src/HOL/Integ/IntDiv.thy
author nipkow
Fri, 15 Nov 2002 18:02:25 +0100
changeset 13716 73de0ef7cb25
parent 13601 fd3e3d6b37b2
child 13788 fd03c4ab89d4
permissions -rw-r--r--
added zdvd_iff_zmod_eq_0
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
     1
(*  Title:      HOL/IntDiv.thy
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
     2
    ID:         $Id$
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
     4
    Copyright   1999  University of Cambridge
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
     5
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
     6
The division operators div, mod and the divides relation "dvd"
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
     7
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
     8
Here is the division algorithm in ML:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
     9
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    10
    fun posDivAlg (a,b) =
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    11
      if a<b then (0,a)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    12
      else let val (q,r) = posDivAlg(a, 2*b)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    13
	       in  if 0<=r-b then (2*q+1, r-b) else (2*q, r)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    14
	   end
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    15
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    16
    fun negDivAlg (a,b) =
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    17
      if 0<=a+b then (~1,a+b)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    18
      else let val (q,r) = negDivAlg(a, 2*b)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    19
	       in  if 0<=r-b then (2*q+1, r-b) else (2*q, r)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    20
	   end;
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    21
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    22
    fun negateSnd (q,r:int) = (q,~r);
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    23
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    24
    fun divAlg (a,b) = if 0<=a then 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    25
			  if b>0 then posDivAlg (a,b) 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    26
			   else if a=0 then (0,0)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    27
				else negateSnd (negDivAlg (~a,~b))
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    28
		       else 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    29
			  if 0<b then negDivAlg (a,b)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    30
			  else        negateSnd (posDivAlg (~a,~b));
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    31
*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    32
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    33
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
    34
theory IntDiv = IntArith + Recdef
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
    35
  files ("IntDiv_setup.ML"):
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    36
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    37
declare zless_nat_conj [simp]
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    38
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    39
constdefs
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    40
  quorem :: "(int*int) * (int*int) => bool"
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    41
    "quorem == %((a,b), (q,r)).
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    42
                      a = b*q + r &
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11704
diff changeset
    43
                      (if 0 < b then 0<=r & r<b else b<r & r <= 0)"
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    44
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11704
diff changeset
    45
  adjust :: "[int, int*int] => int*int"
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11704
diff changeset
    46
    "adjust b == %(q,r). if 0 <= r-b then (2*q + 1, r-b)
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11704
diff changeset
    47
                         else (2*q, r)"
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    48
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    49
(** the division algorithm **)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    50
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    51
(*for the case a>=0, b>0*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    52
consts posDivAlg :: "int*int => int*int"
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11704
diff changeset
    53
recdef posDivAlg "inv_image less_than (%(a,b). nat(a - b + 1))"
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    54
    "posDivAlg (a,b) =
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11704
diff changeset
    55
       (if (a<b | b<=0) then (0,a)
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11704
diff changeset
    56
        else adjust b (posDivAlg(a, 2*b)))"
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    57
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    58
(*for the case a<0, b>0*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    59
consts negDivAlg :: "int*int => int*int"
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    60
recdef negDivAlg "inv_image less_than (%(a,b). nat(- a - b))"
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    61
    "negDivAlg (a,b) =
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11704
diff changeset
    62
       (if (0<=a+b | b<=0) then (-1,a+b)
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11704
diff changeset
    63
        else adjust b (negDivAlg(a, 2*b)))"
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    64
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    65
(*for the general case b~=0*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    66
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    67
constdefs
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    68
  negateSnd :: "int*int => int*int"
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    69
    "negateSnd == %(q,r). (q,-r)"
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    70
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    71
  (*The full division algorithm considers all possible signs for a, b
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    72
    including the special case a=0, b<0, because negDivAlg requires a<0*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    73
  divAlg :: "int*int => int*int"
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    74
    "divAlg ==
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11704
diff changeset
    75
       %(a,b). if 0<=a then
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11704
diff changeset
    76
                  if 0<=b then posDivAlg (a,b)
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11704
diff changeset
    77
                  else if a=0 then (0,0)
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    78
                       else negateSnd (negDivAlg (-a,-b))
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    79
               else 
11868
56db9f3a6b3e Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents: 11704
diff changeset
    80
                  if 0<b then negDivAlg (a,b)
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    81
                  else         negateSnd (posDivAlg (-a,-b))"
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    82
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    83
instance
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    84
  int :: "Divides.div" ..       (*avoid clash with 'div' token*)
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    85
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    86
defs
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    87
  div_def:   "a div b == fst (divAlg (a,b))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    88
  mod_def:   "a mod b == snd (divAlg (a,b))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    89
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    90
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    91
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    92
(*** Uniqueness and monotonicity of quotients and remainders ***)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    93
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    94
lemma unique_quotient_lemma:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    95
     "[| b*q' + r'  <= b*q + r;  0 <= r';  0 < b;  r < b |]  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    96
      ==> q' <= (q::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    97
apply (subgoal_tac "r' + b * (q'-q) <= r")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    98
 prefer 2 apply (simp add: zdiff_zmult_distrib2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
    99
apply (subgoal_tac "0 < b * (1 + q - q') ")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   100
apply (erule_tac [2] order_le_less_trans)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   101
 prefer 2 apply (simp add: zdiff_zmult_distrib2 zadd_zmult_distrib2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   102
apply (subgoal_tac "b * q' < b * (1 + q) ")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   103
 prefer 2 apply (simp add: zdiff_zmult_distrib2 zadd_zmult_distrib2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   104
apply (simp add: zmult_zless_cancel1)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   105
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   106
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   107
lemma unique_quotient_lemma_neg:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   108
     "[| b*q' + r' <= b*q + r;  r <= 0;  b < 0;  b < r' |]  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   109
      ==> q <= (q'::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   110
by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma, 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   111
    auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   112
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   113
lemma unique_quotient:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   114
     "[| quorem ((a,b), (q,r));  quorem ((a,b), (q',r'));  b ~= 0 |]  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   115
      ==> q = q'"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   116
apply (simp add: quorem_def linorder_neq_iff split: split_if_asm)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   117
apply (blast intro: order_antisym
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   118
             dest: order_eq_refl [THEN unique_quotient_lemma] 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   119
             order_eq_refl [THEN unique_quotient_lemma_neg] sym)+
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   120
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   121
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   122
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   123
lemma unique_remainder:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   124
     "[| quorem ((a,b), (q,r));  quorem ((a,b), (q',r'));  b ~= 0 |]  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   125
      ==> r = r'"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   126
apply (subgoal_tac "q = q'")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   127
 apply (simp add: quorem_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   128
apply (blast intro: unique_quotient)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   129
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   130
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   131
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   132
(*** Correctness of posDivAlg, the division algorithm for a>=0 and b>0 ***)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   133
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   134
lemma adjust_eq [simp]:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   135
     "adjust b (q,r) = 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   136
      (let diff = r-b in  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   137
	if 0 <= diff then (2*q + 1, diff)   
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   138
                     else (2*q, r))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   139
by (simp add: Let_def adjust_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   140
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   141
declare posDivAlg.simps [simp del]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   142
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   143
(**use with a simproc to avoid repeatedly proving the premise*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   144
lemma posDivAlg_eqn:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   145
     "0 < b ==>  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   146
      posDivAlg (a,b) = (if a<b then (0,a) else adjust b (posDivAlg(a, 2*b)))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   147
by (rule posDivAlg.simps [THEN trans], simp)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   148
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   149
(*Correctness of posDivAlg: it computes quotients correctly*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   150
lemma posDivAlg_correct [rule_format]:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   151
     "0 <= a --> 0 < b --> quorem ((a, b), posDivAlg (a, b))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   152
apply (induct_tac a b rule: posDivAlg.induct, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   153
 apply (simp_all add: quorem_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   154
 (*base case: a<b*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   155
 apply (simp add: posDivAlg_eqn)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   156
(*main argument*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   157
apply (subst posDivAlg_eqn, simp_all)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   158
apply (erule splitE)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   159
apply (auto simp add: zadd_zmult_distrib2 Let_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   160
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   161
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   162
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   163
(*** Correctness of negDivAlg, the division algorithm for a<0 and b>0 ***)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   164
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   165
declare negDivAlg.simps [simp del]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   166
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   167
(**use with a simproc to avoid repeatedly proving the premise*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   168
lemma negDivAlg_eqn:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   169
     "0 < b ==>  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   170
      negDivAlg (a,b) =       
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   171
       (if 0<=a+b then (-1,a+b) else adjust b (negDivAlg(a, 2*b)))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   172
by (rule negDivAlg.simps [THEN trans], simp)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   173
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   174
(*Correctness of negDivAlg: it computes quotients correctly
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   175
  It doesn't work if a=0 because the 0/b equals 0, not -1*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   176
lemma negDivAlg_correct [rule_format]:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   177
     "a < 0 --> 0 < b --> quorem ((a, b), negDivAlg (a, b))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   178
apply (induct_tac a b rule: negDivAlg.induct, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   179
 apply (simp_all add: quorem_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   180
 (*base case: 0<=a+b*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   181
 apply (simp add: negDivAlg_eqn)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   182
(*main argument*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   183
apply (subst negDivAlg_eqn, assumption)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   184
apply (erule splitE)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   185
apply (auto simp add: zadd_zmult_distrib2 Let_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   186
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   187
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   188
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   189
(*** Existence shown by proving the division algorithm to be correct ***)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   190
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   191
(*the case a=0*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   192
lemma quorem_0: "b ~= 0 ==> quorem ((0,b), (0,0))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   193
by (auto simp add: quorem_def linorder_neq_iff)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   194
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   195
lemma posDivAlg_0 [simp]: "posDivAlg (0, b) = (0, 0)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   196
by (subst posDivAlg.simps, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   197
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   198
lemma negDivAlg_minus1 [simp]: "negDivAlg (-1, b) = (-1, b - 1)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   199
by (subst negDivAlg.simps, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   200
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   201
lemma negateSnd_eq [simp]: "negateSnd(q,r) = (q,-r)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   202
by (unfold negateSnd_def, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   203
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   204
lemma quorem_neg: "quorem ((-a,-b), qr) ==> quorem ((a,b), negateSnd qr)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   205
by (auto simp add: split_ifs quorem_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   206
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   207
lemma divAlg_correct: "b ~= 0 ==> quorem ((a,b), divAlg(a,b))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   208
by (force simp add: linorder_neq_iff quorem_0 divAlg_def quorem_neg
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   209
                    posDivAlg_correct negDivAlg_correct)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   210
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   211
(** Arbitrary definitions for division by zero.  Useful to simplify 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   212
    certain equations **)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   213
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   214
lemma DIVISION_BY_ZERO: "a div (0::int) = 0 & a mod (0::int) = a"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   215
by (simp add: div_def mod_def divAlg_def posDivAlg.simps)  (*NOT for adding to default simpset*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   216
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   217
(** Basic laws about division and remainder **)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   218
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   219
lemma zmod_zdiv_equality: "(a::int) = b * (a div b) + (a mod b)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   220
apply (case_tac "b = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   221
apply (cut_tac a = a and b = b in divAlg_correct)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   222
apply (auto simp add: quorem_def div_def mod_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   223
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   224
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   225
lemma zdiv_zmod_equality: "(b * (a div b) + (a mod b)) + k = (a::int)+k"
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   226
by(simp add: zmod_zdiv_equality[symmetric])
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   227
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   228
lemma zdiv_zmod_equality2: "((a div b) * b + (a mod b)) + k = (a::int)+k"
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   229
by(simp add: zmult_commute zmod_zdiv_equality[symmetric])
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   230
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   231
use "IntDiv_setup.ML"
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   232
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   233
lemma pos_mod_conj : "(0::int) < b ==> 0 <= a mod b & a mod b < b"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   234
apply (cut_tac a = a and b = b in divAlg_correct)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   235
apply (auto simp add: quorem_def mod_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   236
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   237
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   238
lemmas pos_mod_sign  = pos_mod_conj [THEN conjunct1, standard]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   239
   and pos_mod_bound = pos_mod_conj [THEN conjunct2, standard]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   240
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   241
lemma neg_mod_conj : "b < (0::int) ==> a mod b <= 0 & b < a mod b"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   242
apply (cut_tac a = a and b = b in divAlg_correct)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   243
apply (auto simp add: quorem_def div_def mod_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   244
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   245
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   246
lemmas neg_mod_sign  = neg_mod_conj [THEN conjunct1, standard]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   247
   and neg_mod_bound = neg_mod_conj [THEN conjunct2, standard]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   248
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   249
13260
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   250
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   251
(** proving general properties of div and mod **)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   252
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   253
lemma quorem_div_mod: "b ~= 0 ==> quorem ((a, b), (a div b, a mod b))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   254
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   255
apply (force simp add: quorem_def linorder_neq_iff pos_mod_sign pos_mod_bound
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   256
                       neg_mod_sign neg_mod_bound)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   257
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   258
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   259
lemma quorem_div: "[| quorem((a,b),(q,r));  b ~= 0 |] ==> a div b = q"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   260
by (simp add: quorem_div_mod [THEN unique_quotient])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   261
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   262
lemma quorem_mod: "[| quorem((a,b),(q,r));  b ~= 0 |] ==> a mod b = r"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   263
by (simp add: quorem_div_mod [THEN unique_remainder])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   264
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   265
lemma div_pos_pos_trivial: "[| (0::int) <= a;  a < b |] ==> a div b = 0"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   266
apply (rule quorem_div)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   267
apply (auto simp add: quorem_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   268
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   269
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   270
lemma div_neg_neg_trivial: "[| a <= (0::int);  b < a |] ==> a div b = 0"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   271
apply (rule quorem_div)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   272
apply (auto simp add: quorem_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   273
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   274
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   275
lemma div_pos_neg_trivial: "[| (0::int) < a;  a+b <= 0 |] ==> a div b = -1"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   276
apply (rule quorem_div)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   277
apply (auto simp add: quorem_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   278
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   279
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   280
(*There is no div_neg_pos_trivial because  0 div b = 0 would supersede it*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   281
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   282
lemma mod_pos_pos_trivial: "[| (0::int) <= a;  a < b |] ==> a mod b = a"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   283
apply (rule_tac q = 0 in quorem_mod)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   284
apply (auto simp add: quorem_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   285
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   286
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   287
lemma mod_neg_neg_trivial: "[| a <= (0::int);  b < a |] ==> a mod b = a"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   288
apply (rule_tac q = 0 in quorem_mod)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   289
apply (auto simp add: quorem_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   290
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   291
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   292
lemma mod_pos_neg_trivial: "[| (0::int) < a;  a+b <= 0 |] ==> a mod b = a+b"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   293
apply (rule_tac q = "-1" in quorem_mod)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   294
apply (auto simp add: quorem_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   295
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   296
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   297
(*There is no mod_neg_pos_trivial...*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   298
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   299
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   300
(*Simpler laws such as -a div b = -(a div b) FAIL, but see just below*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   301
lemma zdiv_zminus_zminus [simp]: "(-a) div (-b) = a div (b::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   302
apply (case_tac "b = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   303
apply (simp add: quorem_div_mod [THEN quorem_neg, simplified, 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   304
                                 THEN quorem_div, THEN sym])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   305
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   306
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   307
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   308
(*Simpler laws such as -a mod b = -(a mod b) FAIL, but see just below*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   309
lemma zmod_zminus_zminus [simp]: "(-a) mod (-b) = - (a mod (b::int))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   310
apply (case_tac "b = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   311
apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_mod],
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   312
       auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   313
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   314
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   315
(*** div, mod and unary minus ***)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   316
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   317
lemma zminus1_lemma:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   318
     "quorem((a,b),(q,r))  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   319
      ==> quorem ((-a,b), (if r=0 then -q else -q - 1),  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   320
                          (if r=0 then 0 else b-r))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   321
by (force simp add: split_ifs quorem_def linorder_neq_iff zdiff_zmult_distrib2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   322
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   323
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   324
lemma zdiv_zminus1_eq_if:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   325
     "b ~= (0::int)  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   326
      ==> (-a) div b =  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   327
          (if a mod b = 0 then - (a div b) else  - (a div b) - 1)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   328
by (blast intro: quorem_div_mod [THEN zminus1_lemma, THEN quorem_div])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   329
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   330
lemma zmod_zminus1_eq_if:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   331
     "(-a::int) mod b = (if a mod b = 0 then 0 else  b - (a mod b))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   332
apply (case_tac "b = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   333
apply (blast intro: quorem_div_mod [THEN zminus1_lemma, THEN quorem_mod])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   334
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   335
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   336
lemma zdiv_zminus2: "a div (-b) = (-a::int) div b"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   337
by (cut_tac a = "-a" in zdiv_zminus_zminus, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   338
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   339
lemma zmod_zminus2: "a mod (-b) = - ((-a::int) mod b)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   340
by (cut_tac a = "-a" and b = b in zmod_zminus_zminus, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   341
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   342
lemma zdiv_zminus2_eq_if:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   343
     "b ~= (0::int)  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   344
      ==> a div (-b) =  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   345
          (if a mod b = 0 then - (a div b) else  - (a div b) - 1)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   346
by (simp add: zdiv_zminus1_eq_if zdiv_zminus2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   347
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   348
lemma zmod_zminus2_eq_if:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   349
     "a mod (-b::int) = (if a mod b = 0 then 0 else  (a mod b) - b)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   350
by (simp add: zmod_zminus1_eq_if zmod_zminus2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   351
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   352
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   353
(*** division of a number by itself ***)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   354
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   355
lemma self_quotient_aux1: "[| (0::int) < a; a = r + a*q; r < a |] ==> 1 <= q"
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   356
apply (subgoal_tac "0 < a*q")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   357
 apply (simp add: int_0_less_mult_iff, arith)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   358
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   359
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   360
lemma self_quotient_aux2: "[| (0::int) < a; a = r + a*q; 0 <= r |] ==> q <= 1"
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   361
apply (subgoal_tac "0 <= a* (1-q) ")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   362
 apply (simp add: int_0_le_mult_iff)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   363
apply (simp add: zdiff_zmult_distrib2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   364
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   365
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   366
lemma self_quotient: "[| quorem((a,a),(q,r));  a ~= (0::int) |] ==> q = 1"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   367
apply (simp add: split_ifs quorem_def linorder_neq_iff)
13601
fd3e3d6b37b2 Adapted to new simplifier.
berghofe
parents: 13524
diff changeset
   368
apply (rule order_antisym, safe, simp_all (no_asm_use))
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   369
apply (rule_tac [3] a = "-a" and r = "-r" in self_quotient_aux1)
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   370
apply (rule_tac a = "-a" and r = "-r" in self_quotient_aux2)
13601
fd3e3d6b37b2 Adapted to new simplifier.
berghofe
parents: 13524
diff changeset
   371
apply (force intro: self_quotient_aux1 self_quotient_aux2 simp only: zadd_commute zmult_zminus)+
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   372
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   373
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   374
lemma self_remainder: "[| quorem((a,a),(q,r));  a ~= (0::int) |] ==> r = 0"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   375
apply (frule self_quotient, assumption)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   376
apply (simp add: quorem_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   377
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   378
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   379
lemma zdiv_self [simp]: "a ~= 0 ==> a div a = (1::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   380
by (simp add: quorem_div_mod [THEN self_quotient])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   381
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   382
(*Here we have 0 mod 0 = 0, also assumed by Knuth (who puts m mod 0 = 0) *)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   383
lemma zmod_self [simp]: "a mod a = (0::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   384
apply (case_tac "a = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   385
apply (simp add: quorem_div_mod [THEN self_remainder])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   386
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   387
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   388
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   389
(*** Computation of division and remainder ***)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   390
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   391
lemma zdiv_zero [simp]: "(0::int) div b = 0"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   392
by (simp add: div_def divAlg_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   393
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   394
lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   395
by (simp add: div_def divAlg_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   396
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   397
lemma zmod_zero [simp]: "(0::int) mod b = 0"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   398
by (simp add: mod_def divAlg_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   399
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   400
lemma zdiv_minus1: "(0::int) < b ==> -1 div b = -1"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   401
by (simp add: div_def divAlg_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   402
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   403
lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   404
by (simp add: mod_def divAlg_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   405
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   406
(** a positive, b positive **)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   407
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   408
lemma div_pos_pos: "[| 0 < a;  0 <= b |] ==> a div b = fst (posDivAlg(a,b))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   409
by (simp add: div_def divAlg_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   410
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   411
lemma mod_pos_pos: "[| 0 < a;  0 <= b |] ==> a mod b = snd (posDivAlg(a,b))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   412
by (simp add: mod_def divAlg_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   413
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   414
(** a negative, b positive **)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   415
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   416
lemma div_neg_pos: "[| a < 0;  0 < b |] ==> a div b = fst (negDivAlg(a,b))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   417
by (simp add: div_def divAlg_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   418
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   419
lemma mod_neg_pos: "[| a < 0;  0 < b |] ==> a mod b = snd (negDivAlg(a,b))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   420
by (simp add: mod_def divAlg_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   421
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   422
(** a positive, b negative **)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   423
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   424
lemma div_pos_neg:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   425
     "[| 0 < a;  b < 0 |] ==> a div b = fst (negateSnd(negDivAlg(-a,-b)))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   426
by (simp add: div_def divAlg_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   427
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   428
lemma mod_pos_neg:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   429
     "[| 0 < a;  b < 0 |] ==> a mod b = snd (negateSnd(negDivAlg(-a,-b)))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   430
by (simp add: mod_def divAlg_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   431
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   432
(** a negative, b negative **)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   433
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   434
lemma div_neg_neg:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   435
     "[| a < 0;  b <= 0 |] ==> a div b = fst (negateSnd(posDivAlg(-a,-b)))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   436
by (simp add: div_def divAlg_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   437
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   438
lemma mod_neg_neg:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   439
     "[| a < 0;  b <= 0 |] ==> a mod b = snd (negateSnd(posDivAlg(-a,-b)))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   440
by (simp add: mod_def divAlg_def)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   441
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   442
text {*Simplify expresions in which div and mod combine numerical constants*}
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   443
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   444
declare div_pos_pos [of "number_of v" "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   445
declare div_neg_pos [of "number_of v" "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   446
declare div_pos_neg [of "number_of v" "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   447
declare div_neg_neg [of "number_of v" "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   448
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   449
declare mod_pos_pos [of "number_of v" "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   450
declare mod_neg_pos [of "number_of v" "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   451
declare mod_pos_neg [of "number_of v" "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   452
declare mod_neg_neg [of "number_of v" "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   453
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   454
declare posDivAlg_eqn [of "number_of v" "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   455
declare negDivAlg_eqn [of "number_of v" "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   456
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   457
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   458
(** Special-case simplification **)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   459
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   460
lemma zmod_1 [simp]: "a mod (1::int) = 0"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   461
apply (cut_tac a = a and b = 1 in pos_mod_sign)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   462
apply (cut_tac [2] a = a and b = 1 in pos_mod_bound, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   463
done 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   464
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   465
lemma zdiv_1 [simp]: "a div (1::int) = a"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   466
by (cut_tac a = a and b = 1 in zmod_zdiv_equality, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   467
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   468
lemma zmod_minus1_right [simp]: "a mod (-1::int) = 0"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   469
apply (cut_tac a = a and b = "-1" in neg_mod_sign)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   470
apply (cut_tac [2] a = a and b = "-1" in neg_mod_bound, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   471
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   472
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   473
lemma zdiv_minus1_right [simp]: "a div (-1::int) = -a"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   474
by (cut_tac a = a and b = "-1" in zmod_zdiv_equality, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   475
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   476
(** The last remaining special cases for constant arithmetic:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   477
    1 div z and 1 mod z **)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   478
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   479
declare div_pos_pos [OF int_0_less_1, of "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   480
declare div_pos_neg [OF int_0_less_1, of "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   481
declare mod_pos_pos [OF int_0_less_1, of "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   482
declare mod_pos_neg [OF int_0_less_1, of "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   483
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   484
declare posDivAlg_eqn [of concl: 1 "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   485
declare negDivAlg_eqn [of concl: 1 "number_of w", standard, simp]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   486
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   487
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   488
(*** Monotonicity in the first argument (divisor) ***)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   489
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   490
lemma zdiv_mono1: "[| a <= a';  0 < (b::int) |] ==> a div b <= a' div b"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   491
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   492
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   493
apply (rule unique_quotient_lemma)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   494
apply (erule subst)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   495
apply (erule subst)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   496
apply (simp_all add: pos_mod_sign pos_mod_bound)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   497
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   498
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   499
lemma zdiv_mono1_neg: "[| a <= a';  (b::int) < 0 |] ==> a' div b <= a div b"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   500
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   501
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   502
apply (rule unique_quotient_lemma_neg)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   503
apply (erule subst)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   504
apply (erule subst)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   505
apply (simp_all add: neg_mod_sign neg_mod_bound)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   506
done
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   507
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   508
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   509
(*** Monotonicity in the second argument (dividend) ***)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   510
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   511
lemma q_pos_lemma:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   512
     "[| 0 <= b'*q' + r'; r' < b';  0 < b' |] ==> 0 <= (q'::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   513
apply (subgoal_tac "0 < b'* (q' + 1) ")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   514
 apply (simp add: int_0_less_mult_iff)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   515
apply (simp add: zadd_zmult_distrib2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   516
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   517
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   518
lemma zdiv_mono2_lemma:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   519
     "[| b*q + r = b'*q' + r';  0 <= b'*q' + r';   
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   520
         r' < b';  0 <= r;  0 < b';  b' <= b |]   
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   521
      ==> q <= (q'::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   522
apply (frule q_pos_lemma, assumption+) 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   523
apply (subgoal_tac "b*q < b* (q' + 1) ")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   524
 apply (simp add: zmult_zless_cancel1)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   525
apply (subgoal_tac "b*q = r' - r + b'*q'")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   526
 prefer 2 apply simp
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   527
apply (simp (no_asm_simp) add: zadd_zmult_distrib2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   528
apply (subst zadd_commute, rule zadd_zless_mono, arith)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   529
apply (rule zmult_zle_mono1, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   530
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   531
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   532
lemma zdiv_mono2:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   533
     "[| (0::int) <= a;  0 < b';  b' <= b |] ==> a div b <= a div b'"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   534
apply (subgoal_tac "b ~= 0")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   535
 prefer 2 apply arith
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   536
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   537
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   538
apply (rule zdiv_mono2_lemma)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   539
apply (erule subst)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   540
apply (erule subst)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   541
apply (simp_all add: pos_mod_sign pos_mod_bound)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   542
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   543
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   544
lemma q_neg_lemma:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   545
     "[| b'*q' + r' < 0;  0 <= r';  0 < b' |] ==> q' <= (0::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   546
apply (subgoal_tac "b'*q' < 0")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   547
 apply (simp add: zmult_less_0_iff, arith)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   548
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   549
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   550
lemma zdiv_mono2_neg_lemma:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   551
     "[| b*q + r = b'*q' + r';  b'*q' + r' < 0;   
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   552
         r < b;  0 <= r';  0 < b';  b' <= b |]   
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   553
      ==> q' <= (q::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   554
apply (frule q_neg_lemma, assumption+) 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   555
apply (subgoal_tac "b*q' < b* (q + 1) ")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   556
 apply (simp add: zmult_zless_cancel1)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   557
apply (simp add: zadd_zmult_distrib2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   558
apply (subgoal_tac "b*q' <= b'*q'")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   559
 prefer 2 apply (simp add: zmult_zle_mono1_neg)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   560
apply (subgoal_tac "b'*q' < b + b*q")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   561
 apply arith
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   562
apply simp 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   563
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   564
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   565
lemma zdiv_mono2_neg:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   566
     "[| a < (0::int);  0 < b';  b' <= b |] ==> a div b' <= a div b"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   567
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   568
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   569
apply (rule zdiv_mono2_neg_lemma)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   570
apply (erule subst)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   571
apply (erule subst)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   572
apply (simp_all add: pos_mod_sign pos_mod_bound)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   573
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   574
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   575
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   576
(*** More algebraic laws for div and mod ***)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   577
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   578
(** proving (a*b) div c = a * (b div c) + a * (b mod c) **)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   579
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   580
lemma zmult1_lemma:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   581
     "[| quorem((b,c),(q,r));  c ~= 0 |]  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   582
      ==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   583
by (force simp add: split_ifs quorem_def linorder_neq_iff zadd_zmult_distrib2
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   584
                    pos_mod_sign pos_mod_bound neg_mod_sign neg_mod_bound)
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   585
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   586
lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   587
apply (case_tac "c = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   588
apply (blast intro: quorem_div_mod [THEN zmult1_lemma, THEN quorem_div])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   589
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   590
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   591
lemma zmod_zmult1_eq: "(a*b) mod c = a*(b mod c) mod (c::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   592
apply (case_tac "c = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   593
apply (blast intro: quorem_div_mod [THEN zmult1_lemma, THEN quorem_mod])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   594
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   595
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   596
lemma zmod_zmult1_eq': "(a*b) mod (c::int) = ((a mod c) * b) mod c"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   597
apply (rule trans)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   598
apply (rule_tac s = "b*a mod c" in trans)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   599
apply (rule_tac [2] zmod_zmult1_eq)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   600
apply (simp_all add: zmult_commute)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   601
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   602
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   603
lemma zmod_zmult_distrib: "(a*b) mod (c::int) = ((a mod c) * (b mod c)) mod c"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   604
apply (rule zmod_zmult1_eq' [THEN trans])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   605
apply (rule zmod_zmult1_eq)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   606
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   607
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   608
lemma zdiv_zmult_self1 [simp]: "b ~= (0::int) ==> (a*b) div b = a"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   609
by (simp add: zdiv_zmult1_eq)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   610
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   611
lemma zdiv_zmult_self2 [simp]: "b ~= (0::int) ==> (b*a) div b = a"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   612
by (subst zmult_commute, erule zdiv_zmult_self1)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   613
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   614
lemma zmod_zmult_self1 [simp]: "(a*b) mod b = (0::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   615
by (simp add: zmod_zmult1_eq)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   616
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   617
lemma zmod_zmult_self2 [simp]: "(b*a) mod b = (0::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   618
by (simp add: zmult_commute zmod_zmult1_eq)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   619
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   620
lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)"
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   621
proof
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   622
  assume "m mod d = 0"
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   623
  from this zmod_zdiv_equality[of m d] show "EX q::int. m = d*q" by auto
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   624
next
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   625
  assume "EX q::int. m = d*q"
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   626
  thus "m mod d = 0" by auto
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   627
qed
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   628
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   629
declare zmod_eq_0_iff [THEN iffD1, dest!]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   630
13716
73de0ef7cb25 added zdvd_iff_zmod_eq_0
nipkow
parents: 13601
diff changeset
   631
lemma zdvd_iff_zmod_eq_0: "(m dvd n) = (n mod m = (0::int))"
73de0ef7cb25 added zdvd_iff_zmod_eq_0
nipkow
parents: 13601
diff changeset
   632
by(simp add:dvd_def zmod_eq_0_iff)
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   633
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   634
(** proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) **)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   635
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   636
lemma zadd1_lemma:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   637
     "[| quorem((a,c),(aq,ar));  quorem((b,c),(bq,br));  c ~= 0 |]  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   638
      ==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   639
by (force simp add: split_ifs quorem_def linorder_neq_iff zadd_zmult_distrib2
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   640
                    pos_mod_sign pos_mod_bound neg_mod_sign neg_mod_bound)
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   641
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   642
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   643
lemma zdiv_zadd1_eq:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   644
     "(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   645
apply (case_tac "c = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   646
apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod] quorem_div)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   647
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   648
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   649
lemma zmod_zadd1_eq: "(a+b) mod (c::int) = (a mod c + b mod c) mod c"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   650
apply (case_tac "c = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   651
apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod] quorem_mod)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   652
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   653
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   654
lemma mod_div_trivial [simp]: "(a mod b) div b = (0::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   655
apply (case_tac "b = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   656
apply (auto simp add: linorder_neq_iff pos_mod_sign pos_mod_bound
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   657
            div_pos_pos_trivial neg_mod_sign neg_mod_bound div_neg_neg_trivial)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   658
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   659
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   660
lemma mod_mod_trivial [simp]: "(a mod b) mod b = a mod (b::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   661
apply (case_tac "b = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   662
apply (force simp add: linorder_neq_iff pos_mod_sign pos_mod_bound
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   663
                       mod_pos_pos_trivial neg_mod_sign neg_mod_bound 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   664
                       mod_neg_neg_trivial)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   665
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   666
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   667
lemma zmod_zadd_left_eq: "(a+b) mod (c::int) = ((a mod c) + b) mod c"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   668
apply (rule trans [symmetric])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   669
apply (rule zmod_zadd1_eq, simp)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   670
apply (rule zmod_zadd1_eq [symmetric])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   671
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   672
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   673
lemma zmod_zadd_right_eq: "(a+b) mod (c::int) = (a + (b mod c)) mod c"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   674
apply (rule trans [symmetric])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   675
apply (rule zmod_zadd1_eq, simp)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   676
apply (rule zmod_zadd1_eq [symmetric])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   677
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   678
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   679
lemma zdiv_zadd_self1[simp]: "a ~= (0::int) ==> (a+b) div a = b div a + 1"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   680
by (simp add: zdiv_zadd1_eq)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   681
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   682
lemma zdiv_zadd_self2[simp]: "a ~= (0::int) ==> (b+a) div a = b div a + 1"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   683
by (simp add: zdiv_zadd1_eq)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   684
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   685
lemma zmod_zadd_self1[simp]: "(a+b) mod a = b mod (a::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   686
apply (case_tac "a = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   687
apply (simp add: zmod_zadd1_eq)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   688
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   689
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   690
lemma zmod_zadd_self2[simp]: "(b+a) mod a = b mod (a::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   691
apply (case_tac "a = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   692
apply (simp add: zmod_zadd1_eq)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   693
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   694
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   695
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   696
(*** proving  a div (b*c) = (a div b) div c ***)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   697
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   698
(*The condition c>0 seems necessary.  Consider that 7 div ~6 = ~2 but
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   699
  7 div 2 div ~3 = 3 div ~3 = ~1.  The subcase (a div b) mod c = 0 seems
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   700
  to cause particular problems.*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   701
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   702
(** first, four lemmas to bound the remainder for the cases b<0 and b>0 **)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   703
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   704
lemma zmult2_lemma_aux1: "[| (0::int) < c;  b < r;  r <= 0 |] ==> b*c < b*(q mod c) + r"
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   705
apply (subgoal_tac "b * (c - q mod c) < r * 1")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   706
apply (simp add: zdiff_zmult_distrib2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   707
apply (rule order_le_less_trans)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   708
apply (erule_tac [2] zmult_zless_mono1)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   709
apply (rule zmult_zle_mono2_neg)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   710
apply (auto simp add: zcompare_rls zadd_commute [of 1]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   711
                      add1_zle_eq pos_mod_bound)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   712
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   713
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   714
lemma zmult2_lemma_aux2: "[| (0::int) < c;   b < r;  r <= 0 |] ==> b * (q mod c) + r <= 0"
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   715
apply (subgoal_tac "b * (q mod c) <= 0")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   716
 apply arith
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   717
apply (simp add: zmult_le_0_iff pos_mod_sign)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   718
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   719
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   720
lemma zmult2_lemma_aux3: "[| (0::int) < c;  0 <= r;  r < b |] ==> 0 <= b * (q mod c) + r"
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   721
apply (subgoal_tac "0 <= b * (q mod c) ")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   722
apply arith
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   723
apply (simp add: int_0_le_mult_iff pos_mod_sign)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   724
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   725
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   726
lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 <= r; r < b |] ==> b * (q mod c) + r < b * c"
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   727
apply (subgoal_tac "r * 1 < b * (c - q mod c) ")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   728
apply (simp add: zdiff_zmult_distrib2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   729
apply (rule order_less_le_trans)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   730
apply (erule zmult_zless_mono1)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   731
apply (rule_tac [2] zmult_zle_mono2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   732
apply (auto simp add: zcompare_rls zadd_commute [of 1]
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   733
                      add1_zle_eq pos_mod_bound)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   734
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   735
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   736
lemma zmult2_lemma: "[| quorem ((a,b), (q,r));  b ~= 0;  0 < c |]  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   737
      ==> quorem ((a, b*c), (q div c, b*(q mod c) + r))"
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   738
by (auto simp add: zmult_ac quorem_def linorder_neq_iff
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   739
                   int_0_less_mult_iff zadd_zmult_distrib2 [symmetric] 
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   740
                   zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4)
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   741
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   742
lemma zdiv_zmult2_eq: "(0::int) < c ==> a div (b*c) = (a div b) div c"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   743
apply (case_tac "b = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   744
apply (force simp add: quorem_div_mod [THEN zmult2_lemma, THEN quorem_div])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   745
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   746
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   747
lemma zmod_zmult2_eq:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   748
     "(0::int) < c ==> a mod (b*c) = b*(a div b mod c) + a mod b"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   749
apply (case_tac "b = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   750
apply (force simp add: quorem_div_mod [THEN zmult2_lemma, THEN quorem_mod])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   751
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   752
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   753
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   754
(*** Cancellation of common factors in div ***)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   755
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   756
lemma zdiv_zmult_zmult1_aux1: "[| (0::int) < b;  c ~= 0 |] ==> (c*a) div (c*b) = a div b"
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   757
by (subst zdiv_zmult2_eq, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   758
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   759
lemma zdiv_zmult_zmult1_aux2: "[| b < (0::int);  c ~= 0 |] ==> (c*a) div (c*b) = a div b"
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   760
apply (subgoal_tac " (c * (-a)) div (c * (-b)) = (-a) div (-b) ")
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   761
apply (rule_tac [2] zdiv_zmult_zmult1_aux1, auto)
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   762
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   763
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   764
lemma zdiv_zmult_zmult1: "c ~= (0::int) ==> (c*a) div (c*b) = a div b"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   765
apply (case_tac "b = 0", simp add: DIVISION_BY_ZERO)
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   766
apply (auto simp add: linorder_neq_iff zdiv_zmult_zmult1_aux1 zdiv_zmult_zmult1_aux2)
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   767
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   768
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   769
lemma zdiv_zmult_zmult2: "c ~= (0::int) ==> (a*c) div (b*c) = a div b"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   770
apply (drule zdiv_zmult_zmult1)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   771
apply (auto simp add: zmult_commute)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   772
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   773
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   774
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   775
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   776
(*** Distribution of factors over mod ***)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   777
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   778
lemma zmod_zmult_zmult1_aux1: "[| (0::int) < b;  c ~= 0 |] ==> (c*a) mod (c*b) = c * (a mod b)"
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   779
by (subst zmod_zmult2_eq, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   780
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   781
lemma zmod_zmult_zmult1_aux2: "[| b < (0::int);  c ~= 0 |] ==> (c*a) mod (c*b) = c * (a mod b)"
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   782
apply (subgoal_tac " (c * (-a)) mod (c * (-b)) = c * ((-a) mod (-b))")
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   783
apply (rule_tac [2] zmod_zmult_zmult1_aux1, auto)
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   784
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   785
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   786
lemma zmod_zmult_zmult1: "(c*a) mod (c*b) = (c::int) * (a mod b)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   787
apply (case_tac "b = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   788
apply (case_tac "c = 0", simp add: DIVISION_BY_ZERO)
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 13517
diff changeset
   789
apply (auto simp add: linorder_neq_iff zmod_zmult_zmult1_aux1 zmod_zmult_zmult1_aux2)
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   790
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   791
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   792
lemma zmod_zmult_zmult2: "(a*c) mod (b*c) = (a mod b) * (c::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   793
apply (cut_tac c = c in zmod_zmult_zmult1)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   794
apply (auto simp add: zmult_commute)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   795
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   796
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   797
13260
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   798
subsection {*splitting rules for div and mod*}
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   799
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   800
text{*The proofs of the two lemmas below are essentially identical*}
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   801
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   802
lemma split_pos_lemma:
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   803
 "0<k ==> 
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   804
    P(n div k :: int)(n mod k) = (\<forall>i j. 0<=j & j<k & n = k*i + j --> P i j)"
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   805
apply (rule iffI)
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   806
 apply clarify
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   807
 apply (erule_tac P="P ?x ?y" in rev_mp)  
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   808
 apply (subst zmod_zadd1_eq) 
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   809
 apply (subst zdiv_zadd1_eq) 
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   810
 apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial)  
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   811
txt{*converse direction*}
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   812
apply (drule_tac x = "n div k" in spec) 
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   813
apply (drule_tac x = "n mod k" in spec) 
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   814
apply (simp add: pos_mod_bound pos_mod_sign) 
13260
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   815
done
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   816
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   817
lemma split_neg_lemma:
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   818
 "k<0 ==>
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   819
    P(n div k :: int)(n mod k) = (\<forall>i j. k<j & j<=0 & n = k*i + j --> P i j)"
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   820
apply (rule iffI)
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   821
 apply clarify
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   822
 apply (erule_tac P="P ?x ?y" in rev_mp)  
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   823
 apply (subst zmod_zadd1_eq) 
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   824
 apply (subst zdiv_zadd1_eq) 
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   825
 apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial)  
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   826
txt{*converse direction*}
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   827
apply (drule_tac x = "n div k" in spec) 
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   828
apply (drule_tac x = "n mod k" in spec) 
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13266
diff changeset
   829
apply (simp add: neg_mod_bound neg_mod_sign) 
13260
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   830
done
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   831
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   832
lemma split_zdiv:
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   833
 "P(n div k :: int) =
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   834
  ((k = 0 --> P 0) & 
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   835
   (0<k --> (\<forall>i j. 0<=j & j<k & n = k*i + j --> P i)) & 
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   836
   (k<0 --> (\<forall>i j. k<j & j<=0 & n = k*i + j --> P i)))"
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   837
apply (case_tac "k=0")
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   838
 apply (simp add: DIVISION_BY_ZERO)
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   839
apply (simp only: linorder_neq_iff)
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   840
apply (erule disjE) 
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   841
 apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"] 
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   842
                      split_neg_lemma [of concl: "%x y. P x"])
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   843
done
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   844
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   845
lemma split_zmod:
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   846
 "P(n mod k :: int) =
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   847
  ((k = 0 --> P n) & 
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   848
   (0<k --> (\<forall>i j. 0<=j & j<k & n = k*i + j --> P j)) & 
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   849
   (k<0 --> (\<forall>i j. k<j & j<=0 & n = k*i + j --> P j)))"
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   850
apply (case_tac "k=0")
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   851
 apply (simp add: DIVISION_BY_ZERO)
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   852
apply (simp only: linorder_neq_iff)
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   853
apply (erule disjE) 
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   854
 apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"] 
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   855
                      split_neg_lemma [of concl: "%x y. P y"])
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   856
done
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   857
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   858
(* Enable arith to deal with div 2 and mod 2: *)
13266
2a6ad4357d72 modified Larry's changes to make div/mod a numeral work in arith.
nipkow
parents: 13260
diff changeset
   859
declare split_zdiv [of _ _ "number_of k", simplified, standard, arith_split]
2a6ad4357d72 modified Larry's changes to make div/mod a numeral work in arith.
nipkow
parents: 13260
diff changeset
   860
declare split_zmod [of _ _ "number_of k", simplified, standard, arith_split]
13260
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   861
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   862
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   863
subsection{*Speeding up the division algorithm with shifting*}
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   864
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   865
(** computing div by shifting **)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   866
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   867
lemma pos_zdiv_mult_2: "(0::int) <= a ==> (1 + 2*b) div (2*a) = b div a"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   868
apply (case_tac "a = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   869
apply (subgoal_tac "1 <= a")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   870
 prefer 2 apply arith
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   871
apply (subgoal_tac "1 < a * 2")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   872
 prefer 2 apply arith
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   873
apply (subgoal_tac "2* (1 + b mod a) <= 2*a")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   874
 apply (rule_tac [2] zmult_zle_mono2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   875
apply (auto simp add: zadd_commute [of 1] zmult_commute add1_zle_eq 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   876
                      pos_mod_bound)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   877
apply (subst zdiv_zadd1_eq)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   878
apply (simp add: zdiv_zmult_zmult2 zmod_zmult_zmult2 div_pos_pos_trivial)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   879
apply (subst div_pos_pos_trivial)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   880
apply (auto simp add: mod_pos_pos_trivial)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   881
apply (subgoal_tac "0 <= b mod a", arith)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   882
apply (simp add: pos_mod_sign)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   883
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   884
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   885
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   886
lemma neg_zdiv_mult_2: "a <= (0::int) ==> (1 + 2*b) div (2*a) = (b+1) div a"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   887
apply (subgoal_tac " (1 + 2* (-b - 1)) div (2 * (-a)) = (-b - 1) div (-a) ")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   888
apply (rule_tac [2] pos_zdiv_mult_2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   889
apply (auto simp add: zmult_zminus_right)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   890
apply (subgoal_tac " (-1 - (2 * b)) = - (1 + (2 * b))")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   891
apply (simp only: zdiv_zminus_zminus zdiff_def zminus_zadd_distrib [symmetric],
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   892
       simp) 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   893
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   894
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   895
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   896
(*Not clear why this must be proved separately; probably number_of causes
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   897
  simplification problems*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   898
lemma not_0_le_lemma: "~ 0 <= x ==> x <= (0::int)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   899
by auto
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   900
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   901
lemma zdiv_number_of_BIT[simp]:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   902
     "number_of (v BIT b) div number_of (w BIT False) =  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   903
          (if ~b | (0::int) <= number_of w                    
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   904
           then number_of v div (number_of w)     
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   905
           else (number_of v + (1::int)) div (number_of w))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   906
apply (simp only: zadd_assoc number_of_BIT)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   907
(*create subgoal because the next step can't simplify numerals*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   908
apply (subgoal_tac "2 ~= (0::int) ")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   909
apply (simp del: bin_arith_extra_simps 
13260
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   910
         add: zdiv_zmult_zmult1 pos_zdiv_mult_2 not_0_le_lemma neg_zdiv_mult_2, simp)
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   911
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   912
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   913
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   914
(** computing mod by shifting (proofs resemble those for div) **)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   915
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   916
lemma pos_zmod_mult_2:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   917
     "(0::int) <= a ==> (1 + 2*b) mod (2*a) = 1 + 2 * (b mod a)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   918
apply (case_tac "a = 0", simp add: DIVISION_BY_ZERO)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   919
apply (subgoal_tac "1 <= a")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   920
 prefer 2 apply arith
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   921
apply (subgoal_tac "1 < a * 2")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   922
 prefer 2 apply arith
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   923
apply (subgoal_tac "2* (1 + b mod a) <= 2*a")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   924
 apply (rule_tac [2] zmult_zle_mono2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   925
apply (auto simp add: zadd_commute [of 1] zmult_commute add1_zle_eq 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   926
                      pos_mod_bound)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   927
apply (subst zmod_zadd1_eq)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   928
apply (simp add: zmod_zmult_zmult2 mod_pos_pos_trivial)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   929
apply (rule mod_pos_pos_trivial)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   930
apply (auto simp add: mod_pos_pos_trivial)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   931
apply (subgoal_tac "0 <= b mod a", arith)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   932
apply (simp add: pos_mod_sign)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   933
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   934
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   935
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   936
lemma neg_zmod_mult_2:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   937
     "a <= (0::int) ==> (1 + 2*b) mod (2*a) = 2 * ((b+1) mod a) - 1"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   938
apply (subgoal_tac "(1 + 2* (-b - 1)) mod (2* (-a)) = 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   939
                    1 + 2* ((-b - 1) mod (-a))")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   940
apply (rule_tac [2] pos_zmod_mult_2)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   941
apply (auto simp add: zmult_zminus_right)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   942
apply (subgoal_tac " (-1 - (2 * b)) = - (1 + (2 * b))")
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   943
 prefer 2 apply simp 
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   944
apply (simp only: zmod_zminus_zminus zdiff_def zminus_zadd_distrib [symmetric])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   945
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   946
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   947
lemma zmod_number_of_BIT [simp]:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   948
     "number_of (v BIT b) mod number_of (w BIT False) =  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   949
          (if b then  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   950
                if (0::int) <= number_of w  
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   951
                then 2 * (number_of v mod number_of w) + 1     
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   952
                else 2 * ((number_of v + (1::int)) mod number_of w) - 1   
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   953
           else 2 * (number_of v mod number_of w))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   954
apply (simp only: zadd_assoc number_of_BIT)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   955
apply (simp del: bin_arith_extra_simps bin_rel_simps 
13260
ea36a40c004f new splitting rules for zdiv, zmod
paulson
parents: 13183
diff changeset
   956
         add: zmod_zmult_zmult1 pos_zmod_mult_2 not_0_le_lemma neg_zmod_mult_2, simp)
13183
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   957
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   958
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   959
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   960
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   961
(** Quotients of signs **)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   962
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   963
lemma div_neg_pos_less0: "[| a < (0::int);  0 < b |] ==> a div b < 0"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   964
apply (subgoal_tac "a div b <= -1", force)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   965
apply (rule order_trans)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   966
apply (rule_tac a' = "-1" in zdiv_mono1)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   967
apply (auto simp add: zdiv_minus1)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   968
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   969
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   970
lemma div_nonneg_neg_le0: "[| (0::int) <= a;  b < 0 |] ==> a div b <= 0"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   971
by (drule zdiv_mono1_neg, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   972
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   973
lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 <= a div b) = (0 <= a)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   974
apply auto
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   975
apply (drule_tac [2] zdiv_mono1)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   976
apply (auto simp add: linorder_neq_iff)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   977
apply (simp (no_asm_use) add: linorder_not_less [symmetric])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   978
apply (blast intro: div_neg_pos_less0)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   979
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   980
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   981
lemma neg_imp_zdiv_nonneg_iff:
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   982
     "b < (0::int) ==> (0 <= a div b) = (a <= (0::int))"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   983
apply (subst zdiv_zminus_zminus [symmetric])
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   984
apply (subst pos_imp_zdiv_nonneg_iff, auto)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   985
done
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   986
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   987
(*But not (a div b <= 0 iff a<=0); consider a=1, b=2 when a div b = 0.*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   988
lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   989
by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   990
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   991
(*Again the law fails for <=: consider a = -1, b = -2 when a div b = 0*)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   992
lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)"
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   993
by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff)
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   994
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   995
ML
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   996
{*
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   997
val quorem_def = thm "quorem_def";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   998
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
   999
val unique_quotient = thm "unique_quotient";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1000
val unique_remainder = thm "unique_remainder";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1001
val adjust_eq = thm "adjust_eq";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1002
val posDivAlg_eqn = thm "posDivAlg_eqn";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1003
val posDivAlg_correct = thm "posDivAlg_correct";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1004
val negDivAlg_eqn = thm "negDivAlg_eqn";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1005
val negDivAlg_correct = thm "negDivAlg_correct";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1006
val quorem_0 = thm "quorem_0";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1007
val posDivAlg_0 = thm "posDivAlg_0";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1008
val negDivAlg_minus1 = thm "negDivAlg_minus1";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1009
val negateSnd_eq = thm "negateSnd_eq";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1010
val quorem_neg = thm "quorem_neg";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1011
val divAlg_correct = thm "divAlg_correct";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1012
val DIVISION_BY_ZERO = thm "DIVISION_BY_ZERO";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1013
val zmod_zdiv_equality = thm "zmod_zdiv_equality";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1014
val pos_mod_conj = thm "pos_mod_conj";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1015
val pos_mod_sign = thm "pos_mod_sign";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1016
val neg_mod_conj = thm "neg_mod_conj";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1017
val neg_mod_sign = thm "neg_mod_sign";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1018
val quorem_div_mod = thm "quorem_div_mod";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1019
val quorem_div = thm "quorem_div";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1020
val quorem_mod = thm "quorem_mod";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1021
val div_pos_pos_trivial = thm "div_pos_pos_trivial";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1022
val div_neg_neg_trivial = thm "div_neg_neg_trivial";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1023
val div_pos_neg_trivial = thm "div_pos_neg_trivial";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1024
val mod_pos_pos_trivial = thm "mod_pos_pos_trivial";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1025
val mod_neg_neg_trivial = thm "mod_neg_neg_trivial";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1026
val mod_pos_neg_trivial = thm "mod_pos_neg_trivial";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1027
val zdiv_zminus_zminus = thm "zdiv_zminus_zminus";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1028
val zmod_zminus_zminus = thm "zmod_zminus_zminus";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1029
val zdiv_zminus1_eq_if = thm "zdiv_zminus1_eq_if";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1030
val zmod_zminus1_eq_if = thm "zmod_zminus1_eq_if";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1031
val zdiv_zminus2 = thm "zdiv_zminus2";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1032
val zmod_zminus2 = thm "zmod_zminus2";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1033
val zdiv_zminus2_eq_if = thm "zdiv_zminus2_eq_if";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1034
val zmod_zminus2_eq_if = thm "zmod_zminus2_eq_if";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1035
val self_quotient = thm "self_quotient";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1036
val self_remainder = thm "self_remainder";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1037
val zdiv_self = thm "zdiv_self";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1038
val zmod_self = thm "zmod_self";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1039
val zdiv_zero = thm "zdiv_zero";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1040
val div_eq_minus1 = thm "div_eq_minus1";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1041
val zmod_zero = thm "zmod_zero";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1042
val zdiv_minus1 = thm "zdiv_minus1";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1043
val zmod_minus1 = thm "zmod_minus1";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1044
val div_pos_pos = thm "div_pos_pos";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1045
val mod_pos_pos = thm "mod_pos_pos";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1046
val div_neg_pos = thm "div_neg_pos";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1047
val mod_neg_pos = thm "mod_neg_pos";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1048
val div_pos_neg = thm "div_pos_neg";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1049
val mod_pos_neg = thm "mod_pos_neg";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1050
val div_neg_neg = thm "div_neg_neg";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1051
val mod_neg_neg = thm "mod_neg_neg";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1052
val zmod_1 = thm "zmod_1";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1053
val zdiv_1 = thm "zdiv_1";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1054
val zmod_minus1_right = thm "zmod_minus1_right";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1055
val zdiv_minus1_right = thm "zdiv_minus1_right";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1056
val zdiv_mono1 = thm "zdiv_mono1";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1057
val zdiv_mono1_neg = thm "zdiv_mono1_neg";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1058
val zdiv_mono2 = thm "zdiv_mono2";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1059
val zdiv_mono2_neg = thm "zdiv_mono2_neg";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1060
val zdiv_zmult1_eq = thm "zdiv_zmult1_eq";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1061
val zmod_zmult1_eq = thm "zmod_zmult1_eq";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1062
val zmod_zmult1_eq' = thm "zmod_zmult1_eq'";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1063
val zmod_zmult_distrib = thm "zmod_zmult_distrib";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1064
val zdiv_zmult_self1 = thm "zdiv_zmult_self1";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1065
val zdiv_zmult_self2 = thm "zdiv_zmult_self2";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1066
val zmod_zmult_self1 = thm "zmod_zmult_self1";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1067
val zmod_zmult_self2 = thm "zmod_zmult_self2";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1068
val zmod_eq_0_iff = thm "zmod_eq_0_iff";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1069
val zdiv_zadd1_eq = thm "zdiv_zadd1_eq";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1070
val zmod_zadd1_eq = thm "zmod_zadd1_eq";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1071
val mod_div_trivial = thm "mod_div_trivial";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1072
val mod_mod_trivial = thm "mod_mod_trivial";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1073
val zmod_zadd_left_eq = thm "zmod_zadd_left_eq";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1074
val zmod_zadd_right_eq = thm "zmod_zadd_right_eq";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1075
val zdiv_zadd_self1 = thm "zdiv_zadd_self1";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1076
val zdiv_zadd_self2 = thm "zdiv_zadd_self2";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1077
val zmod_zadd_self1 = thm "zmod_zadd_self1";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1078
val zmod_zadd_self2 = thm "zmod_zadd_self2";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1079
val zdiv_zmult2_eq = thm "zdiv_zmult2_eq";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1080
val zmod_zmult2_eq = thm "zmod_zmult2_eq";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1081
val zdiv_zmult_zmult1 = thm "zdiv_zmult_zmult1";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1082
val zdiv_zmult_zmult2 = thm "zdiv_zmult_zmult2";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1083
val zmod_zmult_zmult1 = thm "zmod_zmult_zmult1";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1084
val zmod_zmult_zmult2 = thm "zmod_zmult_zmult2";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1085
val pos_zdiv_mult_2 = thm "pos_zdiv_mult_2";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1086
val neg_zdiv_mult_2 = thm "neg_zdiv_mult_2";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1087
val zdiv_number_of_BIT = thm "zdiv_number_of_BIT";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1088
val pos_zmod_mult_2 = thm "pos_zmod_mult_2";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1089
val neg_zmod_mult_2 = thm "neg_zmod_mult_2";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1090
val zmod_number_of_BIT = thm "zmod_number_of_BIT";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1091
val div_neg_pos_less0 = thm "div_neg_pos_less0";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1092
val div_nonneg_neg_le0 = thm "div_nonneg_neg_le0";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1093
val pos_imp_zdiv_nonneg_iff = thm "pos_imp_zdiv_nonneg_iff";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1094
val neg_imp_zdiv_nonneg_iff = thm "neg_imp_zdiv_nonneg_iff";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1095
val pos_imp_zdiv_neg_iff = thm "pos_imp_zdiv_neg_iff";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1096
val neg_imp_zdiv_neg_iff = thm "neg_imp_zdiv_neg_iff";
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1097
*}
c7290200b3f4 conversion of IntDiv.thy to Isar format
paulson
parents: 11868
diff changeset
  1098
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
  1099
end