437
|
1 |
(* Title: ZF/CardinalArith.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1994 University of Cambridge
|
|
5 |
|
|
6 |
Cardinal arithmetic -- WITHOUT the Axiom of Choice
|
|
7 |
*)
|
|
8 |
|
|
9 |
open CardinalArith;
|
|
10 |
|
484
|
11 |
(*** Elementary properties ***)
|
467
|
12 |
|
437
|
13 |
(*Use AC to discharge first premise*)
|
|
14 |
goal CardinalArith.thy
|
|
15 |
"!!A B. [| well_ord(B,r); A lepoll B |] ==> |A| le |B|";
|
|
16 |
by (res_inst_tac [("i","|A|"),("j","|B|")] Ord_linear_le 1);
|
|
17 |
by (REPEAT_FIRST (ares_tac [Ord_cardinal, le_eqI]));
|
|
18 |
by (rtac (eqpollI RS cardinal_cong) 1 THEN assume_tac 1);
|
|
19 |
by (rtac lepoll_trans 1);
|
|
20 |
by (rtac (well_ord_cardinal_eqpoll RS eqpoll_sym RS eqpoll_imp_lepoll) 1);
|
|
21 |
by (assume_tac 1);
|
|
22 |
by (etac (le_imp_subset RS subset_imp_lepoll RS lepoll_trans) 1);
|
|
23 |
by (rtac eqpoll_imp_lepoll 1);
|
|
24 |
by (rewtac lepoll_def);
|
|
25 |
by (etac exE 1);
|
|
26 |
by (rtac well_ord_cardinal_eqpoll 1);
|
|
27 |
by (etac well_ord_rvimage 1);
|
|
28 |
by (assume_tac 1);
|
|
29 |
val well_ord_lepoll_imp_le = result();
|
|
30 |
|
|
31 |
val case_ss = ZF_ss addsimps [Inl_iff, Inl_Inr_iff, Inr_iff, Inr_Inl_iff,
|
|
32 |
case_Inl, case_Inr, InlI, InrI];
|
|
33 |
|
|
34 |
|
|
35 |
(** Congruence laws for successor, cardinal addition and multiplication **)
|
|
36 |
|
|
37 |
val bij_inverse_ss =
|
|
38 |
case_ss addsimps [bij_is_fun RS apply_type,
|
|
39 |
bij_converse_bij RS bij_is_fun RS apply_type,
|
|
40 |
left_inverse_bij, right_inverse_bij];
|
|
41 |
|
|
42 |
|
484
|
43 |
(*Congruence law for cons under equipollence*)
|
437
|
44 |
goalw CardinalArith.thy [eqpoll_def]
|
484
|
45 |
"!!A B. [| A eqpoll B; a ~: A; b ~: B |] ==> cons(a,A) eqpoll cons(b,B)";
|
437
|
46 |
by (safe_tac ZF_cs);
|
|
47 |
by (rtac exI 1);
|
484
|
48 |
by (res_inst_tac [("c", "%z.if(z=a,b,f`z)"),
|
|
49 |
("d", "%z.if(z=b,a,converse(f)`z)")] lam_bijective 1);
|
437
|
50 |
by (ALLGOALS
|
484
|
51 |
(asm_simp_tac (bij_inverse_ss addsimps [consI2]
|
|
52 |
setloop (etac consE ORELSE'
|
|
53 |
split_tac [expand_if]))));
|
|
54 |
by (fast_tac (ZF_cs addIs [bij_is_fun RS apply_type]) 1);
|
|
55 |
by (fast_tac (ZF_cs addIs [bij_converse_bij RS bij_is_fun RS apply_type]) 1);
|
|
56 |
val cons_eqpoll_cong = result();
|
|
57 |
|
|
58 |
(*Congruence law for succ under equipollence*)
|
|
59 |
goalw CardinalArith.thy [succ_def]
|
|
60 |
"!!A B. A eqpoll B ==> succ(A) eqpoll succ(B)";
|
|
61 |
by (REPEAT (ares_tac [cons_eqpoll_cong, mem_not_refl] 1));
|
437
|
62 |
val succ_eqpoll_cong = result();
|
|
63 |
|
484
|
64 |
(*Each element of Fin(A) is equivalent to a natural number*)
|
|
65 |
goal CardinalArith.thy
|
|
66 |
"!!X A. X: Fin(A) ==> EX n:nat. X eqpoll n";
|
|
67 |
by (eresolve_tac [Fin_induct] 1);
|
|
68 |
by (fast_tac (ZF_cs addIs [eqpoll_refl, nat_0I]) 1);
|
|
69 |
by (fast_tac (ZF_cs addSIs [cons_eqpoll_cong,
|
|
70 |
rewrite_rule [succ_def] nat_succI]
|
|
71 |
addSEs [mem_irrefl]) 1);
|
|
72 |
val Fin_eqpoll = result();
|
|
73 |
|
437
|
74 |
(*Congruence law for + under equipollence*)
|
|
75 |
goalw CardinalArith.thy [eqpoll_def]
|
|
76 |
"!!A B C D. [| A eqpoll C; B eqpoll D |] ==> A+B eqpoll C+D";
|
|
77 |
by (safe_tac ZF_cs);
|
|
78 |
by (rtac exI 1);
|
|
79 |
by (res_inst_tac [("c", "case(%x. Inl(f`x), %y. Inr(fa`y))"),
|
|
80 |
("d", "case(%x. Inl(converse(f)`x), %y. Inr(converse(fa)`y))")]
|
|
81 |
lam_bijective 1);
|
|
82 |
by (safe_tac (ZF_cs addSEs [sumE]));
|
|
83 |
by (ALLGOALS (asm_simp_tac bij_inverse_ss));
|
|
84 |
val sum_eqpoll_cong = result();
|
|
85 |
|
|
86 |
(*Congruence law for * under equipollence*)
|
|
87 |
goalw CardinalArith.thy [eqpoll_def]
|
|
88 |
"!!A B C D. [| A eqpoll C; B eqpoll D |] ==> A*B eqpoll C*D";
|
|
89 |
by (safe_tac ZF_cs);
|
|
90 |
by (rtac exI 1);
|
|
91 |
by (res_inst_tac [("c", "split(%x y. <f`x, fa`y>)"),
|
|
92 |
("d", "split(%x y. <converse(f)`x, converse(fa)`y>)")]
|
|
93 |
lam_bijective 1);
|
|
94 |
by (safe_tac ZF_cs);
|
|
95 |
by (ALLGOALS (asm_simp_tac bij_inverse_ss));
|
|
96 |
val prod_eqpoll_cong = result();
|
|
97 |
|
|
98 |
|
|
99 |
(*** Cardinal addition ***)
|
|
100 |
|
|
101 |
(** Cardinal addition is commutative **)
|
|
102 |
|
|
103 |
(*Easier to prove the two directions separately*)
|
|
104 |
goalw CardinalArith.thy [eqpoll_def] "A+B eqpoll B+A";
|
|
105 |
by (rtac exI 1);
|
|
106 |
by (res_inst_tac [("c", "case(Inr, Inl)"), ("d", "case(Inr, Inl)")]
|
|
107 |
lam_bijective 1);
|
|
108 |
by (safe_tac (ZF_cs addSEs [sumE]));
|
|
109 |
by (ALLGOALS (asm_simp_tac case_ss));
|
|
110 |
val sum_commute_eqpoll = result();
|
|
111 |
|
|
112 |
goalw CardinalArith.thy [cadd_def] "i |+| j = j |+| i";
|
|
113 |
by (rtac (sum_commute_eqpoll RS cardinal_cong) 1);
|
|
114 |
val cadd_commute = result();
|
|
115 |
|
|
116 |
(** Cardinal addition is associative **)
|
|
117 |
|
|
118 |
goalw CardinalArith.thy [eqpoll_def] "(A+B)+C eqpoll A+(B+C)";
|
|
119 |
by (rtac exI 1);
|
|
120 |
by (res_inst_tac [("c", "case(case(Inl, %y.Inr(Inl(y))), %y. Inr(Inr(y)))"),
|
|
121 |
("d", "case(%x.Inl(Inl(x)), case(%x.Inl(Inr(x)), Inr))")]
|
|
122 |
lam_bijective 1);
|
|
123 |
by (ALLGOALS (asm_simp_tac (case_ss setloop etac sumE)));
|
|
124 |
val sum_assoc_eqpoll = result();
|
|
125 |
|
|
126 |
(*Unconditional version requires AC*)
|
|
127 |
goalw CardinalArith.thy [cadd_def]
|
484
|
128 |
"!!i j k. [| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] ==> \
|
437
|
129 |
\ (i |+| j) |+| k = i |+| (j |+| k)";
|
|
130 |
by (rtac cardinal_cong 1);
|
|
131 |
br ([well_ord_cardinal_eqpoll, eqpoll_refl] MRS sum_eqpoll_cong RS
|
|
132 |
eqpoll_trans) 1;
|
|
133 |
by (rtac (sum_assoc_eqpoll RS eqpoll_trans) 2);
|
|
134 |
br ([eqpoll_refl, well_ord_cardinal_eqpoll] MRS sum_eqpoll_cong RS
|
|
135 |
eqpoll_sym) 2;
|
484
|
136 |
by (REPEAT (ares_tac [well_ord_radd] 1));
|
|
137 |
val well_ord_cadd_assoc = result();
|
437
|
138 |
|
|
139 |
(** 0 is the identity for addition **)
|
|
140 |
|
|
141 |
goalw CardinalArith.thy [eqpoll_def] "0+A eqpoll A";
|
|
142 |
by (rtac exI 1);
|
|
143 |
by (res_inst_tac [("c", "case(%x.x, %y.y)"), ("d", "Inr")]
|
|
144 |
lam_bijective 1);
|
|
145 |
by (ALLGOALS (asm_simp_tac (case_ss setloop eresolve_tac [sumE,emptyE])));
|
|
146 |
val sum_0_eqpoll = result();
|
|
147 |
|
484
|
148 |
goalw CardinalArith.thy [cadd_def] "!!K. Card(K) ==> 0 |+| K = K";
|
437
|
149 |
by (asm_simp_tac (ZF_ss addsimps [sum_0_eqpoll RS cardinal_cong,
|
|
150 |
Card_cardinal_eq]) 1);
|
|
151 |
val cadd_0 = result();
|
|
152 |
|
|
153 |
(** Addition of finite cardinals is "ordinary" addition **)
|
|
154 |
|
|
155 |
goalw CardinalArith.thy [eqpoll_def] "succ(A)+B eqpoll succ(A+B)";
|
|
156 |
by (rtac exI 1);
|
|
157 |
by (res_inst_tac [("c", "%z.if(z=Inl(A),A+B,z)"),
|
|
158 |
("d", "%z.if(z=A+B,Inl(A),z)")]
|
|
159 |
lam_bijective 1);
|
|
160 |
by (ALLGOALS
|
|
161 |
(asm_simp_tac (case_ss addsimps [succI2, mem_imp_not_eq]
|
|
162 |
setloop eresolve_tac [sumE,succE])));
|
|
163 |
val sum_succ_eqpoll = result();
|
|
164 |
|
|
165 |
(*Pulling the succ(...) outside the |...| requires m, n: nat *)
|
|
166 |
(*Unconditional version requires AC*)
|
|
167 |
goalw CardinalArith.thy [cadd_def]
|
|
168 |
"!!m n. [| Ord(m); Ord(n) |] ==> succ(m) |+| n = |succ(m |+| n)|";
|
|
169 |
by (rtac (sum_succ_eqpoll RS cardinal_cong RS trans) 1);
|
|
170 |
by (rtac (succ_eqpoll_cong RS cardinal_cong) 1);
|
|
171 |
by (rtac (well_ord_cardinal_eqpoll RS eqpoll_sym) 1);
|
|
172 |
by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel] 1));
|
|
173 |
val cadd_succ_lemma = result();
|
|
174 |
|
|
175 |
val [mnat,nnat] = goal CardinalArith.thy
|
|
176 |
"[| m: nat; n: nat |] ==> m |+| n = m#+n";
|
|
177 |
by (cut_facts_tac [nnat] 1);
|
|
178 |
by (nat_ind_tac "m" [mnat] 1);
|
|
179 |
by (asm_simp_tac (arith_ss addsimps [nat_into_Card RS cadd_0]) 1);
|
|
180 |
by (asm_simp_tac (arith_ss addsimps [nat_into_Ord, cadd_succ_lemma,
|
|
181 |
nat_into_Card RS Card_cardinal_eq]) 1);
|
|
182 |
val nat_cadd_eq_add = result();
|
|
183 |
|
|
184 |
|
|
185 |
(*** Cardinal multiplication ***)
|
|
186 |
|
|
187 |
(** Cardinal multiplication is commutative **)
|
|
188 |
|
|
189 |
(*Easier to prove the two directions separately*)
|
|
190 |
goalw CardinalArith.thy [eqpoll_def] "A*B eqpoll B*A";
|
|
191 |
by (rtac exI 1);
|
|
192 |
by (res_inst_tac [("c", "split(%x y.<y,x>)"), ("d", "split(%x y.<y,x>)")]
|
|
193 |
lam_bijective 1);
|
|
194 |
by (safe_tac ZF_cs);
|
|
195 |
by (ALLGOALS (asm_simp_tac ZF_ss));
|
|
196 |
val prod_commute_eqpoll = result();
|
|
197 |
|
|
198 |
goalw CardinalArith.thy [cmult_def] "i |*| j = j |*| i";
|
|
199 |
by (rtac (prod_commute_eqpoll RS cardinal_cong) 1);
|
|
200 |
val cmult_commute = result();
|
|
201 |
|
|
202 |
(** Cardinal multiplication is associative **)
|
|
203 |
|
|
204 |
goalw CardinalArith.thy [eqpoll_def] "(A*B)*C eqpoll A*(B*C)";
|
|
205 |
by (rtac exI 1);
|
|
206 |
by (res_inst_tac [("c", "split(%w z. split(%x y. <x,<y,z>>, w))"),
|
|
207 |
("d", "split(%x. split(%y z. <<x,y>, z>))")]
|
|
208 |
lam_bijective 1);
|
|
209 |
by (safe_tac ZF_cs);
|
|
210 |
by (ALLGOALS (asm_simp_tac ZF_ss));
|
|
211 |
val prod_assoc_eqpoll = result();
|
|
212 |
|
|
213 |
(*Unconditional version requires AC*)
|
|
214 |
goalw CardinalArith.thy [cmult_def]
|
484
|
215 |
"!!i j k. [| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] ==> \
|
437
|
216 |
\ (i |*| j) |*| k = i |*| (j |*| k)";
|
|
217 |
by (rtac cardinal_cong 1);
|
|
218 |
br ([well_ord_cardinal_eqpoll, eqpoll_refl] MRS prod_eqpoll_cong RS
|
|
219 |
eqpoll_trans) 1;
|
|
220 |
by (rtac (prod_assoc_eqpoll RS eqpoll_trans) 2);
|
|
221 |
br ([eqpoll_refl, well_ord_cardinal_eqpoll] MRS prod_eqpoll_cong RS
|
|
222 |
eqpoll_sym) 2;
|
484
|
223 |
by (REPEAT (ares_tac [well_ord_rmult] 1));
|
|
224 |
val well_ord_cmult_assoc = result();
|
437
|
225 |
|
|
226 |
(** Cardinal multiplication distributes over addition **)
|
|
227 |
|
|
228 |
goalw CardinalArith.thy [eqpoll_def] "(A+B)*C eqpoll (A*C)+(B*C)";
|
|
229 |
by (rtac exI 1);
|
|
230 |
by (res_inst_tac
|
|
231 |
[("c", "split(%x z. case(%y.Inl(<y,z>), %y.Inr(<y,z>), x))"),
|
|
232 |
("d", "case(split(%x y.<Inl(x),y>), split(%x y.<Inr(x),y>))")]
|
|
233 |
lam_bijective 1);
|
|
234 |
by (safe_tac (ZF_cs addSEs [sumE]));
|
|
235 |
by (ALLGOALS (asm_simp_tac case_ss));
|
|
236 |
val sum_prod_distrib_eqpoll = result();
|
|
237 |
|
|
238 |
goalw CardinalArith.thy [lepoll_def, inj_def] "A lepoll A*A";
|
|
239 |
by (res_inst_tac [("x", "lam x:A. <x,x>")] exI 1);
|
|
240 |
by (simp_tac (ZF_ss addsimps [lam_type]) 1);
|
|
241 |
val prod_square_lepoll = result();
|
|
242 |
|
484
|
243 |
goalw CardinalArith.thy [cmult_def] "!!K. Card(K) ==> K le K |*| K";
|
437
|
244 |
by (rtac le_trans 1);
|
|
245 |
by (rtac well_ord_lepoll_imp_le 2);
|
|
246 |
by (rtac prod_square_lepoll 3);
|
|
247 |
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel, Card_is_Ord] 2));
|
|
248 |
by (asm_simp_tac (ZF_ss addsimps [le_refl, Card_is_Ord, Card_cardinal_eq]) 1);
|
|
249 |
val cmult_square_le = result();
|
|
250 |
|
|
251 |
(** Multiplication by 0 yields 0 **)
|
|
252 |
|
|
253 |
goalw CardinalArith.thy [eqpoll_def] "0*A eqpoll 0";
|
|
254 |
by (rtac exI 1);
|
|
255 |
by (rtac lam_bijective 1);
|
|
256 |
by (safe_tac ZF_cs);
|
|
257 |
val prod_0_eqpoll = result();
|
|
258 |
|
|
259 |
goalw CardinalArith.thy [cmult_def] "0 |*| i = 0";
|
|
260 |
by (asm_simp_tac (ZF_ss addsimps [prod_0_eqpoll RS cardinal_cong,
|
|
261 |
Card_0 RS Card_cardinal_eq]) 1);
|
|
262 |
val cmult_0 = result();
|
|
263 |
|
|
264 |
(** 1 is the identity for multiplication **)
|
|
265 |
|
|
266 |
goalw CardinalArith.thy [eqpoll_def] "{x}*A eqpoll A";
|
|
267 |
by (rtac exI 1);
|
|
268 |
by (res_inst_tac [("c", "snd"), ("d", "%z.<x,z>")] lam_bijective 1);
|
|
269 |
by (safe_tac ZF_cs);
|
|
270 |
by (ALLGOALS (asm_simp_tac ZF_ss));
|
|
271 |
val prod_singleton_eqpoll = result();
|
|
272 |
|
484
|
273 |
goalw CardinalArith.thy [cmult_def, succ_def] "!!K. Card(K) ==> 1 |*| K = K";
|
437
|
274 |
by (asm_simp_tac (ZF_ss addsimps [prod_singleton_eqpoll RS cardinal_cong,
|
|
275 |
Card_cardinal_eq]) 1);
|
|
276 |
val cmult_1 = result();
|
|
277 |
|
|
278 |
(** Multiplication of finite cardinals is "ordinary" multiplication **)
|
|
279 |
|
|
280 |
goalw CardinalArith.thy [eqpoll_def] "succ(A)*B eqpoll B + A*B";
|
|
281 |
by (rtac exI 1);
|
|
282 |
by (res_inst_tac [("c", "split(%x y. if(x=A, Inl(y), Inr(<x,y>)))"),
|
|
283 |
("d", "case(%y. <A,y>, %z.z)")]
|
|
284 |
lam_bijective 1);
|
|
285 |
by (safe_tac (ZF_cs addSEs [sumE]));
|
|
286 |
by (ALLGOALS
|
|
287 |
(asm_simp_tac (case_ss addsimps [succI2, if_type, mem_imp_not_eq])));
|
|
288 |
val prod_succ_eqpoll = result();
|
|
289 |
|
|
290 |
|
|
291 |
(*Unconditional version requires AC*)
|
|
292 |
goalw CardinalArith.thy [cmult_def, cadd_def]
|
|
293 |
"!!m n. [| Ord(m); Ord(n) |] ==> succ(m) |*| n = n |+| (m |*| n)";
|
|
294 |
by (rtac (prod_succ_eqpoll RS cardinal_cong RS trans) 1);
|
|
295 |
by (rtac (cardinal_cong RS sym) 1);
|
|
296 |
by (rtac ([eqpoll_refl, well_ord_cardinal_eqpoll] MRS sum_eqpoll_cong) 1);
|
|
297 |
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1));
|
|
298 |
val cmult_succ_lemma = result();
|
|
299 |
|
|
300 |
val [mnat,nnat] = goal CardinalArith.thy
|
|
301 |
"[| m: nat; n: nat |] ==> m |*| n = m#*n";
|
|
302 |
by (cut_facts_tac [nnat] 1);
|
|
303 |
by (nat_ind_tac "m" [mnat] 1);
|
|
304 |
by (asm_simp_tac (arith_ss addsimps [cmult_0]) 1);
|
|
305 |
by (asm_simp_tac (arith_ss addsimps [nat_into_Ord, cmult_succ_lemma,
|
|
306 |
nat_cadd_eq_add]) 1);
|
|
307 |
val nat_cmult_eq_mult = result();
|
|
308 |
|
|
309 |
|
|
310 |
(*** Infinite Cardinals are Limit Ordinals ***)
|
|
311 |
|
484
|
312 |
(*Using lam_injective might simplify this proof!*)
|
437
|
313 |
goalw CardinalArith.thy [lepoll_def, inj_def]
|
|
314 |
"!!i. nat <= A ==> succ(A) lepoll A";
|
|
315 |
by (res_inst_tac [("x",
|
|
316 |
"lam z:succ(A). if(z=A, 0, if(z:nat, succ(z), z))")] exI 1);
|
|
317 |
by (rtac (lam_type RS CollectI) 1);
|
|
318 |
by (rtac if_type 1);
|
|
319 |
by (etac ([asm_rl, nat_0I] MRS subsetD) 1);
|
|
320 |
by (etac succE 1);
|
|
321 |
by (contr_tac 1);
|
|
322 |
by (rtac if_type 1);
|
|
323 |
by (assume_tac 2);
|
|
324 |
by (etac ([asm_rl, nat_succI] MRS subsetD) 1 THEN assume_tac 1);
|
|
325 |
by (REPEAT (rtac ballI 1));
|
|
326 |
by (asm_simp_tac
|
|
327 |
(ZF_ss addsimps [succ_inject_iff, succ_not_0, succ_not_0 RS not_sym]
|
|
328 |
setloop split_tac [expand_if]) 1);
|
|
329 |
by (safe_tac (ZF_cs addSIs [nat_0I, nat_succI]));
|
|
330 |
val nat_succ_lepoll = result();
|
|
331 |
|
|
332 |
goal CardinalArith.thy "!!i. nat <= A ==> succ(A) eqpoll A";
|
|
333 |
by (etac (nat_succ_lepoll RS eqpollI) 1);
|
|
334 |
by (rtac (subset_succI RS subset_imp_lepoll) 1);
|
|
335 |
val nat_succ_eqpoll = result();
|
|
336 |
|
484
|
337 |
goalw CardinalArith.thy [InfCard_def] "!!K. InfCard(K) ==> Card(K)";
|
437
|
338 |
by (etac conjunct1 1);
|
|
339 |
val InfCard_is_Card = result();
|
|
340 |
|
|
341 |
(*Kunen's Lemma 10.11*)
|
484
|
342 |
goalw CardinalArith.thy [InfCard_def] "!!K. InfCard(K) ==> Limit(K)";
|
437
|
343 |
by (etac conjE 1);
|
|
344 |
by (rtac (ltI RS non_succ_LimitI) 1);
|
|
345 |
by (etac ([asm_rl, nat_0I] MRS (le_imp_subset RS subsetD)) 1);
|
|
346 |
by (etac Card_is_Ord 1);
|
|
347 |
by (safe_tac (ZF_cs addSDs [Limit_nat RS Limit_le_succD]));
|
|
348 |
by (forward_tac [Card_is_Ord RS Ord_succD] 1);
|
|
349 |
by (rewtac Card_def);
|
|
350 |
by (res_inst_tac [("i", "succ(y)")] lt_irrefl 1);
|
|
351 |
by (dtac (le_imp_subset RS nat_succ_eqpoll RS cardinal_cong) 1);
|
|
352 |
(*Tricky combination of substitutions; backtracking needed*)
|
|
353 |
by (etac ssubst 1 THEN etac ssubst 1 THEN rtac Ord_cardinal_le 1);
|
|
354 |
by (assume_tac 1);
|
|
355 |
val InfCard_is_Limit = result();
|
|
356 |
|
|
357 |
|
|
358 |
|
|
359 |
(*** An infinite cardinal equals its square (Kunen, Thm 10.12, page 29) ***)
|
|
360 |
|
|
361 |
(*A general fact about ordermap*)
|
|
362 |
goalw Cardinal.thy [eqpoll_def]
|
|
363 |
"!!A. [| well_ord(A,r); x:A |] ==> ordermap(A,r)`x eqpoll pred(A,x,r)";
|
|
364 |
by (rtac exI 1);
|
|
365 |
by (asm_simp_tac (ZF_ss addsimps [ordermap_eq_image, well_ord_is_wf]) 1);
|
467
|
366 |
by (etac (ordermap_bij RS bij_is_inj RS restrict_bij RS bij_converse_bij) 1);
|
437
|
367 |
by (rtac pred_subset 1);
|
|
368 |
val ordermap_eqpoll_pred = result();
|
|
369 |
|
|
370 |
(** Establishing the well-ordering **)
|
|
371 |
|
|
372 |
goalw CardinalArith.thy [inj_def]
|
484
|
373 |
"!!K. Ord(K) ==> \
|
|
374 |
\ (lam z:K*K. split(%x y. <x Un y, <x, y>>, z)) : inj(K*K, K*K*K)";
|
437
|
375 |
by (safe_tac ZF_cs);
|
|
376 |
by (fast_tac (ZF_cs addIs [lam_type, Un_least_lt RS ltD, ltI]
|
|
377 |
addSEs [split_type]) 1);
|
|
378 |
by (asm_full_simp_tac ZF_ss 1);
|
|
379 |
val csquare_lam_inj = result();
|
|
380 |
|
|
381 |
goalw CardinalArith.thy [csquare_rel_def]
|
484
|
382 |
"!!K. Ord(K) ==> well_ord(K*K, csquare_rel(K))";
|
437
|
383 |
by (rtac (csquare_lam_inj RS well_ord_rvimage) 1);
|
|
384 |
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1));
|
|
385 |
val well_ord_csquare = result();
|
|
386 |
|
|
387 |
(** Characterising initial segments of the well-ordering **)
|
|
388 |
|
|
389 |
goalw CardinalArith.thy [csquare_rel_def]
|
484
|
390 |
"!!K. [| x<K; y<K; z<K |] ==> \
|
|
391 |
\ <<x,y>, <z,z>> : csquare_rel(K) --> x le z & y le z";
|
437
|
392 |
by (REPEAT (etac ltE 1));
|
|
393 |
by (asm_simp_tac (ZF_ss addsimps [rvimage_iff, rmult_iff, Memrel_iff,
|
|
394 |
Un_absorb, Un_least_mem_iff, ltD]) 1);
|
|
395 |
by (safe_tac (ZF_cs addSEs [mem_irrefl]
|
|
396 |
addSIs [Un_upper1_le, Un_upper2_le]));
|
|
397 |
by (ALLGOALS (asm_simp_tac (ZF_ss addsimps [lt_def, succI2, Ord_succ])));
|
|
398 |
val csquareD_lemma = result();
|
|
399 |
val csquareD = csquareD_lemma RS mp |> standard;
|
|
400 |
|
|
401 |
goalw CardinalArith.thy [pred_def]
|
484
|
402 |
"!!K. z<K ==> pred(K*K, <z,z>, csquare_rel(K)) <= succ(z)*succ(z)";
|
437
|
403 |
by (safe_tac (lemmas_cs addSEs [SigmaE])); (*avoids using succCI*)
|
|
404 |
by (rtac (csquareD RS conjE) 1);
|
|
405 |
by (rewtac lt_def);
|
|
406 |
by (assume_tac 4);
|
|
407 |
by (ALLGOALS (fast_tac ZF_cs));
|
|
408 |
val pred_csquare_subset = result();
|
|
409 |
|
|
410 |
goalw CardinalArith.thy [csquare_rel_def]
|
484
|
411 |
"!!K. [| x<z; y<z; z<K |] ==> \
|
|
412 |
\ <<x,y>, <z,z>> : csquare_rel(K)";
|
|
413 |
by (subgoals_tac ["x<K", "y<K"] 1);
|
437
|
414 |
by (REPEAT (eresolve_tac [asm_rl, lt_trans] 2));
|
|
415 |
by (REPEAT (etac ltE 1));
|
|
416 |
by (asm_simp_tac (ZF_ss addsimps [rvimage_iff, rmult_iff, Memrel_iff,
|
|
417 |
Un_absorb, Un_least_mem_iff, ltD]) 1);
|
|
418 |
val csquare_ltI = result();
|
|
419 |
|
|
420 |
(*Part of the traditional proof. UNUSED since it's harder to prove & apply *)
|
|
421 |
goalw CardinalArith.thy [csquare_rel_def]
|
484
|
422 |
"!!K. [| x le z; y le z; z<K |] ==> \
|
|
423 |
\ <<x,y>, <z,z>> : csquare_rel(K) | x=z & y=z";
|
|
424 |
by (subgoals_tac ["x<K", "y<K"] 1);
|
437
|
425 |
by (REPEAT (eresolve_tac [asm_rl, lt_trans1] 2));
|
|
426 |
by (REPEAT (etac ltE 1));
|
|
427 |
by (asm_simp_tac (ZF_ss addsimps [rvimage_iff, rmult_iff, Memrel_iff,
|
|
428 |
Un_absorb, Un_least_mem_iff, ltD]) 1);
|
|
429 |
by (REPEAT_FIRST (etac succE));
|
|
430 |
by (ALLGOALS
|
|
431 |
(asm_simp_tac (ZF_ss addsimps [subset_Un_iff RS iff_sym,
|
|
432 |
subset_Un_iff2 RS iff_sym, OrdmemD])));
|
|
433 |
val csquare_or_eqI = result();
|
|
434 |
|
|
435 |
(** The cardinality of initial segments **)
|
|
436 |
|
|
437 |
goal CardinalArith.thy
|
484
|
438 |
"!!K. [| InfCard(K); x<K; y<K; z=succ(x Un y) |] ==> \
|
|
439 |
\ ordermap(K*K, csquare_rel(K)) ` <x,y> lepoll \
|
|
440 |
\ ordermap(K*K, csquare_rel(K)) ` <z,z>";
|
|
441 |
by (subgoals_tac ["z<K", "well_ord(K*K, csquare_rel(K))"] 1);
|
437
|
442 |
by (etac (InfCard_is_Card RS Card_is_Ord RS well_ord_csquare) 2);
|
|
443 |
by (fast_tac (ZF_cs addSIs [Un_least_lt, InfCard_is_Limit, Limit_has_succ]) 2);
|
|
444 |
by (rtac (OrdmemD RS subset_imp_lepoll) 1);
|
467
|
445 |
by (res_inst_tac [("z1","z")] (csquare_ltI RS ordermap_mono) 1);
|
437
|
446 |
by (etac well_ord_is_wf 4);
|
|
447 |
by (ALLGOALS
|
|
448 |
(fast_tac (ZF_cs addSIs [Un_upper1_le, Un_upper2_le, Ord_ordermap]
|
|
449 |
addSEs [ltE])));
|
|
450 |
val ordermap_z_lepoll = result();
|
|
451 |
|
484
|
452 |
(*Kunen: "each <x,y>: K*K has no more than z*z predecessors..." (page 29) *)
|
437
|
453 |
goalw CardinalArith.thy [cmult_def]
|
484
|
454 |
"!!K. [| InfCard(K); x<K; y<K; z=succ(x Un y) |] ==> \
|
|
455 |
\ | ordermap(K*K, csquare_rel(K)) ` <x,y> | le |succ(z)| |*| |succ(z)|";
|
437
|
456 |
by (rtac (well_ord_rmult RS well_ord_lepoll_imp_le) 1);
|
|
457 |
by (REPEAT (ares_tac [Ord_cardinal, well_ord_Memrel] 1));
|
484
|
458 |
by (subgoals_tac ["z<K"] 1);
|
437
|
459 |
by (fast_tac (ZF_cs addSIs [Un_least_lt, InfCard_is_Limit,
|
|
460 |
Limit_has_succ]) 2);
|
|
461 |
by (rtac (ordermap_z_lepoll RS lepoll_trans) 1);
|
|
462 |
by (REPEAT_SOME assume_tac);
|
|
463 |
by (rtac (ordermap_eqpoll_pred RS eqpoll_imp_lepoll RS lepoll_trans) 1);
|
|
464 |
by (etac (InfCard_is_Card RS Card_is_Ord RS well_ord_csquare) 1);
|
|
465 |
by (fast_tac (ZF_cs addIs [ltD]) 1);
|
|
466 |
by (rtac (pred_csquare_subset RS subset_imp_lepoll RS lepoll_trans) 1 THEN
|
|
467 |
assume_tac 1);
|
|
468 |
by (REPEAT_FIRST (etac ltE));
|
|
469 |
by (rtac (prod_eqpoll_cong RS eqpoll_sym RS eqpoll_imp_lepoll) 1);
|
|
470 |
by (REPEAT_FIRST (etac (Ord_succ RS Ord_cardinal_eqpoll)));
|
|
471 |
val ordermap_csquare_le = result();
|
|
472 |
|
484
|
473 |
(*Kunen: "... so the order type <= K" *)
|
437
|
474 |
goal CardinalArith.thy
|
484
|
475 |
"!!K. [| InfCard(K); ALL y:K. InfCard(y) --> y |*| y = y |] ==> \
|
|
476 |
\ ordertype(K*K, csquare_rel(K)) le K";
|
437
|
477 |
by (forward_tac [InfCard_is_Card RS Card_is_Ord] 1);
|
|
478 |
by (rtac all_lt_imp_le 1);
|
|
479 |
by (assume_tac 1);
|
|
480 |
by (etac (well_ord_csquare RS Ord_ordertype) 1);
|
|
481 |
by (rtac Card_lt_imp_lt 1);
|
|
482 |
by (etac InfCard_is_Card 3);
|
|
483 |
by (etac ltE 2 THEN assume_tac 2);
|
|
484 |
by (asm_full_simp_tac (ZF_ss addsimps [ordertype_unfold]) 1);
|
|
485 |
by (safe_tac (ZF_cs addSEs [ltE]));
|
|
486 |
by (subgoals_tac ["Ord(xb)", "Ord(y)"] 1);
|
|
487 |
by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 2));
|
|
488 |
by (rtac (ordermap_csquare_le RS lt_trans1) 1 THEN
|
|
489 |
REPEAT (ares_tac [refl] 1 ORELSE etac ltI 1));
|
|
490 |
by (res_inst_tac [("i","xb Un y"), ("j","nat")] Ord_linear2 1 THEN
|
|
491 |
REPEAT (ares_tac [Ord_Un, Ord_nat] 1));
|
|
492 |
(*the finite case: xb Un y < nat *)
|
|
493 |
by (res_inst_tac [("j", "nat")] lt_trans2 1);
|
|
494 |
by (asm_full_simp_tac (FOL_ss addsimps [InfCard_def]) 2);
|
|
495 |
by (asm_full_simp_tac
|
|
496 |
(ZF_ss addsimps [lt_def, nat_cmult_eq_mult, nat_succI, mult_type,
|
|
497 |
nat_into_Card RS Card_cardinal_eq, Ord_nat]) 1);
|
|
498 |
(*case nat le (xb Un y), equivalently InfCard(xb Un y) *)
|
|
499 |
by (asm_full_simp_tac
|
|
500 |
(ZF_ss addsimps [le_imp_subset RS nat_succ_eqpoll RS cardinal_cong,
|
|
501 |
le_succ_iff, InfCard_def, Card_cardinal, Un_least_lt,
|
|
502 |
Ord_Un, ltI, nat_le_cardinal,
|
|
503 |
Ord_cardinal_le RS lt_trans1 RS ltD]) 1);
|
|
504 |
val ordertype_csquare_le = result();
|
|
505 |
|
|
506 |
(*This lemma can easily be generalized to premise well_ord(A*A,r) *)
|
|
507 |
goalw CardinalArith.thy [cmult_def]
|
484
|
508 |
"!!K. Ord(K) ==> K |*| K = |ordertype(K*K, csquare_rel(K))|";
|
437
|
509 |
by (rtac cardinal_cong 1);
|
|
510 |
by (rewtac eqpoll_def);
|
|
511 |
by (rtac exI 1);
|
467
|
512 |
by (etac (well_ord_csquare RS ordermap_bij) 1);
|
437
|
513 |
val csquare_eq_ordertype = result();
|
|
514 |
|
|
515 |
(*Main result: Kunen's Theorem 10.12*)
|
484
|
516 |
goal CardinalArith.thy "!!K. InfCard(K) ==> K |*| K = K";
|
437
|
517 |
by (forward_tac [InfCard_is_Card RS Card_is_Ord] 1);
|
|
518 |
by (etac rev_mp 1);
|
484
|
519 |
by (trans_ind_tac "K" [] 1);
|
437
|
520 |
by (rtac impI 1);
|
|
521 |
by (rtac le_anti_sym 1);
|
|
522 |
by (etac (InfCard_is_Card RS cmult_square_le) 2);
|
|
523 |
by (rtac (ordertype_csquare_le RSN (2, le_trans)) 1);
|
|
524 |
by (assume_tac 2);
|
|
525 |
by (assume_tac 2);
|
|
526 |
by (asm_simp_tac
|
|
527 |
(ZF_ss addsimps [csquare_eq_ordertype, Ord_cardinal_le,
|
|
528 |
well_ord_csquare RS Ord_ordertype]) 1);
|
|
529 |
val InfCard_csquare_eq = result();
|
484
|
530 |
|
|
531 |
|
|
532 |
goal CardinalArith.thy
|
|
533 |
"!!A. [| well_ord(A,r); InfCard(|A|) |] ==> A*A eqpoll A";
|
|
534 |
by (resolve_tac [prod_eqpoll_cong RS eqpoll_trans] 1);
|
|
535 |
by (REPEAT (etac (well_ord_cardinal_eqpoll RS eqpoll_sym) 1));
|
|
536 |
by (resolve_tac [well_ord_cardinal_eqE] 1);
|
|
537 |
by (REPEAT (ares_tac [Ord_cardinal, well_ord_rmult, well_ord_Memrel] 1));
|
|
538 |
by (asm_simp_tac (ZF_ss addsimps [symmetric cmult_def, InfCard_csquare_eq]) 1);
|
|
539 |
val well_ord_InfCard_square_eq = result();
|
|
540 |
|
|
541 |
|
|
542 |
(*** For every cardinal number there exists a greater one
|
|
543 |
[Kunen's Theorem 10.16, which would be trivial using AC] ***)
|
|
544 |
|
|
545 |
goalw CardinalArith.thy [jump_cardinal_def] "Ord(jump_cardinal(K))";
|
|
546 |
by (rtac (Ord_is_Transset RSN (2,OrdI)) 1);
|
|
547 |
by (safe_tac (ZF_cs addSIs [Ord_ordertype]));
|
|
548 |
bw Transset_def;
|
|
549 |
by (safe_tac ZF_cs);
|
|
550 |
by (rtac (ordertype_subset RS exE) 1 THEN REPEAT (assume_tac 1));
|
|
551 |
by (resolve_tac [UN_I] 1);
|
|
552 |
by (resolve_tac [ReplaceI] 2);
|
|
553 |
by (ALLGOALS (fast_tac (ZF_cs addSEs [well_ord_subset])));
|
|
554 |
val Ord_jump_cardinal = result();
|
|
555 |
|
|
556 |
(*Allows selective unfolding. Less work than deriving intro/elim rules*)
|
|
557 |
goalw CardinalArith.thy [jump_cardinal_def]
|
|
558 |
"i : jump_cardinal(K) <-> \
|
|
559 |
\ (EX r X. r <= K*K & X <= K & well_ord(X,r) & i = ordertype(X,r))";
|
|
560 |
by (fast_tac subset_cs 1); (*It's vital to avoid reasoning about <=*)
|
|
561 |
val jump_cardinal_iff = result();
|
|
562 |
|
|
563 |
(*The easy part of Theorem 10.16: jump_cardinal(K) exceeds K*)
|
|
564 |
goal CardinalArith.thy "!!K. Ord(K) ==> K < jump_cardinal(K)";
|
|
565 |
by (resolve_tac [Ord_jump_cardinal RSN (2,ltI)] 1);
|
|
566 |
by (resolve_tac [jump_cardinal_iff RS iffD2] 1);
|
|
567 |
by (REPEAT_FIRST (ares_tac [exI, conjI, well_ord_Memrel]));
|
|
568 |
by (resolve_tac [subset_refl] 2);
|
|
569 |
by (asm_simp_tac (ZF_ss addsimps [Memrel_def, subset_iff]) 1);
|
|
570 |
by (asm_simp_tac (ZF_ss addsimps [ordertype_Memrel]) 1);
|
|
571 |
val K_lt_jump_cardinal = result();
|
|
572 |
|
|
573 |
(*The proof by contradiction: the bijection f yields a wellordering of X
|
|
574 |
whose ordertype is jump_cardinal(K). *)
|
|
575 |
goal CardinalArith.thy
|
|
576 |
"!!K. [| well_ord(X,r); r <= K * K; X <= K; \
|
|
577 |
\ f : bij(ordertype(X,r), jump_cardinal(K)) \
|
|
578 |
\ |] ==> jump_cardinal(K) : jump_cardinal(K)";
|
|
579 |
by (subgoal_tac "f O ordermap(X,r): bij(X, jump_cardinal(K))" 1);
|
|
580 |
by (REPEAT (ares_tac [comp_bij, ordermap_bij] 2));
|
|
581 |
by (resolve_tac [jump_cardinal_iff RS iffD2] 1);
|
|
582 |
by (REPEAT_FIRST (resolve_tac [exI, conjI]));
|
|
583 |
by (rtac ([rvimage_type, Sigma_mono] MRS subset_trans) 1);
|
|
584 |
by (REPEAT (assume_tac 1));
|
|
585 |
by (etac (bij_is_inj RS well_ord_rvimage) 1);
|
|
586 |
by (rtac (Ord_jump_cardinal RS well_ord_Memrel) 1);
|
|
587 |
by (asm_simp_tac
|
|
588 |
(ZF_ss addsimps [well_ord_Memrel RSN (2, bij_ordertype_vimage),
|
|
589 |
ordertype_Memrel, Ord_jump_cardinal]) 1);
|
|
590 |
val Card_jump_cardinal_lemma = result();
|
|
591 |
|
|
592 |
(*The hard part of Theorem 10.16: jump_cardinal(K) is itself a cardinal*)
|
|
593 |
goal CardinalArith.thy "Card(jump_cardinal(K))";
|
|
594 |
by (rtac (Ord_jump_cardinal RS CardI) 1);
|
|
595 |
by (rewrite_goals_tac [eqpoll_def]);
|
|
596 |
by (safe_tac (ZF_cs addSDs [ltD, jump_cardinal_iff RS iffD1]));
|
|
597 |
by (REPEAT (ares_tac [Card_jump_cardinal_lemma RS mem_irrefl] 1));
|
|
598 |
val Card_jump_cardinal = result();
|
|
599 |
|
|
600 |
(*** Basic properties of successor cardinals ***)
|
|
601 |
|
|
602 |
goalw CardinalArith.thy [csucc_def]
|
|
603 |
"!!K. Ord(K) ==> Card(csucc(K)) & K < csucc(K)";
|
|
604 |
by (rtac LeastI 1);
|
|
605 |
by (REPEAT (ares_tac [conjI, Card_jump_cardinal, K_lt_jump_cardinal,
|
|
606 |
Ord_jump_cardinal] 1));
|
|
607 |
val csucc_basic = result();
|
|
608 |
|
|
609 |
val Card_csucc = csucc_basic RS conjunct1 |> standard;
|
|
610 |
|
|
611 |
val lt_csucc = csucc_basic RS conjunct2 |> standard;
|
|
612 |
|
|
613 |
goalw CardinalArith.thy [csucc_def]
|
|
614 |
"!!K L. [| Card(L); K<L |] ==> csucc(K) le L";
|
|
615 |
by (rtac Least_le 1);
|
|
616 |
by (REPEAT (ares_tac [conjI, Card_is_Ord] 1));
|
|
617 |
val csucc_le = result();
|
|
618 |
|
|
619 |
goal CardinalArith.thy
|
|
620 |
"!!K. [| Ord(i); Card(K) |] ==> i < csucc(K) <-> |i| le K";
|
|
621 |
by (resolve_tac [iffI] 1);
|
|
622 |
by (resolve_tac [Card_lt_imp_lt] 2);
|
|
623 |
by (eresolve_tac [lt_trans1] 2);
|
|
624 |
by (REPEAT (ares_tac [lt_csucc, Card_csucc, Card_is_Ord] 2));
|
|
625 |
by (resolve_tac [notI RS not_lt_imp_le] 1);
|
|
626 |
by (resolve_tac [Card_cardinal RS csucc_le RS lt_trans1 RS lt_irrefl] 1);
|
|
627 |
by (assume_tac 1);
|
|
628 |
by (resolve_tac [Ord_cardinal_le RS lt_trans1] 1);
|
|
629 |
by (REPEAT (ares_tac [Ord_cardinal] 1
|
|
630 |
ORELSE eresolve_tac [ltE, Card_is_Ord] 1));
|
|
631 |
val lt_csucc_iff = result();
|
|
632 |
|
|
633 |
goal CardinalArith.thy
|
|
634 |
"!!K' K. [| Card(K'); Card(K) |] ==> K' < csucc(K) <-> K' le K";
|
|
635 |
by (asm_simp_tac
|
|
636 |
(ZF_ss addsimps [lt_csucc_iff, Card_cardinal_eq, Card_is_Ord]) 1);
|
|
637 |
val Card_lt_csucc_iff = result();
|