src/HOL/Probability/Borel_Space.thy
author nipkow
Thu, 24 Mar 2016 16:10:18 +0100
changeset 62708 96f20d90c989
parent 62625 2d73385aa5f3
child 62975 1d066f6ab25d
permissions -rw-r--r--
merged
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
42150
b0c0638c4aad tuned headers;
wenzelm
parents: 42067
diff changeset
     1
(*  Title:      HOL/Probability/Borel_Space.thy
42067
66c8281349ec standardized headers
hoelzl
parents: 41981
diff changeset
     2
    Author:     Johannes Hölzl, TU München
66c8281349ec standardized headers
hoelzl
parents: 41981
diff changeset
     3
    Author:     Armin Heller, TU München
66c8281349ec standardized headers
hoelzl
parents: 41981
diff changeset
     4
*)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
     5
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
     6
section \<open>Borel spaces\<close>
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
     7
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
     8
theory Borel_Space
50387
3d8863c41fe8 Move the measurability prover to its own file
hoelzl
parents: 50245
diff changeset
     9
imports
3d8863c41fe8 Move the measurability prover to its own file
hoelzl
parents: 50245
diff changeset
    10
  Measurable
3d8863c41fe8 Move the measurability prover to its own file
hoelzl
parents: 50245
diff changeset
    11
  "~~/src/HOL/Multivariate_Analysis/Multivariate_Analysis"
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    12
begin
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    13
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    14
lemma sets_Collect_eventually_sequentially[measurable]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    15
  "(\<And>i. {x\<in>space M. P x i} \<in> sets M) \<Longrightarrow> {x\<in>space M. eventually (P x) sequentially} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    16
  unfolding eventually_sequentially by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    17
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    18
lemma open_Collect_less:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    19
  fixes f g :: "'i::topological_space \<Rightarrow> 'a :: {dense_linorder, linorder_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    20
  assumes "continuous_on UNIV f"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    21
  assumes "continuous_on UNIV g"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    22
  shows "open {x. f x < g x}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    23
proof -
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    24
  have "open (\<Union>y. {x \<in> UNIV. f x \<in> {..< y}} \<inter> {x \<in> UNIV. g x \<in> {y <..}})" (is "open ?X")
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    25
    by (intro open_UN ballI open_Int continuous_open_preimage assms) auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    26
  also have "?X = {x. f x < g x}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    27
    by (auto intro: dense)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    28
  finally show ?thesis .
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    29
qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    30
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    31
lemma closed_Collect_le:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    32
  fixes f g :: "'i::topological_space \<Rightarrow> 'a :: {dense_linorder, linorder_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    33
  assumes f: "continuous_on UNIV f"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    34
  assumes g: "continuous_on UNIV g"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    35
  shows "closed {x. f x \<le> g x}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    36
  using open_Collect_less[OF g f] unfolding not_less[symmetric] Collect_neg_eq open_closed .
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    37
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    38
lemma topological_basis_trivial: "topological_basis {A. open A}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    39
  by (auto simp: topological_basis_def)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    40
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    41
lemma open_prod_generated: "open = generate_topology {A \<times> B | A B. open A \<and> open B}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    42
proof -
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    43
  have "{A \<times> B :: ('a \<times> 'b) set | A B. open A \<and> open B} = ((\<lambda>(a, b). a \<times> b) ` ({A. open A} \<times> {A. open A}))"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    44
    by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    45
  then show ?thesis
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
    46
    by (auto intro: topological_basis_prod topological_basis_trivial topological_basis_imp_subbasis)
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    47
qed
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    48
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    49
definition "mono_on f A \<equiv> \<forall>r s. r \<in> A \<and> s \<in> A \<and> r \<le> s \<longrightarrow> f r \<le> f s"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    50
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    51
lemma mono_onI:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    52
  "(\<And>r s. r \<in> A \<Longrightarrow> s \<in> A \<Longrightarrow> r \<le> s \<Longrightarrow> f r \<le> f s) \<Longrightarrow> mono_on f A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    53
  unfolding mono_on_def by simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    54
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    55
lemma mono_onD:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    56
  "\<lbrakk>mono_on f A; r \<in> A; s \<in> A; r \<le> s\<rbrakk> \<Longrightarrow> f r \<le> f s"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    57
  unfolding mono_on_def by simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    58
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    59
lemma mono_imp_mono_on: "mono f \<Longrightarrow> mono_on f A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    60
  unfolding mono_def mono_on_def by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    61
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    62
lemma mono_on_subset: "mono_on f A \<Longrightarrow> B \<subseteq> A \<Longrightarrow> mono_on f B"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    63
  unfolding mono_on_def by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    64
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    65
definition "strict_mono_on f A \<equiv> \<forall>r s. r \<in> A \<and> s \<in> A \<and> r < s \<longrightarrow> f r < f s"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    66
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    67
lemma strict_mono_onI:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    68
  "(\<And>r s. r \<in> A \<Longrightarrow> s \<in> A \<Longrightarrow> r < s \<Longrightarrow> f r < f s) \<Longrightarrow> strict_mono_on f A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    69
  unfolding strict_mono_on_def by simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    70
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    71
lemma strict_mono_onD:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    72
  "\<lbrakk>strict_mono_on f A; r \<in> A; s \<in> A; r < s\<rbrakk> \<Longrightarrow> f r < f s"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    73
  unfolding strict_mono_on_def by simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    74
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    75
lemma mono_on_greaterD:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    76
  assumes "mono_on g A" "x \<in> A" "y \<in> A" "g x > (g (y::_::linorder) :: _ :: linorder)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    77
  shows "x > y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    78
proof (rule ccontr)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    79
  assume "\<not>x > y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    80
  hence "x \<le> y" by (simp add: not_less)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    81
  from assms(1-3) and this have "g x \<le> g y" by (rule mono_onD)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    82
  with assms(4) show False by simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    83
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    84
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    85
lemma strict_mono_inv:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    86
  fixes f :: "('a::linorder) \<Rightarrow> ('b::linorder)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    87
  assumes "strict_mono f" and "surj f" and inv: "\<And>x. g (f x) = x"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    88
  shows "strict_mono g"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    89
proof
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    90
  fix x y :: 'b assume "x < y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    91
  from \<open>surj f\<close> obtain x' y' where [simp]: "x = f x'" "y = f y'" by blast
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    92
  with \<open>x < y\<close> and \<open>strict_mono f\<close> have "x' < y'" by (simp add: strict_mono_less)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    93
  with inv show "g x < g y" by simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    94
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    95
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    96
lemma strict_mono_on_imp_inj_on:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    97
  assumes "strict_mono_on (f :: (_ :: linorder) \<Rightarrow> (_ :: preorder)) A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    98
  shows "inj_on f A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    99
proof (rule inj_onI)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   100
  fix x y assume "x \<in> A" "y \<in> A" "f x = f y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   101
  thus "x = y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   102
    by (cases x y rule: linorder_cases)
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   103
       (auto dest: strict_mono_onD[OF assms, of x y] strict_mono_onD[OF assms, of y x])
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   104
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   105
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   106
lemma strict_mono_on_leD:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   107
  assumes "strict_mono_on (f :: (_ :: linorder) \<Rightarrow> _ :: preorder) A" "x \<in> A" "y \<in> A" "x \<le> y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   108
  shows "f x \<le> f y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   109
proof (insert le_less_linear[of y x], elim disjE)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   110
  assume "x < y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   111
  with assms have "f x < f y" by (rule_tac strict_mono_onD[OF assms(1)]) simp_all
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   112
  thus ?thesis by (rule less_imp_le)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   113
qed (insert assms, simp)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   114
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   115
lemma strict_mono_on_eqD:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   116
  fixes f :: "(_ :: linorder) \<Rightarrow> (_ :: preorder)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   117
  assumes "strict_mono_on f A" "f x = f y" "x \<in> A" "y \<in> A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   118
  shows "y = x"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   119
  using assms by (rule_tac linorder_cases[of x y]) (auto dest: strict_mono_onD)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   120
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   121
lemma mono_on_imp_deriv_nonneg:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   122
  assumes mono: "mono_on f A" and deriv: "(f has_real_derivative D) (at x)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   123
  assumes "x \<in> interior A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   124
  shows "D \<ge> 0"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   125
proof (rule tendsto_le_const)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   126
  let ?A' = "(\<lambda>y. y - x) ` interior A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   127
  from deriv show "((\<lambda>h. (f (x + h) - f x) / h) \<longlongrightarrow> D) (at 0)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   128
      by (simp add: field_has_derivative_at has_field_derivative_def)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   129
  from mono have mono': "mono_on f (interior A)" by (rule mono_on_subset) (rule interior_subset)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   130
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   131
  show "eventually (\<lambda>h. (f (x + h) - f x) / h \<ge> 0) (at 0)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   132
  proof (subst eventually_at_topological, intro exI conjI ballI impI)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   133
    have "open (interior A)" by simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   134
    hence "open (op + (-x) ` interior A)" by (rule open_translation)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   135
    also have "(op + (-x) ` interior A) = ?A'" by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   136
    finally show "open ?A'" .
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   137
  next
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   138
    from \<open>x \<in> interior A\<close> show "0 \<in> ?A'" by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   139
  next
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   140
    fix h assume "h \<in> ?A'"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   141
    hence "x + h \<in> interior A" by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   142
    with mono' and \<open>x \<in> interior A\<close> show "(f (x + h) - f x) / h \<ge> 0"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   143
      by (cases h rule: linorder_cases[of _ 0])
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   144
         (simp_all add: divide_nonpos_neg divide_nonneg_pos mono_onD field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   145
  qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   146
qed simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   147
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   148
lemma strict_mono_on_imp_mono_on:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   149
  "strict_mono_on (f :: (_ :: linorder) \<Rightarrow> _ :: preorder) A \<Longrightarrow> mono_on f A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   150
  by (rule mono_onI, rule strict_mono_on_leD)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   151
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   152
lemma mono_on_ctble_discont:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   153
  fixes f :: "real \<Rightarrow> real"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   154
  fixes A :: "real set"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   155
  assumes "mono_on f A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   156
  shows "countable {a\<in>A. \<not> continuous (at a within A) f}"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   157
proof -
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   158
  have mono: "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   159
    using `mono_on f A` by (simp add: mono_on_def)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   160
  have "\<forall>a \<in> {a\<in>A. \<not> continuous (at a within A) f}. \<exists>q :: nat \<times> rat.
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   161
      (fst q = 0 \<and> of_rat (snd q) < f a \<and> (\<forall>x \<in> A. x < a \<longrightarrow> f x < of_rat (snd q))) \<or>
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   162
      (fst q = 1 \<and> of_rat (snd q) > f a \<and> (\<forall>x \<in> A. x > a \<longrightarrow> f x > of_rat (snd q)))"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   163
  proof (clarsimp simp del: One_nat_def)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   164
    fix a assume "a \<in> A" assume "\<not> continuous (at a within A) f"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   165
    thus "\<exists>q1 q2.
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   166
            q1 = 0 \<and> real_of_rat q2 < f a \<and> (\<forall>x\<in>A. x < a \<longrightarrow> f x < real_of_rat q2) \<or>
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   167
            q1 = 1 \<and> f a < real_of_rat q2 \<and> (\<forall>x\<in>A. a < x \<longrightarrow> real_of_rat q2 < f x)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   168
    proof (auto simp add: continuous_within order_tendsto_iff eventually_at)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   169
      fix l assume "l < f a"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   170
      then obtain q2 where q2: "l < of_rat q2" "of_rat q2 < f a"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   171
        using of_rat_dense by blast
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   172
      assume * [rule_format]: "\<forall>d>0. \<exists>x\<in>A. x \<noteq> a \<and> dist x a < d \<and> \<not> l < f x"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   173
      from q2 have "real_of_rat q2 < f a \<and> (\<forall>x\<in>A. x < a \<longrightarrow> f x < real_of_rat q2)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   174
      proof auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   175
        fix x assume "x \<in> A" "x < a"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   176
        with q2 *[of "a - x"] show "f x < real_of_rat q2"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   177
          apply (auto simp add: dist_real_def not_less)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   178
          apply (subgoal_tac "f x \<le> f xa")
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   179
          by (auto intro: mono)
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   180
      qed
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   181
      thus ?thesis by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   182
    next
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   183
      fix u assume "u > f a"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   184
      then obtain q2 where q2: "f a < of_rat q2" "of_rat q2 < u"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   185
        using of_rat_dense by blast
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   186
      assume *[rule_format]: "\<forall>d>0. \<exists>x\<in>A. x \<noteq> a \<and> dist x a < d \<and> \<not> u > f x"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   187
      from q2 have "real_of_rat q2 > f a \<and> (\<forall>x\<in>A. x > a \<longrightarrow> f x > real_of_rat q2)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   188
      proof auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   189
        fix x assume "x \<in> A" "x > a"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   190
        with q2 *[of "x - a"] show "f x > real_of_rat q2"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   191
          apply (auto simp add: dist_real_def)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   192
          apply (subgoal_tac "f x \<ge> f xa")
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   193
          by (auto intro: mono)
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   194
      qed
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   195
      thus ?thesis by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   196
    qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   197
  qed
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   198
  hence "\<exists>g :: real \<Rightarrow> nat \<times> rat . \<forall>a \<in> {a\<in>A. \<not> continuous (at a within A) f}.
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   199
      (fst (g a) = 0 \<and> of_rat (snd (g a)) < f a \<and> (\<forall>x \<in> A. x < a \<longrightarrow> f x < of_rat (snd (g a)))) |
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   200
      (fst (g a) = 1 \<and> of_rat (snd (g a)) > f a \<and> (\<forall>x \<in> A. x > a \<longrightarrow> f x > of_rat (snd (g a))))"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   201
    by (rule bchoice)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   202
  then guess g ..
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   203
  hence g: "\<And>a x. a \<in> A \<Longrightarrow> \<not> continuous (at a within A) f \<Longrightarrow> x \<in> A \<Longrightarrow>
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   204
      (fst (g a) = 0 \<and> of_rat (snd (g a)) < f a \<and> (x < a \<longrightarrow> f x < of_rat (snd (g a)))) |
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   205
      (fst (g a) = 1 \<and> of_rat (snd (g a)) > f a \<and> (x > a \<longrightarrow> f x > of_rat (snd (g a))))"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   206
    by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   207
  have "inj_on g {a\<in>A. \<not> continuous (at a within A) f}"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   208
  proof (auto simp add: inj_on_def)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   209
    fix w z
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   210
    assume 1: "w \<in> A" and 2: "\<not> continuous (at w within A) f" and
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   211
           3: "z \<in> A" and 4: "\<not> continuous (at z within A) f" and
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   212
           5: "g w = g z"
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   213
    from g [OF 1 2 3] g [OF 3 4 1] 5
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   214
    show "w = z" by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   215
  qed
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   216
  thus ?thesis
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   217
    by (rule countableI')
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   218
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   219
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   220
lemma mono_on_ctble_discont_open:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   221
  fixes f :: "real \<Rightarrow> real"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   222
  fixes A :: "real set"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   223
  assumes "open A" "mono_on f A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   224
  shows "countable {a\<in>A. \<not>isCont f a}"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   225
proof -
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   226
  have "{a\<in>A. \<not>isCont f a} = {a\<in>A. \<not>(continuous (at a within A) f)}"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   227
    by (auto simp add: continuous_within_open [OF _ `open A`])
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   228
  thus ?thesis
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   229
    apply (elim ssubst)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   230
    by (rule mono_on_ctble_discont, rule assms)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   231
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   232
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   233
lemma mono_ctble_discont:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   234
  fixes f :: "real \<Rightarrow> real"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   235
  assumes "mono f"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   236
  shows "countable {a. \<not> isCont f a}"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   237
using assms mono_on_ctble_discont [of f UNIV] unfolding mono_on_def mono_def by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   238
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   239
lemma has_real_derivative_imp_continuous_on:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   240
  assumes "\<And>x. x \<in> A \<Longrightarrow> (f has_real_derivative f' x) (at x)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   241
  shows "continuous_on A f"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   242
  apply (intro differentiable_imp_continuous_on, unfold differentiable_on_def)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   243
  apply (intro ballI Deriv.differentiableI)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   244
  apply (rule has_field_derivative_subset[OF assms])
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   245
  apply simp_all
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   246
  done
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   247
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   248
lemma closure_contains_Sup:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   249
  fixes S :: "real set"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   250
  assumes "S \<noteq> {}" "bdd_above S"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   251
  shows "Sup S \<in> closure S"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   252
proof-
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   253
  have "Inf (uminus ` S) \<in> closure (uminus ` S)"
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   254
      using assms by (intro closure_contains_Inf) auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   255
  also have "Inf (uminus ` S) = -Sup S" by (simp add: Inf_real_def)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   256
  also have "closure (uminus ` S) = uminus ` closure S"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   257
      by (rule sym, intro closure_injective_linear_image) (auto intro: linearI)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   258
  finally show ?thesis by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   259
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   260
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   261
lemma closed_contains_Sup:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   262
  fixes S :: "real set"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   263
  shows "S \<noteq> {} \<Longrightarrow> bdd_above S \<Longrightarrow> closed S \<Longrightarrow> Sup S \<in> S"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   264
  by (subst closure_closed[symmetric], assumption, rule closure_contains_Sup)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   265
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   266
lemma deriv_nonneg_imp_mono:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   267
  assumes deriv: "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_real_derivative g' x) (at x)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   268
  assumes nonneg: "\<And>x. x \<in> {a..b} \<Longrightarrow> g' x \<ge> 0"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   269
  assumes ab: "a \<le> b"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   270
  shows "g a \<le> g b"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   271
proof (cases "a < b")
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   272
  assume "a < b"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   273
  from deriv have "\<forall>x. x \<ge> a \<and> x \<le> b \<longrightarrow> (g has_real_derivative g' x) (at x)" by simp
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   274
  from MVT2[OF \<open>a < b\<close> this] and deriv
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   275
    obtain \<xi> where \<xi>_ab: "\<xi> > a" "\<xi> < b" and g_ab: "g b - g a = (b - a) * g' \<xi>" by blast
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   276
  from \<xi>_ab ab nonneg have "(b - a) * g' \<xi> \<ge> 0" by simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   277
  with g_ab show ?thesis by simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   278
qed (insert ab, simp)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   279
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   280
lemma continuous_interval_vimage_Int:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   281
  assumes "continuous_on {a::real..b} g" and mono: "\<And>x y. a \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> b \<Longrightarrow> g x \<le> g y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   282
  assumes "a \<le> b" "(c::real) \<le> d" "{c..d} \<subseteq> {g a..g b}"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   283
  obtains c' d' where "{a..b} \<inter> g -` {c..d} = {c'..d'}" "c' \<le> d'" "g c' = c" "g d' = d"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   284
proof-
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   285
    let ?A = "{a..b} \<inter> g -` {c..d}"
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   286
    from IVT'[of g a c b, OF _ _ \<open>a \<le> b\<close> assms(1)] assms(4,5)
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   287
         obtain c'' where c'': "c'' \<in> ?A" "g c'' = c" by auto
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   288
    from IVT'[of g a d b, OF _ _ \<open>a \<le> b\<close> assms(1)] assms(4,5)
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   289
         obtain d'' where d'': "d'' \<in> ?A" "g d'' = d" by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   290
    hence [simp]: "?A \<noteq> {}" by blast
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   291
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   292
    def c' \<equiv> "Inf ?A" and d' \<equiv> "Sup ?A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   293
    have "?A \<subseteq> {c'..d'}" unfolding c'_def d'_def
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   294
        by (intro subsetI) (auto intro: cInf_lower cSup_upper)
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   295
    moreover from assms have "closed ?A"
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   296
        using continuous_on_closed_vimage[of "{a..b}" g] by (subst Int_commute) simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   297
    hence c'd'_in_set: "c' \<in> ?A" "d' \<in> ?A" unfolding c'_def d'_def
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   298
        by ((intro closed_contains_Inf closed_contains_Sup, simp_all)[])+
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   299
    hence "{c'..d'} \<subseteq> ?A" using assms
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   300
        by (intro subsetI)
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   301
           (auto intro!: order_trans[of c "g c'" "g x" for x] order_trans[of "g x" "g d'" d for x]
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   302
                 intro!: mono)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   303
    moreover have "c' \<le> d'" using c'd'_in_set(2) unfolding c'_def by (intro cInf_lower) auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   304
    moreover have "g c' \<le> c" "g d' \<ge> d"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   305
      apply (insert c'' d'' c'd'_in_set)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   306
      apply (subst c''(2)[symmetric])
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   307
      apply (auto simp: c'_def intro!: mono cInf_lower c'') []
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   308
      apply (subst d''(2)[symmetric])
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   309
      apply (auto simp: d'_def intro!: mono cSup_upper d'') []
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   310
      done
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   311
    with c'd'_in_set have "g c' = c" "g d' = d" by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   312
    ultimately show ?thesis using that by blast
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   313
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   314
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   315
subsection \<open>Generic Borel spaces\<close>
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   316
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   317
definition (in topological_space) borel :: "'a measure" where
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   318
  "borel = sigma UNIV {S. open S}"
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   319
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   320
abbreviation "borel_measurable M \<equiv> measurable M borel"
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   321
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   322
lemma in_borel_measurable:
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   323
   "f \<in> borel_measurable M \<longleftrightarrow>
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   324
    (\<forall>S \<in> sigma_sets UNIV {S. open S}. f -` S \<inter> space M \<in> sets M)"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   325
  by (auto simp add: measurable_def borel_def)
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   326
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   327
lemma in_borel_measurable_borel:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   328
   "f \<in> borel_measurable M \<longleftrightarrow>
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   329
    (\<forall>S \<in> sets borel.
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   330
      f -` S \<inter> space M \<in> sets M)"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   331
  by (auto simp add: measurable_def borel_def)
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   332
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   333
lemma space_borel[simp]: "space borel = UNIV"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   334
  unfolding borel_def by auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   335
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   336
lemma space_in_borel[measurable]: "UNIV \<in> sets borel"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   337
  unfolding borel_def by auto
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   338
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
   339
lemma sets_borel: "sets borel = sigma_sets UNIV {S. open S}"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
   340
  unfolding borel_def by (rule sets_measure_of) simp
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
   341
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   342
lemma measurable_sets_borel:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   343
    "\<lbrakk>f \<in> measurable borel M; A \<in> sets M\<rbrakk> \<Longrightarrow> f -` A \<in> sets borel"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   344
  by (drule (1) measurable_sets) simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   345
50387
3d8863c41fe8 Move the measurability prover to its own file
hoelzl
parents: 50245
diff changeset
   346
lemma pred_Collect_borel[measurable (raw)]: "Measurable.pred borel P \<Longrightarrow> {x. P x} \<in> sets borel"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   347
  unfolding borel_def pred_def by auto
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   348
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   349
lemma borel_open[measurable (raw generic)]:
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   350
  assumes "open A" shows "A \<in> sets borel"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   351
proof -
44537
c10485a6a7af make HOL-Probability respect set/pred distinction
huffman
parents: 44282
diff changeset
   352
  have "A \<in> {S. open S}" unfolding mem_Collect_eq using assms .
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   353
  thus ?thesis unfolding borel_def by auto
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   354
qed
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   355
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   356
lemma borel_closed[measurable (raw generic)]:
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   357
  assumes "closed A" shows "A \<in> sets borel"
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   358
proof -
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   359
  have "space borel - (- A) \<in> sets borel"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   360
    using assms unfolding closed_def by (blast intro: borel_open)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   361
  thus ?thesis by simp
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   362
qed
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   363
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   364
lemma borel_singleton[measurable]:
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   365
  "A \<in> sets borel \<Longrightarrow> insert x A \<in> sets (borel :: 'a::t1_space measure)"
50244
de72bbe42190 qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents: 50104
diff changeset
   366
  unfolding insert_def by (rule sets.Un) auto
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   367
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   368
lemma borel_comp[measurable]: "A \<in> sets borel \<Longrightarrow> - A \<in> sets borel"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   369
  unfolding Compl_eq_Diff_UNIV by simp
41830
719b0a517c33 log is borel measurable
hoelzl
parents: 41545
diff changeset
   370
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   371
lemma borel_measurable_vimage:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   372
  fixes f :: "'a \<Rightarrow> 'x::t2_space"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   373
  assumes borel[measurable]: "f \<in> borel_measurable M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   374
  shows "f -` {x} \<inter> space M \<in> sets M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   375
  by simp
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   376
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   377
lemma borel_measurableI:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
   378
  fixes f :: "'a \<Rightarrow> 'x::topological_space"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   379
  assumes "\<And>S. open S \<Longrightarrow> f -` S \<inter> space M \<in> sets M"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   380
  shows "f \<in> borel_measurable M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   381
  unfolding borel_def
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   382
proof (rule measurable_measure_of, simp_all)
44537
c10485a6a7af make HOL-Probability respect set/pred distinction
huffman
parents: 44282
diff changeset
   383
  fix S :: "'x set" assume "open S" thus "f -` S \<inter> space M \<in> sets M"
c10485a6a7af make HOL-Probability respect set/pred distinction
huffman
parents: 44282
diff changeset
   384
    using assms[of S] by simp
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   385
qed
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   386
50021
d96a3f468203 add support for function application to measurability prover
hoelzl
parents: 50003
diff changeset
   387
lemma borel_measurable_const:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   388
  "(\<lambda>x. c) \<in> borel_measurable M"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   389
  by auto
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   390
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   391
lemma borel_measurable_indicator:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   392
  assumes A: "A \<in> sets M"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   393
  shows "indicator A \<in> borel_measurable M"
46905
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 46884
diff changeset
   394
  unfolding indicator_def [abs_def] using A
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   395
  by (auto intro!: measurable_If_set)
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   396
50096
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   397
lemma borel_measurable_count_space[measurable (raw)]:
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   398
  "f \<in> borel_measurable (count_space S)"
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   399
  unfolding measurable_def by auto
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   400
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   401
lemma borel_measurable_indicator'[measurable (raw)]:
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   402
  assumes [measurable]: "{x\<in>space M. f x \<in> A x} \<in> sets M"
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   403
  shows "(\<lambda>x. indicator (A x) (f x)) \<in> borel_measurable M"
50001
382bd3173584 add syntax and a.e.-rules for (conditional) probability on predicates
hoelzl
parents: 49774
diff changeset
   404
  unfolding indicator_def[abs_def]
382bd3173584 add syntax and a.e.-rules for (conditional) probability on predicates
hoelzl
parents: 49774
diff changeset
   405
  by (auto intro!: measurable_If)
382bd3173584 add syntax and a.e.-rules for (conditional) probability on predicates
hoelzl
parents: 49774
diff changeset
   406
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   407
lemma borel_measurable_indicator_iff:
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   408
  "(indicator A :: 'a \<Rightarrow> 'x::{t1_space, zero_neq_one}) \<in> borel_measurable M \<longleftrightarrow> A \<inter> space M \<in> sets M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   409
    (is "?I \<in> borel_measurable M \<longleftrightarrow> _")
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   410
proof
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   411
  assume "?I \<in> borel_measurable M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   412
  then have "?I -` {1} \<inter> space M \<in> sets M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   413
    unfolding measurable_def by auto
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   414
  also have "?I -` {1} \<inter> space M = A \<inter> space M"
46905
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 46884
diff changeset
   415
    unfolding indicator_def [abs_def] by auto
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   416
  finally show "A \<inter> space M \<in> sets M" .
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   417
next
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   418
  assume "A \<inter> space M \<in> sets M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   419
  moreover have "?I \<in> borel_measurable M \<longleftrightarrow>
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   420
    (indicator (A \<inter> space M) :: 'a \<Rightarrow> 'x) \<in> borel_measurable M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   421
    by (intro measurable_cong) (auto simp: indicator_def)
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   422
  ultimately show "?I \<in> borel_measurable M" by auto
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   423
qed
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   424
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   425
lemma borel_measurable_subalgebra:
41545
9c869baf1c66 tuned formalization of subalgebra
hoelzl
parents: 41097
diff changeset
   426
  assumes "sets N \<subseteq> sets M" "space N = space M" "f \<in> borel_measurable N"
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
   427
  shows "f \<in> borel_measurable M"
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
   428
  using assms unfolding measurable_def by auto
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
   429
57137
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   430
lemma borel_measurable_restrict_space_iff_ereal:
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   431
  fixes f :: "'a \<Rightarrow> ereal"
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   432
  assumes \<Omega>[measurable, simp]: "\<Omega> \<inter> space M \<in> sets M"
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   433
  shows "f \<in> borel_measurable (restrict_space M \<Omega>) \<longleftrightarrow>
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   434
    (\<lambda>x. f x * indicator \<Omega> x) \<in> borel_measurable M"
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   435
  by (subst measurable_restrict_space_iff)
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   436
     (auto simp: indicator_def if_distrib[where f="\<lambda>x. a * x" for a] cong del: if_cong)
57137
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   437
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   438
lemma borel_measurable_restrict_space_iff:
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   439
  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   440
  assumes \<Omega>[measurable, simp]: "\<Omega> \<inter> space M \<in> sets M"
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   441
  shows "f \<in> borel_measurable (restrict_space M \<Omega>) \<longleftrightarrow>
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   442
    (\<lambda>x. indicator \<Omega> x *\<^sub>R f x) \<in> borel_measurable M"
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   443
  by (subst measurable_restrict_space_iff)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57447
diff changeset
   444
     (auto simp: indicator_def if_distrib[where f="\<lambda>x. x *\<^sub>R a" for a] ac_simps cong del: if_cong)
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   445
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   446
lemma cbox_borel[measurable]: "cbox a b \<in> sets borel"
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   447
  by (auto intro: borel_closed)
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   448
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   449
lemma box_borel[measurable]: "box a b \<in> sets borel"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   450
  by (auto intro: borel_open)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   451
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   452
lemma borel_compact: "compact (A::'a::t2_space set) \<Longrightarrow> A \<in> sets borel"
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   453
  by (auto intro: borel_closed dest!: compact_imp_closed)
57137
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   454
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   455
lemma borel_sigma_sets_subset:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   456
  "A \<subseteq> sets borel \<Longrightarrow> sigma_sets UNIV A \<subseteq> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   457
  using sets.sigma_sets_subset[of A borel] by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   458
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   459
lemma borel_eq_sigmaI1:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   460
  fixes F :: "'i \<Rightarrow> 'a::topological_space set" and X :: "'a::topological_space set set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   461
  assumes borel_eq: "borel = sigma UNIV X"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   462
  assumes X: "\<And>x. x \<in> X \<Longrightarrow> x \<in> sets (sigma UNIV (F ` A))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   463
  assumes F: "\<And>i. i \<in> A \<Longrightarrow> F i \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   464
  shows "borel = sigma UNIV (F ` A)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   465
  unfolding borel_def
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   466
proof (intro sigma_eqI antisym)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   467
  have borel_rev_eq: "sigma_sets UNIV {S::'a set. open S} = sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   468
    unfolding borel_def by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   469
  also have "\<dots> = sigma_sets UNIV X"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   470
    unfolding borel_eq by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   471
  also have "\<dots> \<subseteq> sigma_sets UNIV (F`A)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   472
    using X by (intro sigma_algebra.sigma_sets_subset[OF sigma_algebra_sigma_sets]) auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   473
  finally show "sigma_sets UNIV {S. open S} \<subseteq> sigma_sets UNIV (F`A)" .
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   474
  show "sigma_sets UNIV (F`A) \<subseteq> sigma_sets UNIV {S. open S}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   475
    unfolding borel_rev_eq using F by (intro borel_sigma_sets_subset) auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   476
qed auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   477
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   478
lemma borel_eq_sigmaI2:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   479
  fixes F :: "'i \<Rightarrow> 'j \<Rightarrow> 'a::topological_space set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   480
    and G :: "'l \<Rightarrow> 'k \<Rightarrow> 'a::topological_space set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   481
  assumes borel_eq: "borel = sigma UNIV ((\<lambda>(i, j). G i j)`B)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   482
  assumes X: "\<And>i j. (i, j) \<in> B \<Longrightarrow> G i j \<in> sets (sigma UNIV ((\<lambda>(i, j). F i j) ` A))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   483
  assumes F: "\<And>i j. (i, j) \<in> A \<Longrightarrow> F i j \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   484
  shows "borel = sigma UNIV ((\<lambda>(i, j). F i j) ` A)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   485
  using assms
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   486
  by (intro borel_eq_sigmaI1[where X="(\<lambda>(i, j). G i j) ` B" and F="(\<lambda>(i, j). F i j)"]) auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   487
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   488
lemma borel_eq_sigmaI3:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   489
  fixes F :: "'i \<Rightarrow> 'j \<Rightarrow> 'a::topological_space set" and X :: "'a::topological_space set set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   490
  assumes borel_eq: "borel = sigma UNIV X"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   491
  assumes X: "\<And>x. x \<in> X \<Longrightarrow> x \<in> sets (sigma UNIV ((\<lambda>(i, j). F i j) ` A))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   492
  assumes F: "\<And>i j. (i, j) \<in> A \<Longrightarrow> F i j \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   493
  shows "borel = sigma UNIV ((\<lambda>(i, j). F i j) ` A)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   494
  using assms by (intro borel_eq_sigmaI1[where X=X and F="(\<lambda>(i, j). F i j)"]) auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   495
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   496
lemma borel_eq_sigmaI4:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   497
  fixes F :: "'i \<Rightarrow> 'a::topological_space set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   498
    and G :: "'l \<Rightarrow> 'k \<Rightarrow> 'a::topological_space set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   499
  assumes borel_eq: "borel = sigma UNIV ((\<lambda>(i, j). G i j)`A)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   500
  assumes X: "\<And>i j. (i, j) \<in> A \<Longrightarrow> G i j \<in> sets (sigma UNIV (range F))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   501
  assumes F: "\<And>i. F i \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   502
  shows "borel = sigma UNIV (range F)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   503
  using assms by (intro borel_eq_sigmaI1[where X="(\<lambda>(i, j). G i j) ` A" and F=F]) auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   504
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   505
lemma borel_eq_sigmaI5:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   506
  fixes F :: "'i \<Rightarrow> 'j \<Rightarrow> 'a::topological_space set" and G :: "'l \<Rightarrow> 'a::topological_space set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   507
  assumes borel_eq: "borel = sigma UNIV (range G)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   508
  assumes X: "\<And>i. G i \<in> sets (sigma UNIV (range (\<lambda>(i, j). F i j)))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   509
  assumes F: "\<And>i j. F i j \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   510
  shows "borel = sigma UNIV (range (\<lambda>(i, j). F i j))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   511
  using assms by (intro borel_eq_sigmaI1[where X="range G" and F="(\<lambda>(i, j). F i j)"]) auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   512
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   513
lemma second_countable_borel_measurable:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   514
  fixes X :: "'a::second_countable_topology set set"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   515
  assumes eq: "open = generate_topology X"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   516
  shows "borel = sigma UNIV X"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   517
  unfolding borel_def
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   518
proof (intro sigma_eqI sigma_sets_eqI)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   519
  interpret X: sigma_algebra UNIV "sigma_sets UNIV X"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   520
    by (rule sigma_algebra_sigma_sets) simp
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   521
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   522
  fix S :: "'a set" assume "S \<in> Collect open"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   523
  then have "generate_topology X S"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   524
    by (auto simp: eq)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   525
  then show "S \<in> sigma_sets UNIV X"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   526
  proof induction
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   527
    case (UN K)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   528
    then have K: "\<And>k. k \<in> K \<Longrightarrow> open k"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   529
      unfolding eq by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   530
    from ex_countable_basis obtain B :: "'a set set" where
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   531
      B:  "\<And>b. b \<in> B \<Longrightarrow> open b" "\<And>X. open X \<Longrightarrow> \<exists>b\<subseteq>B. (\<Union>b) = X" and "countable B"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   532
      by (auto simp: topological_basis_def)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   533
    from B(2)[OF K] obtain m where m: "\<And>k. k \<in> K \<Longrightarrow> m k \<subseteq> B" "\<And>k. k \<in> K \<Longrightarrow> (\<Union>m k) = k"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   534
      by metis
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   535
    def U \<equiv> "(\<Union>k\<in>K. m k)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   536
    with m have "countable U"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   537
      by (intro countable_subset[OF _ \<open>countable B\<close>]) auto
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   538
    have "\<Union>U = (\<Union>A\<in>U. A)" by simp
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   539
    also have "\<dots> = \<Union>K"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   540
      unfolding U_def UN_simps by (simp add: m)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   541
    finally have "\<Union>U = \<Union>K" .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   542
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   543
    have "\<forall>b\<in>U. \<exists>k\<in>K. b \<subseteq> k"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   544
      using m by (auto simp: U_def)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   545
    then obtain u where u: "\<And>b. b \<in> U \<Longrightarrow> u b \<in> K" and "\<And>b. b \<in> U \<Longrightarrow> b \<subseteq> u b"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   546
      by metis
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   547
    then have "(\<Union>b\<in>U. u b) \<subseteq> \<Union>K" "\<Union>U \<subseteq> (\<Union>b\<in>U. u b)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   548
      by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   549
    then have "\<Union>K = (\<Union>b\<in>U. u b)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   550
      unfolding \<open>\<Union>U = \<Union>K\<close> by auto
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   551
    also have "\<dots> \<in> sigma_sets UNIV X"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   552
      using u UN by (intro X.countable_UN' \<open>countable U\<close>) auto
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   553
    finally show "\<Union>K \<in> sigma_sets UNIV X" .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   554
  qed auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   555
qed (auto simp: eq intro: generate_topology.Basis)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   556
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   557
lemma borel_eq_closed: "borel = sigma UNIV (Collect closed)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   558
  unfolding borel_def
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   559
proof (intro sigma_eqI sigma_sets_eqI, safe)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   560
  fix x :: "'a set" assume "open x"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   561
  hence "x = UNIV - (UNIV - x)" by auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   562
  also have "\<dots> \<in> sigma_sets UNIV (Collect closed)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   563
    by (force intro: sigma_sets.Compl simp: \<open>open x\<close>)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   564
  finally show "x \<in> sigma_sets UNIV (Collect closed)" by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   565
next
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   566
  fix x :: "'a set" assume "closed x"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   567
  hence "x = UNIV - (UNIV - x)" by auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   568
  also have "\<dots> \<in> sigma_sets UNIV (Collect open)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   569
    by (force intro: sigma_sets.Compl simp: \<open>closed x\<close>)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   570
  finally show "x \<in> sigma_sets UNIV (Collect open)" by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   571
qed simp_all
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   572
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   573
lemma borel_eq_countable_basis:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   574
  fixes B::"'a::topological_space set set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   575
  assumes "countable B"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   576
  assumes "topological_basis B"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   577
  shows "borel = sigma UNIV B"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   578
  unfolding borel_def
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   579
proof (intro sigma_eqI sigma_sets_eqI, safe)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   580
  interpret countable_basis using assms by unfold_locales
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   581
  fix X::"'a set" assume "open X"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   582
  from open_countable_basisE[OF this] guess B' . note B' = this
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   583
  then show "X \<in> sigma_sets UNIV B"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   584
    by (blast intro: sigma_sets_UNION \<open>countable B\<close> countable_subset)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   585
next
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   586
  fix b assume "b \<in> B"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   587
  hence "open b" by (rule topological_basis_open[OF assms(2)])
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   588
  thus "b \<in> sigma_sets UNIV (Collect open)" by auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   589
qed simp_all
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   590
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   591
lemma borel_measurable_continuous_on_restrict:
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   592
  fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   593
  assumes f: "continuous_on A f"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   594
  shows "f \<in> borel_measurable (restrict_space borel A)"
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   595
proof (rule borel_measurableI)
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   596
  fix S :: "'b set" assume "open S"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   597
  with f obtain T where "f -` S \<inter> A = T \<inter> A" "open T"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   598
    by (metis continuous_on_open_invariant)
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   599
  then show "f -` S \<inter> space (restrict_space borel A) \<in> sets (restrict_space borel A)"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   600
    by (force simp add: sets_restrict_space space_restrict_space)
57137
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   601
qed
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   602
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   603
lemma borel_measurable_continuous_on1: "continuous_on UNIV f \<Longrightarrow> f \<in> borel_measurable borel"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   604
  by (drule borel_measurable_continuous_on_restrict) simp
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   605
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   606
lemma borel_measurable_continuous_on_if:
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   607
  "A \<in> sets borel \<Longrightarrow> continuous_on A f \<Longrightarrow> continuous_on (- A) g \<Longrightarrow>
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   608
    (\<lambda>x. if x \<in> A then f x else g x) \<in> borel_measurable borel"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   609
  by (auto simp add: measurable_If_restrict_space_iff Collect_neg_eq
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   610
           intro!: borel_measurable_continuous_on_restrict)
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   611
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   612
lemma borel_measurable_continuous_countable_exceptions:
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   613
  fixes f :: "'a::t1_space \<Rightarrow> 'b::topological_space"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   614
  assumes X: "countable X"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   615
  assumes "continuous_on (- X) f"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   616
  shows "f \<in> borel_measurable borel"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   617
proof (rule measurable_discrete_difference[OF _ X])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   618
  have "X \<in> sets borel"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   619
    by (rule sets.countable[OF _ X]) auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   620
  then show "(\<lambda>x. if x \<in> X then undefined else f x) \<in> borel_measurable borel"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   621
    by (intro borel_measurable_continuous_on_if assms continuous_intros)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   622
qed auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   623
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   624
lemma borel_measurable_continuous_on:
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   625
  assumes f: "continuous_on UNIV f" and g: "g \<in> borel_measurable M"
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   626
  shows "(\<lambda>x. f (g x)) \<in> borel_measurable M"
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   627
  using measurable_comp[OF g borel_measurable_continuous_on1[OF f]] by (simp add: comp_def)
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   628
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   629
lemma borel_measurable_continuous_on_indicator:
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   630
  fixes f g :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   631
  shows "A \<in> sets borel \<Longrightarrow> continuous_on A f \<Longrightarrow> (\<lambda>x. indicator A x *\<^sub>R f x) \<in> borel_measurable borel"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   632
  by (subst borel_measurable_restrict_space_iff[symmetric])
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   633
     (auto intro: borel_measurable_continuous_on_restrict)
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   634
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   635
lemma borel_measurable_Pair[measurable (raw)]:
50881
ae630bab13da renamed countable_basis_space to second_countable_topology
hoelzl
parents: 50526
diff changeset
   636
  fixes f :: "'a \<Rightarrow> 'b::second_countable_topology" and g :: "'a \<Rightarrow> 'c::second_countable_topology"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   637
  assumes f[measurable]: "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   638
  assumes g[measurable]: "g \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   639
  shows "(\<lambda>x. (f x, g x)) \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   640
proof (subst borel_eq_countable_basis)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   641
  let ?B = "SOME B::'b set set. countable B \<and> topological_basis B"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   642
  let ?C = "SOME B::'c set set. countable B \<and> topological_basis B"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   643
  let ?P = "(\<lambda>(b, c). b \<times> c) ` (?B \<times> ?C)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   644
  show "countable ?P" "topological_basis ?P"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   645
    by (auto intro!: countable_basis topological_basis_prod is_basis)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   646
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   647
  show "(\<lambda>x. (f x, g x)) \<in> measurable M (sigma UNIV ?P)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   648
  proof (rule measurable_measure_of)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   649
    fix S assume "S \<in> ?P"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   650
    then obtain b c where "b \<in> ?B" "c \<in> ?C" and S: "S = b \<times> c" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   651
    then have borel: "open b" "open c"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   652
      by (auto intro: is_basis topological_basis_open)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   653
    have "(\<lambda>x. (f x, g x)) -` S \<inter> space M = (f -` b \<inter> space M) \<inter> (g -` c \<inter> space M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   654
      unfolding S by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   655
    also have "\<dots> \<in> sets M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   656
      using borel by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   657
    finally show "(\<lambda>x. (f x, g x)) -` S \<inter> space M \<in> sets M" .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   658
  qed auto
39087
96984bf6fa5b Measurable on euclidean space is equiv. to measurable components
hoelzl
parents: 39083
diff changeset
   659
qed
96984bf6fa5b Measurable on euclidean space is equiv. to measurable components
hoelzl
parents: 39083
diff changeset
   660
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   661
lemma borel_measurable_continuous_Pair:
50881
ae630bab13da renamed countable_basis_space to second_countable_topology
hoelzl
parents: 50526
diff changeset
   662
  fixes f :: "'a \<Rightarrow> 'b::second_countable_topology" and g :: "'a \<Rightarrow> 'c::second_countable_topology"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   663
  assumes [measurable]: "f \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   664
  assumes [measurable]: "g \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   665
  assumes H: "continuous_on UNIV (\<lambda>x. H (fst x) (snd x))"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   666
  shows "(\<lambda>x. H (f x) (g x)) \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   667
proof -
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   668
  have eq: "(\<lambda>x. H (f x) (g x)) = (\<lambda>x. (\<lambda>x. H (fst x) (snd x)) (f x, g x))" by auto
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   669
  show ?thesis
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   670
    unfolding eq by (rule borel_measurable_continuous_on[OF H]) auto
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   671
qed
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   672
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   673
subsection \<open>Borel spaces on order topologies\<close>
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   674
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   675
lemma [measurable]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   676
  fixes a b :: "'a::linorder_topology"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   677
  shows lessThan_borel: "{..< a} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   678
    and greaterThan_borel: "{a <..} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   679
    and greaterThanLessThan_borel: "{a<..<b} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   680
    and atMost_borel: "{..a} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   681
    and atLeast_borel: "{a..} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   682
    and atLeastAtMost_borel: "{a..b} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   683
    and greaterThanAtMost_borel: "{a<..b} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   684
    and atLeastLessThan_borel: "{a..<b} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   685
  unfolding greaterThanAtMost_def atLeastLessThan_def
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   686
  by (blast intro: borel_open borel_closed open_lessThan open_greaterThan open_greaterThanLessThan
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   687
                   closed_atMost closed_atLeast closed_atLeastAtMost)+
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   688
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   689
lemma borel_Iio:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   690
  "borel = sigma UNIV (range lessThan :: 'a::{linorder_topology, second_countable_topology} set set)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   691
  unfolding second_countable_borel_measurable[OF open_generated_order]
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   692
proof (intro sigma_eqI sigma_sets_eqI)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   693
  from countable_dense_setE guess D :: "'a set" . note D = this
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   694
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   695
  interpret L: sigma_algebra UNIV "sigma_sets UNIV (range lessThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   696
    by (rule sigma_algebra_sigma_sets) simp
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   697
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   698
  fix A :: "'a set" assume "A \<in> range lessThan \<union> range greaterThan"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   699
  then obtain y where "A = {y <..} \<or> A = {..< y}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   700
    by blast
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   701
  then show "A \<in> sigma_sets UNIV (range lessThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   702
  proof
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   703
    assume A: "A = {y <..}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   704
    show ?thesis
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   705
    proof cases
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   706
      assume "\<forall>x>y. \<exists>d. y < d \<and> d < x"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   707
      with D(2)[of "{y <..< x}" for x] have "\<forall>x>y. \<exists>d\<in>D. y < d \<and> d < x"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   708
        by (auto simp: set_eq_iff)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   709
      then have "A = UNIV - (\<Inter>d\<in>{d\<in>D. y < d}. {..< d})"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   710
        by (auto simp: A) (metis less_asym)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   711
      also have "\<dots> \<in> sigma_sets UNIV (range lessThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   712
        using D(1) by (intro L.Diff L.top L.countable_INT'') auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   713
      finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   714
    next
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   715
      assume "\<not> (\<forall>x>y. \<exists>d. y < d \<and> d < x)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   716
      then obtain x where "y < x"  "\<And>d. y < d \<Longrightarrow> \<not> d < x"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   717
        by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   718
      then have "A = UNIV - {..< x}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   719
        unfolding A by (auto simp: not_less[symmetric])
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   720
      also have "\<dots> \<in> sigma_sets UNIV (range lessThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   721
        by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   722
      finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   723
    qed
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   724
  qed auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   725
qed auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   726
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   727
lemma borel_Ioi:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   728
  "borel = sigma UNIV (range greaterThan :: 'a::{linorder_topology, second_countable_topology} set set)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   729
  unfolding second_countable_borel_measurable[OF open_generated_order]
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   730
proof (intro sigma_eqI sigma_sets_eqI)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   731
  from countable_dense_setE guess D :: "'a set" . note D = this
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   732
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   733
  interpret L: sigma_algebra UNIV "sigma_sets UNIV (range greaterThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   734
    by (rule sigma_algebra_sigma_sets) simp
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   735
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   736
  fix A :: "'a set" assume "A \<in> range lessThan \<union> range greaterThan"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   737
  then obtain y where "A = {y <..} \<or> A = {..< y}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   738
    by blast
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   739
  then show "A \<in> sigma_sets UNIV (range greaterThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   740
  proof
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   741
    assume A: "A = {..< y}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   742
    show ?thesis
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   743
    proof cases
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   744
      assume "\<forall>x<y. \<exists>d. x < d \<and> d < y"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   745
      with D(2)[of "{x <..< y}" for x] have "\<forall>x<y. \<exists>d\<in>D. x < d \<and> d < y"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   746
        by (auto simp: set_eq_iff)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   747
      then have "A = UNIV - (\<Inter>d\<in>{d\<in>D. d < y}. {d <..})"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   748
        by (auto simp: A) (metis less_asym)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   749
      also have "\<dots> \<in> sigma_sets UNIV (range greaterThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   750
        using D(1) by (intro L.Diff L.top L.countable_INT'') auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   751
      finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   752
    next
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   753
      assume "\<not> (\<forall>x<y. \<exists>d. x < d \<and> d < y)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   754
      then obtain x where "x < y"  "\<And>d. y > d \<Longrightarrow> x \<ge> d"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   755
        by (auto simp: not_less[symmetric])
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   756
      then have "A = UNIV - {x <..}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   757
        unfolding A Compl_eq_Diff_UNIV[symmetric] by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   758
      also have "\<dots> \<in> sigma_sets UNIV (range greaterThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   759
        by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   760
      finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   761
    qed
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   762
  qed auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   763
qed auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   764
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   765
lemma borel_measurableI_less:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   766
  fixes f :: "'a \<Rightarrow> 'b::{linorder_topology, second_countable_topology}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   767
  shows "(\<And>y. {x\<in>space M. f x < y} \<in> sets M) \<Longrightarrow> f \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   768
  unfolding borel_Iio
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   769
  by (rule measurable_measure_of) (auto simp: Int_def conj_commute)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   770
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   771
lemma borel_measurableI_greater:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   772
  fixes f :: "'a \<Rightarrow> 'b::{linorder_topology, second_countable_topology}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   773
  shows "(\<And>y. {x\<in>space M. y < f x} \<in> sets M) \<Longrightarrow> f \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   774
  unfolding borel_Ioi
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   775
  by (rule measurable_measure_of) (auto simp: Int_def conj_commute)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   776
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   777
lemma borel_measurableI_le:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   778
  fixes f :: "'a \<Rightarrow> 'b::{linorder_topology, second_countable_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   779
  shows "(\<And>y. {x\<in>space M. f x \<le> y} \<in> sets M) \<Longrightarrow> f \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   780
  by (rule borel_measurableI_greater) (auto simp: not_le[symmetric])
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   781
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   782
lemma borel_measurableI_ge:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   783
  fixes f :: "'a \<Rightarrow> 'b::{linorder_topology, second_countable_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   784
  shows "(\<And>y. {x\<in>space M. y \<le> f x} \<in> sets M) \<Longrightarrow> f \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   785
  by (rule borel_measurableI_less) (auto simp: not_le[symmetric])
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   786
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   787
lemma borel_measurable_less[measurable]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   788
  fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, dense_linorder, linorder_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   789
  assumes "f \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   790
  assumes "g \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   791
  shows "{w \<in> space M. f w < g w} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   792
proof -
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   793
  have "{w \<in> space M. f w < g w} = (\<lambda>x. (f x, g x)) -` {x. fst x < snd x} \<inter> space M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   794
    by auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   795
  also have "\<dots> \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   796
    by (intro measurable_sets[OF borel_measurable_Pair borel_open, OF assms open_Collect_less]
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   797
              continuous_intros)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   798
  finally show ?thesis .
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   799
qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   800
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   801
lemma
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   802
  fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, dense_linorder, linorder_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   803
  assumes f[measurable]: "f \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   804
  assumes g[measurable]: "g \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   805
  shows borel_measurable_le[measurable]: "{w \<in> space M. f w \<le> g w} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   806
    and borel_measurable_eq[measurable]: "{w \<in> space M. f w = g w} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   807
    and borel_measurable_neq: "{w \<in> space M. f w \<noteq> g w} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   808
  unfolding eq_iff not_less[symmetric]
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   809
  by measurable
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   810
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   811
lemma borel_measurable_SUP[measurable (raw)]:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   812
  fixes F :: "_ \<Rightarrow> _ \<Rightarrow> _::{complete_linorder, linorder_topology, second_countable_topology}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   813
  assumes [simp]: "countable I"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   814
  assumes [measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   815
  shows "(\<lambda>x. SUP i:I. F i x) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   816
  by (rule borel_measurableI_greater) (simp add: less_SUP_iff)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   817
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   818
lemma borel_measurable_INF[measurable (raw)]:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   819
  fixes F :: "_ \<Rightarrow> _ \<Rightarrow> _::{complete_linorder, linorder_topology, second_countable_topology}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   820
  assumes [simp]: "countable I"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   821
  assumes [measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   822
  shows "(\<lambda>x. INF i:I. F i x) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   823
  by (rule borel_measurableI_less) (simp add: INF_less_iff)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   824
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   825
lemma borel_measurable_cSUP[measurable (raw)]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   826
  fixes F :: "_ \<Rightarrow> _ \<Rightarrow> 'a::{conditionally_complete_linorder, linorder_topology, second_countable_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   827
  assumes [simp]: "countable I"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   828
  assumes [measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   829
  assumes bdd: "\<And>x. x \<in> space M \<Longrightarrow> bdd_above ((\<lambda>i. F i x) ` I)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   830
  shows "(\<lambda>x. SUP i:I. F i x) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   831
proof cases
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   832
  assume "I = {}" then show ?thesis
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   833
    unfolding \<open>I = {}\<close> image_empty by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   834
next
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   835
  assume "I \<noteq> {}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   836
  show ?thesis
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   837
  proof (rule borel_measurableI_le)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   838
    fix y
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   839
    have "{x \<in> space M. \<forall>i\<in>I. F i x \<le> y} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   840
      by measurable
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   841
    also have "{x \<in> space M. \<forall>i\<in>I. F i x \<le> y} = {x \<in> space M. (SUP i:I. F i x) \<le> y}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   842
      by (simp add: cSUP_le_iff \<open>I \<noteq> {}\<close> bdd cong: conj_cong)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   843
    finally show "{x \<in> space M. (SUP i:I. F i x) \<le>  y} \<in> sets M"  .
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   844
  qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   845
qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   846
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   847
lemma borel_measurable_cINF[measurable (raw)]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   848
  fixes F :: "_ \<Rightarrow> _ \<Rightarrow> 'a::{conditionally_complete_linorder, linorder_topology, second_countable_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   849
  assumes [simp]: "countable I"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   850
  assumes [measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   851
  assumes bdd: "\<And>x. x \<in> space M \<Longrightarrow> bdd_below ((\<lambda>i. F i x) ` I)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   852
  shows "(\<lambda>x. INF i:I. F i x) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   853
proof cases
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   854
  assume "I = {}" then show ?thesis
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   855
    unfolding \<open>I = {}\<close> image_empty by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   856
next
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   857
  assume "I \<noteq> {}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   858
  show ?thesis
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   859
  proof (rule borel_measurableI_ge)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   860
    fix y
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   861
    have "{x \<in> space M. \<forall>i\<in>I. y \<le> F i x} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   862
      by measurable
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   863
    also have "{x \<in> space M. \<forall>i\<in>I. y \<le> F i x} = {x \<in> space M. y \<le> (INF i:I. F i x)}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   864
      by (simp add: le_cINF_iff \<open>I \<noteq> {}\<close> bdd cong: conj_cong)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   865
    finally show "{x \<in> space M. y \<le> (INF i:I. F i x)} \<in> sets M"  .
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   866
  qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   867
qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   868
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   869
lemma borel_measurable_lfp[consumes 1, case_names continuity step]:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   870
  fixes F :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b::{complete_linorder, linorder_topology, second_countable_topology})"
60172
423273355b55 rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
hoelzl
parents: 60150
diff changeset
   871
  assumes "sup_continuous F"
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   872
  assumes *: "\<And>f. f \<in> borel_measurable M \<Longrightarrow> F f \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   873
  shows "lfp F \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   874
proof -
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   875
  { fix i have "((F ^^ i) bot) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   876
      by (induct i) (auto intro!: *) }
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   877
  then have "(\<lambda>x. SUP i. (F ^^ i) bot x) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   878
    by measurable
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   879
  also have "(\<lambda>x. SUP i. (F ^^ i) bot x) = (SUP i. (F ^^ i) bot)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   880
    by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   881
  also have "(SUP i. (F ^^ i) bot) = lfp F"
60172
423273355b55 rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
hoelzl
parents: 60150
diff changeset
   882
    by (rule sup_continuous_lfp[symmetric]) fact
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   883
  finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   884
qed
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   885
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   886
lemma borel_measurable_gfp[consumes 1, case_names continuity step]:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   887
  fixes F :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b::{complete_linorder, linorder_topology, second_countable_topology})"
60172
423273355b55 rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
hoelzl
parents: 60150
diff changeset
   888
  assumes "inf_continuous F"
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   889
  assumes *: "\<And>f. f \<in> borel_measurable M \<Longrightarrow> F f \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   890
  shows "gfp F \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   891
proof -
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   892
  { fix i have "((F ^^ i) top) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   893
      by (induct i) (auto intro!: * simp: bot_fun_def) }
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   894
  then have "(\<lambda>x. INF i. (F ^^ i) top x) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   895
    by measurable
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   896
  also have "(\<lambda>x. INF i. (F ^^ i) top x) = (INF i. (F ^^ i) top)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   897
    by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   898
  also have "\<dots> = gfp F"
60172
423273355b55 rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
hoelzl
parents: 60150
diff changeset
   899
    by (rule inf_continuous_gfp[symmetric]) fact
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   900
  finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   901
qed
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   902
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   903
lemma borel_measurable_max[measurable (raw)]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   904
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. max (g x) (f x) :: 'b::{second_countable_topology, linorder_topology}) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   905
  by (rule borel_measurableI_less) simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   906
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   907
lemma borel_measurable_min[measurable (raw)]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   908
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. min (g x) (f x) :: 'b::{second_countable_topology, linorder_topology}) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   909
  by (rule borel_measurableI_greater) simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   910
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   911
lemma borel_measurable_Min[measurable (raw)]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   912
  "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<in> borel_measurable M) \<Longrightarrow> (\<lambda>x. Min ((\<lambda>i. f i x)`I) :: 'b::{second_countable_topology, linorder_topology}) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   913
proof (induct I rule: finite_induct)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   914
  case (insert i I) then show ?case
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   915
    by (cases "I = {}") auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   916
qed auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   917
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   918
lemma borel_measurable_Max[measurable (raw)]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   919
  "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<in> borel_measurable M) \<Longrightarrow> (\<lambda>x. Max ((\<lambda>i. f i x)`I) :: 'b::{second_countable_topology, linorder_topology}) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   920
proof (induct I rule: finite_induct)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   921
  case (insert i I) then show ?case
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   922
    by (cases "I = {}") auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   923
qed auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   924
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   925
lemma borel_measurable_sup[measurable (raw)]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   926
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. sup (g x) (f x) :: 'b::{lattice, second_countable_topology, linorder_topology}) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   927
  unfolding sup_max by measurable
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   928
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   929
lemma borel_measurable_inf[measurable (raw)]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   930
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. inf (g x) (f x) :: 'b::{lattice, second_countable_topology, linorder_topology}) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   931
  unfolding inf_min by measurable
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   932
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   933
lemma [measurable (raw)]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   934
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{complete_linorder, second_countable_topology, linorder_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   935
  assumes "\<And>i. f i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   936
  shows borel_measurable_liminf: "(\<lambda>x. liminf (\<lambda>i. f i x)) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   937
    and borel_measurable_limsup: "(\<lambda>x. limsup (\<lambda>i. f i x)) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   938
  unfolding liminf_SUP_INF limsup_INF_SUP using assms by auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   939
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   940
lemma measurable_convergent[measurable (raw)]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   941
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{complete_linorder, second_countable_topology, dense_linorder, linorder_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   942
  assumes [measurable]: "\<And>i. f i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   943
  shows "Measurable.pred M (\<lambda>x. convergent (\<lambda>i. f i x))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   944
  unfolding convergent_ereal by measurable
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   945
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   946
lemma sets_Collect_convergent[measurable]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   947
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{complete_linorder, second_countable_topology, dense_linorder, linorder_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   948
  assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   949
  shows "{x\<in>space M. convergent (\<lambda>i. f i x)} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   950
  by measurable
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   951
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   952
lemma borel_measurable_lim[measurable (raw)]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   953
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{complete_linorder, second_countable_topology, dense_linorder, linorder_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   954
  assumes [measurable]: "\<And>i. f i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   955
  shows "(\<lambda>x. lim (\<lambda>i. f i x)) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   956
proof -
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   957
  have "\<And>x. lim (\<lambda>i. f i x) = (if convergent (\<lambda>i. f i x) then limsup (\<lambda>i. f i x) else (THE i. False))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   958
    by (simp add: lim_def convergent_def convergent_limsup_cl)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   959
  then show ?thesis
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   960
    by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   961
qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   962
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   963
lemma borel_measurable_LIMSEQ_order:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   964
  fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{complete_linorder, second_countable_topology, dense_linorder, linorder_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   965
  assumes u': "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. u i x) \<longlonglongrightarrow> u' x"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   966
  and u: "\<And>i. u i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   967
  shows "u' \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   968
proof -
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   969
  have "\<And>x. x \<in> space M \<Longrightarrow> u' x = liminf (\<lambda>n. u n x)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   970
    using u' by (simp add: lim_imp_Liminf[symmetric])
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   971
  with u show ?thesis by (simp cong: measurable_cong)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   972
qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   973
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   974
subsection \<open>Borel spaces on topological monoids\<close>
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   975
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   976
lemma borel_measurable_add[measurable (raw)]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   977
  fixes f g :: "'a \<Rightarrow> 'b::{second_countable_topology, topological_monoid_add}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   978
  assumes f: "f \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   979
  assumes g: "g \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   980
  shows "(\<lambda>x. f x + g x) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   981
  using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   982
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   983
lemma borel_measurable_setsum[measurable (raw)]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   984
  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> 'b::{second_countable_topology, topological_comm_monoid_add}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   985
  assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   986
  shows "(\<lambda>x. \<Sum>i\<in>S. f i x) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   987
proof cases
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   988
  assume "finite S"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   989
  thus ?thesis using assms by induct auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   990
qed simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   991
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   992
lemma borel_measurable_suminf_order[measurable (raw)]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   993
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{complete_linorder, second_countable_topology, dense_linorder, linorder_topology, topological_comm_monoid_add}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   994
  assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   995
  shows "(\<lambda>x. suminf (\<lambda>i. f i x)) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   996
  unfolding suminf_def sums_def[abs_def] lim_def[symmetric] by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   997
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   998
subsection \<open>Borel spaces on Euclidean spaces\<close>
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   999
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1000
lemma borel_measurable_inner[measurable (raw)]:
50881
ae630bab13da renamed countable_basis_space to second_countable_topology
hoelzl
parents: 50526
diff changeset
  1001
  fixes f g :: "'a \<Rightarrow> 'b::{second_countable_topology, real_inner}"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1002
  assumes "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1003
  assumes "g \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1004
  shows "(\<lambda>x. f x \<bullet> g x) \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1005
  using assms
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56212
diff changeset
  1006
  by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1007
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1008
notation
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1009
  eucl_less (infix "<e" 50)
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1010
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1011
lemma box_oc: "{x. a <e x \<and> x \<le> b} = {x. a <e x} \<inter> {..b}"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1012
  and box_co: "{x. a \<le> x \<and> x <e b} = {a..} \<inter> {x. x <e b}"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1013
  by auto
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1014
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1015
lemma eucl_ivals[measurable]:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1016
  fixes a b :: "'a::ordered_euclidean_space"
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1017
  shows "{x. x <e a} \<in> sets borel"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1018
    and "{x. a <e x} \<in> sets borel"
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1019
    and "{..a} \<in> sets borel"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1020
    and "{a..} \<in> sets borel"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1021
    and "{a..b} \<in> sets borel"
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1022
    and  "{x. a <e x \<and> x \<le> b} \<in> sets borel"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1023
    and "{x. a \<le> x \<and>  x <e b} \<in> sets borel"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1024
  unfolding box_oc box_co
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1025
  by (auto intro: borel_open borel_closed)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1026
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1027
lemma
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1028
  fixes i :: "'a::{second_countable_topology, real_inner}"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1029
  shows hafspace_less_borel: "{x. a < x \<bullet> i} \<in> sets borel"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1030
    and hafspace_greater_borel: "{x. x \<bullet> i < a} \<in> sets borel"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1031
    and hafspace_less_eq_borel: "{x. a \<le> x \<bullet> i} \<in> sets borel"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1032
    and hafspace_greater_eq_borel: "{x. x \<bullet> i \<le> a} \<in> sets borel"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1033
  by simp_all
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1034
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1035
lemma borel_eq_box:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1036
  "borel = sigma UNIV (range (\<lambda> (a, b). box a b :: 'a :: euclidean_space set))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1037
    (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1038
proof (rule borel_eq_sigmaI1[OF borel_def])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1039
  fix M :: "'a set" assume "M \<in> {S. open S}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1040
  then have "open M" by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1041
  show "M \<in> ?SIGMA"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1042
    apply (subst open_UNION_box[OF \<open>open M\<close>])
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1043
    apply (safe intro!: sets.countable_UN' countable_PiE countable_Collect)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1044
    apply (auto intro: countable_rat)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1045
    done
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1046
qed (auto simp: box_def)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1047
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1048
lemma halfspace_gt_in_halfspace:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1049
  assumes i: "i \<in> A"
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1050
  shows "{x::'a. a < x \<bullet> i} \<in>
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1051
    sigma_sets UNIV ((\<lambda> (a, i). {x::'a::euclidean_space. x \<bullet> i < a}) ` (UNIV \<times> A))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1052
  (is "?set \<in> ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1053
proof -
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1054
  interpret sigma_algebra UNIV ?SIGMA
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1055
    by (intro sigma_algebra_sigma_sets) simp_all
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1056
  have *: "?set = (\<Union>n. UNIV - {x::'a. x \<bullet> i < a + 1 / real (Suc n)})"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1057
  proof (safe, simp_all add: not_less del: of_nat_Suc)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1058
    fix x :: 'a assume "a < x \<bullet> i"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1059
    with reals_Archimedean[of "x \<bullet> i - a"]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1060
    obtain n where "a + 1 / real (Suc n) < x \<bullet> i"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1061
      by (auto simp: field_simps)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1062
    then show "\<exists>n. a + 1 / real (Suc n) \<le> x \<bullet> i"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1063
      by (blast intro: less_imp_le)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1064
  next
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1065
    fix x n
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1066
    have "a < a + 1 / real (Suc n)" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1067
    also assume "\<dots> \<le> x"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1068
    finally show "a < x" .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1069
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1070
  show "?set \<in> ?SIGMA" unfolding *
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61284
diff changeset
  1071
    by (auto intro!: Diff sigma_sets_Inter i)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1072
qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1073
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1074
lemma borel_eq_halfspace_less:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1075
  "borel = sigma UNIV ((\<lambda>(a, i). {x::'a::euclidean_space. x \<bullet> i < a}) ` (UNIV \<times> Basis))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1076
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1077
proof (rule borel_eq_sigmaI2[OF borel_eq_box])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1078
  fix a b :: 'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1079
  have "box a b = {x\<in>space ?SIGMA. \<forall>i\<in>Basis. a \<bullet> i < x \<bullet> i \<and> x \<bullet> i < b \<bullet> i}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1080
    by (auto simp: box_def)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1081
  also have "\<dots> \<in> sets ?SIGMA"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1082
    by (intro sets.sets_Collect_conj sets.sets_Collect_finite_All sets.sets_Collect_const)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1083
       (auto intro!: halfspace_gt_in_halfspace countable_PiE countable_rat)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1084
  finally show "box a b \<in> sets ?SIGMA" .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1085
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1086
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1087
lemma borel_eq_halfspace_le:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1088
  "borel = sigma UNIV ((\<lambda> (a, i). {x::'a::euclidean_space. x \<bullet> i \<le> a}) ` (UNIV \<times> Basis))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1089
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1090
proof (rule borel_eq_sigmaI2[OF borel_eq_halfspace_less])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1091
  fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1092
  then have i: "i \<in> Basis" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1093
  have *: "{x::'a. x\<bullet>i < a} = (\<Union>n. {x. x\<bullet>i \<le> a - 1/real (Suc n)})"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1094
  proof (safe, simp_all del: of_nat_Suc)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1095
    fix x::'a assume *: "x\<bullet>i < a"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1096
    with reals_Archimedean[of "a - x\<bullet>i"]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1097
    obtain n where "x \<bullet> i < a - 1 / (real (Suc n))"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1098
      by (auto simp: field_simps)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1099
    then show "\<exists>n. x \<bullet> i \<le> a - 1 / (real (Suc n))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1100
      by (blast intro: less_imp_le)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1101
  next
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1102
    fix x::'a and n
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1103
    assume "x\<bullet>i \<le> a - 1 / real (Suc n)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1104
    also have "\<dots> < a" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1105
    finally show "x\<bullet>i < a" .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1106
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1107
  show "{x. x\<bullet>i < a} \<in> ?SIGMA" unfolding *
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1108
    by (intro sets.countable_UN) (auto intro: i)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1109
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1110
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1111
lemma borel_eq_halfspace_ge:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1112
  "borel = sigma UNIV ((\<lambda> (a, i). {x::'a::euclidean_space. a \<le> x \<bullet> i}) ` (UNIV \<times> Basis))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1113
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1114
proof (rule borel_eq_sigmaI2[OF borel_eq_halfspace_less])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1115
  fix a :: real and i :: 'a assume i: "(a, i) \<in> UNIV \<times> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1116
  have *: "{x::'a. x\<bullet>i < a} = space ?SIGMA - {x::'a. a \<le> x\<bullet>i}" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1117
  show "{x. x\<bullet>i < a} \<in> ?SIGMA" unfolding *
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1118
    using i by (intro sets.compl_sets) auto
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1119
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1120
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1121
lemma borel_eq_halfspace_greater:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1122
  "borel = sigma UNIV ((\<lambda> (a, i). {x::'a::euclidean_space. a < x \<bullet> i}) ` (UNIV \<times> Basis))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1123
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1124
proof (rule borel_eq_sigmaI2[OF borel_eq_halfspace_le])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1125
  fix a :: real and i :: 'a assume "(a, i) \<in> (UNIV \<times> Basis)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1126
  then have i: "i \<in> Basis" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1127
  have *: "{x::'a. x\<bullet>i \<le> a} = space ?SIGMA - {x::'a. a < x\<bullet>i}" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1128
  show "{x. x\<bullet>i \<le> a} \<in> ?SIGMA" unfolding *
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1129
    by (intro sets.compl_sets) (auto intro: i)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1130
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1131
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1132
lemma borel_eq_atMost:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1133
  "borel = sigma UNIV (range (\<lambda>a. {..a::'a::ordered_euclidean_space}))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1134
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1135
proof (rule borel_eq_sigmaI4[OF borel_eq_halfspace_le])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1136
  fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1137
  then have "i \<in> Basis" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1138
  then have *: "{x::'a. x\<bullet>i \<le> a} = (\<Union>k::nat. {.. (\<Sum>n\<in>Basis. (if n = i then a else real k)*\<^sub>R n)})"
62390
842917225d56 more canonical names
nipkow
parents: 62372
diff changeset
  1139
  proof (safe, simp_all add: eucl_le[where 'a='a] split: if_split_asm)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1140
    fix x :: 'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1141
    from real_arch_simple[of "Max ((\<lambda>i. x\<bullet>i)`Basis)"] guess k::nat ..
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1142
    then have "\<And>i. i \<in> Basis \<Longrightarrow> x\<bullet>i \<le> real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1143
      by (subst (asm) Max_le_iff) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1144
    then show "\<exists>k::nat. \<forall>ia\<in>Basis. ia \<noteq> i \<longrightarrow> x \<bullet> ia \<le> real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1145
      by (auto intro!: exI[of _ k])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1146
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1147
  show "{x. x\<bullet>i \<le> a} \<in> ?SIGMA" unfolding *
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1148
    by (intro sets.countable_UN) auto
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1149
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1150
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1151
lemma borel_eq_greaterThan:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1152
  "borel = sigma UNIV (range (\<lambda>a::'a::ordered_euclidean_space. {x. a <e x}))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1153
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1154
proof (rule borel_eq_sigmaI4[OF borel_eq_halfspace_le])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1155
  fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1156
  then have i: "i \<in> Basis" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1157
  have "{x::'a. x\<bullet>i \<le> a} = UNIV - {x::'a. a < x\<bullet>i}" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1158
  also have *: "{x::'a. a < x\<bullet>i} =
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1159
      (\<Union>k::nat. {x. (\<Sum>n\<in>Basis. (if n = i then a else -real k) *\<^sub>R n) <e x})" using i
62390
842917225d56 more canonical names
nipkow
parents: 62372
diff changeset
  1160
  proof (safe, simp_all add: eucl_less_def split: if_split_asm)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1161
    fix x :: 'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1162
    from reals_Archimedean2[of "Max ((\<lambda>i. -x\<bullet>i)`Basis)"]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1163
    guess k::nat .. note k = this
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1164
    { fix i :: 'a assume "i \<in> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1165
      then have "-x\<bullet>i < real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1166
        using k by (subst (asm) Max_less_iff) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1167
      then have "- real k < x\<bullet>i" by simp }
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1168
    then show "\<exists>k::nat. \<forall>ia\<in>Basis. ia \<noteq> i \<longrightarrow> -real k < x \<bullet> ia"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1169
      by (auto intro!: exI[of _ k])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1170
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1171
  finally show "{x. x\<bullet>i \<le> a} \<in> ?SIGMA"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1172
    apply (simp only:)
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1173
    apply (intro sets.countable_UN sets.Diff)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1174
    apply (auto intro: sigma_sets_top)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1175
    done
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1176
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1177
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1178
lemma borel_eq_lessThan:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1179
  "borel = sigma UNIV (range (\<lambda>a::'a::ordered_euclidean_space. {x. x <e a}))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1180
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1181
proof (rule borel_eq_sigmaI4[OF borel_eq_halfspace_ge])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1182
  fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1183
  then have i: "i \<in> Basis" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1184
  have "{x::'a. a \<le> x\<bullet>i} = UNIV - {x::'a. x\<bullet>i < a}" by auto
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1185
  also have *: "{x::'a. x\<bullet>i < a} = (\<Union>k::nat. {x. x <e (\<Sum>n\<in>Basis. (if n = i then a else real k) *\<^sub>R n)})" using \<open>i\<in> Basis\<close>
62390
842917225d56 more canonical names
nipkow
parents: 62372
diff changeset
  1186
  proof (safe, simp_all add: eucl_less_def split: if_split_asm)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1187
    fix x :: 'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1188
    from reals_Archimedean2[of "Max ((\<lambda>i. x\<bullet>i)`Basis)"]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1189
    guess k::nat .. note k = this
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1190
    { fix i :: 'a assume "i \<in> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1191
      then have "x\<bullet>i < real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1192
        using k by (subst (asm) Max_less_iff) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1193
      then have "x\<bullet>i < real k" by simp }
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1194
    then show "\<exists>k::nat. \<forall>ia\<in>Basis. ia \<noteq> i \<longrightarrow> x \<bullet> ia < real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1195
      by (auto intro!: exI[of _ k])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1196
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1197
  finally show "{x. a \<le> x\<bullet>i} \<in> ?SIGMA"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1198
    apply (simp only:)
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1199
    apply (intro sets.countable_UN sets.Diff)
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1200
    apply (auto intro: sigma_sets_top )
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1201
    done
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1202
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1203
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1204
lemma borel_eq_atLeastAtMost:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1205
  "borel = sigma UNIV (range (\<lambda>(a,b). {a..b} ::'a::ordered_euclidean_space set))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1206
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1207
proof (rule borel_eq_sigmaI5[OF borel_eq_atMost])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1208
  fix a::'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1209
  have *: "{..a} = (\<Union>n::nat. {- real n *\<^sub>R One .. a})"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1210
  proof (safe, simp_all add: eucl_le[where 'a='a])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1211
    fix x :: 'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1212
    from real_arch_simple[of "Max ((\<lambda>i. - x\<bullet>i)`Basis)"]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1213
    guess k::nat .. note k = this
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1214
    { fix i :: 'a assume "i \<in> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1215
      with k have "- x\<bullet>i \<le> real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1216
        by (subst (asm) Max_le_iff) (auto simp: field_simps)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1217
      then have "- real k \<le> x\<bullet>i" by simp }
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1218
    then show "\<exists>n::nat. \<forall>i\<in>Basis. - real n \<le> x \<bullet> i"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1219
      by (auto intro!: exI[of _ k])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1220
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1221
  show "{..a} \<in> ?SIGMA" unfolding *
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1222
    by (intro sets.countable_UN)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1223
       (auto intro!: sigma_sets_top)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1224
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1225
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1226
lemma borel_set_induct[consumes 1, case_names empty interval compl union]:
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1227
  assumes "A \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1228
  assumes empty: "P {}" and int: "\<And>a b. a \<le> b \<Longrightarrow> P {a..b}" and compl: "\<And>A. A \<in> sets borel \<Longrightarrow> P A \<Longrightarrow> P (-A)" and
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1229
          un: "\<And>f. disjoint_family f \<Longrightarrow> (\<And>i. f i \<in> sets borel) \<Longrightarrow>  (\<And>i. P (f i)) \<Longrightarrow> P (\<Union>i::nat. f i)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1230
  shows "P (A::real set)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1231
proof-
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1232
  let ?G = "range (\<lambda>(a,b). {a..b::real})"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1233
  have "Int_stable ?G" "?G \<subseteq> Pow UNIV" "A \<in> sigma_sets UNIV ?G"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1234
      using assms(1) by (auto simp add: borel_eq_atLeastAtMost Int_stable_def)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1235
  thus ?thesis
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1236
  proof (induction rule: sigma_sets_induct_disjoint)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1237
    case (union f)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1238
      from union.hyps(2) have "\<And>i. f i \<in> sets borel" by (auto simp: borel_eq_atLeastAtMost)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1239
      with union show ?case by (auto intro: un)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1240
  next
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1241
    case (basic A)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1242
    then obtain a b where "A = {a .. b}" by auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1243
    then show ?case
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1244
      by (cases "a \<le> b") (auto intro: int empty)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1245
  qed (auto intro: empty compl simp: Compl_eq_Diff_UNIV[symmetric] borel_eq_atLeastAtMost)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1246
qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1247
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1248
lemma borel_sigma_sets_Ioc: "borel = sigma UNIV (range (\<lambda>(a, b). {a <.. b::real}))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1249
proof (rule borel_eq_sigmaI5[OF borel_eq_atMost])
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1250
  fix i :: real
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1251
  have "{..i} = (\<Union>j::nat. {-j <.. i})"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1252
    by (auto simp: minus_less_iff reals_Archimedean2)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1253
  also have "\<dots> \<in> sets (sigma UNIV (range (\<lambda>(i, j). {i<..j})))"
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1254
    by (intro sets.countable_nat_UN) auto
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1255
  finally show "{..i} \<in> sets (sigma UNIV (range (\<lambda>(i, j). {i<..j})))" .
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1256
qed simp
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1257
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1258
lemma eucl_lessThan: "{x::real. x <e a} = lessThan a"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1259
  by (simp add: eucl_less_def lessThan_def)
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1260
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1261
lemma borel_eq_atLeastLessThan:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1262
  "borel = sigma UNIV (range (\<lambda>(a, b). {a ..< b :: real}))" (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1263
proof (rule borel_eq_sigmaI5[OF borel_eq_lessThan])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1264
  have move_uminus: "\<And>x y::real. -x \<le> y \<longleftrightarrow> -y \<le> x" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1265
  fix x :: real
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1266
  have "{..<x} = (\<Union>i::nat. {-real i ..< x})"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1267
    by (auto simp: move_uminus real_arch_simple)
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1268
  then show "{y. y <e x} \<in> ?SIGMA"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1269
    by (auto intro: sigma_sets.intros(2-) simp: eucl_lessThan)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1270
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1271
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1272
lemma borel_measurable_halfspacesI:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1273
  fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1274
  assumes F: "borel = sigma UNIV (F ` (UNIV \<times> Basis))"
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1275
  and S_eq: "\<And>a i. S a i = f -` F (a,i) \<inter> space M"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1276
  shows "f \<in> borel_measurable M = (\<forall>i\<in>Basis. \<forall>a::real. S a i \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1277
proof safe
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1278
  fix a :: real and i :: 'b assume i: "i \<in> Basis" and f: "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1279
  then show "S a i \<in> sets M" unfolding assms
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1280
    by (auto intro!: measurable_sets simp: assms(1))
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1281
next
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1282
  assume a: "\<forall>i\<in>Basis. \<forall>a. S a i \<in> sets M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1283
  then show "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1284
    by (auto intro!: measurable_measure_of simp: S_eq F)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1285
qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1286
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1287
lemma borel_measurable_iff_halfspace_le:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1288
  fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1289
  shows "f \<in> borel_measurable M = (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. f w \<bullet> i \<le> a} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1290
  by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_le]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1291
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1292
lemma borel_measurable_iff_halfspace_less:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1293
  fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1294
  shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. f w \<bullet> i < a} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1295
  by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_less]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1296
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1297
lemma borel_measurable_iff_halfspace_ge:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1298
  fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1299
  shows "f \<in> borel_measurable M = (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. a \<le> f w \<bullet> i} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1300
  by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_ge]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1301
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1302
lemma borel_measurable_iff_halfspace_greater:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1303
  fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1304
  shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. a < f w \<bullet> i} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1305
  by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_greater]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1306
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1307
lemma borel_measurable_iff_le:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1308
  "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. f w \<le> a} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1309
  using borel_measurable_iff_halfspace_le[where 'c=real] by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1310
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1311
lemma borel_measurable_iff_less:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1312
  "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. f w < a} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1313
  using borel_measurable_iff_halfspace_less[where 'c=real] by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1314
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1315
lemma borel_measurable_iff_ge:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1316
  "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. a \<le> f w} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1317
  using borel_measurable_iff_halfspace_ge[where 'c=real]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1318
  by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1319
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1320
lemma borel_measurable_iff_greater:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1321
  "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. a < f w} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1322
  using borel_measurable_iff_halfspace_greater[where 'c=real] by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1323
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1324
lemma borel_measurable_euclidean_space:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1325
  fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1326
  shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>i\<in>Basis. (\<lambda>x. f x \<bullet> i) \<in> borel_measurable M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1327
proof safe
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1328
  assume f: "\<forall>i\<in>Basis. (\<lambda>x. f x \<bullet> i) \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1329
  then show "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1330
    by (subst borel_measurable_iff_halfspace_le) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1331
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1332
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1333
subsection "Borel measurable operators"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1334
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1335
lemma borel_measurable_norm[measurable]: "norm \<in> borel_measurable borel"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1336
  by (intro borel_measurable_continuous_on1 continuous_intros)
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1337
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1338
lemma borel_measurable_sgn [measurable]: "(sgn::'a::real_normed_vector \<Rightarrow> 'a) \<in> borel_measurable borel"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1339
  by (rule borel_measurable_continuous_countable_exceptions[where X="{0}"])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1340
     (auto intro!: continuous_on_sgn continuous_on_id)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1341
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1342
lemma borel_measurable_uminus[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1343
  fixes g :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1344
  assumes g: "g \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1345
  shows "(\<lambda>x. - g x) \<in> borel_measurable M"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56212
diff changeset
  1346
  by (rule borel_measurable_continuous_on[OF _ g]) (intro continuous_intros)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1347
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1348
lemma borel_measurable_diff[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1349
  fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1350
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1351
  assumes g: "g \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1352
  shows "(\<lambda>x. f x - g x) \<in> borel_measurable M"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53216
diff changeset
  1353
  using borel_measurable_add [of f M "- g"] assms by (simp add: fun_Compl_def)
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1354
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1355
lemma borel_measurable_times[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1356
  fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_algebra}"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1357
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1358
  assumes g: "g \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1359
  shows "(\<lambda>x. f x * g x) \<in> borel_measurable M"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56212
diff changeset
  1360
  using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1361
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1362
lemma borel_measurable_setprod[measurable (raw)]:
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1363
  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> 'b::{second_countable_topology, real_normed_field}"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1364
  assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1365
  shows "(\<lambda>x. \<Prod>i\<in>S. f i x) \<in> borel_measurable M"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1366
proof cases
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1367
  assume "finite S"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1368
  thus ?thesis using assms by induct auto
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1369
qed simp
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1370
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1371
lemma borel_measurable_dist[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1372
  fixes g f :: "'a \<Rightarrow> 'b::{second_countable_topology, metric_space}"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1373
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1374
  assumes g: "g \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1375
  shows "(\<lambda>x. dist (f x) (g x)) \<in> borel_measurable M"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56212
diff changeset
  1376
  using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1377
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1378
lemma borel_measurable_scaleR[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1379
  fixes g :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1380
  assumes f: "f \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1381
  assumes g: "g \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1382
  shows "(\<lambda>x. f x *\<^sub>R g x) \<in> borel_measurable M"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56212
diff changeset
  1383
  using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1384
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1385
lemma affine_borel_measurable_vector:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1386
  fixes f :: "'a \<Rightarrow> 'x::real_normed_vector"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1387
  assumes "f \<in> borel_measurable M"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1388
  shows "(\<lambda>x. a + b *\<^sub>R f x) \<in> borel_measurable M"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1389
proof (rule borel_measurableI)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1390
  fix S :: "'x set" assume "open S"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1391
  show "(\<lambda>x. a + b *\<^sub>R f x) -` S \<inter> space M \<in> sets M"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1392
  proof cases
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1393
    assume "b \<noteq> 0"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1394
    with \<open>open S\<close> have "open ((\<lambda>x. (- a + x) /\<^sub>R b) ` S)" (is "open ?S")
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53216
diff changeset
  1395
      using open_affinity [of S "inverse b" "- a /\<^sub>R b"]
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53216
diff changeset
  1396
      by (auto simp: algebra_simps)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1397
    hence "?S \<in> sets borel" by auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1398
    moreover
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1399
    from \<open>b \<noteq> 0\<close> have "(\<lambda>x. a + b *\<^sub>R f x) -` S = f -` ?S"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1400
      apply auto by (rule_tac x="a + b *\<^sub>R f x" in image_eqI, simp_all)
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
  1401
    ultimately show ?thesis using assms unfolding in_borel_measurable_borel
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1402
      by auto
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1403
  qed simp
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1404
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1405
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1406
lemma borel_measurable_const_scaleR[measurable (raw)]:
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1407
  "f \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. b *\<^sub>R f x ::'a::real_normed_vector) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1408
  using affine_borel_measurable_vector[of f M 0 b] by simp
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1409
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1410
lemma borel_measurable_const_add[measurable (raw)]:
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1411
  "f \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. a + f x ::'a::real_normed_vector) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1412
  using affine_borel_measurable_vector[of f M a 1] by simp
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1413
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1414
lemma borel_measurable_inverse[measurable (raw)]:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1415
  fixes f :: "'a \<Rightarrow> 'b::real_normed_div_algebra"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1416
  assumes f: "f \<in> borel_measurable M"
35692
f1315bbf1bc9 Moved theorems in Lebesgue to the right places
hoelzl
parents: 35582
diff changeset
  1417
  shows "(\<lambda>x. inverse (f x)) \<in> borel_measurable M"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1418
  apply (rule measurable_compose[OF f])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1419
  apply (rule borel_measurable_continuous_countable_exceptions[of "{0}"])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1420
  apply (auto intro!: continuous_on_inverse continuous_on_id)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1421
  done
35692
f1315bbf1bc9 Moved theorems in Lebesgue to the right places
hoelzl
parents: 35582
diff changeset
  1422
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1423
lemma borel_measurable_divide[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1424
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow>
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1425
    (\<lambda>x. f x / g x::'b::{second_countable_topology, real_normed_div_algebra}) \<in> borel_measurable M"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1426
  by (simp add: divide_inverse)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1427
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1428
lemma borel_measurable_abs[measurable (raw)]:
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1429
  "f \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. \<bar>f x :: real\<bar>) \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1430
  unfolding abs_real_def by simp
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1431
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1432
lemma borel_measurable_nth[measurable (raw)]:
41026
bea75746dc9d folding on arbitrary Lebesgue integrable functions
hoelzl
parents: 41025
diff changeset
  1433
  "(\<lambda>x::real^'n. x $ i) \<in> borel_measurable borel"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1434
  by (simp add: cart_eq_inner_axis)
41026
bea75746dc9d folding on arbitrary Lebesgue integrable functions
hoelzl
parents: 41025
diff changeset
  1435
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1436
lemma convex_measurable:
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1437
  fixes A :: "'a :: euclidean_space set"
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1438
  shows "X \<in> borel_measurable M \<Longrightarrow> X ` space M \<subseteq> A \<Longrightarrow> open A \<Longrightarrow> convex_on A q \<Longrightarrow>
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1439
    (\<lambda>x. q (X x)) \<in> borel_measurable M"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1440
  by (rule measurable_compose[where f=X and N="restrict_space borel A"])
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1441
     (auto intro!: borel_measurable_continuous_on_restrict convex_on_continuous measurable_restrict_space2)
41830
719b0a517c33 log is borel measurable
hoelzl
parents: 41545
diff changeset
  1442
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1443
lemma borel_measurable_ln[measurable (raw)]:
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1444
  assumes f: "f \<in> borel_measurable M"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1445
  shows "(\<lambda>x. ln (f x :: real)) \<in> borel_measurable M"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1446
  apply (rule measurable_compose[OF f])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1447
  apply (rule borel_measurable_continuous_countable_exceptions[of "{0}"])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1448
  apply (auto intro!: continuous_on_ln continuous_on_id)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1449
  done
41830
719b0a517c33 log is borel measurable
hoelzl
parents: 41545
diff changeset
  1450
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1451
lemma borel_measurable_log[measurable (raw)]:
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1452
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. log (g x) (f x)) \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1453
  unfolding log_def by auto
41830
719b0a517c33 log is borel measurable
hoelzl
parents: 41545
diff changeset
  1454
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 57514
diff changeset
  1455
lemma borel_measurable_exp[measurable]:
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 57514
diff changeset
  1456
  "(exp::'a::{real_normed_field,banach}\<Rightarrow>'a) \<in> borel_measurable borel"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51351
diff changeset
  1457
  by (intro borel_measurable_continuous_on1 continuous_at_imp_continuous_on ballI isCont_exp)
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50387
diff changeset
  1458
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1459
lemma measurable_real_floor[measurable]:
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1460
  "(floor :: real \<Rightarrow> int) \<in> measurable borel (count_space UNIV)"
47761
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 47694
diff changeset
  1461
proof -
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1462
  have "\<And>a x. \<lfloor>x\<rfloor> = a \<longleftrightarrow> (real_of_int a \<le> x \<and> x < real_of_int (a + 1))"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1463
    by (auto intro: floor_eq2)
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1464
  then show ?thesis
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1465
    by (auto simp: vimage_def measurable_count_space_eq2_countable)
47761
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 47694
diff changeset
  1466
qed
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 47694
diff changeset
  1467
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1468
lemma measurable_real_ceiling[measurable]:
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1469
  "(ceiling :: real \<Rightarrow> int) \<in> measurable borel (count_space UNIV)"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1470
  unfolding ceiling_def[abs_def] by simp
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1471
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1472
lemma borel_measurable_real_floor: "(\<lambda>x::real. real_of_int \<lfloor>x\<rfloor>) \<in> borel_measurable borel"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1473
  by simp
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1474
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1475
lemma borel_measurable_root [measurable]: "root n \<in> borel_measurable borel"
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1476
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1477
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1478
lemma borel_measurable_sqrt [measurable]: "sqrt \<in> borel_measurable borel"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1479
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1480
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1481
lemma borel_measurable_power [measurable (raw)]:
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1482
  fixes f :: "_ \<Rightarrow> 'b::{power,real_normed_algebra}"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1483
  assumes f: "f \<in> borel_measurable M"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1484
  shows "(\<lambda>x. (f x) ^ n) \<in> borel_measurable M"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1485
  by (intro borel_measurable_continuous_on [OF _ f] continuous_intros)
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1486
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1487
lemma borel_measurable_Re [measurable]: "Re \<in> borel_measurable borel"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1488
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1489
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1490
lemma borel_measurable_Im [measurable]: "Im \<in> borel_measurable borel"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1491
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1492
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1493
lemma borel_measurable_of_real [measurable]: "(of_real :: _ \<Rightarrow> (_::real_normed_algebra)) \<in> borel_measurable borel"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1494
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1495
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1496
lemma borel_measurable_sin [measurable]: "(sin :: _ \<Rightarrow> (_::{real_normed_field,banach})) \<in> borel_measurable borel"
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1497
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1498
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1499
lemma borel_measurable_cos [measurable]: "(cos :: _ \<Rightarrow> (_::{real_normed_field,banach})) \<in> borel_measurable borel"
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1500
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1501
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1502
lemma borel_measurable_arctan [measurable]: "arctan \<in> borel_measurable borel"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1503
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1504
57259
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1505
lemma borel_measurable_complex_iff:
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1506
  "f \<in> borel_measurable M \<longleftrightarrow>
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1507
    (\<lambda>x. Re (f x)) \<in> borel_measurable M \<and> (\<lambda>x. Im (f x)) \<in> borel_measurable M"
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1508
  apply auto
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1509
  apply (subst fun_complex_eq)
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1510
  apply (intro borel_measurable_add)
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1511
  apply auto
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1512
  done
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1513
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1514
subsection "Borel space on the extended reals"
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1515
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1516
lemma borel_measurable_ereal[measurable (raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1517
  assumes f: "f \<in> borel_measurable M" shows "(\<lambda>x. ereal (f x)) \<in> borel_measurable M"
60771
8558e4a37b48 reorganized Extended_Real
hoelzl
parents: 60172
diff changeset
  1518
  using continuous_on_ereal f by (rule borel_measurable_continuous_on) (rule continuous_on_id)
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1519
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1520
lemma borel_measurable_real_of_ereal[measurable (raw)]:
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1521
  fixes f :: "'a \<Rightarrow> ereal"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1522
  assumes f: "f \<in> borel_measurable M"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1523
  shows "(\<lambda>x. real_of_ereal (f x)) \<in> borel_measurable M"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1524
  apply (rule measurable_compose[OF f])
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1525
  apply (rule borel_measurable_continuous_countable_exceptions[of "{\<infinity>, -\<infinity> }"])
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1526
  apply (auto intro: continuous_on_real simp: Compl_eq_Diff_UNIV)
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1527
  done
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1528
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1529
lemma borel_measurable_ereal_cases:
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1530
  fixes f :: "'a \<Rightarrow> ereal"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1531
  assumes f: "f \<in> borel_measurable M"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1532
  assumes H: "(\<lambda>x. H (ereal (real_of_ereal (f x)))) \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1533
  shows "(\<lambda>x. H (f x)) \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1534
proof -
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1535
  let ?F = "\<lambda>x. if f x = \<infinity> then H \<infinity> else if f x = - \<infinity> then H (-\<infinity>) else H (ereal (real_of_ereal (f x)))"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1536
  { fix x have "H (f x) = ?F x" by (cases "f x") auto }
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1537
  with f H show ?thesis by simp
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1538
qed
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1539
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1540
lemma
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1541
  fixes f :: "'a \<Rightarrow> ereal" assumes f[measurable]: "f \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1542
  shows borel_measurable_ereal_abs[measurable(raw)]: "(\<lambda>x. \<bar>f x\<bar>) \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1543
    and borel_measurable_ereal_inverse[measurable(raw)]: "(\<lambda>x. inverse (f x) :: ereal) \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1544
    and borel_measurable_uminus_ereal[measurable(raw)]: "(\<lambda>x. - f x :: ereal) \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1545
  by (auto simp del: abs_real_of_ereal simp: borel_measurable_ereal_cases[OF f] measurable_If)
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1546
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1547
lemma borel_measurable_uminus_eq_ereal[simp]:
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1548
  "(\<lambda>x. - f x :: ereal) \<in> borel_measurable M \<longleftrightarrow> f \<in> borel_measurable M" (is "?l = ?r")
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1549
proof
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1550
  assume ?l from borel_measurable_uminus_ereal[OF this] show ?r by simp
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1551
qed auto
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1552
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1553
lemma set_Collect_ereal2:
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1554
  fixes f g :: "'a \<Rightarrow> ereal"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1555
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1556
  assumes g: "g \<in> borel_measurable M"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1557
  assumes H: "{x \<in> space M. H (ereal (real_of_ereal (f x))) (ereal (real_of_ereal (g x)))} \<in> sets M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1558
    "{x \<in> space borel. H (-\<infinity>) (ereal x)} \<in> sets borel"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1559
    "{x \<in> space borel. H (\<infinity>) (ereal x)} \<in> sets borel"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1560
    "{x \<in> space borel. H (ereal x) (-\<infinity>)} \<in> sets borel"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1561
    "{x \<in> space borel. H (ereal x) (\<infinity>)} \<in> sets borel"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1562
  shows "{x \<in> space M. H (f x) (g x)} \<in> sets M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1563
proof -
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1564
  let ?G = "\<lambda>y x. if g x = \<infinity> then H y \<infinity> else if g x = -\<infinity> then H y (-\<infinity>) else H y (ereal (real_of_ereal (g x)))"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1565
  let ?F = "\<lambda>x. if f x = \<infinity> then ?G \<infinity> x else if f x = -\<infinity> then ?G (-\<infinity>) x else ?G (ereal (real_of_ereal (f x))) x"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1566
  { fix x have "H (f x) (g x) = ?F x" by (cases "f x" "g x" rule: ereal2_cases) auto }
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1567
  note * = this
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1568
  from assms show ?thesis
62390
842917225d56 more canonical names
nipkow
parents: 62372
diff changeset
  1569
    by (subst *) (simp del: space_borel split del: if_split)
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1570
qed
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1571
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1572
lemma borel_measurable_ereal_iff:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1573
  shows "(\<lambda>x. ereal (f x)) \<in> borel_measurable M \<longleftrightarrow> f \<in> borel_measurable M"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1574
proof
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1575
  assume "(\<lambda>x. ereal (f x)) \<in> borel_measurable M"
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1576
  from borel_measurable_real_of_ereal[OF this]
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1577
  show "f \<in> borel_measurable M" by auto
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1578
qed auto
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1579
59353
f0707dc3d9aa measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents: 59088
diff changeset
  1580
lemma borel_measurable_erealD[measurable_dest]:
f0707dc3d9aa measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents: 59088
diff changeset
  1581
  "(\<lambda>x. ereal (f x)) \<in> borel_measurable M \<Longrightarrow> g \<in> measurable N M \<Longrightarrow> (\<lambda>x. f (g x)) \<in> borel_measurable N"
f0707dc3d9aa measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents: 59088
diff changeset
  1582
  unfolding borel_measurable_ereal_iff by simp
f0707dc3d9aa measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents: 59088
diff changeset
  1583
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1584
lemma borel_measurable_ereal_iff_real:
43923
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
  1585
  fixes f :: "'a \<Rightarrow> ereal"
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
  1586
  shows "f \<in> borel_measurable M \<longleftrightarrow>
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1587
    ((\<lambda>x. real_of_ereal (f x)) \<in> borel_measurable M \<and> f -` {\<infinity>} \<inter> space M \<in> sets M \<and> f -` {-\<infinity>} \<inter> space M \<in> sets M)"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1588
proof safe
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1589
  assume *: "(\<lambda>x. real_of_ereal (f x)) \<in> borel_measurable M" "f -` {\<infinity>} \<inter> space M \<in> sets M" "f -` {-\<infinity>} \<inter> space M \<in> sets M"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1590
  have "f -` {\<infinity>} \<inter> space M = {x\<in>space M. f x = \<infinity>}" "f -` {-\<infinity>} \<inter> space M = {x\<in>space M. f x = -\<infinity>}" by auto
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1591
  with * have **: "{x\<in>space M. f x = \<infinity>} \<in> sets M" "{x\<in>space M. f x = -\<infinity>} \<in> sets M" by simp_all
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1592
  let ?f = "\<lambda>x. if f x = \<infinity> then \<infinity> else if f x = -\<infinity> then -\<infinity> else ereal (real_of_ereal (f x))"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1593
  have "?f \<in> borel_measurable M" using * ** by (intro measurable_If) auto
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1594
  also have "?f = f" by (auto simp: fun_eq_iff ereal_real)
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1595
  finally show "f \<in> borel_measurable M" .
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1596
qed simp_all
41830
719b0a517c33 log is borel measurable
hoelzl
parents: 41545
diff changeset
  1597
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1598
lemma borel_measurable_ereal_iff_Iio:
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1599
  "(f::'a \<Rightarrow> ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {..< a} \<inter> space M \<in> sets M)"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1600
  by (auto simp: borel_Iio measurable_iff_measure_of)
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1601
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1602
lemma borel_measurable_ereal_iff_Ioi:
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1603
  "(f::'a \<Rightarrow> ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {a <..} \<inter> space M \<in> sets M)"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1604
  by (auto simp: borel_Ioi measurable_iff_measure_of)
35582
b16d99a72dc9 Add Lebesgue integral and probability space.
hoelzl
parents: 35347
diff changeset
  1605
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1606
lemma vimage_sets_compl_iff:
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1607
  "f -` A \<inter> space M \<in> sets M \<longleftrightarrow> f -` (- A) \<inter> space M \<in> sets M"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1608
proof -
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1609
  { fix A assume "f -` A \<inter> space M \<in> sets M"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1610
    moreover have "f -` (- A) \<inter> space M = space M - f -` A \<inter> space M" by auto
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1611
    ultimately have "f -` (- A) \<inter> space M \<in> sets M" by auto }
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1612
  from this[of A] this[of "-A"] show ?thesis
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1613
    by (metis double_complement)
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1614
qed
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1615
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1616
lemma borel_measurable_iff_Iic_ereal:
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1617
  "(f::'a\<Rightarrow>ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {..a} \<inter> space M \<in> sets M)"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1618
  unfolding borel_measurable_ereal_iff_Ioi vimage_sets_compl_iff[where A="{a <..}" for a] by simp
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1619
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1620
lemma borel_measurable_iff_Ici_ereal:
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1621
  "(f::'a \<Rightarrow> ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {a..} \<inter> space M \<in> sets M)"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1622
  unfolding borel_measurable_ereal_iff_Iio vimage_sets_compl_iff[where A="{..< a}" for a] by simp
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1623
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1624
lemma borel_measurable_ereal2:
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1625
  fixes f g :: "'a \<Rightarrow> ereal"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1626
  assumes f: "f \<in> borel_measurable M"
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1627
  assumes g: "g \<in> borel_measurable M"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1628
  assumes H: "(\<lambda>x. H (ereal (real_of_ereal (f x))) (ereal (real_of_ereal (g x)))) \<in> borel_measurable M"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1629
    "(\<lambda>x. H (-\<infinity>) (ereal (real_of_ereal (g x)))) \<in> borel_measurable M"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1630
    "(\<lambda>x. H (\<infinity>) (ereal (real_of_ereal (g x)))) \<in> borel_measurable M"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1631
    "(\<lambda>x. H (ereal (real_of_ereal (f x))) (-\<infinity>)) \<in> borel_measurable M"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1632
    "(\<lambda>x. H (ereal (real_of_ereal (f x))) (\<infinity>)) \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1633
  shows "(\<lambda>x. H (f x) (g x)) \<in> borel_measurable M"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1634
proof -
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1635
  let ?G = "\<lambda>y x. if g x = \<infinity> then H y \<infinity> else if g x = - \<infinity> then H y (-\<infinity>) else H y (ereal (real_of_ereal (g x)))"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1636
  let ?F = "\<lambda>x. if f x = \<infinity> then ?G \<infinity> x else if f x = - \<infinity> then ?G (-\<infinity>) x else ?G (ereal (real_of_ereal (f x))) x"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1637
  { fix x have "H (f x) (g x) = ?F x" by (cases "f x" "g x" rule: ereal2_cases) auto }
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1638
  note * = this
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1639
  from assms show ?thesis unfolding * by simp
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1640
qed
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1641
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1642
lemma
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1643
  fixes f :: "'a \<Rightarrow> ereal" assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1644
  shows borel_measurable_ereal_eq_const: "{x\<in>space M. f x = c} \<in> sets M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1645
    and borel_measurable_ereal_neq_const: "{x\<in>space M. f x \<noteq> c} \<in> sets M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1646
  using f by auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1647
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1648
lemma [measurable(raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1649
  fixes f :: "'a \<Rightarrow> ereal"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1650
  assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1651
  shows borel_measurable_ereal_add: "(\<lambda>x. f x + g x) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1652
    and borel_measurable_ereal_times: "(\<lambda>x. f x * g x) \<in> borel_measurable M"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1653
  by (simp_all add: borel_measurable_ereal2)
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1654
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1655
lemma [measurable(raw)]:
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1656
  fixes f g :: "'a \<Rightarrow> ereal"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1657
  assumes "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1658
  assumes "g \<in> borel_measurable M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1659
  shows borel_measurable_ereal_diff: "(\<lambda>x. f x - g x) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1660
    and borel_measurable_ereal_divide: "(\<lambda>x. f x / g x) \<in> borel_measurable M"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1661
  using assms by (simp_all add: minus_ereal_def divide_ereal_def)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1662
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1663
lemma borel_measurable_ereal_setsum[measurable (raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1664
  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> ereal"
41096
843c40bbc379 integral over setprod
hoelzl
parents: 41083
diff changeset
  1665
  assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
843c40bbc379 integral over setprod
hoelzl
parents: 41083
diff changeset
  1666
  shows "(\<lambda>x. \<Sum>i\<in>S. f i x) \<in> borel_measurable M"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1667
  using assms by (induction S rule: infinite_finite_induct) auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1668
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1669
lemma borel_measurable_ereal_setprod[measurable (raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1670
  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> ereal"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1671
  assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
41096
843c40bbc379 integral over setprod
hoelzl
parents: 41083
diff changeset
  1672
  shows "(\<lambda>x. \<Prod>i\<in>S. f i x) \<in> borel_measurable M"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1673
  using assms by (induction S rule: infinite_finite_induct) auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1674
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1675
lemma borel_measurable_extreal_suminf[measurable (raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1676
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> ereal"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1677
  assumes [measurable]: "\<And>i. f i \<in> borel_measurable M"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1678
  shows "(\<lambda>x. (\<Sum>i. f i x)) \<in> borel_measurable M"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1679
  unfolding suminf_def sums_def[abs_def] lim_def[symmetric] by simp
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1680
62625
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1681
subsection "Borel space on the extended non-negative reals"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1682
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1683
text \<open> @{type ennreal} is a topological monoid, so no rules for plus are required, also all order
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1684
  statements are usually done on type classes. \<close>
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1685
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1686
lemma measurable_enn2ereal[measurable]: "enn2ereal \<in> borel \<rightarrow>\<^sub>M borel"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1687
  by (intro borel_measurable_continuous_on1 continuous_on_enn2ereal)
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1688
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1689
lemma measurable_e2ennreal[measurable]: "e2ennreal \<in> borel \<rightarrow>\<^sub>M borel"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1690
  by (intro borel_measurable_continuous_on1 continuous_on_e2ennreal)
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1691
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1692
definition [simp]: "is_borel f M \<longleftrightarrow> f \<in> borel_measurable M"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1693
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1694
lemma is_borel_transfer[transfer_rule]: "rel_fun (rel_fun op = pcr_ennreal) op = is_borel is_borel"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1695
  unfolding is_borel_def[abs_def]
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1696
proof (safe intro!: rel_funI ext dest!: rel_fun_eq_pcr_ennreal[THEN iffD1])
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1697
  fix f and M :: "'a measure"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1698
  show "f \<in> borel_measurable M" if f: "enn2ereal \<circ> f \<in> borel_measurable M"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1699
    using measurable_compose[OF f measurable_e2ennreal] by simp
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1700
qed simp
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1701
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1702
lemma measurable_ennreal[measurable]: "ennreal \<in> borel \<rightarrow>\<^sub>M borel"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1703
  unfolding is_borel_def[symmetric] by transfer simp
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1704
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1705
lemma borel_measurable_times_ennreal[measurable (raw)]:
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1706
  fixes f g :: "'a \<Rightarrow> ennreal"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1707
  shows "f \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> g \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> (\<lambda>x. f x * g x) \<in> M \<rightarrow>\<^sub>M borel"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1708
  unfolding is_borel_def[symmetric] by transfer simp
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1709
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1710
lemma borel_measurable_inverse_ennreal[measurable (raw)]:
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1711
  fixes f :: "'a \<Rightarrow> ennreal"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1712
  shows "f \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> (\<lambda>x. inverse (f x)) \<in> M \<rightarrow>\<^sub>M borel"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1713
  unfolding is_borel_def[symmetric] by transfer simp
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1714
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1715
lemma borel_measurable_divide_ennreal[measurable (raw)]:
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1716
  fixes f :: "'a \<Rightarrow> ennreal"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1717
  shows "f \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> g \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> (\<lambda>x. f x / g x) \<in> M \<rightarrow>\<^sub>M borel"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1718
  unfolding divide_ennreal_def by simp
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1719
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1720
lemma borel_measurable_minus_ennreal[measurable (raw)]:
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1721
  fixes f :: "'a \<Rightarrow> ennreal"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1722
  shows "f \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> g \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> (\<lambda>x. f x - g x) \<in> M \<rightarrow>\<^sub>M borel"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1723
  unfolding is_borel_def[symmetric] by transfer simp
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1724
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1725
lemma borel_measurable_setprod_ennreal[measurable (raw)]:
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1726
  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> ennreal"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1727
  assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1728
  shows "(\<lambda>x. \<Prod>i\<in>S. f i x) \<in> borel_measurable M"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1729
  using assms by (induction S rule: infinite_finite_induct) auto
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1730
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1731
hide_const (open) is_borel
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1732
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1733
subsection \<open>LIMSEQ is borel measurable\<close>
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1734
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1735
lemma borel_measurable_LIMSEQ_real:
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1736
  fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> real"
61969
e01015e49041 more symbols;
wenzelm
parents: 61880
diff changeset
  1737
  assumes u': "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. u i x) \<longlonglongrightarrow> u' x"
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1738
  and u: "\<And>i. u i \<in> borel_measurable M"
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1739
  shows "u' \<in> borel_measurable M"
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1740
proof -
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1741
  have "\<And>x. x \<in> space M \<Longrightarrow> liminf (\<lambda>n. ereal (u n x)) = ereal (u' x)"
46731
5302e932d1e5 avoid undeclared variables in let bindings;
wenzelm
parents: 45288
diff changeset
  1742
    using u' by (simp add: lim_imp_Liminf)
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1743
  moreover from u have "(\<lambda>x. liminf (\<lambda>n. ereal (u n x))) \<in> borel_measurable M"
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1744
    by auto
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1745
  ultimately show ?thesis by (simp cong: measurable_cong add: borel_measurable_ereal_iff)
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1746
qed
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1747
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1748
lemma borel_measurable_LIMSEQ_metric:
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1749
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b :: metric_space"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1750
  assumes [measurable]: "\<And>i. f i \<in> borel_measurable M"
61969
e01015e49041 more symbols;
wenzelm
parents: 61880
diff changeset
  1751
  assumes lim: "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. f i x) \<longlonglongrightarrow> g x"
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1752
  shows "g \<in> borel_measurable M"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1753
  unfolding borel_eq_closed
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1754
proof (safe intro!: measurable_measure_of)
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1755
  fix A :: "'b set" assume "closed A"
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1756
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1757
  have [measurable]: "(\<lambda>x. infdist (g x) A) \<in> borel_measurable M"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1758
  proof (rule borel_measurable_LIMSEQ_real)
61969
e01015e49041 more symbols;
wenzelm
parents: 61880
diff changeset
  1759
    show "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. infdist (f i x) A) \<longlonglongrightarrow> infdist (g x) A"
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1760
      by (intro tendsto_infdist lim)
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1761
    show "\<And>i. (\<lambda>x. infdist (f i x) A) \<in> borel_measurable M"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1762
      by (intro borel_measurable_continuous_on[where f="\<lambda>x. infdist x A"]
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1763
        continuous_at_imp_continuous_on ballI continuous_infdist continuous_ident) auto
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1764
  qed
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1765
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1766
  show "g -` A \<inter> space M \<in> sets M"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1767
  proof cases
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1768
    assume "A \<noteq> {}"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1769
    then have "\<And>x. infdist x A = 0 \<longleftrightarrow> x \<in> A"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1770
      using \<open>closed A\<close> by (simp add: in_closed_iff_infdist_zero)
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1771
    then have "g -` A \<inter> space M = {x\<in>space M. infdist (g x) A = 0}"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1772
      by auto
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1773
    also have "\<dots> \<in> sets M"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1774
      by measurable
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1775
    finally show ?thesis .
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1776
  qed simp
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1777
qed auto
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1778
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1779
lemma sets_Collect_Cauchy[measurable]:
57036
22568fb89165 generalized Bochner integral over infinite sums
hoelzl
parents: 56994
diff changeset
  1780
  fixes f :: "nat \<Rightarrow> 'a => 'b::{metric_space, second_countable_topology}"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1781
  assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1782
  shows "{x\<in>space M. Cauchy (\<lambda>i. f i x)} \<in> sets M"
57036
22568fb89165 generalized Bochner integral over infinite sums
hoelzl
parents: 56994
diff changeset
  1783
  unfolding metric_Cauchy_iff2 using f by auto
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1784
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1785
lemma borel_measurable_lim_metric[measurable (raw)]:
57036
22568fb89165 generalized Bochner integral over infinite sums
hoelzl
parents: 56994
diff changeset
  1786
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{banach, second_countable_topology}"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1787
  assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1788
  shows "(\<lambda>x. lim (\<lambda>i. f i x)) \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1789
proof -
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1790
  def u' \<equiv> "\<lambda>x. lim (\<lambda>i. if Cauchy (\<lambda>i. f i x) then f i x else 0)"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1791
  then have *: "\<And>x. lim (\<lambda>i. f i x) = (if Cauchy (\<lambda>i. f i x) then u' x else (THE x. False))"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1792
    by (auto simp: lim_def convergent_eq_cauchy[symmetric])
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1793
  have "u' \<in> borel_measurable M"
57036
22568fb89165 generalized Bochner integral over infinite sums
hoelzl
parents: 56994
diff changeset
  1794
  proof (rule borel_measurable_LIMSEQ_metric)
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1795
    fix x
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1796
    have "convergent (\<lambda>i. if Cauchy (\<lambda>i. f i x) then f i x else 0)"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1797
      by (cases "Cauchy (\<lambda>i. f i x)")
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1798
         (auto simp add: convergent_eq_cauchy[symmetric] convergent_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61880
diff changeset
  1799
    then show "(\<lambda>i. if Cauchy (\<lambda>i. f i x) then f i x else 0) \<longlonglongrightarrow> u' x"
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1800
      unfolding u'_def
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1801
      by (rule convergent_LIMSEQ_iff[THEN iffD1])
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1802
  qed measurable
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1803
  then show ?thesis
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1804
    unfolding * by measurable
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1805
qed
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1806
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1807
lemma borel_measurable_suminf[measurable (raw)]:
57036
22568fb89165 generalized Bochner integral over infinite sums
hoelzl
parents: 56994
diff changeset
  1808
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{banach, second_countable_topology}"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1809
  assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1810
  shows "(\<lambda>x. suminf (\<lambda>i. f i x)) \<in> borel_measurable M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1811
  unfolding suminf_def sums_def[abs_def] lim_def[symmetric] by simp
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1812
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1813
(* Proof by Jeremy Avigad and Luke Serafin *)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1814
lemma isCont_borel:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1815
  fixes f :: "'b::metric_space \<Rightarrow> 'a::metric_space"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1816
  shows "{x. isCont f x} \<in> sets borel"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1817
proof -
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1818
  let ?I = "\<lambda>j. inverse(real (Suc j))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1819
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1820
  { fix x
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1821
    have "isCont f x = (\<forall>i. \<exists>j. \<forall>y z. dist x y < ?I j \<and> dist x z < ?I j \<longrightarrow> dist (f y) (f z) \<le> ?I i)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1822
      unfolding continuous_at_eps_delta
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1823
    proof safe
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1824
      fix i assume "\<forall>e>0. \<exists>d>0. \<forall>y. dist y x < d \<longrightarrow> dist (f y) (f x) < e"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1825
      moreover have "0 < ?I i / 2"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1826
        by simp
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1827
      ultimately obtain d where d: "0 < d" "\<And>y. dist x y < d \<Longrightarrow> dist (f y) (f x) < ?I i / 2"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1828
        by (metis dist_commute)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1829
      then obtain j where j: "?I j < d"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1830
        by (metis reals_Archimedean)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1831
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1832
      show "\<exists>j. \<forall>y z. dist x y < ?I j \<and> dist x z < ?I j \<longrightarrow> dist (f y) (f z) \<le> ?I i"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1833
      proof (safe intro!: exI[where x=j])
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1834
        fix y z assume *: "dist x y < ?I j" "dist x z < ?I j"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1835
        have "dist (f y) (f z) \<le> dist (f y) (f x) + dist (f z) (f x)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1836
          by (rule dist_triangle2)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1837
        also have "\<dots> < ?I i / 2 + ?I i / 2"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1838
          by (intro add_strict_mono d less_trans[OF _ j] *)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1839
        also have "\<dots> \<le> ?I i"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1840
          by (simp add: field_simps of_nat_Suc)
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1841
        finally show "dist (f y) (f z) \<le> ?I i"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1842
          by simp
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1843
      qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1844
    next
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1845
      fix e::real assume "0 < e"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1846
      then obtain n where n: "?I n < e"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1847
        by (metis reals_Archimedean)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1848
      assume "\<forall>i. \<exists>j. \<forall>y z. dist x y < ?I j \<and> dist x z < ?I j \<longrightarrow> dist (f y) (f z) \<le> ?I i"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1849
      from this[THEN spec, of "Suc n"]
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1850
      obtain j where j: "\<And>y z. dist x y < ?I j \<Longrightarrow> dist x z < ?I j \<Longrightarrow> dist (f y) (f z) \<le> ?I (Suc n)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1851
        by auto
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1852
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1853
      show "\<exists>d>0. \<forall>y. dist y x < d \<longrightarrow> dist (f y) (f x) < e"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1854
      proof (safe intro!: exI[of _ "?I j"])
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1855
        fix y assume "dist y x < ?I j"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1856
        then have "dist (f y) (f x) \<le> ?I (Suc n)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1857
          by (intro j) (auto simp: dist_commute)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1858
        also have "?I (Suc n) < ?I n"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1859
          by simp
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1860
        also note n
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1861
        finally show "dist (f y) (f x) < e" .
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1862
      qed simp
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1863
    qed }
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1864
  note * = this
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1865
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1866
  have **: "\<And>e y. open {x. dist x y < e}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1867
    using open_ball by (simp_all add: ball_def dist_commute)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1868
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1869
  have "{x\<in>space borel. isCont f x} \<in> sets borel"
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1870
    unfolding *
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1871
    apply (intro sets.sets_Collect_countable_All sets.sets_Collect_countable_Ex)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1872
    apply (simp add: Collect_all_eq)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1873
    apply (intro borel_closed closed_INT ballI closed_Collect_imp open_Collect_conj **)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1874
    apply auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1875
    done
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1876
  then show ?thesis
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1877
    by simp
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1878
qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1879
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1880
lemma isCont_borel_pred[measurable]:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1881
  fixes f :: "'b::metric_space \<Rightarrow> 'a::metric_space"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1882
  shows "Measurable.pred borel (isCont f)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1883
  unfolding pred_def by (simp add: isCont_borel)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1884
61880
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1885
lemma is_real_interval:
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1886
  assumes S: "is_interval S"
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1887
  shows "\<exists>a b::real. S = {} \<or> S = UNIV \<or> S = {..<b} \<or> S = {..b} \<or> S = {a<..} \<or> S = {a..} \<or>
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1888
    S = {a<..<b} \<or> S = {a<..b} \<or> S = {a..<b} \<or> S = {a..b}"
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1889
  using S unfolding is_interval_1 by (blast intro: interval_cases)
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1890
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1891
lemma real_interval_borel_measurable:
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1892
  assumes "is_interval (S::real set)"
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1893
  shows "S \<in> sets borel"
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1894
proof -
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1895
  from assms is_real_interval have "\<exists>a b::real. S = {} \<or> S = UNIV \<or> S = {..<b} \<or> S = {..b} \<or>
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1896
    S = {a<..} \<or> S = {a..} \<or> S = {a<..<b} \<or> S = {a<..b} \<or> S = {a..<b} \<or> S = {a..b}" by auto
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1897
  then guess a ..
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1898
  then guess b ..
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1899
  thus ?thesis
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1900
    by auto
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1901
qed
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1902
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1903
lemma borel_measurable_mono_on_fnc:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1904
  fixes f :: "real \<Rightarrow> real" and A :: "real set"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1905
  assumes "mono_on f A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1906
  shows "f \<in> borel_measurable (restrict_space borel A)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1907
  apply (rule measurable_restrict_countable[OF mono_on_ctble_discont[OF assms]])
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1908
  apply (auto intro!: image_eqI[where x="{x}" for x] simp: sets_restrict_space)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1909
  apply (auto simp add: sets_restrict_restrict_space continuous_on_eq_continuous_within
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1910
              cong: measurable_cong_sets
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1911
              intro!: borel_measurable_continuous_on_restrict intro: continuous_within_subset)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1912
  done
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1913
61880
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1914
lemma borel_measurable_mono:
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1915
  fixes f :: "real \<Rightarrow> real"
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1916
  shows "mono f \<Longrightarrow> f \<in> borel_measurable borel"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1917
  using borel_measurable_mono_on_fnc[of f UNIV] by (simp add: mono_def mono_on_def)
61880
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1918
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1919
no_notation
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1920
  eucl_less (infix "<e" 50)
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1921
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1922
end