author  wenzelm 
Mon, 03 Nov 1997 12:28:45 +0100  
changeset 4096  8cdf672a83e8 
parent 3835  9a5a4e123859 
child 4186  e39f28f94cf8 
permissions  rwrr 
1459  1 
(* Title: FOL/FOL.ML 
0  2 
ID: $Id$ 
1459  3 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory 
0  4 
Copyright 1991 University of Cambridge 
5 

1280  6 
Tactics and lemmas for FOL.thy (classical FirstOrder Logic) 
0  7 
*) 
8 

9 
open FOL; 

10 

11 

2576
390c9fb786b5
Declaration of ccontr (classical contradiction) for HOL compatibility
paulson
parents:
2469
diff
changeset

12 
val ccontr = FalseE RS classical; 
390c9fb786b5
Declaration of ccontr (classical contradiction) for HOL compatibility
paulson
parents:
2469
diff
changeset

13 

0  14 
(*** Classical introduction rules for  and EX ***) 
15 

779  16 
qed_goal "disjCI" FOL.thy 
0  17 
"(~Q ==> P) ==> PQ" 
18 
(fn prems=> 

1459  19 
[ (rtac classical 1), 
0  20 
(REPEAT (ares_tac (prems@[disjI1,notI]) 1)), 
21 
(REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ]); 

22 

23 
(*introduction rule involving only EX*) 

779  24 
qed_goal "ex_classical" FOL.thy 
3835  25 
"( ~(EX x. P(x)) ==> P(a)) ==> EX x. P(x)" 
0  26 
(fn prems=> 
1459  27 
[ (rtac classical 1), 
0  28 
(eresolve_tac (prems RL [exI]) 1) ]); 
29 

30 
(*version of above, simplifying ~EX to ALL~ *) 

779  31 
qed_goal "exCI" FOL.thy 
3835  32 
"(ALL x. ~P(x) ==> P(a)) ==> EX x. P(x)" 
0  33 
(fn [prem]=> 
1459  34 
[ (rtac ex_classical 1), 
0  35 
(resolve_tac [notI RS allI RS prem] 1), 
1459  36 
(etac notE 1), 
37 
(etac exI 1) ]); 

0  38 

779  39 
qed_goal "excluded_middle" FOL.thy "~P  P" 
0  40 
(fn _=> [ rtac disjCI 1, assume_tac 1 ]); 
41 

440  42 
(*For disjunctive case analysis*) 
43 
fun excluded_middle_tac sP = 

44 
res_inst_tac [("Q",sP)] (excluded_middle RS disjE); 

0  45 

46 
(*** Special elimination rules *) 

47 

48 

49 
(*Classical implies (>) elimination. *) 

779  50 
qed_goal "impCE" FOL.thy 
0  51 
"[ P>Q; ~P ==> R; Q ==> R ] ==> R" 
52 
(fn major::prems=> 

53 
[ (resolve_tac [excluded_middle RS disjE] 1), 

54 
(DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ]); 

55 

56 
(*Double negation law*) 

779  57 
qed_goal "notnotD" FOL.thy "~~P ==> P" 
0  58 
(fn [major]=> 
1459  59 
[ (rtac classical 1), (eresolve_tac [major RS notE] 1) ]); 
0  60 

61 

62 
(*** Tactics for implication and contradiction ***) 

63 

64 
(*Classical <> elimination. Proof substitutes P=Q in 

65 
~P ==> ~Q and P ==> Q *) 

779  66 
qed_goalw "iffCE" FOL.thy [iff_def] 
0  67 
"[ P<>Q; [ P; Q ] ==> R; [ ~P; ~Q ] ==> R ] ==> R" 
68 
(fn prems => 

1459  69 
[ (rtac conjE 1), 
0  70 
(REPEAT (DEPTH_SOLVE_1 
1459  71 
(etac impCE 1 ORELSE mp_tac 1 ORELSE ares_tac prems 1))) ]); 
2469  72 