all add:drop_Cons drop_Suc split:nat.split)
nipkow@14187
  1202
nipkow@14187
  1203
lemma nth_via_drop: "!!n. drop n xs = y#ys \<Longrightarrow> xs!n = y"
paulson@14208
  1204
apply (induct xs, simp)
nipkow@14187
  1205
apply(simp add:drop_Cons nth_Cons split:nat.splits)
nipkow@14187
  1206
done
nipkow@14187
  1207
nipkow@13913
  1208
lemma take_Suc_conv_app_nth:
nipkow@13913
  1209
 "!!i. i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]"
paulson@14208
  1210
apply (induct xs, simp)
paulson@14208
  1211
apply (case_tac i, auto)
nipkow@13913
  1212
done
nipkow@13913
  1213
mehta@14591
  1214
lemma drop_Suc_conv_tl:
mehta@14591
  1215
  "!!i. i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs"
mehta@14591
  1216
apply (induct xs, simp)
mehta@14591
  1217
apply (case_tac i, auto)
mehta@14591
  1218
done
mehta@14591
  1219
wenzelm@13142
  1220
lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n"
nipkow@13145
  1221
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1222
wenzelm@13142
  1223
lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)"
nipkow@13145
  1224
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1225
wenzelm@13142
  1226
lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs"
nipkow@13145
  1227
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1228
wenzelm@13142
  1229
lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []"
nipkow@13145
  1230
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1231
wenzelm@13142
  1232
lemma take_append [simp]:
nipkow@13145
  1233
"!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"
nipkow@13145
  1234
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1235
wenzelm@13142
  1236
lemma drop_append [simp]:
nipkow@13145
  1237
"!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys"
nipkow@13145
  1238
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1239
wenzelm@13142
  1240
lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs"
paulson@14208
  1241
apply (induct m, auto)
paulson@14208
  1242
apply (case_tac xs, auto)
nipkow@15236
  1243
apply (case_tac n, auto)
nipkow@13145
  1244
done
wenzelm@13114
  1245
wenzelm@13142
  1246
lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs"
paulson@14208
  1247
apply (induct m, auto)
paulson@14208
  1248
apply (case_tac xs, auto)
nipkow@13145
  1249
done
wenzelm@13114
  1250
wenzelm@13114
  1251
lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)"
paulson@14208
  1252
apply (induct m, auto)
paulson@14208
  1253
apply (case_tac xs, auto)
nipkow@13145
  1254
done
wenzelm@13114
  1255
nipkow@14802
  1256
lemma drop_take: "!!m n. drop n (take m xs) = take (m-n) (drop n xs)"
nipkow@14802
  1257
apply(induct xs)
nipkow@14802
  1258
 apply simp
nipkow@14802
  1259
apply(simp add: take_Cons drop_Cons split:nat.split)
nipkow@14802
  1260
done
nipkow@14802
  1261
wenzelm@13142
  1262
lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs"
paulson@14208
  1263
apply (induct n, auto)
paulson@14208
  1264
apply (case_tac xs, auto)
nipkow@13145
  1265
done
wenzelm@13114
  1266
nipkow@15110
  1267
lemma take_eq_Nil[simp]: "!!n. (take n xs = []) = (n = 0 \<or> xs = [])"
nipkow@15110
  1268
apply(induct xs)
nipkow@15110
  1269
 apply simp
nipkow@15110
  1270
apply(simp add:take_Cons split:nat.split)
nipkow@15110
  1271
done
nipkow@15110
  1272
nipkow@15110
  1273
lemma drop_eq_Nil[simp]: "!!n. (drop n xs = []) = (length xs <= n)"
nipkow@15110
  1274
apply(induct xs)
nipkow@15110
  1275
apply simp
nipkow@15110
  1276
apply(simp add:drop_Cons split:nat.split)
nipkow@15110
  1277
done
nipkow@15110
  1278
wenzelm@13114
  1279
lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)"
paulson@14208
  1280
apply (induct n, auto)
paulson@14208
  1281
apply (case_tac xs, auto)
nipkow@13145
  1282
done
wenzelm@13114
  1283
wenzelm@13142
  1284
lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)"
paulson@14208
  1285
apply (induct n, auto)
paulson@14208
  1286
apply (case_tac xs, auto)
nipkow@13145
  1287
done
wenzelm@13114
  1288
wenzelm@13114
  1289
lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)"
paulson@14208
  1290
apply (induct xs, auto)
paulson@14208
  1291
apply (case_tac i, auto)
nipkow@13145
  1292
done
wenzelm@13114
  1293
wenzelm@13114
  1294
lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)"
paulson@14208
  1295
apply (induct xs, auto)
paulson@14208
  1296
apply (case_tac i, auto)
nipkow@13145
  1297
done
wenzelm@13114
  1298
wenzelm@13142
  1299
lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i"
paulson@14208
  1300
apply (induct xs, auto)
paulson@14208
  1301
apply (case_tac n, blast)
paulson@14208
  1302
apply (case_tac i, auto)
nipkow@13145
  1303
done
wenzelm@13114
  1304
wenzelm@13142
  1305
lemma nth_drop [simp]:
nipkow@13145
  1306
"!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)"
paulson@14208
  1307
apply (induct n, auto)
paulson@14208
  1308
apply (case_tac xs, auto)
nipkow@13145
  1309
done
nipkow@3507
  1310
nipkow@18423
  1311
lemma hd_drop_conv_nth: "\<lbrakk> xs \<noteq> []; n < length xs \<rbrakk> \<Longrightarrow> hd(drop n xs) = xs!n"
nipkow@18423
  1312
by(simp add: hd_conv_nth)
nipkow@18423
  1313
nipkow@14025
  1314
lemma set_take_subset: "\<And>n. set(take n xs) \<subseteq> set xs"
nipkow@14025
  1315
by(induct xs)(auto simp:take_Cons split:nat.split)
nipkow@14025
  1316
nipkow@14025
  1317
lemma set_drop_subset: "\<And>n. set(drop n xs) \<subseteq> set xs"
nipkow@14025
  1318
by(induct xs)(auto simp:drop_Cons split:nat.split)
nipkow@14025
  1319
nipkow@14187
  1320
lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs"
nipkow@14187
  1321
using set_take_subset by fast
nipkow@14187
  1322
nipkow@14187
  1323
lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs"
nipkow@14187
  1324
using set_drop_subset by fast
nipkow@14187
  1325
wenzelm@13114
  1326
lemma append_eq_conv_conj:
nipkow@13145
  1327
"!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)"
paulson@14208
  1328
apply (induct xs, simp, clarsimp)
paulson@14208
  1329
apply (case_tac zs, auto)
nipkow@13145
  1330
done
wenzelm@13142
  1331
paulson@14050
  1332
lemma take_add [rule_format]: 
paulson@14050
  1333
    "\<forall>i. i+j \<le> length(xs) --> take (i+j) xs = take i xs @ take j (drop i xs)"
paulson@14050
  1334
apply (induct xs, auto) 
paulson@14050
  1335
apply (case_tac i, simp_all) 
paulson@14050
  1336
done
paulson@14050
  1337
nipkow@14300
  1338
lemma append_eq_append_conv_if:
nipkow@14300
  1339
 "!! ys\<^isub>1. (xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) =
nipkow@14300
  1340
  (if size xs\<^isub>1 \<le> size ys\<^isub>1
nipkow@14300
  1341
   then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2
nipkow@14300
  1342
   else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)"
nipkow@14300
  1343
apply(induct xs\<^isub>1)
nipkow@14300
  1344
 apply simp
nipkow@14300
  1345
apply(case_tac ys\<^isub>1)
nipkow@14300
  1346
apply simp_all
nipkow@14300
  1347
done
nipkow@14300
  1348
nipkow@15110
  1349
lemma take_hd_drop:
nipkow@15110
  1350
  "!!n. n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (n+1) xs"
nipkow@15110
  1351
apply(induct xs)
nipkow@15110
  1352
apply simp
nipkow@15110
  1353
apply(simp add:drop_Cons split:nat.split)
nipkow@15110
  1354
done
nipkow@15110
  1355
nipkow@17501
  1356
lemma id_take_nth_drop:
nipkow@17501
  1357
 "i < length xs \<Longrightarrow> xs = take i xs @ xs!i # drop (Suc i) xs" 
nipkow@17501
  1358
proof -
nipkow@17501
  1359
  assume si: "i < length xs"
nipkow@17501
  1360
  hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto
nipkow@17501
  1361
  moreover
nipkow@17501
  1362
  from si have "take (Suc i) xs = take i xs @ [xs!i]"
nipkow@17501
  1363
    apply (rule_tac take_Suc_conv_app_nth) by arith
nipkow@17501
  1364
  ultimately show ?thesis by auto
nipkow@17501
  1365
qed
nipkow@17501
  1366
  
nipkow@17501
  1367
lemma upd_conv_take_nth_drop:
nipkow@17501
  1368
 "i < length xs \<Longrightarrow> xs[i:=a] = take i xs @ a # drop (Suc i) xs"
nipkow@17501
  1369
proof -
nipkow@17501
  1370
  assume i: "i < length xs"
nipkow@17501
  1371
  have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]"
nipkow@17501
  1372
    by(rule arg_cong[OF id_take_nth_drop[OF i]])
nipkow@17501
  1373
  also have "\<dots> = take i xs @ a # drop (Suc i) xs"
nipkow@17501
  1374
    using i by (simp add: list_update_append)
nipkow@17501
  1375
  finally show ?thesis .
nipkow@17501
  1376
qed
nipkow@17501
  1377
wenzelm@13114
  1378
nipkow@15392
  1379
subsubsection {* @{text takeWhile} and @{text dropWhile} *}
wenzelm@13114
  1380
wenzelm@13142
  1381
lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs"
nipkow@13145
  1382
by (induct xs) auto
wenzelm@13114
  1383
wenzelm@13142
  1384
lemma takeWhile_append1 [simp]:
nipkow@13145
  1385
"[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs"
nipkow@13145
  1386
by (induct xs) auto
wenzelm@13114
  1387
wenzelm@13142
  1388
lemma takeWhile_append2 [simp]:
nipkow@13145
  1389
"(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys"
nipkow@13145
  1390
by (induct xs) auto
wenzelm@13114
  1391
wenzelm@13142
  1392
lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs"
nipkow@13145
  1393
by (induct xs) auto
wenzelm@13114
  1394
wenzelm@13142
  1395
lemma dropWhile_append1 [simp]:
nipkow@13145
  1396
"[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"
nipkow@13145
  1397
by (induct xs) auto
wenzelm@13114
  1398
wenzelm@13142
  1399
lemma dropWhile_append2 [simp]:
nipkow@13145
  1400
"(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys"
nipkow@13145
  1401
by (induct xs) auto
wenzelm@13114
  1402
wenzelm@13142
  1403
lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x"
nipkow@13145
  1404
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
  1405
nipkow@13913
  1406
lemma takeWhile_eq_all_conv[simp]:
nipkow@13913
  1407
 "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
  1408
by(induct xs, auto)
nipkow@13913
  1409
nipkow@13913
  1410
lemma dropWhile_eq_Nil_conv[simp]:
nipkow@13913
  1411
 "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
  1412
by(induct xs, auto)
nipkow@13913
  1413
nipkow@13913
  1414
lemma dropWhile_eq_Cons_conv:
nipkow@13913
  1415
 "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)"
nipkow@13913
  1416
by(induct xs, auto)
nipkow@13913
  1417
nipkow@17501
  1418
text{* The following two lemmmas could be generalized to an arbitrary
nipkow@17501
  1419
property. *}
nipkow@17501
  1420
nipkow@17501
  1421
lemma takeWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
nipkow@17501
  1422
 takeWhile (\<lambda>y. y \<noteq> x) (rev xs) = rev (tl (dropWhile (\<lambda>y. y \<noteq> x) xs))"
nipkow@17501
  1423
by(induct xs) (auto simp: takeWhile_tail[where l="[]"])
nipkow@17501
  1424
nipkow@17501
  1425
lemma dropWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
nipkow@17501
  1426
  dropWhile (\<lambda>y. y \<noteq> x) (rev xs) = x # rev (takeWhile (\<lambda>y. y \<noteq> x) xs)"
nipkow@17501
  1427
apply(induct xs)
nipkow@17501
  1428
 apply simp
nipkow@17501
  1429
apply auto
nipkow@17501
  1430
apply(subst dropWhile_append2)
nipkow@17501
  1431
apply auto
nipkow@17501
  1432
done
nipkow@17501
  1433
nipkow@18423
  1434
lemma takeWhile_not_last:
nipkow@18423
  1435
 "\<lbrakk> xs \<noteq> []; distinct xs\<rbrakk> \<Longrightarrow> takeWhile (\<lambda>y. y \<noteq> last xs) xs = butlast xs"
nipkow@18423
  1436
apply(induct xs)
nipkow@18423
  1437
 apply simp
nipkow@18423
  1438
apply(case_tac xs)
nipkow@18423
  1439
apply(auto)
nipkow@18423
  1440
done
nipkow@18423
  1441
krauss@19770
  1442
lemma takeWhile_cong [fundef_cong, recdef_cong]:
krauss@18336
  1443
  "[| l = k; !!x. x : set l ==> P x = Q x |] 
krauss@18336
  1444
  ==> takeWhile P l = takeWhile Q k"
wenzelm@20503
  1445
  by (induct k arbitrary: l) (simp_all)
krauss@18336
  1446
krauss@19770
  1447
lemma dropWhile_cong [fundef_cong, recdef_cong]:
krauss@18336
  1448
  "[| l = k; !!x. x : set l ==> P x = Q x |] 
krauss@18336
  1449
  ==> dropWhile P l = dropWhile Q k"
wenzelm@20503
  1450
  by (induct k arbitrary: l, simp_all)
krauss@18336
  1451
wenzelm@13114
  1452
nipkow@15392
  1453
subsubsection {* @{text zip} *}
wenzelm@13114
  1454
wenzelm@13142
  1455
lemma zip_Nil [simp]: "zip [] ys = []"
nipkow@13145
  1456
by (induct ys) auto
wenzelm@13114
  1457
wenzelm@13142
  1458
lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
nipkow@13145
  1459
by simp
wenzelm@13114
  1460
wenzelm@13142
  1461
declare zip_Cons [simp del]
wenzelm@13114
  1462
nipkow@15281
  1463
lemma zip_Cons1:
nipkow@15281
  1464
 "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)"
nipkow@15281
  1465
by(auto split:list.split)
nipkow@15281
  1466
wenzelm@13142
  1467
lemma length_zip [simp]:
krauss@22493
  1468
"length (zip xs ys) = min (length xs) (length ys)"
krauss@22493
  1469
by (induct xs ys rule:list_induct2') auto
wenzelm@13114
  1470
wenzelm@13114
  1471
lemma zip_append1:
krauss@22493
  1472
"zip (xs @ ys) zs =
nipkow@13145
  1473
zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"
krauss@22493
  1474
by (induct xs zs rule:list_induct2') auto
wenzelm@13114
  1475
wenzelm@13114
  1476
lemma zip_append2:
krauss@22493
  1477
"zip xs (ys @ zs) =
nipkow@13145
  1478
zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"
krauss@22493
  1479
by (induct xs ys rule:list_induct2') auto
wenzelm@13114
  1480
wenzelm@13142
  1481
lemma zip_append [simp]:
wenzelm@13142
  1482
 "[| length xs = length us; length ys = length vs |] ==>
nipkow@13145
  1483
zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"
nipkow@13145
  1484
by (simp add: zip_append1)
wenzelm@13114
  1485
wenzelm@13114
  1486
lemma zip_rev:
nipkow@14247
  1487
"length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)"
nipkow@14247
  1488
by (induct rule:list_induct2, simp_all)
wenzelm@13114
  1489
nipkow@23096
  1490
lemma map_zip_map:
nipkow@23096
  1491
 "map f (zip (map g xs) ys) = map (%(x,y). f(g x, y)) (zip xs ys)"
nipkow@23096
  1492
apply(induct xs arbitrary:ys) apply simp
nipkow@23096
  1493
apply(case_tac ys)
nipkow@23096
  1494
apply simp_all
nipkow@23096
  1495
done
nipkow@23096
  1496
nipkow@23096
  1497
lemma map_zip_map2:
nipkow@23096
  1498
 "map f (zip xs (map g ys)) = map (%(x,y). f(x, g y)) (zip xs ys)"
nipkow@23096
  1499
apply(induct xs arbitrary:ys) apply simp
nipkow@23096
  1500
apply(case_tac ys)
nipkow@23096
  1501
apply simp_all
nipkow@23096
  1502
done
nipkow@23096
  1503
wenzelm@13142
  1504
lemma nth_zip [simp]:
nipkow@13145
  1505
"!!i xs. [| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)"
paulson@14208
  1506
apply (induct ys, simp)
nipkow@13145
  1507
apply (case_tac xs)
nipkow@13145
  1508
 apply (simp_all add: nth.simps split: nat.split)
nipkow@13145
  1509
done
wenzelm@13114
  1510
wenzelm@13114
  1511
lemma set_zip:
nipkow@13145
  1512
"set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
nipkow@13145
  1513
by (simp add: set_conv_nth cong: rev_conj_cong)
wenzelm@13114
  1514
wenzelm@13114
  1515
lemma zip_update:
nipkow@13145
  1516
"length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
nipkow@13145
  1517
by (rule sym, simp add: update_zip)
wenzelm@13114
  1518
wenzelm@13142
  1519
lemma zip_replicate [simp]:
nipkow@13145
  1520
"!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"
paulson@14208
  1521
apply (induct i, auto)
paulson@14208
  1522
apply (case_tac j, auto)
nipkow@13145
  1523
done
wenzelm@13114
  1524
nipkow@19487
  1525
lemma take_zip:
nipkow@19487
  1526
 "!!xs ys. take n (zip xs ys) = zip (take n xs) (take n ys)"
nipkow@19487
  1527
apply (induct n)
nipkow@19487
  1528
 apply simp
nipkow@19487
  1529
apply (case_tac xs, simp)
nipkow@19487
  1530
apply (case_tac ys, simp_all)
nipkow@19487
  1531
done
nipkow@19487
  1532
nipkow@19487
  1533
lemma drop_zip:
nipkow@19487
  1534
 "!!xs ys. drop n (zip xs ys) = zip (drop n xs) (drop n ys)"
nipkow@19487
  1535
apply (induct n)
nipkow@19487
  1536
 apply simp
nipkow@19487
  1537
apply (case_tac xs, simp)
nipkow@19487
  1538
apply (case_tac ys, simp_all)
nipkow@19487
  1539
done
nipkow@19487
  1540
krauss@22493
  1541
lemma set_zip_leftD:
krauss@22493
  1542
  "(x,y)\<in> set (zip xs ys) \<Longrightarrow> x \<in> set xs"
krauss@22493
  1543
by (induct xs ys rule:list_induct2') auto
krauss@22493
  1544
krauss@22493
  1545
lemma set_zip_rightD:
krauss@22493
  1546
  "(x,y)\<in> set (zip xs ys) \<Longrightarrow> y \<in> set ys"
krauss@22493
  1547
by (induct xs ys rule:list_induct2') auto
wenzelm@13142
  1548
nipkow@15392
  1549
subsubsection {* @{text list_all2} *}
wenzelm@13114
  1550
kleing@14316
  1551
lemma list_all2_lengthD [intro?]: 
kleing@14316
  1552
  "list_all2 P xs ys ==> length xs = length ys"
haftmann@19607
  1553
  by (simp add: list_all2_def)
haftmann@19607
  1554
haftmann@19787
  1555
lemma list_all2_Nil [iff, code]: "list_all2 P [] ys = (ys = [])"
haftmann@19607
  1556
  by (simp add: list_all2_def)
haftmann@19607
  1557
haftmann@19787
  1558
lemma list_all2_Nil2 [iff, code]: "list_all2 P xs [] = (xs = [])"
haftmann@19787
  1559
  by (simp add: list_all2_def)
haftmann@19607
  1560
haftmann@19607
  1561
lemma list_all2_Cons [iff, code]:
haftmann@19607
  1562
  "list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)"
haftmann@19607
  1563
  by (auto simp add: list_all2_def)
wenzelm@13114
  1564
wenzelm@13114
  1565
lemma list_all2_Cons1:
nipkow@13145
  1566
"list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)"
nipkow@13145
  1567
by (cases ys) auto
wenzelm@13114
  1568
wenzelm@13114
  1569
lemma list_all2_Cons2:
nipkow@13145
  1570
"list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)"
nipkow@13145
  1571
by (cases xs) auto
wenzelm@13114
  1572
wenzelm@13142
  1573
lemma list_all2_rev [iff]:
nipkow@13145
  1574
"list_all2 P (rev xs) (rev ys) = list_all2 P xs ys"
nipkow@13145
  1575
by (simp add: list_all2_def zip_rev cong: conj_cong)
wenzelm@13114
  1576
kleing@13863
  1577
lemma list_all2_rev1:
kleing@13863
  1578
"list_all2 P (rev xs) ys = list_all2 P xs (rev ys)"
kleing@13863
  1579
by (subst list_all2_rev [symmetric]) simp
kleing@13863
  1580
wenzelm@13114
  1581
lemma list_all2_append1:
nipkow@13145
  1582
"list_all2 P (xs @ ys) zs =
nipkow@13145
  1583
(EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and>
nipkow@13145
  1584
list_all2 P xs us \<and> list_all2 P ys vs)"
nipkow@13145
  1585
apply (simp add: list_all2_def zip_append1)
nipkow@13145
  1586
apply (rule iffI)
nipkow@13145
  1587
 apply (rule_tac x = "take (length xs) zs" in exI)
nipkow@13145
  1588
 apply (rule_tac x = "drop (length xs) zs" in exI)
paulson@14208
  1589
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1590
apply (simp add: ball_Un)
nipkow@13145
  1591
done
wenzelm@13114
  1592
wenzelm@13114
  1593
lemma list_all2_append2:
nipkow@13145
  1594
"list_all2 P xs (ys @ zs) =
nipkow@13145
  1595
(EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and>
nipkow@13145
  1596
list_all2 P us ys \<and> list_all2 P vs zs)"
nipkow@13145
  1597
apply (simp add: list_all2_def zip_append2)
nipkow@13145
  1598
apply (rule iffI)
nipkow@13145
  1599
 apply (rule_tac x = "take (length ys) xs" in exI)
nipkow@13145
  1600
 apply (rule_tac x = "drop (length ys) xs" in exI)
paulson@14208
  1601
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1602
apply (simp add: ball_Un)
nipkow@13145
  1603
done
wenzelm@13114
  1604
kleing@13863
  1605
lemma list_all2_append:
nipkow@14247
  1606
  "length xs = length ys \<Longrightarrow>
nipkow@14247
  1607
  list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)"
nipkow@14247
  1608
by (induct rule:list_induct2, simp_all)
kleing@13863
  1609
kleing@13863
  1610
lemma list_all2_appendI [intro?, trans]:
kleing@13863
  1611
  "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)"
kleing@13863
  1612
  by (simp add: list_all2_append list_all2_lengthD)
kleing@13863
  1613
wenzelm@13114
  1614
lemma list_all2_conv_all_nth:
nipkow@13145
  1615
"list_all2 P xs ys =
nipkow@13145
  1616
(length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))"
nipkow@13145
  1617
by (force simp add: list_all2_def set_zip)
wenzelm@13114
  1618
berghofe@13883
  1619
lemma list_all2_trans:
berghofe@13883
  1620
  assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c"
berghofe@13883
  1621
  shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs"
berghofe@13883
  1622
        (is "!!bs cs. PROP ?Q as bs cs")
berghofe@13883
  1623
proof (induct as)
berghofe@13883
  1624
  fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs"
berghofe@13883
  1625
  show "!!cs. PROP ?Q (x # xs) bs cs"
berghofe@13883
  1626
  proof (induct bs)
berghofe@13883
  1627
    fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs"
berghofe@13883
  1628
    show "PROP ?Q (x # xs) (y # ys) cs"
berghofe@13883
  1629
      by (induct cs) (auto intro: tr I1 I2)
berghofe@13883
  1630
  qed simp
berghofe@13883
  1631
qed simp
berghofe@13883
  1632
kleing@13863
  1633
lemma list_all2_all_nthI [intro?]:
kleing@13863
  1634
  "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b"
kleing@13863
  1635
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1636
paulson@14395
  1637
lemma list_all2I:
paulson@14395
  1638
  "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b"
paulson@14395
  1639
  by (simp add: list_all2_def)
paulson@14395
  1640
kleing@14328
  1641
lemma list_all2_nthD:
kleing@13863
  1642
  "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
kleing@13863
  1643
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1644
nipkow@14302
  1645
lemma list_all2_nthD2:
nipkow@14302
  1646
  "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
nipkow@14302
  1647
  by (frule list_all2_lengthD) (auto intro: list_all2_nthD)
nipkow@14302
  1648
kleing@13863
  1649
lemma list_all2_map1: 
kleing@13863
  1650
  "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs"
kleing@13863
  1651
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1652
kleing@13863
  1653
lemma list_all2_map2: 
kleing@13863
  1654
  "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs"
kleing@13863
  1655
  by (auto simp add: list_all2_conv_all_nth)
kleing@13863
  1656
kleing@14316
  1657
lemma list_all2_refl [intro?]:
kleing@13863
  1658
  "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs"
kleing@13863
  1659
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1660
kleing@13863
  1661
lemma list_all2_update_cong:
kleing@13863
  1662
  "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1663
  by (simp add: list_all2_conv_all_nth nth_list_update)
kleing@13863
  1664
kleing@13863
  1665
lemma list_all2_update_cong2:
kleing@13863
  1666
  "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1667
  by (simp add: list_all2_lengthD list_all2_update_cong)
kleing@13863
  1668
nipkow@14302
  1669
lemma list_all2_takeI [simp,intro?]:
nipkow@14302
  1670
  "\<And>n ys. list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)"
nipkow@14302
  1671
  apply (induct xs)
nipkow@14302
  1672
   apply simp
nipkow@14302
  1673
  apply (clarsimp simp add: list_all2_Cons1)
nipkow@14302
  1674
  apply (case_tac n)
nipkow@14302
  1675
  apply auto
nipkow@14302
  1676
  done
nipkow@14302
  1677
nipkow@14302
  1678
lemma list_all2_dropI [simp,intro?]:
kleing@13863
  1679
  "\<And>n bs. list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)"
paulson@14208
  1680
  apply (induct as, simp)
kleing@13863
  1681
  apply (clarsimp simp add: list_all2_Cons1)
paulson@14208
  1682
  apply (case_tac n, simp, simp)
kleing@13863
  1683
  done
kleing@13863
  1684
kleing@14327
  1685
lemma list_all2_mono [intro?]:
kleing@13863
  1686
  "\<And>y. list_all2 P x y \<Longrightarrow> (\<And>x y. P x y \<Longrightarrow> Q x y) \<Longrightarrow> list_all2 Q x y"
paulson@14208
  1687
  apply (induct x, simp)
paulson@14208
  1688
  apply (case_tac y, auto)
kleing@13863
  1689
  done
kleing@13863
  1690
haftmann@22551
  1691
lemma list_all2_eq:
haftmann@22551
  1692
  "xs = ys \<longleftrightarrow> list_all2 (op =) xs ys"
haftmann@22551
  1693
  by (induct xs ys rule: list_induct2') auto
haftmann@22551
  1694
wenzelm@13142
  1695
nipkow@15392
  1696
subsubsection {* @{text foldl} and @{text foldr} *}
wenzelm@13142
  1697
wenzelm@13142
  1698
lemma foldl_append [simp]:
nipkow@13145
  1699
"!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
nipkow@13145
  1700
by (induct xs) auto
wenzelm@13142
  1701
nipkow@14402
  1702
lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)"
nipkow@14402
  1703
by (induct xs) auto
nipkow@14402
  1704
nipkow@23096
  1705
lemma foldr_map: "foldr g (map f xs) a = foldr (g o f) xs a"
nipkow@23096
  1706
by(induct xs) simp_all
nipkow@23096
  1707
nipkow@23096
  1708
lemma foldl_map: "foldl g a (map f xs) = foldl (%a x. g a (f x)) a xs"
nipkow@23096
  1709
by(induct xs arbitrary:a) simp_all
nipkow@23096
  1710
krauss@19770
  1711
lemma foldl_cong [fundef_cong, recdef_cong]:
krauss@18336
  1712
  "[| a = b; l = k; !!a x. x : set l ==> f a x = g a x |] 
krauss@18336
  1713
  ==> foldl f a l = foldl g b k"
wenzelm@20503
  1714
  by (induct k arbitrary: a b l) simp_all
krauss@18336
  1715
krauss@19770
  1716
lemma foldr_cong [fundef_cong, recdef_cong]:
krauss@18336
  1717
  "[| a = b; l = k; !!a x. x : set l ==> f x a = g x a |] 
krauss@18336
  1718
  ==> foldr f l a = foldr g k b"
wenzelm@20503
  1719
  by (induct k arbitrary: a b l) simp_all
krauss@18336
  1720
nipkow@23096
  1721
text{* The ``First Duality Theorem'' in Bird \& Wadler: *}
nipkow@23096
  1722
nipkow@23096
  1723
lemma foldl_foldr1_lemma:
nipkow@23096
  1724
 "foldl op + a xs = a + foldr op + xs (0\<Colon>'a::monoid_add)"
nipkow@23096
  1725
by (induct xs arbitrary: a) (auto simp:add_assoc)
nipkow@23096
  1726
nipkow@23096
  1727
corollary foldl_foldr1:
nipkow@23096
  1728
 "foldl op + 0 xs = foldr op + xs (0\<Colon>'a::monoid_add)"
nipkow@23096
  1729
by (simp add:foldl_foldr1_lemma)
nipkow@23096
  1730
nipkow@23096
  1731
nipkow@23096
  1732
text{* The ``Third Duality Theorem'' in Bird \& Wadler: *}
nipkow@23096
  1733
nipkow@14402
  1734
lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)"
nipkow@14402
  1735
by (induct xs) auto
nipkow@14402
  1736
nipkow@14402
  1737
lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a"
nipkow@14402
  1738
by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"])
nipkow@14402
  1739
wenzelm@13142
  1740
text {*
nipkow@13145
  1741
Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
nipkow@13145
  1742
difficult to use because it requires an additional transitivity step.
wenzelm@13142
  1743
*}
wenzelm@13142
  1744
wenzelm@13142
  1745
lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns"
nipkow@13145
  1746
by (induct ns) auto
wenzelm@13142
  1747
wenzelm@13142
  1748
lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns"
nipkow@13145
  1749
by (force intro: start_le_sum simp add: in_set_conv_decomp)
wenzelm@13142
  1750
wenzelm@13142
  1751
lemma sum_eq_0_conv [iff]:
nipkow@13145
  1752
"!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))"
nipkow@13145
  1753
by (induct ns) auto
wenzelm@13114
  1754
nipkow@23096
  1755
subsubsection {* List summation: @{const listsum} and @{text"\<Sum>"}*}
nipkow@23096
  1756
nipkow@23096
  1757
lemma listsum_foldr:
nipkow@23096
  1758
 "listsum xs = foldr (op +) xs 0"
nipkow@23096
  1759
by(induct xs) auto
nipkow@23096
  1760
nipkow@23096
  1761
(* for efficient code generation *)
nipkow@23096
  1762
lemma listsum[code]: "listsum xs = foldl (op +) 0 xs"
nipkow@23096
  1763
by(simp add:listsum_foldr foldl_foldr1)
nipkow@23096
  1764
nipkow@23096
  1765
text{* Some syntactic sugar for summing a function over a list: *}
nipkow@23096
  1766
nipkow@23096
  1767
syntax
nipkow@23096
  1768
  "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3SUM _<-_. _)" [0, 51, 10] 10)
nipkow@23096
  1769
syntax (xsymbols)
nipkow@23096
  1770
  "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
nipkow@23096
  1771
syntax (HTML output)
nipkow@23096
  1772
  "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
nipkow@23096
  1773
nipkow@23096
  1774
translations -- {* Beware of argument permutation! *}
nipkow@23096
  1775
  "SUM x<-xs. b" == "CONST listsum (map (%x. b) xs)"
nipkow@23096
  1776
  "\<Sum>x\<leftarrow>xs. b" == "CONST listsum (map (%x. b) xs)"
nipkow@23096
  1777
nipkow@23096
  1778
lemma listsum_0 [simp]: "(\<Sum>x\<leftarrow>xs. 0) = 0"
nipkow@23096
  1779
by (induct xs) simp_all
nipkow@23096
  1780
nipkow@23096
  1781
text{* For non-Abelian groups @{text xs} needs to be reversed on one side: *}
nipkow@23096
  1782
lemma uminus_listsum_map:
nipkow@23096
  1783
 "- listsum (map f xs) = (listsum (map (uminus o f) xs) :: 'a::ab_group_add)"
nipkow@23096
  1784
by(induct xs) simp_all
nipkow@23096
  1785
wenzelm@13114
  1786
nipkow@15392
  1787
subsubsection {* @{text upto} *}
wenzelm@13114
  1788
nipkow@17090
  1789
lemma upt_rec[code]: "[i..<j] = (if i<j then i#[Suc i..<j] else [])"
nipkow@17090
  1790
-- {* simp does not terminate! *}
nipkow@13145
  1791
by (induct j) auto
wenzelm@13142
  1792
nipkow@15425
  1793
lemma upt_conv_Nil [simp]: "j <= i ==> [i..<j] = []"
nipkow@13145
  1794
by (subst upt_rec) simp
wenzelm@13114
  1795
nipkow@15425
  1796
lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j <= i)"
nipkow@15281
  1797
by(induct j)simp_all
nipkow@15281
  1798
nipkow@15281
  1799
lemma upt_eq_Cons_conv:
nipkow@15425
  1800
 "!!x xs. ([i..<j] = x#xs) = (i < j & i = x & [i+1..<j] = xs)"
nipkow@15281
  1801
apply(induct j)
nipkow@15281
  1802
 apply simp
nipkow@15281
  1803
apply(clarsimp simp add: append_eq_Cons_conv)
nipkow@15281
  1804
apply arith
nipkow@15281
  1805
done
nipkow@15281
  1806
nipkow@15425
  1807
lemma upt_Suc_append: "i <= j ==> [i..<(Suc j)] = [i..<j]@[j]"
nipkow@13145
  1808
-- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
nipkow@13145
  1809
by simp
wenzelm@13114
  1810
nipkow@15425
  1811
lemma upt_conv_Cons: "i < j ==> [i..<j] = i # [Suc i..<j]"
nipkow@13145
  1812
apply(rule trans)
nipkow@13145
  1813
apply(subst upt_rec)
paulson@14208
  1814
 prefer 2 apply (rule refl, simp)
nipkow@13145
  1815
done
wenzelm@13114
  1816
nipkow@15425
  1817
lemma upt_add_eq_append: "i<=j ==> [i..<j+k] = [i..<j]@[j..<j+k]"
nipkow@13145
  1818
-- {* LOOPS as a simprule, since @{text "j <= j"}. *}
nipkow@13145
  1819
by (induct k) auto
wenzelm@13114
  1820
nipkow@15425
  1821
lemma length_upt [simp]: "length [i..<j] = j - i"
nipkow@13145
  1822
by (induct j) (auto simp add: Suc_diff_le)
wenzelm@13114
  1823
nipkow@15425
  1824
lemma nth_upt [simp]: "i + k < j ==> [i..<j] ! k = i + k"
nipkow@13145
  1825
apply (induct j)
nipkow@13145
  1826
apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
nipkow@13145
  1827
done
wenzelm@13114
  1828
nipkow@17906
  1829
nipkow@17906
  1830
lemma hd_upt[simp]: "i < j \<Longrightarrow> hd[i..<j] = i"
nipkow@17906
  1831
by(simp add:upt_conv_Cons)
nipkow@17906
  1832
nipkow@17906
  1833
lemma last_upt[simp]: "i < j \<Longrightarrow> last[i..<j] = j - 1"
nipkow@17906
  1834
apply(cases j)
nipkow@17906
  1835
 apply simp
nipkow@17906
  1836
by(simp add:upt_Suc_append)
nipkow@17906
  1837
nipkow@15425
  1838
lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..<n] = [i..<i+m]"
paulson@14208
  1839
apply (induct m, simp)
nipkow@13145
  1840
apply (subst upt_rec)
nipkow@13145
  1841
apply (rule sym)
nipkow@13145
  1842
apply (subst upt_rec)
nipkow@13145
  1843
apply (simp del: upt.simps)
nipkow@13145
  1844
done
nipkow@3507
  1845
nipkow@17501
  1846
lemma drop_upt[simp]: "drop m [i..<j] = [i+m..<j]"
nipkow@17501
  1847
apply(induct j)
nipkow@17501
  1848
apply auto
nipkow@17501
  1849
done
nipkow@17501
  1850
nipkow@15425
  1851
lemma map_Suc_upt: "map Suc [m..<n] = [Suc m..n]"
nipkow@13145
  1852
by (induct n) auto
wenzelm@13114
  1853
nipkow@15425
  1854
lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..<n]) ! i = f(m+i)"
nipkow@13145
  1855
apply (induct n m rule: diff_induct)
nipkow@13145
  1856
prefer 3 apply (subst map_Suc_upt[symmetric])
nipkow@13145
  1857
apply (auto simp add: less_diff_conv nth_upt)
nipkow@13145
  1858
done
wenzelm@13114
  1859
berghofe@13883
  1860
lemma nth_take_lemma:
berghofe@13883
  1861
  "!!xs ys. k <= length xs ==> k <= length ys ==>
berghofe@13883
  1862
     (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys"
berghofe@13883
  1863
apply (atomize, induct k)
paulson@14208
  1864
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify)
nipkow@13145
  1865
txt {* Both lists must be non-empty *}
paulson@14208
  1866
apply (case_tac xs, simp)
paulson@14208
  1867
apply (case_tac ys, clarify)
nipkow@13145
  1868
 apply (simp (no_asm_use))
nipkow@13145
  1869
apply clarify
nipkow@13145
  1870
txt {* prenexing's needed, not miniscoping *}
nipkow@13145
  1871
apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps)
nipkow@13145
  1872
apply blast
nipkow@13145
  1873
done
wenzelm@13114
  1874
wenzelm@13114
  1875
lemma nth_equalityI:
wenzelm@13114
  1876
 "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys"
nipkow@13145
  1877
apply (frule nth_take_lemma [OF le_refl eq_imp_le])
nipkow@13145
  1878
apply (simp_all add: take_all)
nipkow@13145
  1879
done
wenzelm@13142
  1880
kleing@13863
  1881
(* needs nth_equalityI *)
kleing@13863
  1882
lemma list_all2_antisym:
kleing@13863
  1883
  "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> 
kleing@13863
  1884
  \<Longrightarrow> xs = ys"
kleing@13863
  1885
  apply (simp add: list_all2_conv_all_nth) 
paulson@14208
  1886
  apply (rule nth_equalityI, blast, simp)
kleing@13863
  1887
  done
kleing@13863
  1888
wenzelm@13142
  1889
lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys"
nipkow@13145
  1890
-- {* The famous take-lemma. *}
nipkow@13145
  1891
apply (drule_tac x = "max (length xs) (length ys)" in spec)
nipkow@13145
  1892
apply (simp add: le_max_iff_disj take_all)
nipkow@13145
  1893
done
wenzelm@13142
  1894
wenzelm@13142
  1895
nipkow@15302
  1896
lemma take_Cons':
nipkow@15302
  1897
     "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)"
nipkow@15302
  1898
by (cases n) simp_all
nipkow@15302
  1899
nipkow@15302
  1900
lemma drop_Cons':
nipkow@15302
  1901
     "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)"
nipkow@15302
  1902
by (cases n) simp_all
nipkow@15302
  1903
nipkow@15302
  1904
lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))"
nipkow@15302
  1905
by (cases n) simp_all
nipkow@15302
  1906
paulson@18622
  1907
lemmas take_Cons_number_of = take_Cons'[of "number_of v",standard]
paulson@18622
  1908
lemmas drop_Cons_number_of = drop_Cons'[of "number_of v",standard]
paulson@18622
  1909
lemmas nth_Cons_number_of = nth_Cons'[of _ _ "number_of v",standard]
paulson@18622
  1910
paulson@18622
  1911
declare take_Cons_number_of [simp] 
paulson@18622
  1912
        drop_Cons_number_of [simp] 
paulson@18622
  1913
        nth_Cons_number_of [simp] 
nipkow@15302
  1914
nipkow@15302
  1915
nipkow@15392
  1916
subsubsection {* @{text "distinct"} and @{text remdups} *}
wenzelm@13142
  1917
wenzelm@13142
  1918
lemma distinct_append [simp]:
nipkow@13145
  1919
"distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
nipkow@13145
  1920
by (induct xs) auto
wenzelm@13142
  1921
nipkow@15305
  1922
lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs"
nipkow@15305
  1923
by(induct xs) auto
nipkow@15305
  1924
wenzelm@13142
  1925
lemma set_remdups [simp]: "set (remdups xs) = set xs"
nipkow@13145
  1926
by (induct xs) (auto simp add: insert_absorb)
wenzelm@13142
  1927
wenzelm@13142
  1928
lemma distinct_remdups [iff]: "distinct (remdups xs)"
nipkow@13145
  1929
by (induct xs) auto
wenzelm@13142
  1930
paulson@15072
  1931
lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])"
paulson@15251
  1932
  by (induct x, auto) 
paulson@15072
  1933
paulson@15072
  1934
lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])"
paulson@15251
  1935
  by (induct x, auto)
paulson@15072
  1936
nipkow@15245
  1937
lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs"
nipkow@15245
  1938
by (induct xs) auto
nipkow@15245
  1939
nipkow@15245
  1940
lemma length_remdups_eq[iff]:
nipkow@15245
  1941
  "(length (remdups xs) = length xs) = (remdups xs = xs)"
nipkow@15245
  1942
apply(induct xs)
nipkow@15245
  1943
 apply auto
nipkow@15245
  1944
apply(subgoal_tac "length (remdups xs) <= length xs")
nipkow@15245
  1945
 apply arith
nipkow@15245
  1946
apply(rule length_remdups_leq)
nipkow@15245
  1947
done
nipkow@15245
  1948
nipkow@18490
  1949
nipkow@18490
  1950
lemma distinct_map:
nipkow@18490
  1951
  "distinct(map f xs) = (distinct xs & inj_on f (set xs))"
nipkow@18490
  1952
by (induct xs) auto
nipkow@18490
  1953
nipkow@18490
  1954
wenzelm@13142
  1955
lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)"
nipkow@13145
  1956
by (induct xs) auto
wenzelm@13114
  1957
nipkow@17501
  1958
lemma distinct_upt[simp]: "distinct[i..<j]"
nipkow@17501
  1959
by (induct j) auto
nipkow@17501
  1960
nipkow@17501
  1961
lemma distinct_take[simp]: "\<And>i. distinct xs \<Longrightarrow> distinct (take i xs)"
nipkow@17501
  1962
apply(induct xs)
nipkow@17501
  1963
 apply simp
nipkow@17501
  1964
apply (case_tac i)
nipkow@17501
  1965
 apply simp_all
nipkow@17501
  1966
apply(blast dest:in_set_takeD)
nipkow@17501
  1967
done
nipkow@17501
  1968
nipkow@17501
  1969
lemma distinct_drop[simp]: "\<And>i. distinct xs \<Longrightarrow> distinct (drop i xs)"
nipkow@17501
  1970
apply(induct xs)
nipkow@17501
  1971
 apply simp
nipkow@17501
  1972
apply (case_tac i)
nipkow@17501
  1973
 apply simp_all
nipkow@17501
  1974
done
nipkow@17501
  1975
nipkow@17501
  1976
lemma distinct_list_update:
nipkow@17501
  1977
assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
nipkow@17501
  1978
shows "distinct (xs[i:=a])"
nipkow@17501
  1979
proof (cases "i < length xs")
nipkow@17501
  1980
  case True
nipkow@17501
  1981
  with a have "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
nipkow@17501
  1982
    apply (drule_tac id_take_nth_drop) by simp
nipkow@17501
  1983
  with d True show ?thesis
nipkow@17501
  1984
    apply (simp add: upd_conv_take_nth_drop)
nipkow@17501
  1985
    apply (drule subst [OF id_take_nth_drop]) apply assumption
nipkow@17501
  1986
    apply simp apply (cases "a = xs!i") apply simp by blast
nipkow@17501
  1987
next
nipkow@17501
  1988
  case False with d show ?thesis by auto
nipkow@17501
  1989
qed
nipkow@17501
  1990
nipkow@17501
  1991
nipkow@17501
  1992
text {* It is best to avoid this indexed version of distinct, but
nipkow@17501
  1993
sometimes it is useful. *}
nipkow@17501
  1994
wenzelm@13142
  1995
lemma distinct_conv_nth:
nipkow@17501
  1996
"distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j --> xs!i \<noteq> xs!j)"
paulson@15251
  1997
apply (induct xs, simp, simp)
paulson@14208
  1998
apply (rule iffI, clarsimp)
nipkow@13145
  1999
 apply (case_tac i)
paulson@14208
  2000
apply (case_tac j, simp)
nipkow@13145
  2001
apply (simp add: set_conv_nth)
nipkow@13145
  2002
 apply (case_tac j)
paulson@14208
  2003
apply (clarsimp simp add: set_conv_nth, simp)
nipkow@13145
  2004
apply (rule conjI)
nipkow@13145
  2005
 apply (clarsimp simp add: set_conv_nth)
nipkow@17501
  2006
 apply (erule_tac x = 0 in allE, simp)
paulson@14208
  2007
 apply (erule_tac x = "Suc i" in allE, simp, clarsimp)
nipkow@17501
  2008
apply (erule_tac x = "Suc i" in allE, simp)
paulson@14208
  2009
apply (erule_tac x = "Suc j" in allE, simp)
nipkow@13145
  2010
done
wenzelm@13114
  2011
nipkow@18490
  2012
lemma nth_eq_iff_index_eq:
nipkow@18490
  2013
 "\<lbrakk> distinct xs; i < length xs; j < length xs \<rbrakk> \<Longrightarrow> (xs!i = xs!j) = (i = j)"
nipkow@18490
  2014
by(auto simp: distinct_conv_nth)
nipkow@18490
  2015
nipkow@15110
  2016
lemma distinct_card: "distinct xs ==> card (set xs) = size xs"
kleing@14388
  2017
  by (induct xs) auto
kleing@14388
  2018
nipkow@15110
  2019
lemma card_distinct: "card (set xs) = size xs ==> distinct xs"
kleing@14388
  2020
proof (induct xs)
kleing@14388
  2021
  case Nil thus ?case by simp
kleing@14388
  2022
next
kleing@14388
  2023
  case (Cons x xs)
kleing@14388
  2024
  show ?case
kleing@14388
  2025
  proof (cases "x \<in> set xs")
kleing@14388
  2026
    case False with Cons show ?thesis by simp
kleing@14388
  2027
  next
kleing@14388
  2028
    case True with Cons.prems
kleing@14388
  2029
    have "card (set xs) = Suc (length xs)" 
kleing@14388
  2030
      by (simp add: card_insert_if split: split_if_asm)
kleing@14388
  2031
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
kleing@14388
  2032
    ultimately have False by simp
kleing@14388
  2033
    thus ?thesis ..
kleing@14388
  2034
  qed
kleing@14388
  2035
qed
kleing@14388
  2036
nipkow@18490
  2037
nipkow@18490
  2038
lemma length_remdups_concat:
nipkow@18490
  2039
 "length(remdups(concat xss)) = card(\<Union>xs \<in> set xss. set xs)"
nipkow@18490
  2040
by(simp add: distinct_card[symmetric])
nipkow@17906
  2041
nipkow@17906
  2042
nipkow@15392
  2043
subsubsection {* @{text remove1} *}
nipkow@15110
  2044
nipkow@18049
  2045
lemma remove1_append:
nipkow@18049
  2046
  "remove1 x (xs @ ys) =
nipkow@18049
  2047
  (if x \<in> set xs then remove1 x xs @ ys else xs @ remove1 x ys)"
nipkow@18049
  2048
by (induct xs) auto
nipkow@18049
  2049
nipkow@15110
  2050
lemma set_remove1_subset: "set(remove1 x xs) <= set xs"
nipkow@15110
  2051
apply(induct xs)
nipkow@15110
  2052
 apply simp
nipkow@15110
  2053
apply simp
nipkow@15110
  2054
apply blast
nipkow@15110
  2055
done
nipkow@15110
  2056
paulson@17724
  2057
lemma set_remove1_eq [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
nipkow@15110
  2058
apply(induct xs)
nipkow@15110
  2059
 apply simp
nipkow@15110
  2060
apply simp
nipkow@15110
  2061
apply blast
nipkow@15110
  2062
done
nipkow@15110
  2063
nipkow@18049
  2064
lemma remove1_filter_not[simp]:
nipkow@18049
  2065
  "\<not> P x \<Longrightarrow> remove1 x (filter P xs) = filter P xs"
nipkow@18049
  2066
by(induct xs) auto
nipkow@18049
  2067
nipkow@15110
  2068
lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)"
nipkow@15110
  2069
apply(insert set_remove1_subset)
nipkow@15110
  2070
apply fast
nipkow@15110
  2071
done
nipkow@15110
  2072
nipkow@15110
  2073
lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)"
nipkow@15110
  2074
by (induct xs) simp_all
nipkow@15110
  2075
wenzelm@13114
  2076
nipkow@15392
  2077
subsubsection {* @{text replicate} *}
wenzelm@13114
  2078
wenzelm@13142
  2079
lemma length_replicate [simp]: "length (replicate n x) = n"
nipkow@13145
  2080
by (induct n) auto
nipkow@13124
  2081
wenzelm@13142
  2082
lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)"
nipkow@13145
  2083
by (induct n) auto
wenzelm@13114
  2084
wenzelm@13114
  2085
lemma replicate_app_Cons_same:
nipkow@13145
  2086
"(replicate n x) @ (x # xs) = x # replicate n x @ xs"
nipkow@13145
  2087
by (induct n) auto
wenzelm@13114
  2088
wenzelm@13142
  2089
lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x"
paulson@14208
  2090
apply (induct n, simp)
nipkow@13145
  2091
apply (simp add: replicate_app_Cons_same)
nipkow@13145
  2092
done
wenzelm@13114
  2093
wenzelm@13142
  2094
lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x"
nipkow@13145
  2095
by (induct n) auto
wenzelm@13114
  2096
nipkow@16397
  2097
text{* Courtesy of Matthias Daum: *}
nipkow@16397
  2098
lemma append_replicate_commute:
nipkow@16397
  2099
  "replicate n x @ replicate k x = replicate k x @ replicate n x"
nipkow@16397
  2100
apply (simp add: replicate_add [THEN sym])
nipkow@16397
  2101
apply (simp add: add_commute)
nipkow@16397
  2102
done
nipkow@16397
  2103
wenzelm@13142
  2104
lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x"
nipkow@13145
  2105
by (induct n) auto
wenzelm@13114
  2106
wenzelm@13142
  2107
lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x"
nipkow@13145
  2108
by (induct n) auto
wenzelm@13114
  2109
wenzelm@13142
  2110
lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x"
nipkow@13145
  2111
by (atomize (full), induct n) auto
wenzelm@13114
  2112
wenzelm@13142
  2113
lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x"
paulson@14208
  2114
apply (induct n, simp)
nipkow@13145
  2115
apply (simp add: nth_Cons split: nat.split)
nipkow@13145
  2116
done
wenzelm@13114
  2117
nipkow@16397
  2118
text{* Courtesy of Matthias Daum (2 lemmas): *}
nipkow@16397
  2119
lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x"
nipkow@16397
  2120
apply (case_tac "k \<le> i")
nipkow@16397
  2121
 apply  (simp add: min_def)
nipkow@16397
  2122
apply (drule not_leE)
nipkow@16397
  2123
apply (simp add: min_def)
nipkow@16397
  2124
apply (subgoal_tac "replicate k x = replicate i x @ replicate (k - i) x")
nipkow@16397
  2125
 apply  simp
nipkow@16397
  2126
apply (simp add: replicate_add [symmetric])
nipkow@16397
  2127
done
nipkow@16397
  2128
nipkow@16397
  2129
lemma drop_replicate[simp]: "!!i. drop i (replicate k x) = replicate (k-i) x"
nipkow@16397
  2130
apply (induct k)
nipkow@16397
  2131
 apply simp
nipkow@16397
  2132
apply clarsimp
nipkow@16397
  2133
apply (case_tac i)
nipkow@16397
  2134
 apply simp
nipkow@16397
  2135
apply clarsimp
nipkow@16397
  2136
done
nipkow@16397
  2137
nipkow@16397
  2138
wenzelm@13142
  2139
lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
nipkow@13145
  2140
by (induct n) auto
wenzelm@13114
  2141
wenzelm@13142
  2142
lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
nipkow@13145
  2143
by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc)
wenzelm@13114
  2144
wenzelm@13142
  2145
lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
nipkow@13145
  2146
by auto
wenzelm@13114
  2147
wenzelm@13142
  2148
lemma in_set_replicateD: "x : set (replicate n y) ==> x = y"
nipkow@13145
  2149
by (simp add: set_replicate_conv_if split: split_if_asm)
wenzelm@13114
  2150
wenzelm@13114
  2151
nipkow@15392
  2152
subsubsection{*@{text rotate1} and @{text rotate}*}
nipkow@15302
  2153
nipkow@15302
  2154
lemma rotate_simps[simp]: "rotate1 [] = [] \<and> rotate1 (x#xs) = xs @ [x]"
nipkow@15302
  2155
by(simp add:rotate1_def)
nipkow@15302
  2156
nipkow@15302
  2157
lemma rotate0[simp]: "rotate 0 = id"
nipkow@15302
  2158
by(simp add:rotate_def)
nipkow@15302
  2159
nipkow@15302
  2160
lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)"
nipkow@15302
  2161
by(simp add:rotate_def)
nipkow@15302
  2162
nipkow@15302
  2163
lemma rotate_add:
nipkow@15302
  2164
  "rotate (m+n) = rotate m o rotate n"
nipkow@15302
  2165
by(simp add:rotate_def funpow_add)
nipkow@15302
  2166
nipkow@15302
  2167
lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs"
nipkow@15302
  2168
by(simp add:rotate_add)
nipkow@15302
  2169
nipkow@18049
  2170
lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)"
nipkow@18049
  2171
by(simp add:rotate_def funpow_swap1)
nipkow@18049
  2172
nipkow@15302
  2173
lemma rotate1_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate1 xs = xs"
nipkow@15302
  2174
by(cases xs) simp_all
nipkow@15302
  2175
nipkow@15302
  2176
lemma rotate_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate n xs = xs"
nipkow@15302
  2177
apply(induct n)
nipkow@15302
  2178
 apply simp
nipkow@15302
  2179
apply (simp add:rotate_def)
nipkow@13145
  2180
done
wenzelm@13114
  2181
nipkow@15302
  2182
lemma rotate1_hd_tl: "xs \<noteq> [] \<Longrightarrow> rotate1 xs = tl xs @ [hd xs]"
nipkow@15302
  2183
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2184
nipkow@15302
  2185
lemma rotate_drop_take:
nipkow@15302
  2186
  "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs"
nipkow@15302
  2187
apply(induct n)
nipkow@15302
  2188
 apply simp
nipkow@15302
  2189
apply(simp add:rotate_def)
nipkow@15302
  2190
apply(cases "xs = []")
nipkow@15302
  2191
 apply (simp)
nipkow@15302
  2192
apply(case_tac "n mod length xs = 0")
nipkow@15302
  2193
 apply(simp add:mod_Suc)
nipkow@15302
  2194
 apply(simp add: rotate1_hd_tl drop_Suc take_Suc)
nipkow@15302
  2195
apply(simp add:mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric]
nipkow@15302
  2196
                take_hd_drop linorder_not_le)
nipkow@13145
  2197
done
wenzelm@13114
  2198
nipkow@15302
  2199
lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs"
nipkow@15302
  2200
by(simp add:rotate_drop_take)
nipkow@15302
  2201
nipkow@15302
  2202
lemma rotate_id[simp]: "n mod length xs = 0 \<Longrightarrow> rotate n xs = xs"
nipkow@15302
  2203
by(simp add:rotate_drop_take)
nipkow@15302
  2204
nipkow@15302
  2205
lemma length_rotate1[simp]: "length(rotate1 xs) = length xs"
nipkow@15302
  2206
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2207
nipkow@15302
  2208
lemma length_rotate[simp]: "!!xs. length(rotate n xs) = length xs"
nipkow@15302
  2209
by (induct n) (simp_all add:rotate_def)
nipkow@15302
  2210
nipkow@15302
  2211
lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs"
nipkow@15302
  2212
by(simp add:rotate1_def split:list.split) blast
nipkow@15302
  2213
nipkow@15302
  2214
lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs"
nipkow@15302
  2215
by (induct n) (simp_all add:rotate_def)
nipkow@15302
  2216
nipkow@15302
  2217
lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)"
nipkow@15302
  2218
by(simp add:rotate_drop_take take_map drop_map)
nipkow@15302
  2219
nipkow@15302
  2220
lemma set_rotate1[simp]: "set(rotate1 xs) = set xs"
nipkow@15302
  2221
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2222
nipkow@15302
  2223
lemma set_rotate[simp]: "set(rotate n xs) = set xs"
nipkow@15302
  2224
by (induct n) (simp_all add:rotate_def)
nipkow@15302
  2225
nipkow@15302
  2226
lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])"
nipkow@15302
  2227
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2228
nipkow@15302
  2229
lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])"
nipkow@15302
  2230
by (induct n) (simp_all add:rotate_def)
wenzelm@13114
  2231
nipkow@15439
  2232
lemma rotate_rev:
nipkow@15439
  2233
  "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)"
nipkow@15439
  2234
apply(simp add:rotate_drop_take rev_drop rev_take)
nipkow@15439
  2235
apply(cases "length xs = 0")
nipkow@15439
  2236
 apply simp
nipkow@15439
  2237
apply(cases "n mod length xs = 0")
nipkow@15439
  2238
 apply simp
nipkow@15439
  2239
apply(simp add:rotate_drop_take rev_drop rev_take)
nipkow@15439
  2240
done
nipkow@15439
  2241
nipkow@18423
  2242
lemma hd_rotate_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd(rotate n xs) = xs!(n mod length xs)"
nipkow@18423
  2243
apply(simp add:rotate_drop_take hd_append hd_drop_conv_nth hd_conv_nth)
nipkow@18423
  2244
apply(subgoal_tac "length xs \<noteq> 0")
nipkow@18423
  2245
 prefer 2 apply simp
nipkow@18423
  2246
using mod_less_divisor[of "length xs" n] by arith
nipkow@18423
  2247
wenzelm@13114
  2248
nipkow@15392
  2249
subsubsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
wenzelm@13114
  2250
wenzelm@13142
  2251
lemma sublist_empty [simp]: "sublist xs {} = []"
nipkow@13145
  2252
by (auto simp add: sublist_def)
wenzelm@13114
  2253
wenzelm@13142
  2254
lemma sublist_nil [simp]: "sublist [] A = []"
nipkow@13145
  2255
by (auto simp add: sublist_def)
wenzelm@13114
  2256
nipkow@15281
  2257
lemma length_sublist:
nipkow@15281
  2258
  "length(sublist xs I) = card{i. i < length xs \<and> i : I}"
nipkow@15281
  2259
by(simp add: sublist_def length_filter_conv_card cong:conj_cong)
nipkow@15281
  2260
nipkow@15281
  2261
lemma sublist_shift_lemma_Suc:
nipkow@15281
  2262
  "!!is. map fst (filter (%p. P(Suc(snd p))) (zip xs is)) =
nipkow@15281
  2263
         map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))"
nipkow@15281
  2264
apply(induct xs)
nipkow@15281
  2265
 apply simp
nipkow@15281
  2266
apply (case_tac "is")
nipkow@15281
  2267
 apply simp
nipkow@15281
  2268
apply simp
nipkow@15281
  2269
done
nipkow@15281
  2270
wenzelm@13114
  2271
lemma sublist_shift_lemma:
nipkow@15425
  2272
     "map fst [p:zip xs [i..<i + length xs] . snd p : A] =
nipkow@15425
  2273
      map fst [p:zip xs [0..<length xs] . snd p + i : A]"
nipkow@13145
  2274
by (induct xs rule: rev_induct) (simp_all add: add_commute)
wenzelm@13114
  2275
wenzelm@13114
  2276
lemma sublist_append:
paulson@15168
  2277
     "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
nipkow@13145
  2278
apply (unfold sublist_def)
paulson@14208
  2279
apply (induct l' rule: rev_induct, simp)
nipkow@13145
  2280
apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma)
nipkow@13145
  2281
apply (simp add: add_commute)
nipkow@13145
  2282
done
wenzelm@13114
  2283
wenzelm@13114
  2284
lemma sublist_Cons:
nipkow@13145
  2285
"sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
nipkow@13145
  2286
apply (induct l rule: rev_induct)
nipkow@13145
  2287
 apply (simp add: sublist_def)
nipkow@13145
  2288
apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append)
nipkow@13145
  2289
done
wenzelm@13114
  2290
nipkow@15281
  2291
lemma set_sublist: "!!I. set(sublist xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
nipkow@15281
  2292
apply(induct xs)
nipkow@15281
  2293
 apply simp
nipkow@15281
  2294
apply(auto simp add:sublist_Cons nth_Cons split:nat.split elim: lessE)
nipkow@15281
  2295
 apply(erule lessE)
nipkow@15281
  2296
  apply auto
nipkow@15281
  2297
apply(erule lessE)
nipkow@15281
  2298
apply auto
nipkow@15281
  2299
done
nipkow@15281
  2300
nipkow@15281
  2301
lemma set_sublist_subset: "set(sublist xs I) \<subseteq> set xs"
nipkow@15281
  2302
by(auto simp add:set_sublist)
nipkow@15281
  2303
nipkow@15281
  2304
lemma notin_set_sublistI[simp]: "x \<notin> set xs \<Longrightarrow> x \<notin> set(sublist xs I)"
nipkow@15281
  2305
by(auto simp add:set_sublist)
nipkow@15281
  2306
nipkow@15281
  2307
lemma in_set_sublistD: "x \<in> set(sublist xs I) \<Longrightarrow> x \<in> set xs"
nipkow@15281
  2308
by(auto simp add:set_sublist)
nipkow@15281
  2309
wenzelm@13142
  2310
lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])"
nipkow@13145
  2311
by (simp add: sublist_Cons)
wenzelm@13114
  2312
nipkow@15281
  2313
nipkow@15281
  2314
lemma distinct_sublistI[simp]: "!!I. distinct xs \<Longrightarrow> distinct(sublist xs I)"
nipkow@15281
  2315
apply(induct xs)
nipkow@15281
  2316
 apply simp
nipkow@15281
  2317
apply(auto simp add:sublist_Cons)
nipkow@15281
  2318
done
nipkow@15281
  2319
nipkow@15281
  2320
nipkow@15045
  2321
lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
paulson@14208
  2322
apply (induct l rule: rev_induct, simp)
nipkow@13145
  2323
apply (simp split: nat_diff_split add: sublist_append)
nipkow@13145
  2324
done
wenzelm@13114
  2325
nipkow@17501
  2326
lemma filter_in_sublist: "\<And>s. distinct xs \<Longrightarrow>
nipkow@17501
  2327
  filter (%x. x \<in> set(sublist xs s)) xs = sublist xs s"
nipkow@17501
  2328
proof (induct xs)
nipkow@17501
  2329
  case Nil thus ?case by simp
nipkow@17501
  2330
next
nipkow@17501
  2331
  case (Cons a xs)
nipkow@17501
  2332
  moreover hence "!x. x: set xs \<longrightarrow> x \<noteq> a" by auto
nipkow@17501
  2333
  ultimately show ?case by(simp add: sublist_Cons cong:filter_cong)
nipkow@17501
  2334
qed
nipkow@17501
  2335
wenzelm@13114
  2336
nipkow@19390
  2337
subsubsection {* @{const splice} *}
nipkow@19390
  2338
haftmann@19607
  2339
lemma splice_Nil2 [simp, code]:
nipkow@19390
  2340
 "splice xs [] = xs"
nipkow@19390
  2341
by (cases xs) simp_all
nipkow@19390
  2342
haftmann@19607
  2343
lemma splice_Cons_Cons [simp, code]:
nipkow@19390
  2344
 "splice (x#xs) (y#ys) = x # y # splice xs ys"
nipkow@19390
  2345
by simp
nipkow@19390
  2346
haftmann@19607
  2347
declare splice.simps(2) [simp del, code del]
nipkow@19390
  2348
nipkow@22793
  2349
lemma length_splice[simp]: "!!ys. length(splice xs ys) = length xs + length ys"
nipkow@22793
  2350
apply(induct xs) apply simp
nipkow@22793
  2351
apply(case_tac ys)
nipkow@22793
  2352
 apply auto
nipkow@22793
  2353
done
nipkow@22793
  2354
nipkow@22828
  2355
nipkow@22828
  2356
subsubsection {* @{const allpairs} *}
nipkow@22828
  2357
nipkow@22940
  2358
lemma allpairs_conv_concat:
nipkow@22940
  2359
 "allpairs f xs ys = concat(map (%x. map (f x) ys) xs)"
nipkow@22940
  2360
by(induct xs) auto
nipkow@22940
  2361
nipkow@22828
  2362
lemma allpairs_append:
nipkow@22830
  2363
 "allpairs f (xs @ ys) zs = allpairs f xs zs @ allpairs f ys zs"
nipkow@22828
  2364
by(induct xs) auto
nipkow@22828
  2365
nipkow@22828
  2366
nipkow@15392
  2367
subsubsection{*Sets of Lists*}
nipkow@15392
  2368
nipkow@15392
  2369
subsubsection {* @{text lists}: the list-forming operator over sets *}
nipkow@15302
  2370
berghofe@22262
  2371
inductive2
berghofe@22262
  2372
  listsp :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
berghofe@22262
  2373
  for A :: "'a \<Rightarrow> bool"
berghofe@22262
  2374
where
berghofe@22262
  2375
    Nil [intro!]: "listsp A []"
berghofe@22262
  2376
  | Cons [intro!]: "[| A a; listsp A l |] ==> listsp A (a # l)"
berghofe@22262
  2377
berghofe@22262
  2378
constdefs
berghofe@22262
  2379
  lists :: "'a set => 'a list set"
berghofe@22262
  2380
  "lists A == Collect (listsp (member A))"
berghofe@22262
  2381
berghofe@22262
  2382
lemma listsp_lists_eq [pred_set_conv]: "listsp (member A) = member (lists A)"
berghofe@22262
  2383
  by (simp add: lists_def)
berghofe@22262
  2384
berghofe@22262
  2385
lemmas lists_intros [intro!] = listsp.intros [to_set]
berghofe@22262
  2386
berghofe@22262
  2387
lemmas lists_induct [consumes 1, case_names Nil Cons, induct set: lists] =
berghofe@22262
  2388
  listsp.induct [to_set]
berghofe@22262
  2389
berghofe@22262
  2390
inductive_cases2 listspE [elim!]: "listsp A (x # l)"
berghofe@22262
  2391
berghofe@22262
  2392
lemmas listsE [elim!] = listspE [to_set]
berghofe@22262
  2393
berghofe@22262
  2394
lemma listsp_mono [mono2]: "A \<le> B ==> listsp A \<le> listsp B"
berghofe@22262
  2395
  by (clarify, erule listsp.induct, blast+)
berghofe@22262
  2396
berghofe@22262
  2397
lemmas lists_mono [mono] = listsp_mono [to_set]
berghofe@22262
  2398
haftmann@22422
  2399
lemma listsp_infI:
haftmann@22422
  2400
  assumes l: "listsp A l" shows "listsp B l ==> listsp (inf A B) l" using l
nipkow@15302
  2401
  by induct blast+
nipkow@15302
  2402
haftmann@22422
  2403
lemmas lists_IntI = listsp_infI [to_set]
haftmann@22422
  2404
haftmann@22422
  2405
lemma listsp_inf_eq [simp]: "listsp (inf A B) = inf (listsp A) (listsp B)"
haftmann@22422
  2406
proof (rule mono_inf [where f=listsp, THEN order_antisym])
berghofe@22262
  2407
  show "mono listsp" by (simp add: mono_def listsp_mono)
haftmann@22422
  2408
  show "inf (listsp A) (listsp B) \<le> listsp (inf A B)" by (blast intro: listsp_infI)
kleing@14388
  2409
qed
kleing@14388
  2410
haftmann@22422
  2411
lemmas listsp_conj_eq [simp] = listsp_inf_eq [simplified inf_fun_eq inf_bool_eq]
haftmann@22422
  2412
haftmann@22422
  2413
lemmas lists_Int_eq [simp] = listsp_inf_eq [to_set]
berghofe@22262
  2414
berghofe@22262
  2415
lemma append_in_listsp_conv [iff]:
berghofe@22262
  2416
     "(listsp A (xs @ ys)) = (listsp A xs \<and> listsp A ys)"
nipkow@15302
  2417
by (induct xs) auto
nipkow@15302
  2418
berghofe@22262
  2419
lemmas append_in_lists_conv [iff] = append_in_listsp_conv [to_set]
berghofe@22262
  2420
berghofe@22262
  2421
lemma in_listsp_conv_set: "(listsp A xs) = (\<forall>x \<in> set xs. A x)"
berghofe@22262
  2422
-- {* eliminate @{text listsp} in favour of @{text set} *}
nipkow@15302
  2423
by (induct xs) auto
nipkow@15302
  2424
berghofe@22262
  2425
lemmas in_lists_conv_set = in_listsp_conv_set [to_set]
berghofe@22262
  2426
berghofe@22262
  2427
lemma in_listspD [dest!]: "listsp A xs ==> \<forall>x\<in>set xs. A x"
berghofe@22262
  2428
by (rule in_listsp_conv_set [THEN iffD1])
berghofe@22262
  2429
berghofe@22262
  2430
lemmas in_listsD [dest!] = in_listspD [to_set]
berghofe@22262
  2431
berghofe@22262
  2432
lemma in_listspI [intro!]: "\<forall>x\<in>set xs. A x ==> listsp A xs"
berghofe@22262
  2433
by (rule in_listsp_conv_set [THEN iffD2])
berghofe@22262
  2434
berghofe@22262
  2435
lemmas in_listsI [intro!] = in_listspI [to_set]
nipkow@15302
  2436
nipkow@15302
  2437
lemma lists_UNIV [simp]: "lists UNIV = UNIV"
nipkow@15302
  2438
by auto
nipkow@15302
  2439
nipkow@17086
  2440
nipkow@17086
  2441
nipkow@17086
  2442
subsubsection{* Inductive definition for membership *}
nipkow@17086
  2443
berghofe@22262
  2444
inductive2 ListMem :: "'a \<Rightarrow> 'a list \<Rightarrow> bool"
berghofe@22262
  2445
where
berghofe@22262
  2446
    elem:  "ListMem x (x # xs)"
berghofe@22262
  2447
  | insert:  "ListMem x xs \<Longrightarrow> ListMem x (y # xs)"
berghofe@22262
  2448
berghofe@22262
  2449
lemma ListMem_iff: "(ListMem x xs) = (x \<in> set xs)"
nipkow@17086
  2450
apply (rule iffI)
nipkow@17086
  2451
 apply (induct set: ListMem)
nipkow@17086
  2452
  apply auto
nipkow@17086
  2453
apply (induct xs)
nipkow@17086
  2454
 apply (auto intro: ListMem.intros)
nipkow@17086
  2455
done
nipkow@17086
  2456
nipkow@17086
  2457
nipkow@17086
  2458
nipkow@15392
  2459
subsubsection{*Lists as Cartesian products*}
nipkow@15302
  2460
nipkow@15302
  2461
text{*@{text"set_Cons A Xs"}: the set of lists with head drawn from
nipkow@15302
  2462
@{term A} and tail drawn from @{term Xs}.*}
nipkow@15302
  2463
nipkow@15302
  2464
constdefs
nipkow@15302
  2465
  set_Cons :: "'a set \<Rightarrow> 'a list set \<Rightarrow> 'a list set"
nipkow@15302
  2466
  "set_Cons A XS == {z. \<exists>x xs. z = x#xs & x \<in> A & xs \<in> XS}"
nipkow@15302
  2467
paulson@17724
  2468
lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A"
nipkow@15302
  2469
by (auto simp add: set_Cons_def)
nipkow@15302
  2470
nipkow@15302
  2471
text{*Yields the set of lists, all of the same length as the argument and
nipkow@15302
  2472
with elements drawn from the corresponding element of the argument.*}
nipkow@15302
  2473
nipkow@15302
  2474
consts  listset :: "'a set list \<Rightarrow> 'a list set"
nipkow@15302
  2475
primrec
nipkow@15302
  2476
   "listset []    = {[]}"
nipkow@15302
  2477
   "listset(A#As) = set_Cons A (listset As)"
nipkow@15302
  2478
nipkow@15302
  2479
paulson@15656
  2480
subsection{*Relations on Lists*}
paulson@15656
  2481
paulson@15656
  2482
subsubsection {* Length Lexicographic Ordering *}
paulson@15656
  2483
paulson@15656
  2484
text{*These orderings preserve well-foundedness: shorter lists 
paulson@15656
  2485
  precede longer lists. These ordering are not used in dictionaries.*}
paulson@15656
  2486
paulson@15656
  2487
consts lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
paulson@15656
  2488
        --{*The lexicographic ordering for lists of the specified length*}
nipkow@15302
  2489
primrec
paulson@15656
  2490
  "lexn r 0 = {}"
paulson@15656
  2491
  "lexn r (Suc n) =
paulson@15656
  2492
    (prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int
paulson@15656
  2493
    {(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
nipkow@15302
  2494
nipkow@15302
  2495
constdefs
paulson@15656
  2496
  lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
paulson@15656
  2497
    "lex r == \<Union>n. lexn r n"
paulson@15656
  2498
        --{*Holds only between lists of the same length*}
paulson@15656
  2499
nipkow@15693
  2500
  lenlex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
nipkow@15693
  2501
    "lenlex r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))"
paulson@15656
  2502
        --{*Compares lists by their length and then lexicographically*}
nipkow@15302
  2503
nipkow@15302
  2504
nipkow@15302
  2505
lemma wf_lexn: "wf r ==> wf (lexn r n)"
nipkow@15302
  2506
apply (induct n, simp, simp)
nipkow@15302
  2507
apply(rule wf_subset)
nipkow@15302
  2508
 prefer 2 apply (rule Int_lower1)
nipkow@15302
  2509
apply(rule wf_prod_fun_image)
nipkow@15302
  2510
 prefer 2 apply (rule inj_onI, auto)
nipkow@15302
  2511
done
nipkow@15302
  2512
nipkow@15302
  2513
lemma lexn_length:
nipkow@15302
  2514
     "!!xs ys. (xs, ys) : lexn r n ==> length xs = n \<and> length ys = n"
nipkow@15302
  2515
by (induct n) auto
nipkow@15302
  2516
nipkow@15302
  2517
lemma wf_lex [intro!]: "wf r ==> wf (lex r)"
nipkow@15302
  2518
apply (unfold lex_def)
nipkow@15302
  2519
apply (rule wf_UN)
nipkow@15302
  2520
apply (blast intro: wf_lexn, clarify)
nipkow@15302
  2521
apply (rename_tac m n)
nipkow@15302
  2522
apply (subgoal_tac "m \<noteq> n")
nipkow@15302
  2523
 prefer 2 apply blast
nipkow@15302
  2524
apply (blast dest: lexn_length not_sym)
nipkow@15302
  2525
done
nipkow@15302
  2526
nipkow@15302
  2527
lemma lexn_conv:
paulson@15656
  2528
  "lexn r n =
paulson@15656
  2529
    {(xs,ys). length xs = n \<and> length ys = n \<and>
paulson@15656
  2530
    (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}"
nipkow@18423
  2531
apply (induct n, simp)
nipkow@15302
  2532
apply (simp add: image_Collect lex_prod_def, safe, blast)
nipkow@15302
  2533
 apply (rule_tac x = "ab # xys" in exI, simp)
nipkow@15302
  2534
apply (case_tac xys, simp_all, blast)
nipkow@15302
  2535
done
nipkow@15302
  2536
nipkow@15302
  2537
lemma lex_conv:
paulson@15656
  2538
  "lex r =
paulson@15656
  2539
    {(xs,ys). length xs = length ys \<and>
paulson@15656
  2540
    (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}"
nipkow@15302
  2541
by (force simp add: lex_def lexn_conv)
nipkow@15302
  2542
nipkow@15693
  2543
lemma wf_lenlex [intro!]: "wf r ==> wf (lenlex r)"
nipkow@15693
  2544
by (unfold lenlex_def) blast
nipkow@15693
  2545
nipkow@15693
  2546
lemma lenlex_conv:
nipkow@15693
  2547
    "lenlex r = {(xs,ys). length xs < length ys |
paulson@15656
  2548
                 length xs = length ys \<and> (xs, ys) : lex r}"
nipkow@19623
  2549
by (simp add: lenlex_def diag_def lex_prod_def inv_image_def)
nipkow@15302
  2550
nipkow@15302
  2551
lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r"
nipkow@15302
  2552
by (simp add: lex_conv)
nipkow@15302
  2553
nipkow@15302
  2554
lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r"
nipkow@15302
  2555
by (simp add:lex_conv)
nipkow@15302
  2556
paulson@18447
  2557
lemma Cons_in_lex [simp]:
paulson@15656
  2558
    "((x # xs, y # ys) : lex r) =
paulson@15656
  2559
      ((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)"
nipkow@15302
  2560
apply (simp add: lex_conv)
nipkow@15302
  2561
apply (rule iffI)
nipkow@15302
  2562
 prefer 2 apply (blast intro: Cons_eq_appendI, clarify)
nipkow@15302
  2563
apply (case_tac xys, simp, simp)
nipkow@15302
  2564
apply blast
nipkow@15302
  2565
done
nipkow@15302
  2566
nipkow@15302
  2567
paulson@15656
  2568
subsubsection {* Lexicographic Ordering *}
paulson@15656
  2569
paulson@15656
  2570
text {* Classical lexicographic ordering on lists, ie. "a" < "ab" < "b".
paulson@15656
  2571
    This ordering does \emph{not} preserve well-foundedness.
nipkow@17090
  2572
     Author: N. Voelker, March 2005. *} 
paulson@15656
  2573
paulson@15656
  2574
constdefs 
paulson@15656
  2575
  lexord :: "('a * 'a)set \<Rightarrow> ('a list * 'a list) set" 
paulson@15656
  2576
  "lexord  r == {(x,y). \<exists> a v. y = x @ a # v \<or> 
paulson@15656
  2577
            (\<exists> u a b v w. (a,b) \<in> r \<and> x = u @ (a # v) \<and> y = u @ (b # w))}"
paulson@15656
  2578
paulson@15656
  2579
lemma lexord_Nil_left[simp]:  "([],y) \<in> lexord r = (\<exists> a x. y = a # x)"
paulson@15656
  2580
  by (unfold lexord_def, induct_tac y, auto) 
paulson@15656
  2581
paulson@15656
  2582
lemma lexord_Nil_right[simp]: "(x,[]) \<notin> lexord r"
paulson@15656
  2583
  by (unfold lexord_def, induct_tac x, auto)
paulson@15656
  2584
paulson@15656
  2585
lemma lexord_cons_cons[simp]:
paulson@15656
  2586
     "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r | (a = b & (x,y)\<in> lexord r))"
paulson@15656
  2587
  apply (unfold lexord_def, safe, simp_all)
paulson@15656
  2588
  apply (case_tac u, simp, simp)
paulson@15656
  2589
  apply (case_tac u, simp, clarsimp, blast, blast, clarsimp)
paulson@15656
  2590
  apply (erule_tac x="b # u" in allE)
paulson@15656
  2591
  by force
paulson@15656
  2592
paulson@15656
  2593
lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons
paulson@15656
  2594
paulson@15656
  2595
lemma lexord_append_rightI: "\<exists> b z. y = b # z \<Longrightarrow> (x, x @ y) \<in> lexord r"
paulson@15656
  2596
  by (induct_tac x, auto)  
paulson@15656
  2597
paulson@15656
  2598
lemma lexord_append_left_rightI:
paulson@15656
  2599
     "(a,b) \<in> r \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r"
paulson@15656
  2600
  by (induct_tac u, auto)
paulson@15656
  2601
paulson@15656
  2602
lemma lexord_append_leftI: " (u,v) \<in> lexord r \<Longrightarrow> (x @ u, x @ v) \<in> lexord r"
paulson@15656
  2603
  by (induct x, auto)
paulson@15656
  2604
paulson@15656
  2605
lemma lexord_append_leftD:
paulson@15656
  2606
     "\<lbrakk> (x @ u, x @ v) \<in> lexord r; (! a. (a,a) \<notin> r) \<rbrakk> \<Longrightarrow> (u,v) \<in> lexord r"
paulson@15656
  2607
  by (erule rev_mp, induct_tac x, auto)
paulson@15656
  2608
paulson@15656
  2609
lemma lexord_take_index_conv: 
paulson@15656
  2610
   "((x,y) : lexord r) = 
paulson@15656
  2611
    ((length x < length y \<and> take (length x) y = x) \<or> 
paulson@15656
  2612
     (\<exists>i. i < min(length x)(length y) & take i x = take i y & (x!i,y!i) \<in> r))"
paulson@15656
  2613
  apply (unfold lexord_def Let_def, clarsimp) 
paulson@15656
  2614
  apply (rule_tac f = "(% a b. a \<or> b)" in arg_cong2)
paulson@15656
  2615
  apply auto 
paulson@15656
  2616
  apply (rule_tac x="hd (drop (length x) y)" in exI)
paulson@15656
  2617
  apply (rule_tac x="tl (drop (length x) y)" in exI)
paulson@15656
  2618
  apply (erule subst, simp add: min_def) 
paulson@15656
  2619
  apply (rule_tac x ="length u" in exI, simp) 
paulson@15656
  2620
  apply (rule_tac x ="take i x" in exI) 
paulson@15656
  2621
  apply (rule_tac x ="x ! i" in exI) 
paulson@15656
  2622
  apply (rule_tac x ="y ! i" in exI, safe) 
paulson@15656
  2623
  apply (rule_tac x="drop (Suc i) x" in exI)
paulson@15656
  2624
  apply (drule sym, simp add: drop_Suc_conv_tl) 
paulson@15656
  2625
  apply (rule_tac x="drop (Suc i) y" in exI)
paulson@15656
  2626
  by (simp add: drop_Suc_conv_tl) 
paulson@15656
  2627
paulson@15656
  2628
-- {* lexord is extension of partial ordering List.lex *} 
paulson@15656
  2629
lemma lexord_lex: " (x,y) \<in> lex r = ((x,y) \<in> lexord r \<and> length x = length y)"
paulson@15656
  2630
  apply (rule_tac x = y in spec) 
paulson@15656
  2631
  apply (induct_tac x, clarsimp) 
paulson@15656
  2632
  by (clarify, case_tac x, simp, force)
paulson@15656
  2633
paulson@15656
  2634
lemma lexord_irreflexive: "(! x. (x,x) \<notin> r) \<Longrightarrow> (y,y) \<notin> lexord r"
paulson@15656
  2635
  by (induct y, auto)
paulson@15656
  2636
paulson@15656
  2637
lemma lexord_trans: 
paulson@15656
  2638
    "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r \<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r"
paulson@15656
  2639
   apply (erule rev_mp)+
paulson@15656
  2640
   apply (rule_tac x = x in spec) 
paulson@15656
  2641
  apply (rule_tac x = z in spec) 
paulson@15656
  2642
  apply ( induct_tac y, simp, clarify)
paulson@15656
  2643
  apply (case_tac xa, erule ssubst) 
paulson@15656
  2644
  apply (erule allE, erule allE) -- {* avoid simp recursion *} 
paulson@15656
  2645
  apply (case_tac x, simp, simp) 
paulson@15656
  2646
  apply (case_tac x, erule allE, erule allE, simp) 
paulson@15656
  2647
  apply (erule_tac x = listb in allE) 
paulson@15656
  2648
  apply (erule_tac x = lista in allE, simp)
paulson@15656
  2649
  apply (unfold trans_def)
paulson@15656
  2650
  by blast
paulson@15656
  2651
paulson@15656
  2652
lemma lexord_transI:  "trans r \<Longrightarrow> trans (lexord r)"
paulson@15656
  2653
  by (rule transI, drule lexord_trans, blast) 
paulson@15656
  2654
paulson@15656
  2655
lemma lexord_linear: "(! a b. (a,b)\<in> r | a = b | (b,a) \<in> r) \<Longrightarrow> (x,y) : lexord r | x = y | (y,x) : lexord r"
paulson@15656
  2656
  apply (rule_tac x = y in spec) 
paulson@15656
  2657
  apply (induct_tac x, rule allI) 
paulson@15656
  2658
  apply (case_tac x, simp, simp) 
paulson@15656
  2659
  apply (rule allI, case_tac x, simp, simp) 
paulson@15656
  2660
  by blast
paulson@15656
  2661
paulson@15656
  2662
krauss@21103
  2663
subsection {* Lexicographic combination of measure functions *}
krauss@21103
  2664
krauss@21103
  2665
text {* These are useful for termination proofs *}
krauss@21103
  2666
krauss@21103
  2667
definition
krauss@21103
  2668
  "measures fs = inv_image (lex less_than) (%a. map (%f. f a) fs)"
krauss@21103
  2669
krauss@21106
  2670
lemma wf_measures[recdef_wf, simp]: "wf (measures fs)"
krauss@21103
  2671
  unfolding measures_def
krauss@21103
  2672
  by blast
krauss@21103
  2673
krauss@21103
  2674
lemma in_measures[simp]: 
krauss@21103
  2675
  "(x, y) \<in> measures [] = False"
krauss@21103
  2676
  "(x, y) \<in> measures (f # fs)
krauss@21103
  2677
         = (f x < f y \<or> (f x = f y \<and> (x, y) \<in> measures fs))"  
krauss@21103
  2678
  unfolding measures_def
krauss@21103
  2679
  by auto
krauss@21103
  2680
krauss@21103
  2681
lemma measures_less: "f x < f y ==> (x, y) \<in> measures (f#fs)"
krauss@21103
  2682
  by simp
krauss@21103
  2683
krauss@21103
  2684
lemma measures_lesseq: "f x <= f y ==> (x, y) \<in> measures fs ==> (x, y) \<in> measures (f#fs)"
krauss@21103
  2685
  by auto
krauss@21103
  2686
krauss@21211
  2687
(* install the lexicographic_order method and the "fun" command *)
bulwahn@21131
  2688
use "Tools/function_package/lexicographic_order.ML"
krauss@21211
  2689
use "Tools/function_package/fundef_datatype.ML"
krauss@21211
  2690
setup LexicographicOrder.setup
krauss@21211
  2691
setup FundefDatatype.setup
krauss@21211
  2692
krauss@21103
  2693
nipkow@15392
  2694
subsubsection{*Lifting a Relation on List Elements to the Lists*}
nipkow@15302
  2695
berghofe@22262
  2696
inductive2
berghofe@22262
  2697
  list_all2' :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> bool"
berghofe@22262
  2698
  for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool"
berghofe@22262
  2699
where
berghofe@22262
  2700
    Nil:  "list_all2' r [] []"
berghofe@22262
  2701
  | Cons: "[| r x y; list_all2' r xs ys |] ==> list_all2' r (x#xs) (y#ys)"
berghofe@22262
  2702
berghofe@22262
  2703
constdefs
berghofe@22262
  2704
  listrel :: "('a * 'b) set => ('a list * 'b list) set"
berghofe@22262
  2705
  "listrel r == Collect2 (list_all2' (member2 r))"
berghofe@22262
  2706
berghofe@22262
  2707
lemma list_all2_listrel_eq [pred_set_conv]:
berghofe@22262
  2708
  "list_all2' (member2 r) = member2 (listrel r)"
berghofe@22262
  2709
  by (simp add: listrel_def)
berghofe@22262
  2710
berghofe@22262
  2711
lemmas listrel_induct [consumes 1, case_names Nil Cons, induct set: listrel] =
berghofe@22262
  2712
  list_all2'.induct [to_set]
berghofe@22262
  2713
berghofe@22262
  2714
lemmas listrel_intros = list_all2'.intros [to_set]
berghofe@22262
  2715
berghofe@22262
  2716
inductive_cases2 listrel_Nil1 [to_set, elim!]: "list_all2' r [] xs"
berghofe@22262
  2717
inductive_cases2 listrel_Nil2 [to_set, elim!]: "list_all2' r xs []"
berghofe@22262
  2718
inductive_cases2 listrel_Cons1 [to_set, elim!]: "list_all2' r  (y#ys) xs"
berghofe@22262
  2719
inductive_cases2 listrel_Cons2 [to_set, elim!]: "list_all2' r xs (y#ys)"
nipkow@15302
  2720
nipkow@15302
  2721
nipkow@15302
  2722
lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s"
nipkow@15302
  2723
apply clarify  
berghofe@22262
  2724
apply (erule listrel_induct)
berghofe@22262
  2725
apply (blast intro: listrel_intros)+
nipkow@15302
  2726
done
nipkow@15302
  2727
nipkow@15302
  2728
lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A"
nipkow@15302
  2729
apply clarify 
berghofe@22262
  2730
apply (erule listrel_induct, auto) 
nipkow@15302
  2731
done
nipkow@15302
  2732
nipkow@15302
  2733
lemma listrel_refl: "refl A r \<Longrightarrow> refl (lists A) (listrel r)" 
nipkow@15302
  2734
apply (simp add: refl_def listrel_subset Ball_def)
nipkow@15302
  2735
apply (rule allI) 
nipkow@15302
  2736
apply (induct_tac x) 
berghofe@22262
  2737
apply (auto intro: listrel_intros)
nipkow@15302
  2738
done
nipkow@15302
  2739
nipkow@15302
  2740
lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" 
nipkow@15302
  2741
apply (auto simp add: sym_def)
berghofe@22262
  2742
apply (erule listrel_induct) 
berghofe@22262
  2743
apply (blast intro: listrel_intros)+
nipkow@15302
  2744
done
nipkow@15302
  2745
nipkow@15302
  2746
lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" 
nipkow@15302
  2747
apply (simp add: trans_def)
nipkow@15302
  2748
apply (intro allI) 
nipkow@15302
  2749
apply (rule impI) 
berghofe@22262
  2750
apply (erule listrel_induct) 
berghofe@22262
  2751
apply (blast intro: listrel_intros)+
nipkow@15302
  2752
done
nipkow@15302
  2753
nipkow@15302
  2754
theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)"
nipkow@15302
  2755
by (simp add: equiv_def listrel_refl listrel_sym listrel_trans) 
nipkow@15302
  2756
nipkow@15302
  2757
lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
berghofe@22262
  2758
by (blast intro: listrel_intros)
nipkow@15302
  2759
nipkow@15302
  2760
lemma listrel_Cons:
nipkow@15302
  2761