author  paulson 
Wed, 26 Feb 2003 10:44:16 +0100  
changeset 13830  7f8c1b533e8b 
parent 13812  91713a1915ee 
child 15131  c69542757a4d 
permissions  rwrr 
10358  1 
(* Title: HOL/Relation.thy 
1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset

2 
ID: $Id$ 
1983  3 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory 
4 
Copyright 1996 University of Cambridge 

1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset

5 
*) 
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset

6 

12905  7 
header {* Relations *} 
8 

9 
theory Relation = Product_Type: 

5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset

10 

12913  11 
subsection {* Definitions *} 
12 

5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset

13 
constdefs 
10358  14 
converse :: "('a * 'b) set => ('b * 'a) set" ("(_^1)" [1000] 999) 
15 
"r^1 == {(y, x). (x, y) : r}" 

16 
syntax (xsymbols) 

12905  17 
converse :: "('a * 'b) set => ('b * 'a) set" ("(_\<inverse>)" [1000] 999) 
7912  18 

10358  19 
constdefs 
12487  20 
rel_comp :: "[('b * 'c) set, ('a * 'b) set] => ('a * 'c) set" (infixr "O" 60) 
12913  21 
"r O s == {(x,z). EX y. (x, y) : s & (y, z) : r}" 
22 

11136  23 
Image :: "[('a * 'b) set, 'a set] => 'b set" (infixl "``" 90) 
12913  24 
"r `` s == {y. EX x:s. (x,y):r}" 
7912  25 

12905  26 
Id :: "('a * 'a) set"  {* the identity relation *} 
12913  27 
"Id == {p. EX x. p = (x,x)}" 
7912  28 

12905  29 
diag :: "'a set => ('a * 'a) set"  {* diagonal: identity over a set *} 
13830  30 
"diag A == \<Union>x\<in>A. {(x,x)}" 
12913  31 

11136  32 
Domain :: "('a * 'b) set => 'a set" 
12913  33 
"Domain r == {x. EX y. (x,y):r}" 
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset

34 

11136  35 
Range :: "('a * 'b) set => 'b set" 
12913  36 
"Range r == Domain(r^1)" 
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset

37 

11136  38 
Field :: "('a * 'a) set => 'a set" 
13830  39 
"Field r == Domain r \<union> Range r" 
10786  40 

12905  41 
refl :: "['a set, ('a * 'a) set] => bool"  {* reflexivity over a set *} 
12913  42 
"refl A r == r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)" 
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset

43 

12905  44 
sym :: "('a * 'a) set => bool"  {* symmetry predicate *} 
12913  45 
"sym r == ALL x y. (x,y): r > (y,x): r" 
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset

46 

12905  47 
antisym:: "('a * 'a) set => bool"  {* antisymmetry predicate *} 
12913  48 
"antisym r == ALL x y. (x,y):r > (y,x):r > x=y" 
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset

49 

12905  50 
trans :: "('a * 'a) set => bool"  {* transitivity predicate *} 
12913  51 
"trans r == (ALL x y z. (x,y):r > (y,z):r > (x,z):r)" 
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset

52 

11136  53 
single_valued :: "('a * 'b) set => bool" 
12913  54 
"single_valued r == ALL x y. (x,y):r > (ALL z. (x,z):r > y=z)" 
7014
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6806
diff
changeset

55 

11136  56 
inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" 
12913  57 
"inv_image r f == {(x, y). (f x, f y) : r}" 
11136  58 

6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset

59 
syntax 
12905  60 
reflexive :: "('a * 'a) set => bool"  {* reflexivity over a type *} 
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset

61 
translations 
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset

62 
"reflexive" == "refl UNIV" 
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset

63 

12905  64 

12913  65 
subsection {* The identity relation *} 
12905  66 

67 
lemma IdI [intro]: "(a, a) : Id" 

68 
by (simp add: Id_def) 

69 

70 
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P" 

71 
by (unfold Id_def) (rules elim: CollectE) 

72 

73 
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)" 

74 
by (unfold Id_def) blast 

75 

76 
lemma reflexive_Id: "reflexive Id" 

77 
by (simp add: refl_def) 

78 

79 
lemma antisym_Id: "antisym Id" 

80 
 {* A strange result, since @{text Id} is also symmetric. *} 

81 
by (simp add: antisym_def) 

82 

83 
lemma trans_Id: "trans Id" 

84 
by (simp add: trans_def) 

85 

86 

12913  87 
subsection {* Diagonal: identity over a set *} 
12905  88 

13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset

89 
lemma diag_empty [simp]: "diag {} = {}" 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset

90 
by (simp add: diag_def) 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset

91 

12905  92 
lemma diag_eqI: "a = b ==> a : A ==> (a, b) : diag A" 
93 
by (simp add: diag_def) 

94 

95 
lemma diagI [intro!]: "a : A ==> (a, a) : diag A" 

96 
by (rule diag_eqI) (rule refl) 

97 

98 
lemma diagE [elim!]: 

99 
"c : diag A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P" 

12913  100 
 {* The general elimination rule. *} 
12905  101 
by (unfold diag_def) (rules elim!: UN_E singletonE) 
102 

103 
lemma diag_iff: "((x, y) : diag A) = (x = y & x : A)" 

104 
by blast 

105 

12913  106 
lemma diag_subset_Times: "diag A \<subseteq> A \<times> A" 
12905  107 
by blast 
108 

109 

110 
subsection {* Composition of two relations *} 

111 

12913  112 
lemma rel_compI [intro]: 
12905  113 
"(a, b) : s ==> (b, c) : r ==> (a, c) : r O s" 
114 
by (unfold rel_comp_def) blast 

115 

12913  116 
lemma rel_compE [elim!]: "xz : r O s ==> 
12905  117 
(!!x y z. xz = (x, z) ==> (x, y) : s ==> (y, z) : r ==> P) ==> P" 
118 
by (unfold rel_comp_def) (rules elim!: CollectE splitE exE conjE) 

119 

120 
lemma rel_compEpair: 

121 
"(a, c) : r O s ==> (!!y. (a, y) : s ==> (y, c) : r ==> P) ==> P" 

122 
by (rules elim: rel_compE Pair_inject ssubst) 

123 

124 
lemma R_O_Id [simp]: "R O Id = R" 

125 
by fast 

126 

127 
lemma Id_O_R [simp]: "Id O R = R" 

128 
by fast 

129 

130 
lemma O_assoc: "(R O S) O T = R O (S O T)" 

131 
by blast 

132 

12913  133 
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r" 
12905  134 
by (unfold trans_def) blast 
135 

12913  136 
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)" 
12905  137 
by blast 
138 

139 
lemma rel_comp_subset_Sigma: 

12913  140 
"s \<subseteq> A \<times> B ==> r \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C" 
12905  141 
by blast 
142 

12913  143 

144 
subsection {* Reflexivity *} 

145 

146 
lemma reflI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl A r" 

12905  147 
by (unfold refl_def) (rules intro!: ballI) 
148 

149 
lemma reflD: "refl A r ==> a : A ==> (a, a) : r" 

150 
by (unfold refl_def) blast 

151 

12913  152 

153 
subsection {* Antisymmetry *} 

12905  154 

155 
lemma antisymI: 

156 
"(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r" 

157 
by (unfold antisym_def) rules 

158 

159 
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b" 

160 
by (unfold antisym_def) rules 

161 

12913  162 

163 
subsection {* Transitivity *} 

12905  164 

165 
lemma transI: 

166 
"(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r" 

167 
by (unfold trans_def) rules 

168 

169 
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r" 

170 
by (unfold trans_def) rules 

171 

172 

12913  173 
subsection {* Converse *} 
174 

175 
lemma converse_iff [iff]: "((a,b): r^1) = ((b,a) : r)" 

12905  176 
by (simp add: converse_def) 
177 

13343  178 
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^1" 
12905  179 
by (simp add: converse_def) 
180 

13343  181 
lemma converseD[sym]: "(a,b) : r^1 ==> (b, a) : r" 
12905  182 
by (simp add: converse_def) 
183 

184 
lemma converseE [elim!]: 

185 
"yx : r^1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P" 

12913  186 
 {* More general than @{text converseD}, as it ``splits'' the member of the relation. *} 
12905  187 
by (unfold converse_def) (rules elim!: CollectE splitE bexE) 
188 

189 
lemma converse_converse [simp]: "(r^1)^1 = r" 

190 
by (unfold converse_def) blast 

191 

192 
lemma converse_rel_comp: "(r O s)^1 = s^1 O r^1" 

193 
by blast 

194 

195 
lemma converse_Id [simp]: "Id^1 = Id" 

196 
by blast 

197 

12913  198 
lemma converse_diag [simp]: "(diag A)^1 = diag A" 
12905  199 
by blast 
200 

201 
lemma refl_converse: "refl A r ==> refl A (converse r)" 

202 
by (unfold refl_def) blast 

203 

204 
lemma antisym_converse: "antisym (converse r) = antisym r" 

205 
by (unfold antisym_def) blast 

206 

207 
lemma trans_converse: "trans (converse r) = trans r" 

208 
by (unfold trans_def) blast 

209 

12913  210 

12905  211 
subsection {* Domain *} 
212 

213 
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)" 

214 
by (unfold Domain_def) blast 

215 

216 
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r" 

217 
by (rules intro!: iffD2 [OF Domain_iff]) 

218 

219 
lemma DomainE [elim!]: 

220 
"a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P" 

221 
by (rules dest!: iffD1 [OF Domain_iff]) 

222 

223 
lemma Domain_empty [simp]: "Domain {} = {}" 

224 
by blast 

225 

226 
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)" 

227 
by blast 

228 

229 
lemma Domain_Id [simp]: "Domain Id = UNIV" 

230 
by blast 

231 

232 
lemma Domain_diag [simp]: "Domain (diag A) = A" 

233 
by blast 

234 

13830  235 
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)" 
12905  236 
by blast 
237 

13830  238 
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)" 
12905  239 
by blast 
240 

12913  241 
lemma Domain_Diff_subset: "Domain(A)  Domain(B) \<subseteq> Domain(A  B)" 
12905  242 
by blast 
243 

13830  244 
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)" 
12905  245 
by blast 
246 

12913  247 
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s" 
12905  248 
by blast 
249 

250 

251 
subsection {* Range *} 

252 

253 
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)" 

254 
by (simp add: Domain_def Range_def) 

255 

256 
lemma RangeI [intro]: "(a, b) : r ==> b : Range r" 

257 
by (unfold Range_def) (rules intro!: converseI DomainI) 

258 

259 
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P" 

260 
by (unfold Range_def) (rules elim!: DomainE dest!: converseD) 

261 

262 
lemma Range_empty [simp]: "Range {} = {}" 

263 
by blast 

264 

265 
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)" 

266 
by blast 

267 

268 
lemma Range_Id [simp]: "Range Id = UNIV" 

269 
by blast 

270 

271 
lemma Range_diag [simp]: "Range (diag A) = A" 

272 
by auto 

273 

13830  274 
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)" 
12905  275 
by blast 
276 

13830  277 
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)" 
12905  278 
by blast 
279 

12913  280 
lemma Range_Diff_subset: "Range(A)  Range(B) \<subseteq> Range(A  B)" 
12905  281 
by blast 
282 

13830  283 
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)" 
12905  284 
by blast 
285 

286 

287 
subsection {* Image of a set under a relation *} 

288 

12913  289 
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)" 
12905  290 
by (simp add: Image_def) 
291 

12913  292 
lemma Image_singleton: "r``{a} = {b. (a, b) : r}" 
12905  293 
by (simp add: Image_def) 
294 

12913  295 
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)" 
12905  296 
by (rule Image_iff [THEN trans]) simp 
297 

12913  298 
lemma ImageI [intro]: "(a, b) : r ==> a : A ==> b : r``A" 
12905  299 
by (unfold Image_def) blast 
300 

301 
lemma ImageE [elim!]: 

12913  302 
"b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P" 
12905  303 
by (unfold Image_def) (rules elim!: CollectE bexE) 
304 

305 
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A" 

306 
 {* This version's more effective when we already have the required @{text a} *} 

307 
by blast 

308 

309 
lemma Image_empty [simp]: "R``{} = {}" 

310 
by blast 

311 

312 
lemma Image_Id [simp]: "Id `` A = A" 

313 
by blast 

314 

13830  315 
lemma Image_diag [simp]: "diag A `` B = A \<inter> B" 
316 
by blast 

317 

318 
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B" 

12905  319 
by blast 
320 

13830  321 
lemma Image_Int_eq: 
322 
"single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B" 

323 
by (simp add: single_valued_def, blast) 

12905  324 

13830  325 
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B" 
12905  326 
by blast 
327 

13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset

328 
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A" 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset

329 
by blast 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset

330 

12913  331 
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B" 
12905  332 
by (rules intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2) 
333 

13830  334 
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})" 
12905  335 
 {* NOT suitable for rewriting *} 
336 
by blast 

337 

12913  338 
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)" 
12905  339 
by blast 
340 

13830  341 
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))" 
342 
by blast 

343 

344 
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))" 

12905  345 
by blast 
346 

13830  347 
text{*Converse inclusion requires some assumptions*} 
348 
lemma Image_INT_eq: 

349 
"[single_valued (r\<inverse>); A\<noteq>{}] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)" 

350 
apply (rule equalityI) 

351 
apply (rule Image_INT_subset) 

352 
apply (simp add: single_valued_def, blast) 

353 
done 

12905  354 

12913  355 
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq>  ((r^1) `` (B)))" 
12905  356 
by blast 
357 

358 

12913  359 
subsection {* Single valued relations *} 
360 

361 
lemma single_valuedI: 

12905  362 
"ALL x y. (x,y):r > (ALL z. (x,z):r > y=z) ==> single_valued r" 
363 
by (unfold single_valued_def) 

364 

365 
lemma single_valuedD: 

366 
"single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z" 

367 
by (simp add: single_valued_def) 

368 

369 

370 
subsection {* Graphs given by @{text Collect} *} 

371 

372 
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}" 

373 
by auto 

374 

375 
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}" 

376 
by auto 

377 

378 
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}" 

379 
by auto 

380 

381 

12913  382 
subsection {* Inverse image *} 
12905  383 

12913  384 
lemma trans_inv_image: "trans r ==> trans (inv_image r f)" 
12905  385 
apply (unfold trans_def inv_image_def) 
386 
apply (simp (no_asm)) 

387 
apply blast 

388 
done 

389 

1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset

390 
end 