src/HOL/ex/CTL.thy
author wenzelm
Sun, 26 Feb 2012 18:26:26 +0100
changeset 46685 866a798d051c
parent 46008 c296c75f4cf4
child 58622 aa99568f56de
permissions -rw-r--r--
tuned proofs;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     1
(*  Title:      HOL/ex/CTL.thy
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     2
    Author:     Gertrud Bauer
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     3
*)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     4
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     5
header {* CTL formulae *}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     6
46685
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
     7
theory CTL
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
     8
imports Main
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
     9
begin
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    10
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    11
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    12
  We formalize basic concepts of Computational Tree Logic (CTL)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    13
  \cite{McMillan-PhDThesis,McMillan-LectureNotes} within the
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    14
  simply-typed set theory of HOL.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    15
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    16
  By using the common technique of ``shallow embedding'', a CTL
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    17
  formula is identified with the corresponding set of states where it
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    18
  holds.  Consequently, CTL operations such as negation, conjunction,
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    19
  disjunction simply become complement, intersection, union of sets.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    20
  We only require a separate operation for implication, as point-wise
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    21
  inclusion is usually not encountered in plain set-theory.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    22
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    23
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    24
lemmas [intro!] = Int_greatest Un_upper2 Un_upper1 Int_lower1 Int_lower2
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    25
42463
f270e3e18be5 modernized specifications;
wenzelm
parents: 41460
diff changeset
    26
type_synonym 'a ctl = "'a set"
20807
wenzelm
parents: 17388
diff changeset
    27
wenzelm
parents: 17388
diff changeset
    28
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    29
  imp :: "'a ctl \<Rightarrow> 'a ctl \<Rightarrow> 'a ctl"    (infixr "\<rightarrow>" 75) where
20807
wenzelm
parents: 17388
diff changeset
    30
  "p \<rightarrow> q = - p \<union> q"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    31
20807
wenzelm
parents: 17388
diff changeset
    32
lemma [intro!]: "p \<inter> p \<rightarrow> q \<subseteq> q" unfolding imp_def by auto
wenzelm
parents: 17388
diff changeset
    33
lemma [intro!]: "p \<subseteq> (q \<rightarrow> p)" unfolding imp_def by rule
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    34
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    35
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    36
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    37
  \smallskip The CTL path operators are more interesting; they are
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    38
  based on an arbitrary, but fixed model @{text \<M>}, which is simply
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    39
  a transition relation over states @{typ "'a"}.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    40
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    41
20807
wenzelm
parents: 17388
diff changeset
    42
axiomatization \<M> :: "('a \<times> 'a) set"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    43
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    44
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    45
  The operators @{text \<EX>}, @{text \<EF>}, @{text \<EG>} are taken
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    46
  as primitives, while @{text \<AX>}, @{text \<AF>}, @{text \<AG>} are
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    47
  defined as derived ones.  The formula @{text "\<EX> p"} holds in a
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    48
  state @{term s}, iff there is a successor state @{term s'} (with
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    49
  respect to the model @{term \<M>}), such that @{term p} holds in
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    50
  @{term s'}.  The formula @{text "\<EF> p"} holds in a state @{term
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    51
  s}, iff there is a path in @{text \<M>}, starting from @{term s},
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    52
  such that there exists a state @{term s'} on the path, such that
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    53
  @{term p} holds in @{term s'}.  The formula @{text "\<EG> p"} holds
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    54
  in a state @{term s}, iff there is a path, starting from @{term s},
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    55
  such that for all states @{term s'} on the path, @{term p} holds in
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    56
  @{term s'}.  It is easy to see that @{text "\<EF> p"} and @{text
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    57
  "\<EG> p"} may be expressed using least and greatest fixed points
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    58
  \cite{McMillan-PhDThesis}.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    59
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    60
20807
wenzelm
parents: 17388
diff changeset
    61
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    62
  EX  ("\<EX> _" [80] 90) where "\<EX> p = {s. \<exists>s'. (s, s') \<in> \<M> \<and> s' \<in> p}"
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    63
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    64
  EF ("\<EF> _" [80] 90)  where "\<EF> p = lfp (\<lambda>s. p \<union> \<EX> s)"
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    65
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    66
  EG ("\<EG> _" [80] 90)  where "\<EG> p = gfp (\<lambda>s. p \<inter> \<EX> s)"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    67
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    68
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    69
  @{text "\<AX>"}, @{text "\<AF>"} and @{text "\<AG>"} are now defined
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    70
  dually in terms of @{text "\<EX>"}, @{text "\<EF>"} and @{text
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    71
  "\<EG>"}.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    72
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    73
20807
wenzelm
parents: 17388
diff changeset
    74
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    75
  AX  ("\<AX> _" [80] 90) where "\<AX> p = - \<EX> - p"
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    76
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    77
  AF  ("\<AF> _" [80] 90) where "\<AF> p = - \<EG> - p"
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    78
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    79
  AG  ("\<AG> _" [80] 90) where "\<AG> p = - \<EF> - p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    80
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    81
lemmas [simp] = EX_def EG_def AX_def EF_def AF_def AG_def
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    82
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    83
23219
87ad6e8a5f2c tuned document;
wenzelm
parents: 21404
diff changeset
    84
subsection {* Basic fixed point properties *}
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    85
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    86
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    87
  First of all, we use the de-Morgan property of fixed points
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    88
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    89
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
    90
lemma lfp_gfp: "lfp f = - gfp (\<lambda>s::'a set. - (f (- s)))"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    91
proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    92
  show "lfp f \<subseteq> - gfp (\<lambda>s. - f (- s))"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    93
  proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    94
    fix x assume l: "x \<in> lfp f"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    95
    show "x \<in> - gfp (\<lambda>s. - f (- s))"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    96
    proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    97
      assume "x \<in> gfp (\<lambda>s. - f (- s))"
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
    98
      then obtain u where "x \<in> u" and "u \<subseteq> - f (- u)"
32587
caa5ada96a00 Inter and Union are mere abbreviations for Inf and Sup
haftmann
parents: 26813
diff changeset
    99
        by (auto simp add: gfp_def)
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   100
      then have "f (- u) \<subseteq> - u" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   101
      then have "lfp f \<subseteq> - u" by (rule lfp_lowerbound)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   102
      from l and this have "x \<notin> u" by auto
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23219
diff changeset
   103
      with `x \<in> u` show False by contradiction
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   104
    qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   105
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   106
  show "- gfp (\<lambda>s. - f (- s)) \<subseteq> lfp f"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   107
  proof (rule lfp_greatest)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   108
    fix u assume "f u \<subseteq> u"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   109
    then have "- u \<subseteq> - f u" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   110
    then have "- u \<subseteq> - f (- (- u))" by simp
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   111
    then have "- u \<subseteq> gfp (\<lambda>s. - f (- s))" by (rule gfp_upperbound)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   112
    then show "- gfp (\<lambda>s. - f (- s)) \<subseteq> u" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   113
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   114
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   115
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
   116
lemma lfp_gfp': "- lfp f = gfp (\<lambda>s::'a set. - (f (- s)))"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   117
  by (simp add: lfp_gfp)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   118
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
   119
lemma gfp_lfp': "- gfp f = lfp (\<lambda>s::'a set. - (f (- s)))"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   120
  by (simp add: lfp_gfp)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   121
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   122
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   123
  in order to give dual fixed point representations of @{term "AF p"}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   124
  and @{term "AG p"}:
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   125
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   126
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   127
lemma AF_lfp: "\<AF> p = lfp (\<lambda>s. p \<union> \<AX> s)" by (simp add: lfp_gfp)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   128
lemma AG_gfp: "\<AG> p = gfp (\<lambda>s. p \<inter> \<AX> s)" by (simp add: lfp_gfp)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   129
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   130
lemma EF_fp: "\<EF> p = p \<union> \<EX> \<EF> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   131
proof -
46685
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
   132
  have "mono (\<lambda>s. p \<union> \<EX> s)" by rule auto
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   133
  then show ?thesis by (simp only: EF_def) (rule lfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   134
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   135
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   136
lemma AF_fp: "\<AF> p = p \<union> \<AX> \<AF> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   137
proof -
46685
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
   138
  have "mono (\<lambda>s. p \<union> \<AX> s)" by rule auto
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   139
  then show ?thesis by (simp only: AF_lfp) (rule lfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   140
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   141
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   142
lemma EG_fp: "\<EG> p = p \<inter> \<EX> \<EG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   143
proof -
46685
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
   144
  have "mono (\<lambda>s. p \<inter> \<EX> s)" by rule auto
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   145
  then show ?thesis by (simp only: EG_def) (rule gfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   146
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   147
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   148
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   149
  From the greatest fixed point definition of @{term "\<AG> p"}, we
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   150
  derive as a consequence of the Knaster-Tarski theorem on the one
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   151
  hand that @{term "\<AG> p"} is a fixed point of the monotonic
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   152
  function @{term "\<lambda>s. p \<inter> \<AX> s"}.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   153
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   154
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   155
lemma AG_fp: "\<AG> p = p \<inter> \<AX> \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   156
proof -
46685
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
   157
  have "mono (\<lambda>s. p \<inter> \<AX> s)" by rule auto
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   158
  then show ?thesis by (simp only: AG_gfp) (rule gfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   159
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   160
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   161
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   162
  This fact may be split up into two inequalities (merely using
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   163
  transitivity of @{text "\<subseteq>" }, which is an instance of the overloaded
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   164
  @{text "\<le>"} in Isabelle/HOL).
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   165
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   166
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   167
lemma AG_fp_1: "\<AG> p \<subseteq> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   168
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   169
  note AG_fp also have "p \<inter> \<AX> \<AG> p \<subseteq> p" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   170
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   171
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   172
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   173
lemma AG_fp_2: "\<AG> p \<subseteq> \<AX> \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   174
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   175
  note AG_fp also have "p \<inter> \<AX> \<AG> p \<subseteq> \<AX> \<AG> p" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   176
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   177
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   178
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   179
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   180
  On the other hand, we have from the Knaster-Tarski fixed point
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   181
  theorem that any other post-fixed point of @{term "\<lambda>s. p \<inter> AX s"} is
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   182
  smaller than @{term "AG p"}.  A post-fixed point is a set of states
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   183
  @{term q} such that @{term "q \<subseteq> p \<inter> AX q"}.  This leads to the
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   184
  following co-induction principle for @{term "AG p"}.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   185
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   186
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   187
lemma AG_I: "q \<subseteq> p \<inter> \<AX> q \<Longrightarrow> q \<subseteq> \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   188
  by (simp only: AG_gfp) (rule gfp_upperbound)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   189
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   190
23219
87ad6e8a5f2c tuned document;
wenzelm
parents: 21404
diff changeset
   191
subsection {* The tree induction principle \label{sec:calc-ctl-tree-induct} *}
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   192
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   193
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   194
  With the most basic facts available, we are now able to establish a
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   195
  few more interesting results, leading to the \emph{tree induction}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   196
  principle for @{text AG} (see below).  We will use some elementary
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   197
  monotonicity and distributivity rules.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   198
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   199
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   200
lemma AX_int: "\<AX> (p \<inter> q) = \<AX> p \<inter> \<AX> q" by auto 
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   201
lemma AX_mono: "p \<subseteq> q \<Longrightarrow> \<AX> p \<subseteq> \<AX> q" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   202
lemma AG_mono: "p \<subseteq> q \<Longrightarrow> \<AG> p \<subseteq> \<AG> q"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   203
  by (simp only: AG_gfp, rule gfp_mono) auto 
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   204
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   205
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   206
  The formula @{term "AG p"} implies @{term "AX p"} (we use
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   207
  substitution of @{text "\<subseteq>"} with monotonicity).
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   208
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   209
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   210
lemma AG_AX: "\<AG> p \<subseteq> \<AX> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   211
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   212
  have "\<AG> p \<subseteq> \<AX> \<AG> p" by (rule AG_fp_2)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   213
  also have "\<AG> p \<subseteq> p" by (rule AG_fp_1) moreover note AX_mono
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   214
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   215
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   216
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   217
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   218
  Furthermore we show idempotency of the @{text "\<AG>"} operator.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   219
  The proof is a good example of how accumulated facts may get
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   220
  used to feed a single rule step.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   221
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   222
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   223
lemma AG_AG: "\<AG> \<AG> p = \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   224
proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   225
  show "\<AG> \<AG> p \<subseteq> \<AG> p" by (rule AG_fp_1)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   226
next
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   227
  show "\<AG> p \<subseteq> \<AG> \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   228
  proof (rule AG_I)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   229
    have "\<AG> p \<subseteq> \<AG> p" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   230
    moreover have "\<AG> p \<subseteq> \<AX> \<AG> p" by (rule AG_fp_2)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   231
    ultimately show "\<AG> p \<subseteq> \<AG> p \<inter> \<AX> \<AG> p" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   232
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   233
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   234
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   235
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   236
  \smallskip We now give an alternative characterization of the @{text
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   237
  "\<AG>"} operator, which describes the @{text "\<AG>"} operator in
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   238
  an ``operational'' way by tree induction: In a state holds @{term
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   239
  "AG p"} iff in that state holds @{term p}, and in all reachable
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   240
  states @{term s} follows from the fact that @{term p} holds in
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   241
  @{term s}, that @{term p} also holds in all successor states of
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   242
  @{term s}.  We use the co-induction principle @{thm [source] AG_I}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   243
  to establish this in a purely algebraic manner.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   244
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   245
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   246
theorem AG_induct: "p \<inter> \<AG> (p \<rightarrow> \<AX> p) = \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   247
proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   248
  show "p \<inter> \<AG> (p \<rightarrow> \<AX> p) \<subseteq> \<AG> p"  (is "?lhs \<subseteq> _")
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   249
  proof (rule AG_I)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   250
    show "?lhs \<subseteq> p \<inter> \<AX> ?lhs"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   251
    proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   252
      show "?lhs \<subseteq> p" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   253
      show "?lhs \<subseteq> \<AX> ?lhs"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   254
      proof -
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   255
        {
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   256
          have "\<AG> (p \<rightarrow> \<AX> p) \<subseteq> p \<rightarrow> \<AX> p" by (rule AG_fp_1)
46008
c296c75f4cf4 reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
wenzelm
parents: 42463
diff changeset
   257
          also have "p \<inter> p \<rightarrow> \<AX> p \<subseteq> \<AX> p" ..
c296c75f4cf4 reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
wenzelm
parents: 42463
diff changeset
   258
          finally have "?lhs \<subseteq> \<AX> p" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   259
        }  
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   260
        moreover
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   261
        {
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   262
          have "p \<inter> \<AG> (p \<rightarrow> \<AX> p) \<subseteq> \<AG> (p \<rightarrow> \<AX> p)" ..
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   263
          also have "\<dots> \<subseteq> \<AX> \<dots>" by (rule AG_fp_2)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   264
          finally have "?lhs \<subseteq> \<AX> \<AG> (p \<rightarrow> \<AX> p)" .
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   265
        }  
46008
c296c75f4cf4 reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
wenzelm
parents: 42463
diff changeset
   266
        ultimately have "?lhs \<subseteq> \<AX> p \<inter> \<AX> \<AG> (p \<rightarrow> \<AX> p)" ..
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   267
        also have "\<dots> = \<AX> ?lhs" by (simp only: AX_int)
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   268
        finally show ?thesis .
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   269
      qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   270
    qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   271
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   272
next
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   273
  show "\<AG> p \<subseteq> p \<inter> \<AG> (p \<rightarrow> \<AX> p)"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   274
  proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   275
    show "\<AG> p \<subseteq> p" by (rule AG_fp_1)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   276
    show "\<AG> p \<subseteq> \<AG> (p \<rightarrow> \<AX> p)"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   277
    proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   278
      have "\<AG> p = \<AG> \<AG> p" by (simp only: AG_AG)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   279
      also have "\<AG> p \<subseteq> \<AX> p" by (rule AG_AX) moreover note AG_mono
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   280
      also have "\<AX> p \<subseteq> (p \<rightarrow> \<AX> p)" .. moreover note AG_mono
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   281
      finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   282
    qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   283
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   284
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   285
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   286
23219
87ad6e8a5f2c tuned document;
wenzelm
parents: 21404
diff changeset
   287
subsection {* An application of tree induction \label{sec:calc-ctl-commute} *}
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   288
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   289
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   290
  Further interesting properties of CTL expressions may be
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   291
  demonstrated with the help of tree induction; here we show that
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   292
  @{text \<AX>} and @{text \<AG>} commute.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   293
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   294
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   295
theorem AG_AX_commute: "\<AG> \<AX> p = \<AX> \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   296
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   297
  have "\<AG> \<AX> p = \<AX> p \<inter> \<AX> \<AG> \<AX> p" by (rule AG_fp)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   298
  also have "\<dots> = \<AX> (p \<inter> \<AG> \<AX> p)" by (simp only: AX_int)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   299
  also have "p \<inter> \<AG> \<AX> p = \<AG> p"  (is "?lhs = _")
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   300
  proof  
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   301
    have "\<AX> p \<subseteq> p \<rightarrow> \<AX> p" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   302
    also have "p \<inter> \<AG> (p \<rightarrow> \<AX> p) = \<AG> p" by (rule AG_induct)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   303
    also note Int_mono AG_mono
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   304
    ultimately show "?lhs \<subseteq> \<AG> p" by fast
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   305
  next  
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   306
    have "\<AG> p \<subseteq> p" by (rule AG_fp_1)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   307
    moreover 
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   308
    {
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   309
      have "\<AG> p = \<AG> \<AG> p" by (simp only: AG_AG)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   310
      also have "\<AG> p \<subseteq> \<AX> p" by (rule AG_AX)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   311
      also note AG_mono
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   312
      ultimately have "\<AG> p \<subseteq> \<AG> \<AX> p" .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   313
    } 
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   314
    ultimately show "\<AG> p \<subseteq> ?lhs" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   315
  qed  
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   316
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   317
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   318
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   319
end