src/HOL/Data_Structures/AVL_Bal_Set.thy
author nipkow
Wed, 06 May 2020 10:46:19 +0200
changeset 71818 986d5abbe77c
parent 71816 489c907b9e05
child 71819 eeff463c49e8
permissions -rw-r--r--
tuned
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
     1
(* Tobias Nipkow *)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
     2
71818
nipkow
parents: 71816
diff changeset
     3
section "AVL Tree with Balance Factors"
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
     4
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
     5
theory AVL_Bal_Set
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
     6
imports
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
     7
  Cmp
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
     8
  Isin2
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
     9
begin
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    10
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    11
datatype bal = Lh | Bal | Rh
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    12
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    13
type_synonym 'a tree_bal = "('a * bal) tree"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    14
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    15
text \<open>Invariant:\<close>
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    16
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    17
fun avl :: "'a tree_bal \<Rightarrow> bool" where
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    18
"avl Leaf = True" |
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    19
"avl (Node l (a,b) r) =
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    20
  ((case b of
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    21
    Bal \<Rightarrow> height r = height l |
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    22
    Lh \<Rightarrow> height l = height r + 1 |
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    23
    Rh \<Rightarrow> height r = height l + 1)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    24
  \<and> avl l \<and> avl r)"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    25
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    26
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    27
subsection \<open>Code\<close>
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    28
71818
nipkow
parents: 71816
diff changeset
    29
datatype 'a tree_bal2 = Same "'a tree_bal" | Diff "'a tree_bal"
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    30
71818
nipkow
parents: 71816
diff changeset
    31
fun tree :: "'a tree_bal2 \<Rightarrow> 'a tree_bal" where
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    32
"tree(Same t) = t" |
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    33
"tree(Diff t) = t"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    34
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    35
fun rot21 :: "bal \<Rightarrow> bal" where
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    36
"rot21 b = (if b=Rh then Lh else Bal)"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    37
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    38
fun rot22 :: "bal \<Rightarrow> bal" where
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    39
"rot22 b = (if b=Lh then Rh else Bal)"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    40
71818
nipkow
parents: 71816
diff changeset
    41
fun balL :: "'a tree_bal2 \<Rightarrow> 'a \<Rightarrow> bal \<Rightarrow> 'a tree_bal \<Rightarrow> 'a tree_bal2" where
71815
a86e37f4ad60 tuned var. names
nipkow
parents: 71814
diff changeset
    42
"balL AB' c bc C = (case AB' of
a86e37f4ad60 tuned var. names
nipkow
parents: 71814
diff changeset
    43
   Same AB \<Rightarrow> Same (Node AB (c,bc) C) |
a86e37f4ad60 tuned var. names
nipkow
parents: 71814
diff changeset
    44
   Diff AB \<Rightarrow> (case bc of
a86e37f4ad60 tuned var. names
nipkow
parents: 71814
diff changeset
    45
     Bal \<Rightarrow> Diff (Node AB (c,Lh) C) |
a86e37f4ad60 tuned var. names
nipkow
parents: 71814
diff changeset
    46
     Rh \<Rightarrow> Same (Node AB (c,Bal) C) |
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    47
     Lh \<Rightarrow> Same(case AB of
71816
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    48
       Node A (a,Lh) B \<Rightarrow> Node A (a,Bal) (Node B (c,Bal) C) |
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    49
       Node A (a,Rh) B \<Rightarrow> (case B of
71815
a86e37f4ad60 tuned var. names
nipkow
parents: 71814
diff changeset
    50
         Node B\<^sub>1 (b, bb) B\<^sub>2 \<Rightarrow>
71816
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    51
           Node (Node A (a,rot21 bb) B\<^sub>1) (b,Bal) (Node B\<^sub>2 (c,rot22 bb) C)))))"
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    52
71818
nipkow
parents: 71816
diff changeset
    53
fun balR :: "'a tree_bal \<Rightarrow> 'a \<Rightarrow> bal \<Rightarrow> 'a tree_bal2 \<Rightarrow> 'a tree_bal2" where
71815
a86e37f4ad60 tuned var. names
nipkow
parents: 71814
diff changeset
    54
"balR A a ba BC' = (case BC' of
a86e37f4ad60 tuned var. names
nipkow
parents: 71814
diff changeset
    55
   Same BC \<Rightarrow> Same (Node A (a,ba) BC) |
a86e37f4ad60 tuned var. names
nipkow
parents: 71814
diff changeset
    56
   Diff BC \<Rightarrow> (case ba of
a86e37f4ad60 tuned var. names
nipkow
parents: 71814
diff changeset
    57
     Bal \<Rightarrow> Diff (Node A (a,Rh) BC) |
a86e37f4ad60 tuned var. names
nipkow
parents: 71814
diff changeset
    58
     Lh \<Rightarrow> Same (Node A (a,Bal) BC) |
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    59
     Rh \<Rightarrow> Same(case BC of
71816
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    60
       Node B (c,Rh) C \<Rightarrow> Node (Node A (a,Bal) B) (c,Bal) C |
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    61
       Node B (c,Lh) C \<Rightarrow> (case B of
71815
a86e37f4ad60 tuned var. names
nipkow
parents: 71814
diff changeset
    62
         Node B\<^sub>1 (b, bb) B\<^sub>2 \<Rightarrow>
71816
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    63
           Node (Node A (a,rot21 bb) B\<^sub>1) (b,Bal) (Node B\<^sub>2 (c,rot22 bb) C)))))"
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    64
71818
nipkow
parents: 71816
diff changeset
    65
fun insert :: "'a::linorder \<Rightarrow> 'a tree_bal \<Rightarrow> 'a tree_bal2" where
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    66
"insert x Leaf = Diff(Node Leaf (x, Bal) Leaf)" |
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    67
"insert x (Node l (a, b) r) = (case cmp x a of
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    68
   EQ \<Rightarrow> Same(Node l (a, b) r) |
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    69
   LT \<Rightarrow> balL (insert x l) a b r |
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    70
   GT \<Rightarrow> balR l a b (insert x r))"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    71
71818
nipkow
parents: 71816
diff changeset
    72
fun baldR :: "'a tree_bal \<Rightarrow> 'a \<Rightarrow> bal \<Rightarrow> 'a tree_bal2 \<Rightarrow> 'a tree_bal2" where
71816
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    73
"baldR AB c bc C' = (case C' of
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    74
   Same C \<Rightarrow> Same (Node AB (c,bc) C) |
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    75
   Diff C \<Rightarrow> (case bc of
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    76
     Bal \<Rightarrow> Same (Node AB (c,Lh) C) |
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    77
     Rh \<Rightarrow> Diff (Node AB (c,Bal) C) |
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    78
     Lh \<Rightarrow> (case AB of
71816
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    79
       Node A (a,Lh) B \<Rightarrow> Diff(Node A (a,Bal) (Node B (c,Bal) C)) |
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    80
       Node A (a,Bal) B \<Rightarrow> Same(Node A (a,Rh) (Node B (c,Lh) C)) |
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    81
       Node A (a,Rh) B \<Rightarrow> (case B of
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    82
         Node B\<^sub>1 (b, bb) B\<^sub>2 \<Rightarrow>
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    83
           Diff(Node (Node A (a,rot21 bb) B\<^sub>1) (b,Bal) (Node B\<^sub>2 (c,rot22 bb) C))))))"
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    84
71818
nipkow
parents: 71816
diff changeset
    85
fun baldL :: "'a tree_bal2 \<Rightarrow> 'a \<Rightarrow> bal \<Rightarrow> 'a tree_bal \<Rightarrow> 'a tree_bal2" where
71816
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    86
"baldL A' a ba BC = (case A' of
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    87
   Same A \<Rightarrow> Same (Node A (a,ba) BC) |
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    88
   Diff A \<Rightarrow> (case ba of
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    89
     Bal \<Rightarrow> Same (Node A (a,Rh) BC) |
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    90
     Lh \<Rightarrow> Diff (Node A (a,Bal) BC) |
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    91
     Rh \<Rightarrow> (case BC of
71816
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    92
       Node B (c,Rh) C \<Rightarrow> Diff(Node (Node A (a,Bal) B) (c,Bal) C) |
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    93
       Node B (c,Bal) C \<Rightarrow> Same(Node (Node A (a,Rh) B) (c,Lh) C) |
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    94
       Node B (c,Lh) C \<Rightarrow> (case B of
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    95
         Node B\<^sub>1 (b, bb) B\<^sub>2 \<Rightarrow>
489c907b9e05 tuned var. names
nipkow
parents: 71815
diff changeset
    96
           Diff(Node (Node A (a,rot21 bb) B\<^sub>1) (b,Bal) (Node B\<^sub>2 (c,rot22 bb) C))))))"
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    97
71818
nipkow
parents: 71816
diff changeset
    98
fun split_max :: "'a tree_bal \<Rightarrow> 'a tree_bal2 * 'a" where
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
    99
"split_max (Node l (a, ba) r) =
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   100
  (if r = Leaf then (Diff l,a) else let (r',a') = split_max r in (baldR l a ba r', a'))"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   101
71818
nipkow
parents: 71816
diff changeset
   102
fun delete :: "'a::linorder \<Rightarrow> 'a tree_bal \<Rightarrow> 'a tree_bal2" where
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   103
"delete _ Leaf = Same Leaf" |
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   104
"delete x (Node l (a, ba) r) =
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   105
  (case cmp x a of
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   106
     EQ \<Rightarrow> if l = Leaf then Diff r
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   107
           else let (l', a') = split_max l in baldL l' a' ba r |
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   108
     LT \<Rightarrow> baldL (delete x l) a ba r |
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   109
     GT \<Rightarrow> baldR l a ba (delete x r))"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   110
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   111
lemmas split_max_induct = split_max.induct[case_names Node Leaf]
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   112
71818
nipkow
parents: 71816
diff changeset
   113
lemmas splits = if_splits tree.splits tree.splits tree_bal2.splits bal.splits
71814
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   114
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   115
subsection \<open>Proofs\<close>
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   116
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   117
lemma insert_Diff1[simp]: "insert x t \<noteq> Diff Leaf"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   118
by (cases t)(auto split!: splits)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   119
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   120
lemma insert_Diff2[simp]: "insert x t = Diff (Node l (a,Bal) r) \<longleftrightarrow> t = Leaf \<and> a = x \<and> l=Leaf \<and> r=Leaf"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   121
by (cases t)(auto split!: splits)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   122
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   123
lemma insert_Diff3[simp]: "insert x t \<noteq> Diff (Node l (a,Rh) Leaf)"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   124
by (cases t)(auto split!: splits)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   125
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   126
lemma insert_Diff4[simp]: "insert x t \<noteq> Diff (Node Leaf (a,Lh) r)"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   127
by (cases t)(auto split!: splits)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   128
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   129
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   130
subsubsection "Proofs for insert"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   131
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   132
theorem inorder_insert:
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   133
  "\<lbrakk> avl t;  sorted(inorder t) \<rbrakk> \<Longrightarrow> inorder(tree(insert x t)) = ins_list x (inorder t)"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   134
by(induction t) (auto simp: ins_list_simps split!: splits)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   135
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   136
lemma avl_insert_case: "avl t \<Longrightarrow> case insert x t of
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   137
   Same t' \<Rightarrow> avl t' \<and> height t' = height t |
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   138
   Diff t' \<Rightarrow> avl t' \<and> height t' = height t + 1"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   139
apply(induction x t rule: insert.induct)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   140
apply(auto simp: max_absorb1 split!: splits)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   141
done
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   142
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   143
corollary avl_insert: "avl t \<Longrightarrow> avl(tree(insert x t))"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   144
using avl_insert_case[of t x] by (simp split: splits)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   145
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   146
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   147
subsubsection "Proofs for delete"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   148
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   149
lemma inorder_baldL:
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   150
  "\<lbrakk> ba = Rh \<longrightarrow> r \<noteq> Leaf; avl r \<rbrakk>
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   151
  \<Longrightarrow> inorder (tree(baldL l a ba r)) = inorder (tree l) @ a # inorder r"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   152
by (auto split: splits)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   153
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   154
lemma inorder_baldR:
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   155
  "\<lbrakk> ba = Lh \<longrightarrow> l \<noteq> Leaf; avl l \<rbrakk>
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   156
   \<Longrightarrow> inorder (tree(baldR l a ba r)) = inorder l @ a # inorder (tree r)"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   157
by (auto split: splits)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   158
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   159
lemma avl_split_max:
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   160
  "\<lbrakk> split_max t = (t',a); avl t; t \<noteq> Leaf \<rbrakk> \<Longrightarrow> case t' of
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   161
   Same t' \<Rightarrow> avl t' \<and> height t = height t' |
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   162
   Diff t' \<Rightarrow> avl t' \<and> height t = height t' + 1"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   163
apply(induction t arbitrary: t' a rule: split_max_induct)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   164
 apply(fastforce simp: max_absorb1 max_absorb2 split!: splits prod.splits)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   165
apply simp
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   166
done
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   167
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   168
lemma avl_delete_case: "avl t \<Longrightarrow> case delete x t of
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   169
   Same t' \<Rightarrow> avl t' \<and> height t = height t' |
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   170
   Diff t' \<Rightarrow> avl t' \<and> height t = height t' + 1"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   171
apply(induction x t rule: delete.induct)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   172
 apply(auto simp: max_absorb1 max_absorb2 dest: avl_split_max split!: splits prod.splits)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   173
done
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   174
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   175
corollary avl_delete: "avl t \<Longrightarrow> avl(tree(delete x t))"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   176
using avl_delete_case[of t x] by(simp split: splits)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   177
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   178
lemma inorder_split_maxD:
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   179
  "\<lbrakk> split_max t = (t',a); t \<noteq> Leaf; avl t \<rbrakk> \<Longrightarrow>
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   180
   inorder (tree t') @ [a] = inorder t"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   181
apply(induction t arbitrary: t' rule: split_max.induct)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   182
 apply(fastforce split!: splits prod.splits)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   183
apply simp
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   184
done
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   185
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   186
lemma neq_Leaf_if_height_neq_0[simp]: "height t \<noteq> 0 \<Longrightarrow> t \<noteq> Leaf"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   187
by auto
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   188
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   189
theorem inorder_delete:
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   190
  "\<lbrakk> avl t; sorted(inorder t) \<rbrakk>  \<Longrightarrow> inorder (tree(delete x t)) = del_list x (inorder t)"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   191
apply(induction t rule: tree2_induct)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   192
apply(auto simp: del_list_simps inorder_baldL inorder_baldR avl_delete inorder_split_maxD
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   193
           simp del: baldR.simps baldL.simps split!: splits prod.splits)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   194
done
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   195
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   196
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   197
subsubsection \<open>Set Implementation\<close>
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   198
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   199
interpretation S: Set_by_Ordered
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   200
where empty = Leaf and isin = isin
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   201
  and insert = "\<lambda>x t. tree(insert x t)"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   202
  and delete = "\<lambda>x t. tree(delete x t)"
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   203
  and inorder = inorder and inv = avl
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   204
proof (standard, goal_cases)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   205
  case 1 show ?case by (simp)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   206
next
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   207
  case 2 thus ?case by(simp add: isin_set_inorder)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   208
next
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   209
  case 3 thus ?case by(simp add: inorder_insert)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   210
next
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   211
  case 4 thus ?case by(simp add: inorder_delete)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   212
next
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   213
  case 5 thus ?case by (simp add: empty_def)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   214
next
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   215
  case 6 thus ?case by (simp add: avl_insert)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   216
next
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   217
  case 7 thus ?case by (simp add: avl_delete)
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   218
qed
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   219
a9df6686ed0e AVL trees with balance tags
nipkow
parents:
diff changeset
   220
end