author  nipkow 
Tue, 22 Mar 2011 12:49:07 +0100  
changeset 42059  83f3dc509068 
parent 41792  ff3cb0c418b7 
child 42083  e1209fc7ecdc 
permissions  rwrr 
10213  1 
(* Title: HOL/Product_Type.thy 
2 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory 

3 
Copyright 1992 University of Cambridge 

11777  4 
*) 
10213  5 

11838  6 
header {* Cartesian products *} 
10213  7 

15131  8 
theory Product_Type 
33959
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
haftmann
parents:
33638
diff
changeset

9 
imports Typedef Inductive Fun 
24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

10 
uses 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

11 
("Tools/split_rule.ML") 
37389
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

12 
("Tools/inductive_codegen.ML") 
31723
f5cafe803b55
discontinued ancient tradition to suffix certain ML module names with "_package"
haftmann
parents:
31667
diff
changeset

13 
("Tools/inductive_set.ML") 
15131  14 
begin 
11838  15 

24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

16 
subsection {* @{typ bool} is a datatype *} 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

17 

27104
791607529f6d
rep_datatype command now takes list of constructors as input arguments
haftmann
parents:
26975
diff
changeset

18 
rep_datatype True False by (auto intro: bool_induct) 
24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

19 

c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

20 
declare case_split [cases type: bool] 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

21 
 "prefer plain propositional version" 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

22 

28346
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
haftmann
parents:
28262
diff
changeset

23 
lemma 
38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38715
diff
changeset

24 
shows [code]: "HOL.equal False P \<longleftrightarrow> \<not> P" 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38715
diff
changeset

25 
and [code]: "HOL.equal True P \<longleftrightarrow> P" 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38715
diff
changeset

26 
and [code]: "HOL.equal P False \<longleftrightarrow> \<not> P" 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38715
diff
changeset

27 
and [code]: "HOL.equal P True \<longleftrightarrow> P" 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38715
diff
changeset

28 
and [code nbe]: "HOL.equal P P \<longleftrightarrow> True" 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38715
diff
changeset

29 
by (simp_all add: equal) 
25534
d0b74fdd6067
simplified infrastructure for code generator operational equality
haftmann
parents:
25511
diff
changeset

30 

38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38715
diff
changeset

31 
code_const "HOL.equal \<Colon> bool \<Rightarrow> bool \<Rightarrow> bool" 
39272  32 
(Haskell infix 4 "==") 
25534
d0b74fdd6067
simplified infrastructure for code generator operational equality
haftmann
parents:
25511
diff
changeset

33 

38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38715
diff
changeset

34 
code_instance bool :: equal 
25534
d0b74fdd6067
simplified infrastructure for code generator operational equality
haftmann
parents:
25511
diff
changeset

35 
(Haskell ) 
24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

36 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

37 

37166  38 
subsection {* The @{text unit} type *} 
11838  39 

40590  40 
typedef (open) unit = "{True}" 
11838  41 
proof 
20588  42 
show "True : ?unit" .. 
11838  43 
qed 
44 

24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

45 
definition 
11838  46 
Unity :: unit ("'(')") 
24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

47 
where 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

48 
"() = Abs_unit True" 
11838  49 

35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35427
diff
changeset

50 
lemma unit_eq [no_atp]: "u = ()" 
40590  51 
by (induct u) (simp add: Unity_def) 
11838  52 

53 
text {* 

54 
Simplification procedure for @{thm [source] unit_eq}. Cannot use 

55 
this rule directly  it loops! 

56 
*} 

57 

26480  58 
ML {* 
13462  59 
val unit_eq_proc = 
24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

60 
let val unit_meta_eq = mk_meta_eq @{thm unit_eq} in 
38715
6513ea67d95d
renamed Simplifier.simproc(_i) to Simplifier.simproc_global(_i) to emphasize that this is not the real thing;
wenzelm
parents:
37808
diff
changeset

61 
Simplifier.simproc_global @{theory} "unit_eq" ["x::unit"] 
15531  62 
(fn _ => fn _ => fn t => if HOLogic.is_unit t then NONE else SOME unit_meta_eq) 
13462  63 
end; 
11838  64 

65 
Addsimprocs [unit_eq_proc]; 

66 
*} 

67 

27104
791607529f6d
rep_datatype command now takes list of constructors as input arguments
haftmann
parents:
26975
diff
changeset

68 
rep_datatype "()" by simp 
24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

69 

11838  70 
lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()" 
71 
by simp 

72 

73 
lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P" 

74 
by (rule triv_forall_equality) 

75 

76 
text {* 

77 
This rewrite counters the effect of @{text unit_eq_proc} on @{term 

78 
[source] "%u::unit. f u"}, replacing it by @{term [source] 

79 
f} rather than by @{term [source] "%u. f ()"}. 

80 
*} 

81 

35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35427
diff
changeset

82 
lemma unit_abs_eta_conv [simp,no_atp]: "(%u::unit. f ()) = f" 
11838  83 
by (rule ext) simp 
10213  84 

30924  85 
instantiation unit :: default 
86 
begin 

87 

88 
definition "default = ()" 

89 

90 
instance .. 

91 

92 
end 

10213  93 

28562  94 
lemma [code]: 
38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38715
diff
changeset

95 
"HOL.equal (u\<Colon>unit) v \<longleftrightarrow> True" unfolding equal unit_eq [of u] unit_eq [of v] by rule+ 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

96 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

97 
code_type unit 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

98 
(SML "unit") 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

99 
(OCaml "unit") 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

100 
(Haskell "()") 
34886  101 
(Scala "Unit") 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

102 

37166  103 
code_const Unity 
104 
(SML "()") 

105 
(OCaml "()") 

106 
(Haskell "()") 

107 
(Scala "()") 

108 

38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38715
diff
changeset

109 
code_instance unit :: equal 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

110 
(Haskell ) 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

111 

38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38715
diff
changeset

112 
code_const "HOL.equal \<Colon> unit \<Rightarrow> unit \<Rightarrow> bool" 
39272  113 
(Haskell infix 4 "==") 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

114 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

115 
code_reserved SML 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

116 
unit 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

117 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

118 
code_reserved OCaml 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

119 
unit 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

120 

34886  121 
code_reserved Scala 
122 
Unit 

123 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

124 

37166  125 
subsection {* The product type *} 
10213  126 

37166  127 
subsubsection {* Type definition *} 
128 

129 
definition Pair_Rep :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

130 
"Pair_Rep a b = (\<lambda>x y. x = a \<and> y = b)" 
10213  131 

37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37591
diff
changeset

132 
typedef ('a, 'b) prod (infixr "*" 20) 
37389
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

133 
= "{f. \<exists>a b. f = Pair_Rep (a\<Colon>'a) (b\<Colon>'b)}" 
11025
a70b796d9af8
converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents:
10289
diff
changeset

134 
proof 
37389
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

135 
fix a b show "Pair_Rep a b \<in> ?prod" 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

136 
by rule+ 
11025
a70b796d9af8
converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents:
10289
diff
changeset

137 
qed 
10213  138 

35427  139 
type_notation (xsymbols) 
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37591
diff
changeset

140 
"prod" ("(_ \<times>/ _)" [21, 20] 20) 
35427  141 
type_notation (HTML output) 
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37591
diff
changeset

142 
"prod" ("(_ \<times>/ _)" [21, 20] 20) 
10213  143 

37389
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

144 
definition Pair :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<times> 'b" where 
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

145 
"Pair a b = Abs_prod (Pair_Rep a b)" 
37166  146 

37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37591
diff
changeset

147 
rep_datatype Pair proof  
37166  148 
fix P :: "'a \<times> 'b \<Rightarrow> bool" and p 
149 
assume "\<And>a b. P (Pair a b)" 

37389
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

150 
then show "P p" by (cases p) (auto simp add: prod_def Pair_def Pair_Rep_def) 
37166  151 
next 
152 
fix a c :: 'a and b d :: 'b 

153 
have "Pair_Rep a b = Pair_Rep c d \<longleftrightarrow> a = c \<and> b = d" 

39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39272
diff
changeset

154 
by (auto simp add: Pair_Rep_def fun_eq_iff) 
37389
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

155 
moreover have "Pair_Rep a b \<in> prod" and "Pair_Rep c d \<in> prod" 
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

156 
by (auto simp add: prod_def) 
37166  157 
ultimately show "Pair a b = Pair c d \<longleftrightarrow> a = c \<and> b = d" 
37389
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

158 
by (simp add: Pair_def Abs_prod_inject) 
37166  159 
qed 
160 

37704
c6161bee8486
adapt Nitpick to "prod_case" and "*" > "sum" renaming;
blanchet
parents:
37678
diff
changeset

161 
declare prod.simps(2) [nitpick_simp del] 
c6161bee8486
adapt Nitpick to "prod_case" and "*" > "sum" renaming;
blanchet
parents:
37678
diff
changeset

162 

40929
7ff03a5e044f
theorem names generated by the (rep_)datatype command now have mandatory qualifiers
huffman
parents:
40702
diff
changeset

163 
declare prod.weak_case_cong [cong del] 
37411
c88c44156083
removed simplifier congruence rule of "prod_case"
haftmann
parents:
37389
diff
changeset

164 

37166  165 

166 
subsubsection {* Tuple syntax *} 

167 

37591  168 
abbreviation (input) split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where 
169 
"split \<equiv> prod_case" 

19535  170 

11777  171 
text {* 
172 
Patterns  extends predefined type @{typ pttrn} used in 

173 
abstractions. 

174 
*} 

10213  175 

41229
d797baa3d57c
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
wenzelm
parents:
40968
diff
changeset

176 
nonterminal tuple_args and patterns 
10213  177 

178 
syntax 

179 
"_tuple" :: "'a => tuple_args => 'a * 'b" ("(1'(_,/ _'))") 

180 
"_tuple_arg" :: "'a => tuple_args" ("_") 

181 
"_tuple_args" :: "'a => tuple_args => tuple_args" ("_,/ _") 

11025
a70b796d9af8
converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents:
10289
diff
changeset

182 
"_pattern" :: "[pttrn, patterns] => pttrn" ("'(_,/ _')") 
a70b796d9af8
converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents:
10289
diff
changeset

183 
"" :: "pttrn => patterns" ("_") 
a70b796d9af8
converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents:
10289
diff
changeset

184 
"_patterns" :: "[pttrn, patterns] => patterns" ("_,/ _") 
10213  185 

186 
translations 

35115  187 
"(x, y)" == "CONST Pair x y" 
10213  188 
"_tuple x (_tuple_args y z)" == "_tuple x (_tuple_arg (_tuple y z))" 
37591  189 
"%(x, y, zs). b" == "CONST prod_case (%x (y, zs). b)" 
190 
"%(x, y). b" == "CONST prod_case (%x y. b)" 

35115  191 
"_abs (CONST Pair x y) t" => "%(x, y). t" 
37166  192 
 {* The last rule accommodates tuples in `case C ... (x,y) ... => ...' 
193 
The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *} 

10213  194 

35115  195 
(*reconstruct pattern from (nested) splits, avoiding etacontraction of body; 
196 
works best with enclosing "let", if "let" does not avoid etacontraction*) 

14359  197 
print_translation {* 
35115  198 
let 
199 
fun split_tr' [Abs (x, T, t as (Abs abs))] = 

200 
(* split (%x y. t) => %(x,y) t *) 

201 
let 

202 
val (y, t') = atomic_abs_tr' abs; 

203 
val (x', t'') = atomic_abs_tr' (x, T, t'); 

204 
in 

205 
Syntax.const @{syntax_const "_abs"} $ 

206 
(Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t'' 

207 
end 

37591  208 
 split_tr' [Abs (x, T, (s as Const (@{const_syntax prod_case}, _) $ t))] = 
35115  209 
(* split (%x. (split (%y z. t))) => %(x,y,z). t *) 
210 
let 

211 
val Const (@{syntax_const "_abs"}, _) $ 

212 
(Const (@{syntax_const "_pattern"}, _) $ y $ z) $ t' = split_tr' [t]; 

213 
val (x', t'') = atomic_abs_tr' (x, T, t'); 

214 
in 

215 
Syntax.const @{syntax_const "_abs"} $ 

216 
(Syntax.const @{syntax_const "_pattern"} $ x' $ 

217 
(Syntax.const @{syntax_const "_patterns"} $ y $ z)) $ t'' 

218 
end 

37591  219 
 split_tr' [Const (@{const_syntax prod_case}, _) $ t] = 
35115  220 
(* split (split (%x y z. t)) => %((x, y), z). t *) 
221 
split_tr' [(split_tr' [t])] (* inner split_tr' creates next pattern *) 

222 
 split_tr' [Const (@{syntax_const "_abs"}, _) $ x_y $ Abs abs] = 

223 
(* split (%pttrn z. t) => %(pttrn,z). t *) 

224 
let val (z, t) = atomic_abs_tr' abs in 

225 
Syntax.const @{syntax_const "_abs"} $ 

226 
(Syntax.const @{syntax_const "_pattern"} $ x_y $ z) $ t 

227 
end 

228 
 split_tr' _ = raise Match; 

37591  229 
in [(@{const_syntax prod_case}, split_tr')] end 
14359  230 
*} 
231 

15422
cbdddc0efadf
added print translation for split: split f > %(x,y). f x y
schirmer
parents:
15404
diff
changeset

232 
(* print "split f" as "\<lambda>(x,y). f x y" and "split (\<lambda>x. f x)" as "\<lambda>(x,y). f x y" *) 
cbdddc0efadf
added print translation for split: split f > %(x,y). f x y
schirmer
parents:
15404
diff
changeset

233 
typed_print_translation {* 
cbdddc0efadf
added print translation for split: split f > %(x,y). f x y
schirmer
parents:
15404
diff
changeset

234 
let 
35115  235 
fun split_guess_names_tr' _ T [Abs (x, _, Abs _)] = raise Match 
236 
 split_guess_names_tr' _ T [Abs (x, xT, t)] = 

15422
cbdddc0efadf
added print translation for split: split f > %(x,y). f x y
schirmer
parents:
15404
diff
changeset

237 
(case (head_of t) of 
37591  238 
Const (@{const_syntax prod_case}, _) => raise Match 
35115  239 
 _ => 
240 
let 

241 
val (_ :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match; 

242 
val (y, t') = atomic_abs_tr' ("y", yT, incr_boundvars 1 t $ Bound 0); 

243 
val (x', t'') = atomic_abs_tr' (x, xT, t'); 

244 
in 

245 
Syntax.const @{syntax_const "_abs"} $ 

246 
(Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t'' 

247 
end) 

15422
cbdddc0efadf
added print translation for split: split f > %(x,y). f x y
schirmer
parents:
15404
diff
changeset

248 
 split_guess_names_tr' _ T [t] = 
35115  249 
(case head_of t of 
37591  250 
Const (@{const_syntax prod_case}, _) => raise Match 
35115  251 
 _ => 
252 
let 

253 
val (xT :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match; 

254 
val (y, t') = atomic_abs_tr' ("y", yT, incr_boundvars 2 t $ Bound 1 $ Bound 0); 

255 
val (x', t'') = atomic_abs_tr' ("x", xT, t'); 

256 
in 

257 
Syntax.const @{syntax_const "_abs"} $ 

258 
(Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t'' 

259 
end) 

15422
cbdddc0efadf
added print translation for split: split f > %(x,y). f x y
schirmer
parents:
15404
diff
changeset

260 
 split_guess_names_tr' _ _ _ = raise Match; 
37591  261 
in [(@{const_syntax prod_case}, split_guess_names_tr')] end 
15422
cbdddc0efadf
added print translation for split: split f > %(x,y). f x y
schirmer
parents:
15404
diff
changeset

262 
*} 
cbdddc0efadf
added print translation for split: split f > %(x,y). f x y
schirmer
parents:
15404
diff
changeset

263 

42059
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

264 
(* Force etacontraction for terms of the form "Q A (%p. prod_case P p)" 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

265 
where Q is some bounded quantifier or set operator. 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

266 
Reason: the above prints as "Q p : A. case p of (x,y) \<Rightarrow> P x y" 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

267 
whereas we want "Q (x,y):A. P x y". 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

268 
Otherwise prevent etacontraction. 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

269 
*) 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

270 
print_translation {* 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

271 
let 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

272 
fun contract Q f ts = 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

273 
case ts of 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

274 
[A, Abs(_, _, (s as Const (@{const_syntax prod_case},_) $ t) $ Bound 0)] 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

275 
=> if loose_bvar1 (t,0) then f ts else Syntax.const Q $ A $ s 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

276 
 _ => f ts; 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

277 
fun contract2 (Q,f) = (Q, contract Q f); 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

278 
val pairs = 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

279 
[Syntax.preserve_binder_abs2_tr' @{const_syntax Ball} @{syntax_const "_Ball"}, 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

280 
Syntax.preserve_binder_abs2_tr' @{const_syntax Bex} @{syntax_const "_Bex"}, 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

281 
Syntax.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"}, 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

282 
Syntax.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}] 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

283 
in map contract2 pairs end 
83f3dc509068
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow
parents:
41792
diff
changeset

284 
*} 
10213  285 

37166  286 
subsubsection {* Code generator setup *} 
287 

37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37591
diff
changeset

288 
code_type prod 
37166  289 
(SML infix 2 "*") 
290 
(OCaml infix 2 "*") 

291 
(Haskell "!((_),/ (_))") 

292 
(Scala "((_),/ (_))") 

293 

294 
code_const Pair 

295 
(SML "!((_),/ (_))") 

296 
(OCaml "!((_),/ (_))") 

297 
(Haskell "!((_),/ (_))") 

298 
(Scala "!((_),/ (_))") 

299 

38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38715
diff
changeset

300 
code_instance prod :: equal 
37166  301 
(Haskell ) 
302 

38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38715
diff
changeset

303 
code_const "HOL.equal \<Colon> 'a \<times> 'b \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool" 
39272  304 
(Haskell infix 4 "==") 
37166  305 

306 
types_code 

37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37591
diff
changeset

307 
"prod" ("(_ */ _)") 
37166  308 
attach (term_of) {* 
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37591
diff
changeset

309 
fun term_of_prod aF aT bF bT (x, y) = HOLogic.pair_const aT bT $ aF x $ bF y; 
37166  310 
*} 
311 
attach (test) {* 

37808
e604e5f9bb6a
correcting function name of generator for products of traditional code generator (introduced in 0040bafffdef)
bulwahn
parents:
37765
diff
changeset

312 
fun gen_prod aG aT bG bT i = 
37166  313 
let 
314 
val (x, t) = aG i; 

315 
val (y, u) = bG i 

316 
in ((x, y), fn () => HOLogic.pair_const aT bT $ t () $ u ()) end; 

317 
*} 

318 

319 
consts_code 

320 
"Pair" ("(_,/ _)") 

321 

322 
setup {* 

323 
let 

324 

325 
fun strip_abs_split 0 t = ([], t) 

326 
 strip_abs_split i (Abs (s, T, t)) = 

327 
let 

328 
val s' = Codegen.new_name t s; 

329 
val v = Free (s', T) 

330 
in apfst (cons v) (strip_abs_split (i1) (subst_bound (v, t))) end 

37591  331 
 strip_abs_split i (u as Const (@{const_name prod_case}, _) $ t) = 
37166  332 
(case strip_abs_split (i+1) t of 
333 
(v :: v' :: vs, u) => (HOLogic.mk_prod (v, v') :: vs, u) 

334 
 _ => ([], u)) 

335 
 strip_abs_split i t = 

336 
strip_abs_split i (Abs ("x", hd (binder_types (fastype_of t)), t $ Bound 0)); 

337 

338 
fun let_codegen thy defs dep thyname brack t gr = 

339 
(case strip_comb t of 

340 
(t1 as Const (@{const_name Let}, _), t2 :: t3 :: ts) => 

341 
let 

342 
fun dest_let (l as Const (@{const_name Let}, _) $ t $ u) = 

343 
(case strip_abs_split 1 u of 

344 
([p], u') => apfst (cons (p, t)) (dest_let u') 

345 
 _ => ([], l)) 

346 
 dest_let t = ([], t); 

347 
fun mk_code (l, r) gr = 

348 
let 

349 
val (pl, gr1) = Codegen.invoke_codegen thy defs dep thyname false l gr; 

350 
val (pr, gr2) = Codegen.invoke_codegen thy defs dep thyname false r gr1; 

351 
in ((pl, pr), gr2) end 

352 
in case dest_let (t1 $ t2 $ t3) of 

353 
([], _) => NONE 

354 
 (ps, u) => 

355 
let 

356 
val (qs, gr1) = fold_map mk_code ps gr; 

357 
val (pu, gr2) = Codegen.invoke_codegen thy defs dep thyname false u gr1; 

358 
val (pargs, gr3) = fold_map 

359 
(Codegen.invoke_codegen thy defs dep thyname true) ts gr2 

360 
in 

361 
SOME (Codegen.mk_app brack 

362 
(Pretty.blk (0, [Codegen.str "let ", Pretty.blk (0, flat 

363 
(separate [Codegen.str ";", Pretty.brk 1] (map (fn (pl, pr) => 

364 
[Pretty.block [Codegen.str "val ", pl, Codegen.str " =", 

365 
Pretty.brk 1, pr]]) qs))), 

366 
Pretty.brk 1, Codegen.str "in ", pu, 

367 
Pretty.brk 1, Codegen.str "end"])) pargs, gr3) 

368 
end 

369 
end 

370 
 _ => NONE); 

371 

372 
fun split_codegen thy defs dep thyname brack t gr = (case strip_comb t of 

37591  373 
(t1 as Const (@{const_name prod_case}, _), t2 :: ts) => 
37166  374 
let 
375 
val ([p], u) = strip_abs_split 1 (t1 $ t2); 

376 
val (q, gr1) = Codegen.invoke_codegen thy defs dep thyname false p gr; 

377 
val (pu, gr2) = Codegen.invoke_codegen thy defs dep thyname false u gr1; 

378 
val (pargs, gr3) = fold_map 

379 
(Codegen.invoke_codegen thy defs dep thyname true) ts gr2 

380 
in 

381 
SOME (Codegen.mk_app brack 

382 
(Pretty.block [Codegen.str "(fn ", q, Codegen.str " =>", 

383 
Pretty.brk 1, pu, Codegen.str ")"]) pargs, gr2) 

384 
end 

385 
 _ => NONE); 

386 

387 
in 

388 

389 
Codegen.add_codegen "let_codegen" let_codegen 

390 
#> Codegen.add_codegen "split_codegen" split_codegen 

391 

392 
end 

393 
*} 

394 

395 

396 
subsubsection {* Fundamental operations and properties *} 

11838  397 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

398 
lemma surj_pair [simp]: "EX x y. p = (x, y)" 
37166  399 
by (cases p) simp 
10213  400 

37389
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

401 
definition fst :: "'a \<times> 'b \<Rightarrow> 'a" where 
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

402 
"fst p = (case p of (a, b) \<Rightarrow> a)" 
11838  403 

37389
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

404 
definition snd :: "'a \<times> 'b \<Rightarrow> 'b" where 
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

405 
"snd p = (case p of (a, b) \<Rightarrow> b)" 
11838  406 

22886  407 
lemma fst_conv [simp, code]: "fst (a, b) = a" 
37166  408 
unfolding fst_def by simp 
11838  409 

22886  410 
lemma snd_conv [simp, code]: "snd (a, b) = b" 
37166  411 
unfolding snd_def by simp 
11025
a70b796d9af8
converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents:
10289
diff
changeset

412 

37166  413 
code_const fst and snd 
414 
(Haskell "fst" and "snd") 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

415 

41792
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents:
41505
diff
changeset

416 
lemma prod_case_unfold [nitpick_unfold]: "prod_case = (%c p. c (fst p) (snd p))" 
39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39272
diff
changeset

417 
by (simp add: fun_eq_iff split: prod.split) 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

418 

11838  419 
lemma fst_eqD: "fst (x, y) = a ==> x = a" 
420 
by simp 

421 

422 
lemma snd_eqD: "snd (x, y) = a ==> y = a" 

423 
by simp 

424 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

425 
lemma pair_collapse [simp]: "(fst p, snd p) = p" 
11838  426 
by (cases p) simp 
427 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

428 
lemmas surjective_pairing = pair_collapse [symmetric] 
11838  429 

37166  430 
lemma Pair_fst_snd_eq: "s = t \<longleftrightarrow> fst s = fst t \<and> snd s = snd t" 
431 
by (cases s, cases t) simp 

432 

433 
lemma prod_eqI [intro?]: "fst p = fst q \<Longrightarrow> snd p = snd q \<Longrightarrow> p = q" 

434 
by (simp add: Pair_fst_snd_eq) 

435 

436 
lemma split_conv [simp, code]: "split f (a, b) = f a b" 

37591  437 
by (fact prod.cases) 
37166  438 

439 
lemma splitI: "f a b \<Longrightarrow> split f (a, b)" 

440 
by (rule split_conv [THEN iffD2]) 

441 

442 
lemma splitD: "split f (a, b) \<Longrightarrow> f a b" 

443 
by (rule split_conv [THEN iffD1]) 

444 

445 
lemma split_Pair [simp]: "(\<lambda>(x, y). (x, y)) = id" 

39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39272
diff
changeset

446 
by (simp add: fun_eq_iff split: prod.split) 
37166  447 

448 
lemma split_eta: "(\<lambda>(x, y). f (x, y)) = f" 

449 
 {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *} 

39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39272
diff
changeset

450 
by (simp add: fun_eq_iff split: prod.split) 
37166  451 

452 
lemma split_comp: "split (f \<circ> g) x = f (g (fst x)) (snd x)" 

453 
by (cases x) simp 

454 

455 
lemma split_twice: "split f (split g p) = split (\<lambda>x y. split f (g x y)) p" 

456 
by (cases p) simp 

457 

458 
lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))" 

37591  459 
by (simp add: prod_case_unfold) 
37166  460 

461 
lemma split_weak_cong: "p = q \<Longrightarrow> split c p = split c q" 

462 
 {* Prevents simplification of @{term c}: much faster *} 

40929
7ff03a5e044f
theorem names generated by the (rep_)datatype command now have mandatory qualifiers
huffman
parents:
40702
diff
changeset

463 
by (fact prod.weak_case_cong) 
37166  464 

465 
lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g" 

466 
by (simp add: split_eta) 

467 

11838  468 
lemma split_paired_all: "(!!x. PROP P x) == (!!a b. PROP P (a, b))" 
11820
015a82d4ee96
proper proof of split_paired_all (presently unused);
wenzelm
parents:
11777
diff
changeset

469 
proof 
015a82d4ee96
proper proof of split_paired_all (presently unused);
wenzelm
parents:
11777
diff
changeset

470 
fix a b 
015a82d4ee96
proper proof of split_paired_all (presently unused);
wenzelm
parents:
11777
diff
changeset

471 
assume "!!x. PROP P x" 
19535  472 
then show "PROP P (a, b)" . 
11820
015a82d4ee96
proper proof of split_paired_all (presently unused);
wenzelm
parents:
11777
diff
changeset

473 
next 
015a82d4ee96
proper proof of split_paired_all (presently unused);
wenzelm
parents:
11777
diff
changeset

474 
fix x 
015a82d4ee96
proper proof of split_paired_all (presently unused);
wenzelm
parents:
11777
diff
changeset

475 
assume "!!a b. PROP P (a, b)" 
19535  476 
from `PROP P (fst x, snd x)` show "PROP P x" by simp 
11820
015a82d4ee96
proper proof of split_paired_all (presently unused);
wenzelm
parents:
11777
diff
changeset

477 
qed 
015a82d4ee96
proper proof of split_paired_all (presently unused);
wenzelm
parents:
11777
diff
changeset

478 

11838  479 
text {* 
480 
The rule @{thm [source] split_paired_all} does not work with the 

481 
Simplifier because it also affects premises in congrence rules, 

482 
where this can lead to premises of the form @{text "!!a b. ... = 

483 
?P(a, b)"} which cannot be solved by reflexivity. 

484 
*} 

485 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

486 
lemmas split_tupled_all = split_paired_all unit_all_eq2 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

487 

26480  488 
ML {* 
11838  489 
(* replace parameters of product type by individual component parameters *) 
490 
val safe_full_simp_tac = generic_simp_tac true (true, false, false); 

491 
local (* filtering with exists_paired_all is an essential optimization *) 

16121  492 
fun exists_paired_all (Const ("all", _) $ Abs (_, T, t)) = 
11838  493 
can HOLogic.dest_prodT T orelse exists_paired_all t 
494 
 exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u 

495 
 exists_paired_all (Abs (_, _, t)) = exists_paired_all t 

496 
 exists_paired_all _ = false; 

497 
val ss = HOL_basic_ss 

26340  498 
addsimps [@{thm split_paired_all}, @{thm unit_all_eq2}, @{thm unit_abs_eta_conv}] 
11838  499 
addsimprocs [unit_eq_proc]; 
500 
in 

501 
val split_all_tac = SUBGOAL (fn (t, i) => 

502 
if exists_paired_all t then safe_full_simp_tac ss i else no_tac); 

503 
val unsafe_split_all_tac = SUBGOAL (fn (t, i) => 

504 
if exists_paired_all t then full_simp_tac ss i else no_tac); 

505 
fun split_all th = 

26340  506 
if exists_paired_all (Thm.prop_of th) then full_simplify ss th else th; 
11838  507 
end; 
26340  508 
*} 
11838  509 

26340  510 
declaration {* fn _ => 
511 
Classical.map_cs (fn cs => cs addSbefore ("split_all_tac", split_all_tac)) 

16121  512 
*} 
11838  513 

514 
lemma split_paired_All [simp]: "(ALL x. P x) = (ALL a b. P (a, b))" 

515 
 {* @{text "[iff]"} is not a good idea because it makes @{text blast} loop *} 

516 
by fast 

517 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

518 
lemma split_paired_Ex [simp]: "(EX x. P x) = (EX a b. P (a, b))" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

519 
by fast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

520 

11838  521 
lemma split_paired_The: "(THE x. P x) = (THE (a, b). P (a, b))" 
522 
 {* Can't be added to simpset: loops! *} 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

523 
by (simp add: split_eta) 
11838  524 

525 
text {* 

526 
Simplification procedure for @{thm [source] cond_split_eta}. Using 

527 
@{thm [source] split_eta} as a rewrite rule is not general enough, 

528 
and using @{thm [source] cond_split_eta} directly would render some 

529 
existing proofs very inefficient; similarly for @{text 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

530 
split_beta}. 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

531 
*} 
11838  532 

26480  533 
ML {* 
11838  534 
local 
35364  535 
val cond_split_eta_ss = HOL_basic_ss addsimps @{thms cond_split_eta}; 
536 
fun Pair_pat k 0 (Bound m) = (m = k) 

537 
 Pair_pat k i (Const (@{const_name Pair}, _) $ Bound m $ t) = 

538 
i > 0 andalso m = k + i andalso Pair_pat k (i  1) t 

539 
 Pair_pat _ _ _ = false; 

540 
fun no_args k i (Abs (_, _, t)) = no_args (k + 1) i t 

541 
 no_args k i (t $ u) = no_args k i t andalso no_args k i u 

542 
 no_args k i (Bound m) = m < k orelse m > k + i 

543 
 no_args _ _ _ = true; 

544 
fun split_pat tp i (Abs (_, _, t)) = if tp 0 i t then SOME (i, t) else NONE 

37591  545 
 split_pat tp i (Const (@{const_name prod_case}, _) $ Abs (_, _, t)) = split_pat tp (i + 1) t 
35364  546 
 split_pat tp i _ = NONE; 
20044
92cc2f4c7335
simprocs: no theory argument  use simpset context instead;
wenzelm
parents:
19656
diff
changeset

547 
fun metaeq ss lhs rhs = mk_meta_eq (Goal.prove (Simplifier.the_context ss) [] [] 
35364  548 
(HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))) 
18328  549 
(K (simp_tac (Simplifier.inherit_context ss cond_split_eta_ss) 1))); 
11838  550 

35364  551 
fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k + 1) i t 
552 
 beta_term_pat k i (t $ u) = 

553 
Pair_pat k i (t $ u) orelse (beta_term_pat k i t andalso beta_term_pat k i u) 

554 
 beta_term_pat k i t = no_args k i t; 

555 
fun eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg 

556 
 eta_term_pat _ _ _ = false; 

11838  557 
fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t) 
35364  558 
 subst arg k i (t $ u) = 
559 
if Pair_pat k i (t $ u) then incr_boundvars k arg 

560 
else (subst arg k i t $ subst arg k i u) 

561 
 subst arg k i t = t; 

37591  562 
fun beta_proc ss (s as Const (@{const_name prod_case}, _) $ Abs (_, _, t) $ arg) = 
11838  563 
(case split_pat beta_term_pat 1 t of 
35364  564 
SOME (i, f) => SOME (metaeq ss s (subst arg 0 i f)) 
15531  565 
 NONE => NONE) 
35364  566 
 beta_proc _ _ = NONE; 
37591  567 
fun eta_proc ss (s as Const (@{const_name prod_case}, _) $ Abs (_, _, t)) = 
11838  568 
(case split_pat eta_term_pat 1 t of 
35364  569 
SOME (_, ft) => SOME (metaeq ss s (let val (f $ arg) = ft in f end)) 
15531  570 
 NONE => NONE) 
35364  571 
 eta_proc _ _ = NONE; 
11838  572 
in 
38715
6513ea67d95d
renamed Simplifier.simproc(_i) to Simplifier.simproc_global(_i) to emphasize that this is not the real thing;
wenzelm
parents:
37808
diff
changeset

573 
val split_beta_proc = Simplifier.simproc_global @{theory} "split_beta" ["split f z"] (K beta_proc); 
6513ea67d95d
renamed Simplifier.simproc(_i) to Simplifier.simproc_global(_i) to emphasize that this is not the real thing;
wenzelm
parents:
37808
diff
changeset

574 
val split_eta_proc = Simplifier.simproc_global @{theory} "split_eta" ["split f"] (K eta_proc); 
11838  575 
end; 
576 

577 
Addsimprocs [split_beta_proc, split_eta_proc]; 

578 
*} 

579 

26798
a9134a089106
split_beta is now declared as monotonicity rule, to allow bounded
berghofe
parents:
26588
diff
changeset

580 
lemma split_beta [mono]: "(%(x, y). P x y) z = P (fst z) (snd z)" 
11838  581 
by (subst surjective_pairing, rule split_conv) 
582 

35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35427
diff
changeset

583 
lemma split_split [no_atp]: "R(split c p) = (ALL x y. p = (x, y) > R(c x y))" 
11838  584 
 {* For use with @{text split} and the Simplifier. *} 
15481  585 
by (insert surj_pair [of p], clarify, simp) 
11838  586 

587 
text {* 

588 
@{thm [source] split_split} could be declared as @{text "[split]"} 

589 
done after the Splitter has been speeded up significantly; 

590 
precompute the constants involved and don't do anything unless the 

591 
current goal contains one of those constants. 

592 
*} 

593 

35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35427
diff
changeset

594 
lemma split_split_asm [no_atp]: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))" 
14208  595 
by (subst split_split, simp) 
11838  596 

597 
text {* 

598 
\medskip @{term split} used as a logical connective or set former. 

599 

600 
\medskip These rules are for use with @{text blast}; could instead 

40929
7ff03a5e044f
theorem names generated by the (rep_)datatype command now have mandatory qualifiers
huffman
parents:
40702
diff
changeset

601 
call @{text simp} using @{thm [source] prod.split} as rewrite. *} 
11838  602 

603 
lemma splitI2: "!!p. [ !!a b. p = (a, b) ==> c a b ] ==> split c p" 

604 
apply (simp only: split_tupled_all) 

605 
apply (simp (no_asm_simp)) 

606 
done 

607 

608 
lemma splitI2': "!!p. [ !!a b. (a, b) = p ==> c a b x ] ==> split c p x" 

609 
apply (simp only: split_tupled_all) 

610 
apply (simp (no_asm_simp)) 

611 
done 

612 

613 
lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q" 

37591  614 
by (induct p) auto 
11838  615 

616 
lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q" 

37591  617 
by (induct p) auto 
11838  618 

619 
lemma splitE2: 

620 
"[ Q (split P z); !!x y. [z = (x, y); Q (P x y)] ==> R ] ==> R" 

621 
proof  

622 
assume q: "Q (split P z)" 

623 
assume r: "!!x y. [z = (x, y); Q (P x y)] ==> R" 

624 
show R 

625 
apply (rule r surjective_pairing)+ 

626 
apply (rule split_beta [THEN subst], rule q) 

627 
done 

628 
qed 

629 

630 
lemma splitD': "split R (a,b) c ==> R a b c" 

631 
by simp 

632 

633 
lemma mem_splitI: "z: c a b ==> z: split c (a, b)" 

634 
by simp 

635 

636 
lemma mem_splitI2: "!!p. [ !!a b. p = (a, b) ==> z: c a b ] ==> z: split c p" 

14208  637 
by (simp only: split_tupled_all, simp) 
11838  638 

18372  639 
lemma mem_splitE: 
37166  640 
assumes major: "z \<in> split c p" 
641 
and cases: "\<And>x y. p = (x, y) \<Longrightarrow> z \<in> c x y \<Longrightarrow> Q" 

18372  642 
shows Q 
37591  643 
by (rule major [unfolded prod_case_unfold] cases surjective_pairing)+ 
11838  644 

645 
declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!] 

646 
declare mem_splitE [elim!] splitE' [elim!] splitE [elim!] 

647 

26340  648 
ML {* 
11838  649 
local (* filtering with exists_p_split is an essential optimization *) 
37591  650 
fun exists_p_split (Const (@{const_name prod_case},_) $ _ $ (Const (@{const_name Pair},_)$_$_)) = true 
11838  651 
 exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u 
652 
 exists_p_split (Abs (_, _, t)) = exists_p_split t 

653 
 exists_p_split _ = false; 

35364  654 
val ss = HOL_basic_ss addsimps @{thms split_conv}; 
11838  655 
in 
656 
val split_conv_tac = SUBGOAL (fn (t, i) => 

657 
if exists_p_split t then safe_full_simp_tac ss i else no_tac); 

658 
end; 

26340  659 
*} 
660 

11838  661 
(* This prevents applications of splitE for already splitted arguments leading 
662 
to quite timeconsuming computations (in particular for nested tuples) *) 

26340  663 
declaration {* fn _ => 
664 
Classical.map_cs (fn cs => cs addSbefore ("split_conv_tac", split_conv_tac)) 

16121  665 
*} 
11838  666 

35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35427
diff
changeset

667 
lemma split_eta_SetCompr [simp,no_atp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P" 
18372  668 
by (rule ext) fast 
11838  669 

35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35427
diff
changeset

670 
lemma split_eta_SetCompr2 [simp,no_atp]: "(%u. EX x y. u = (x, y) & P x y) = split P" 
18372  671 
by (rule ext) fast 
11838  672 

673 
lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & split Q ab)" 

674 
 {* Allows simplifications of nested splits in case of independent predicates. *} 

18372  675 
by (rule ext) blast 
11838  676 

14337
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset

677 
(* Do NOT make this a simp rule as it 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset

678 
a) only helps in special situations 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset

679 
b) can lead to nontermination in the presence of split_def 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset

680 
*) 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset

681 
lemma split_comp_eq: 
20415  682 
fixes f :: "'a => 'b => 'c" and g :: "'d => 'a" 
683 
shows "(%u. f (g (fst u)) (snd u)) = (split (%x. f (g x)))" 

18372  684 
by (rule ext) auto 
14101  685 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

686 
lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

687 
apply (rule_tac x = "(a, b)" in image_eqI) 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

688 
apply auto 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

689 
done 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

690 

11838  691 
lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)" 
692 
by blast 

693 

694 
(* 

695 
the following would be slightly more general, 

696 
but cannot be used as rewrite rule: 

697 
### Cannot add premise as rewrite rule because it contains (type) unknowns: 

698 
### ?y = .x 

699 
Goal "[ P y; !!x. P x ==> x = y ] ==> (@(x',y). x = x' & P y) = (x,y)" 

14208  700 
by (rtac some_equality 1) 
701 
by ( Simp_tac 1) 

702 
by (split_all_tac 1) 

703 
by (Asm_full_simp_tac 1) 

11838  704 
qed "The_split_eq"; 
705 
*) 

706 

707 
text {* 

708 
Setup of internal @{text split_rule}. 

709 
*} 

710 

24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

711 
lemmas prod_caseI = prod.cases [THEN iffD2, standard] 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

712 

c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

713 
lemma prod_caseI2: "!!p. [ !!a b. p = (a, b) ==> c a b ] ==> prod_case c p" 
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37591
diff
changeset

714 
by (fact splitI2) 
24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

715 

c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

716 
lemma prod_caseI2': "!!p. [ !!a b. (a, b) = p ==> c a b x ] ==> prod_case c p x" 
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37591
diff
changeset

717 
by (fact splitI2') 
24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

718 

c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

719 
lemma prod_caseE: "prod_case c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q" 
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37591
diff
changeset

720 
by (fact splitE) 
24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

721 

c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

722 
lemma prod_caseE': "prod_case c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q" 
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37591
diff
changeset

723 
by (fact splitE') 
24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

724 

37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37591
diff
changeset

725 
declare prod_caseI [intro!] 
24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

726 

26143
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
bulwahn
parents:
25885
diff
changeset

727 
lemma prod_case_beta: 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
bulwahn
parents:
25885
diff
changeset

728 
"prod_case f p = f (fst p) (snd p)" 
37591  729 
by (fact split_beta) 
26143
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
bulwahn
parents:
25885
diff
changeset

730 

24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

731 
lemma prod_cases3 [cases type]: 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

732 
obtains (fields) a b c where "y = (a, b, c)" 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

733 
by (cases y, case_tac b) blast 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

734 

c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

735 
lemma prod_induct3 [case_names fields, induct type]: 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

736 
"(!!a b c. P (a, b, c)) ==> P x" 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

737 
by (cases x) blast 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

738 

c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

739 
lemma prod_cases4 [cases type]: 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

740 
obtains (fields) a b c d where "y = (a, b, c, d)" 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

741 
by (cases y, case_tac c) blast 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

742 

c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

743 
lemma prod_induct4 [case_names fields, induct type]: 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

744 
"(!!a b c d. P (a, b, c, d)) ==> P x" 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

745 
by (cases x) blast 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

746 

c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

747 
lemma prod_cases5 [cases type]: 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

748 
obtains (fields) a b c d e where "y = (a, b, c, d, e)" 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

749 
by (cases y, case_tac d) blast 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

750 

c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

751 
lemma prod_induct5 [case_names fields, induct type]: 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

752 
"(!!a b c d e. P (a, b, c, d, e)) ==> P x" 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

753 
by (cases x) blast 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

754 

c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

755 
lemma prod_cases6 [cases type]: 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

756 
obtains (fields) a b c d e f where "y = (a, b, c, d, e, f)" 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

757 
by (cases y, case_tac e) blast 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

758 

c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

759 
lemma prod_induct6 [case_names fields, induct type]: 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

760 
"(!!a b c d e f. P (a, b, c, d, e, f)) ==> P x" 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

761 
by (cases x) blast 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

762 

c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

763 
lemma prod_cases7 [cases type]: 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

764 
obtains (fields) a b c d e f g where "y = (a, b, c, d, e, f, g)" 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

765 
by (cases y, case_tac f) blast 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

766 

c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

767 
lemma prod_induct7 [case_names fields, induct type]: 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

768 
"(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x" 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

769 
by (cases x) blast 
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

770 

37166  771 
lemma split_def: 
772 
"split = (\<lambda>c p. c (fst p) (snd p))" 

37591  773 
by (fact prod_case_unfold) 
37166  774 

775 
definition internal_split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where 

776 
"internal_split == split" 

777 

778 
lemma internal_split_conv: "internal_split c (a, b) = c a b" 

779 
by (simp only: internal_split_def split_conv) 

780 

781 
use "Tools/split_rule.ML" 

782 
setup Split_Rule.setup 

783 

784 
hide_const internal_split 

785 

24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

786 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

787 
subsubsection {* Derived operations *} 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

788 

37387
3581483cca6c
qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
haftmann
parents:
37278
diff
changeset

789 
definition curry :: "('a \<times> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'c" where 
3581483cca6c
qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
haftmann
parents:
37278
diff
changeset

790 
"curry = (\<lambda>c x y. c (x, y))" 
37166  791 

792 
lemma curry_conv [simp, code]: "curry f a b = f (a, b)" 

793 
by (simp add: curry_def) 

794 

795 
lemma curryI [intro!]: "f (a, b) \<Longrightarrow> curry f a b" 

796 
by (simp add: curry_def) 

797 

798 
lemma curryD [dest!]: "curry f a b \<Longrightarrow> f (a, b)" 

799 
by (simp add: curry_def) 

800 

801 
lemma curryE: "curry f a b \<Longrightarrow> (f (a, b) \<Longrightarrow> Q) \<Longrightarrow> Q" 

802 
by (simp add: curry_def) 

803 

804 
lemma curry_split [simp]: "curry (split f) = f" 

805 
by (simp add: curry_def split_def) 

806 

807 
lemma split_curry [simp]: "split (curry f) = f" 

808 
by (simp add: curry_def split_def) 

809 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

810 
text {* 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

811 
The compositionuncurry combinator. 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

812 
*} 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

813 

37751  814 
notation fcomp (infixl "\<circ>>" 60) 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

815 

37751  816 
definition scomp :: "('a \<Rightarrow> 'b \<times> 'c) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> 'd) \<Rightarrow> 'a \<Rightarrow> 'd" (infixl "\<circ>\<rightarrow>" 60) where 
817 
"f \<circ>\<rightarrow> g = (\<lambda>x. prod_case g (f x))" 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

818 

37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37591
diff
changeset

819 
lemma scomp_unfold: "scomp = (\<lambda>f g x. g (fst (f x)) (snd (f x)))" 
39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39272
diff
changeset

820 
by (simp add: fun_eq_iff scomp_def prod_case_unfold) 
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37591
diff
changeset

821 

37751  822 
lemma scomp_apply [simp]: "(f \<circ>\<rightarrow> g) x = prod_case g (f x)" 
823 
by (simp add: scomp_unfold prod_case_unfold) 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

824 

37751  825 
lemma Pair_scomp: "Pair x \<circ>\<rightarrow> f = f x" 
39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39272
diff
changeset

826 
by (simp add: fun_eq_iff scomp_apply) 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

827 

37751  828 
lemma scomp_Pair: "x \<circ>\<rightarrow> Pair = x" 
39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39272
diff
changeset

829 
by (simp add: fun_eq_iff scomp_apply) 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

830 

37751  831 
lemma scomp_scomp: "(f \<circ>\<rightarrow> g) \<circ>\<rightarrow> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>\<rightarrow> h)" 
39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39272
diff
changeset

832 
by (simp add: fun_eq_iff scomp_unfold) 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

833 

37751  834 
lemma scomp_fcomp: "(f \<circ>\<rightarrow> g) \<circ>> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>> h)" 
39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39272
diff
changeset

835 
by (simp add: fun_eq_iff scomp_unfold fcomp_def) 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

836 

37751  837 
lemma fcomp_scomp: "(f \<circ>> g) \<circ>\<rightarrow> h = f \<circ>> (g \<circ>\<rightarrow> h)" 
39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39272
diff
changeset

838 
by (simp add: fun_eq_iff scomp_unfold fcomp_apply) 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

839 

31202
52d332f8f909
pretty printing of functional combinators for evaluation code
haftmann
parents:
30924
diff
changeset

840 
code_const scomp 
52d332f8f909
pretty printing of functional combinators for evaluation code
haftmann
parents:
30924
diff
changeset

841 
(Eval infixl 3 "#>") 
52d332f8f909
pretty printing of functional combinators for evaluation code
haftmann
parents:
30924
diff
changeset

842 

37751  843 
no_notation fcomp (infixl "\<circ>>" 60) 
844 
no_notation scomp (infixl "\<circ>\<rightarrow>" 60) 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

845 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

846 
text {* 
40607  847 
@{term map_pair}  action of the product functor upon 
36664
6302f9ad7047
repaired comments where SOMEthing went utterly wrong (cf. 2b04504fcb69)
krauss
parents:
36622
diff
changeset

848 
functions. 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

849 
*} 
21195  850 

40607  851 
definition map_pair :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'd" where 
852 
"map_pair f g = (\<lambda>(x, y). (f x, g y))" 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

853 

40607  854 
lemma map_pair_simp [simp, code]: 
855 
"map_pair f g (a, b) = (f a, g b)" 

856 
by (simp add: map_pair_def) 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

857 

41505
6d19301074cf
"enriched_type" replaces less specific "type_lifting"
haftmann
parents:
41372
diff
changeset

858 
enriched_type map_pair: map_pair 
41372  859 
by (auto simp add: split_paired_all intro: ext) 
37278  860 

40607  861 
lemma fst_map_pair [simp]: 
862 
"fst (map_pair f g x) = f (fst x)" 

863 
by (cases x) simp_all 

37278  864 

40607  865 
lemma snd_prod_fun [simp]: 
866 
"snd (map_pair f g x) = g (snd x)" 

867 
by (cases x) simp_all 

37278  868 

40607  869 
lemma fst_comp_map_pair [simp]: 
870 
"fst \<circ> map_pair f g = f \<circ> fst" 

871 
by (rule ext) simp_all 

37278  872 

40607  873 
lemma snd_comp_map_pair [simp]: 
874 
"snd \<circ> map_pair f g = g \<circ> snd" 

875 
by (rule ext) simp_all 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

876 

40607  877 
lemma map_pair_compose: 
878 
"map_pair (f1 o f2) (g1 o g2) = (map_pair f1 g1 o map_pair f2 g2)" 

879 
by (rule ext) (simp add: map_pair.compositionality comp_def) 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

880 

40607  881 
lemma map_pair_ident [simp]: 
882 
"map_pair (%x. x) (%y. y) = (%z. z)" 

883 
by (rule ext) (simp add: map_pair.identity) 

884 

885 
lemma map_pair_imageI [intro]: 

886 
"(a, b) \<in> R \<Longrightarrow> (f a, g b) \<in> map_pair f g ` R" 

887 
by (rule image_eqI) simp_all 

21195  888 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

889 
lemma prod_fun_imageE [elim!]: 
40607  890 
assumes major: "c \<in> map_pair f g ` R" 
891 
and cases: "\<And>x y. c = (f x, g y) \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> P" 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

892 
shows P 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

893 
apply (rule major [THEN imageE]) 
37166  894 
apply (case_tac x) 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

895 
apply (rule cases) 
40607  896 
apply simp_all 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

897 
done 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

898 

37166  899 
definition apfst :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'b" where 
40607  900 
"apfst f = map_pair f id" 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

901 

37166  902 
definition apsnd :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'a \<times> 'c" where 
40607  903 
"apsnd f = map_pair id f" 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

904 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

905 
lemma apfst_conv [simp, code]: 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

906 
"apfst f (x, y) = (f x, y)" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

907 
by (simp add: apfst_def) 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

908 

33638
548a34929e98
Renamed upd_snd_conv to apsnd_conv to be consistent with apfst_conv; Added apsnd_apfst_commute
hoelzl
parents:
33594
diff
changeset

909 
lemma apsnd_conv [simp, code]: 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

910 
"apsnd f (x, y) = (x, f y)" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

911 
by (simp add: apsnd_def) 
21195  912 

33594  913 
lemma fst_apfst [simp]: 
914 
"fst (apfst f x) = f (fst x)" 

915 
by (cases x) simp 

916 

917 
lemma fst_apsnd [simp]: 

918 
"fst (apsnd f x) = fst x" 

919 
by (cases x) simp 

920 

921 
lemma snd_apfst [simp]: 

922 
"snd (apfst f x) = snd x" 

923 
by (cases x) simp 

924 

925 
lemma snd_apsnd [simp]: 

926 
"snd (apsnd f x) = f (snd x)" 

927 
by (cases x) simp 

928 

929 
lemma apfst_compose: 

930 
"apfst f (apfst g x) = apfst (f \<circ> g) x" 

931 
by (cases x) simp 

932 

933 
lemma apsnd_compose: 

934 
"apsnd f (apsnd g x) = apsnd (f \<circ> g) x" 

935 
by (cases x) simp 

936 

937 
lemma apfst_apsnd [simp]: 

938 
"apfst f (apsnd g x) = (f (fst x), g (snd x))" 

939 
by (cases x) simp 

940 

941 
lemma apsnd_apfst [simp]: 

942 
"apsnd f (apfst g x) = (g (fst x), f (snd x))" 

943 
by (cases x) simp 

944 

945 
lemma apfst_id [simp] : 

946 
"apfst id = id" 

39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39272
diff
changeset

947 
by (simp add: fun_eq_iff) 
33594  948 

949 
lemma apsnd_id [simp] : 

950 
"apsnd id = id" 

39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39272
diff
changeset

951 
by (simp add: fun_eq_iff) 
33594  952 

953 
lemma apfst_eq_conv [simp]: 

954 
"apfst f x = apfst g x \<longleftrightarrow> f (fst x) = g (fst x)" 

955 
by (cases x) simp 

956 

957 
lemma apsnd_eq_conv [simp]: 

958 
"apsnd f x = apsnd g x \<longleftrightarrow> f (snd x) = g (snd x)" 

959 
by (cases x) simp 

960 

33638
548a34929e98
Renamed upd_snd_conv to apsnd_conv to be consistent with apfst_conv; Added apsnd_apfst_commute
hoelzl
parents:
33594
diff
changeset

961 
lemma apsnd_apfst_commute: 
548a34929e98
Renamed upd_snd_conv to apsnd_conv to be consistent with apfst_conv; Added apsnd_apfst_commute
hoelzl
parents:
33594
diff
changeset

962 
"apsnd f (apfst g p) = apfst g (apsnd f p)" 
548a34929e98
Renamed upd_snd_conv to apsnd_conv to be consistent with apfst_conv; Added apsnd_apfst_commute
hoelzl
parents:
33594
diff
changeset

963 
by simp 
21195  964 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

965 
text {* 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

966 
Disjoint union of a family of sets  Sigma. 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

967 
*} 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

968 

40607  969 
definition Sigma :: "['a set, 'a => 'b set] => ('a \<times> 'b) set" where 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

970 
Sigma_def: "Sigma A B == UN x:A. UN y:B x. {Pair x y}" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

971 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

972 
abbreviation 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

973 
Times :: "['a set, 'b set] => ('a * 'b) set" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

974 
(infixr "<*>" 80) where 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

975 
"A <*> B == Sigma A (%_. B)" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

976 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

977 
notation (xsymbols) 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

978 
Times (infixr "\<times>" 80) 
15394  979 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

980 
notation (HTML output) 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

981 
Times (infixr "\<times>" 80) 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

982 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

983 
syntax 
35115  984 
"_Sigma" :: "[pttrn, 'a set, 'b set] => ('a * 'b) set" ("(3SIGMA _:_./ _)" [0, 0, 10] 10) 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

985 
translations 
35115  986 
"SIGMA x:A. B" == "CONST Sigma A (%x. B)" 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

987 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

988 
lemma SigmaI [intro!]: "[ a:A; b:B(a) ] ==> (a,b) : Sigma A B" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

989 
by (unfold Sigma_def) blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

990 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

991 
lemma SigmaE [elim!]: 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

992 
"[ c: Sigma A B; 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

993 
!!x y.[ x:A; y:B(x); c=(x,y) ] ==> P 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

994 
] ==> P" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

995 
 {* The general elimination rule. *} 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

996 
by (unfold Sigma_def) blast 
20588  997 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

998 
text {* 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

999 
Elimination of @{term "(a, b) : A \<times> B"}  introduces no 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1000 
eigenvariables. 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1001 
*} 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1002 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1003 
lemma SigmaD1: "(a, b) : Sigma A B ==> a : A" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1004 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1005 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1006 
lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1007 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1008 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1009 
lemma SigmaE2: 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1010 
"[ (a, b) : Sigma A B; 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1011 
[ a:A; b:B(a) ] ==> P 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1012 
] ==> P" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1013 
by blast 
20588  1014 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1015 
lemma Sigma_cong: 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1016 
"\<lbrakk>A = B; !!x. x \<in> B \<Longrightarrow> C x = D x\<rbrakk> 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1017 
\<Longrightarrow> (SIGMA x: A. C x) = (SIGMA x: B. D x)" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1018 
by auto 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1019 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1020 
lemma Sigma_mono: "[ A <= C; !!x. x:A ==> B x <= D x ] ==> Sigma A B <= Sigma C D" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1021 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1022 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1023 
lemma Sigma_empty1 [simp]: "Sigma {} B = {}" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1024 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1025 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1026 
lemma Sigma_empty2 [simp]: "A <*> {} = {}" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1027 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1028 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1029 
lemma UNIV_Times_UNIV [simp]: "UNIV <*> UNIV = UNIV" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1030 
by auto 
21908  1031 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1032 
lemma Compl_Times_UNIV1 [simp]: " (UNIV <*> A) = UNIV <*> (A)" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1033 
by auto 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1034 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1035 
lemma Compl_Times_UNIV2 [simp]: " (A <*> UNIV) = (A) <*> UNIV" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1036 
by auto 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1037 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1038 
lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1039 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1040 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1041 
lemma Times_subset_cancel2: "x:C ==> (A <*> C <= B <*> C) = (A <= B)" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1042 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1043 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1044 
lemma Times_eq_cancel2: "x:C ==> (A <*> C = B <*> C) = (A = B)" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1045 
by (blast elim: equalityE) 
20588  1046 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1047 
lemma SetCompr_Sigma_eq: 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1048 
"Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1049 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1050 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1051 
lemma Collect_split [simp]: "{(a,b). P a & Q b} = Collect P <*> Collect Q" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1052 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1053 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1054 
lemma UN_Times_distrib: 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1055 
"(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1056 
 {* Suggested by Pierre Chartier *} 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1057 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1058 

35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35427
diff
changeset

1059 
lemma split_paired_Ball_Sigma [simp,no_atp]: 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1060 
"(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1061 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1062 

35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35427
diff
changeset

1063 
lemma split_paired_Bex_Sigma [simp,no_atp]: 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1064 
"(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1065 
by blast 
21908  1066 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1067 
lemma Sigma_Un_distrib1: "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1068 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1069 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1070 
lemma Sigma_Un_distrib2: "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1071 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1072 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1073 
lemma Sigma_Int_distrib1: "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1074 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1075 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1076 
lemma Sigma_Int_distrib2: "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1077 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1078 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1079 
lemma Sigma_Diff_distrib1: "(SIGMA i:I  J. C(i)) = (SIGMA i:I. C(i))  (SIGMA j:J. C(j))" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1080 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1081 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1082 
lemma Sigma_Diff_distrib2: "(SIGMA i:I. A(i)  B(i)) = (SIGMA i:I. A(i))  (SIGMA i:I. B(i))" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1083 
by blast 
21908  1084 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1085 
lemma Sigma_Union: "Sigma (Union X) B = (UN A:X. Sigma A B)" 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1086 
by blast 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1087 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1088 
text {* 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1089 
Nondependent versions are needed to avoid the need for higherorder 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1090 
matching, especially when the rules are reoriented. 
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1091 
*} 
21908  1092 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1093 
lemma Times_Un_distrib1: "(A Un B) <*> C = (A <*> C) Un (B <*> C)" 
28719  1094 
by blast 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1095 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1096 
lemma Times_Int_distrib1: "(A Int B) <*> C = (A <*> C) Int (B <*> C)" 
28719  1097 
by blast 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1098 

d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1099 
lemma Times_Diff_distrib1: "(A  B) <*> C = (A <*> C)  (B <*> C)" 
28719  1100 
by blast 
26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1101 

36622
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1102 
lemma Times_empty[simp]: "A \<times> B = {} \<longleftrightarrow> A = {} \<or> B = {}" 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1103 
by auto 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1104 

e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1105 
lemma fst_image_times[simp]: "fst ` (A \<times> B) = (if B = {} then {} else A)" 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1106 
by (auto intro!: image_eqI) 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1107 

e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1108 
lemma snd_image_times[simp]: "snd ` (A \<times> B) = (if A = {} then {} else B)" 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1109 
by (auto intro!: image_eqI) 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1110 

28719  1111 
lemma insert_times_insert[simp]: 
1112 
"insert a A \<times> insert b B = 

1113 
insert (a,b) (A \<times> insert b B \<union> insert a A \<times> B)" 

1114 
by blast 

26358
d6a508c16908
Product_Type.apfst and Product_Type.apsnd; mbind combinator; tuned
haftmann
parents:
26340
diff
changeset

1115 

33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33089
diff
changeset

1116 
lemma vimage_Times: "f ` (A \<times> B) = ((fst \<circ> f) ` A) \<inter> ((snd \<circ> f) ` B)" 
37166  1117 
by (auto, case_tac "f x", auto) 
33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33089
diff
changeset

1118 

35822  1119 
lemma swap_inj_on: 
36622
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1120 
"inj_on (\<lambda>(i, j). (j, i)) A" 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1121 
by (auto intro!: inj_onI) 
35822  1122 

1123 
lemma swap_product: 

1124 
"(%(i, j). (j, i)) ` (A \<times> B) = B \<times> A" 

1125 
by (simp add: split_def image_def) blast 

1126 

36622
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1127 
lemma image_split_eq_Sigma: 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1128 
"(\<lambda>x. (f x, g x)) ` A = Sigma (f ` A) (\<lambda>x. g ` (f ` {x} \<inter> A))" 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1129 
proof (safe intro!: imageI vimageI) 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1130 
fix a b assume *: "a \<in> A" "b \<in> A" and eq: "f a = f b" 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1131 
show "(f b, g a) \<in> (\<lambda>x. (f x, g x)) ` A" 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1132 
using * eq[symmetric] by auto 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36176
diff
changeset

1133 
qed simp_all 
35822  1134 

40607  1135 
text {* The following @{const map_pair} lemmas are due to Joachim Breitner: *} 
1136 

1137 
lemma map_pair_inj_on: 

1138 
assumes "inj_on f A" and "inj_on g B" 

1139 
shows "inj_on (map_pair f g) (A \<times> B)" 

1140 
proof (rule inj_onI) 

1141 
fix x :: "'a \<times> 'c" and y :: "'a \<times> 'c" 

1142 
assume "x \<in> A \<times> B" hence "fst x \<in> A" and "snd x \<in> B" by auto 

1143 
assume "y \<in> A \<times> B" hence "fst y \<in> A" and "snd y \<in> B" by auto 

1144 
assume "map_pair f g x = map_pair f g y" 

1145 
hence "fst (map_pair f g x) = fst (map_pair f g y)" by (auto) 

1146 
hence "f (fst x) = f (fst y)" by (cases x,cases y,auto) 

1147 
with `inj_on f A` and `fst x \<in> A` and `fst y \<in> A` 

1148 
have "fst x = fst y" by (auto dest:dest:inj_onD) 

1149 
moreover from `map_pair f g x = map_pair f g y` 

1150 
have "snd (map_pair f g x) = snd (map_pair f g y)" by (auto) 

1151 
hence "g (snd x) = g (snd y)" by (cases x,cases y,auto) 

1152 
with `inj_on g B` and `snd x \<in> B` and `snd y \<in> B` 

1153 
have "snd x = snd y" by (auto dest:dest:inj_onD) 

1154 
ultimately show "x = y" by(rule prod_eqI) 

1155 
qed 

1156 

1157 
lemma map_pair_surj: 

40702  1158 
fixes f :: "'a \<Rightarrow> 'b" and g :: "'c \<Rightarrow> 'd" 
40607  1159 
assumes "surj f" and "surj g" 
1160 
shows "surj (map_pair f g)" 

1161 
unfolding surj_def 

1162 
proof 

1163 
fix y :: "'b \<times> 'd" 

1164 
from `surj f` obtain a where "fst y = f a" by (auto elim:surjE) 

1165 
moreover 

1166 
from `surj g` obtain b where "snd y = g b" by (auto elim:surjE) 

1167 
ultimately have "(fst y, snd y) = map_pair f g (a,b)" by auto 

1168 
thus "\<exists>x. y = map_pair f g x" by auto 

1169 
qed 

1170 

1171 
lemma map_pair_surj_on: 

1172 
assumes "f ` A = A'" and "g ` B = B'" 

1173 
shows "map_pair f g ` (A \<times> B) = A' \<times> B'" 

1174 
unfolding image_def 

1175 
proof(rule set_eqI,rule iffI) 

1176 
fix x :: "'a \<times> 'c" 

1177 
assume "x \<in> {y\<Colon>'a \<times> 'c. \<exists>x\<Colon>'b \<times> 'd\<in>A \<times> B. y = map_pair f g x}" 

1178 
then obtain y where "y \<in> A \<times> B" and "x = map_pair f g y" by blast 

1179 
from `image f A = A'` and `y \<in> A \<times> B` have "f (fst y) \<in> A'" by auto 

1180 
moreover from `image g B = B'` and `y \<in> A \<times> B` have "g (snd y) \<in> B'" by auto 

1181 
ultimately have "(f (fst y), g (snd y)) \<in> (A' \<times> B')" by auto 

1182 
with `x = map_pair f g y` show "x \<in> A' \<times> B'" by (cases y, auto) 

1183 
next 

1184 
fix x :: "'a \<times> 'c" 

1185 
assume "x \<in> A' \<times> B'" hence "fst x \<in> A'" and "snd x \<in> B'" by auto 

1186 
from `image f A = A'` and `fst x \<in> A'` have "fst x \<in> image f A" by auto 

1187 
then obtain a where "a \<in> A" and "fst x = f a" by (rule imageE) 

1188 
moreover from `image g B = B'` and `snd x \<in> B'` 

1189 
obtain b where "b \<in> B" and "snd x = g b" by auto 

1190 
ultimately have "(fst x, snd x) = map_pair f g (a,b)" by auto 

1191 
moreover from `a \<in> A` and `b \<in> B` have "(a , b) \<in> A \<times> B" by auto 

1192 
ultimately have "\<exists>y \<in> A \<times> B. x = map_pair f g y" by auto 

1193 
thus "x \<in> {x. \<exists>y \<in> A \<times> B. x = map_pair f g y}" by auto 

1194 
qed 

1195 

21908  1196 

37166  1197 
subsection {* Inductively defined sets *} 
15394  1198 

37389
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

1199 
use "Tools/inductive_codegen.ML" 
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

1200 
setup Inductive_Codegen.setup 
09467cdfa198
qualified type "*"; qualified constants Pair, fst, snd, split
haftmann
parents:
37387
diff
changeset

1201 

31723
f5cafe803b55
discontinued ancient tradition to suffix certain ML module names with "_package"
haftmann
parents:
31667
diff
changeset

1202 
use "Tools/inductive_set.ML" 
f5cafe803b55
discontinued ancient tradition to suffix certain ML module names with "_package"
haftmann
parents:
31667
diff
changeset

1203 
setup Inductive_Set.setup 
24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24286
diff
changeset

1204 

37166  1205 

1206 
subsection {* Legacy theorem bindings and duplicates *} 

1207 

1208 
lemma PairE: 

1209 
obtains x y where "p = (x, y)" 

1210 
by (fact prod.exhaust) 

1211 

1212 
lemma Pair_inject: 

1213 
assumes "(a, b) = (a', b')" 

1214 
and "a = a' ==> b = b' ==> R" 

1215 
shows R 

1216 
using assms by simp 

1217 

1218 
lemmas Pair_eq = prod.inject 

1219 

1220 
lemmas split = split_conv  {* for backwards compatibility *} 

1221 

10213  1222 
end 