src/ZF/Constructible/Separation.thy
author wenzelm
Mon, 29 Jul 2002 00:57:16 +0200
changeset 13428 99e52e78eb65
parent 13385 31df66ca0780
child 13429 2232810416fc
permissions -rw-r--r--
eliminate open locales and special ML code;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13324
diff changeset
     1
header{*Early Instances of Separation and Strong Replacement*}
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
     2
13324
39d1b3a4c6f4 more and simpler separation proofs
paulson
parents: 13323
diff changeset
     3
theory Separation = L_axioms + WF_absolute:
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
     4
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13324
diff changeset
     5
text{*This theory proves all instances needed for locale @{text "M_axioms"}*}
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13324
diff changeset
     6
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
     7
text{*Helps us solve for de Bruijn indices!*}
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
     8
lemma nth_ConsI: "[|nth(n,l) = x; n \<in> nat|] ==> nth(succ(n), Cons(a,l)) = x"
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
     9
by simp
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    10
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
    11
lemmas nth_rules = nth_0 nth_ConsI nat_0I nat_succI
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    12
lemmas sep_rules = nth_0 nth_ConsI FOL_iff_sats function_iff_sats
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
    13
                   fun_plus_iff_sats
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    14
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    15
lemma Collect_conj_in_DPow:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    16
     "[| {x\<in>A. P(x)} \<in> DPow(A);  {x\<in>A. Q(x)} \<in> DPow(A) |]
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    17
      ==> {x\<in>A. P(x) & Q(x)} \<in> DPow(A)"
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    18
by (simp add: Int_in_DPow Collect_Int_Collect_eq [symmetric])
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    19
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    20
lemma Collect_conj_in_DPow_Lset:
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    21
     "[|z \<in> Lset(j); {x \<in> Lset(j). P(x)} \<in> DPow(Lset(j))|]
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    22
      ==> {x \<in> Lset(j). x \<in> z & P(x)} \<in> DPow(Lset(j))"
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    23
apply (frule mem_Lset_imp_subset_Lset)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    24
apply (simp add: Collect_conj_in_DPow Collect_mem_eq
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    25
                 subset_Int_iff2 elem_subset_in_DPow)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    26
done
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    27
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    28
lemma separation_CollectI:
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    29
     "(\<And>z. L(z) ==> L({x \<in> z . P(x)})) ==> separation(L, \<lambda>x. P(x))"
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    30
apply (unfold separation_def, clarify)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    31
apply (rule_tac x="{x\<in>z. P(x)}" in rexI)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    32
apply simp_all
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    33
done
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    34
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    35
text{*Reduces the original comprehension to the reflected one*}
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    36
lemma reflection_imp_L_separation:
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    37
      "[| \<forall>x\<in>Lset(j). P(x) <-> Q(x);
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    38
          {x \<in> Lset(j) . Q(x)} \<in> DPow(Lset(j));
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    39
          Ord(j);  z \<in> Lset(j)|] ==> L({x \<in> z . P(x)})"
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    40
apply (rule_tac i = "succ(j)" in L_I)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    41
 prefer 2 apply simp
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    42
apply (subgoal_tac "{x \<in> z. P(x)} = {x \<in> Lset(j). x \<in> z & (Q(x))}")
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    43
 prefer 2
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    44
 apply (blast dest: mem_Lset_imp_subset_Lset)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    45
apply (simp add: Lset_succ Collect_conj_in_DPow_Lset)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    46
done
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    47
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    48
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
    49
subsection{*Separation for Intersection*}
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    50
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    51
lemma Inter_Reflects:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    52
     "REFLECTS[\<lambda>x. \<forall>y[L]. y\<in>A --> x \<in> y,
13314
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
    53
               \<lambda>i x. \<forall>y\<in>Lset(i). y\<in>A --> x \<in> y]"
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    54
by (intro FOL_reflections)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    55
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    56
lemma Inter_separation:
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    57
     "L(A) ==> separation(L, \<lambda>x. \<forall>y[L]. y\<in>A --> x\<in>y)"
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    58
apply (rule separation_CollectI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    59
apply (rule_tac A="{A,z}" in subset_LsetE, blast )
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    60
apply (rule ReflectsE [OF Inter_Reflects], assumption)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    61
apply (drule subset_Lset_ltD, assumption)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    62
apply (erule reflection_imp_L_separation)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    63
  apply (simp_all add: lt_Ord2, clarify)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    64
apply (rule DPow_LsetI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    65
apply (rule ball_iff_sats)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    66
apply (rule imp_iff_sats)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    67
apply (rule_tac [2] i=1 and j=0 and env="[y,x,A]" in mem_iff_sats)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    68
apply (rule_tac i=0 and j=2 in mem_iff_sats)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    69
apply (simp_all add: succ_Un_distrib [symmetric])
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    70
done
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    71
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
    72
subsection{*Separation for Cartesian Product*}
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    73
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
    74
lemma cartprod_Reflects:
13314
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
    75
     "REFLECTS[\<lambda>z. \<exists>x[L]. x\<in>A & (\<exists>y[L]. y\<in>B & pair(L,x,y,z)),
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    76
                \<lambda>i z. \<exists>x\<in>Lset(i). x\<in>A & (\<exists>y\<in>Lset(i). y\<in>B &
13314
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
    77
                                   pair(**Lset(i),x,y,z))]"
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
    78
by (intro FOL_reflections function_reflections)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    79
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    80
lemma cartprod_separation:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    81
     "[| L(A); L(B) |]
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    82
      ==> separation(L, \<lambda>z. \<exists>x[L]. x\<in>A & (\<exists>y[L]. y\<in>B & pair(L,x,y,z)))"
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    83
apply (rule separation_CollectI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    84
apply (rule_tac A="{A,B,z}" in subset_LsetE, blast )
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    85
apply (rule ReflectsE [OF cartprod_Reflects], assumption)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    86
apply (drule subset_Lset_ltD, assumption)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    87
apply (erule reflection_imp_L_separation)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    88
  apply (simp_all add: lt_Ord2, clarify)
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13363
diff changeset
    89
apply (rule DPow_LsetI)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    90
apply (rename_tac u)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
    91
apply (rule bex_iff_sats)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    92
apply (rule conj_iff_sats)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    93
apply (rule_tac i=0 and j=2 and env="[x,u,A,B]" in mem_iff_sats, simp_all)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
    94
apply (rule sep_rules | simp)+
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    95
done
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    96
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
    97
subsection{*Separation for Image*}
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    98
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
    99
lemma image_Reflects:
13314
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
   100
     "REFLECTS[\<lambda>y. \<exists>p[L]. p\<in>r & (\<exists>x[L]. x\<in>A & pair(L,x,y,p)),
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
   101
           \<lambda>i y. \<exists>p\<in>Lset(i). p\<in>r & (\<exists>x\<in>Lset(i). x\<in>A & pair(**Lset(i),x,y,p))]"
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   102
by (intro FOL_reflections function_reflections)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   103
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   104
lemma image_separation:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   105
     "[| L(A); L(r) |]
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   106
      ==> separation(L, \<lambda>y. \<exists>p[L]. p\<in>r & (\<exists>x[L]. x\<in>A & pair(L,x,y,p)))"
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   107
apply (rule separation_CollectI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   108
apply (rule_tac A="{A,r,z}" in subset_LsetE, blast )
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   109
apply (rule ReflectsE [OF image_Reflects], assumption)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   110
apply (drule subset_Lset_ltD, assumption)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   111
apply (erule reflection_imp_L_separation)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   112
  apply (simp_all add: lt_Ord2, clarify)
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13363
diff changeset
   113
apply (rule DPow_LsetI)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   114
apply (rule bex_iff_sats)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   115
apply (rule conj_iff_sats)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   116
apply (rule_tac env="[p,y,A,r]" in mem_iff_sats)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   117
apply (rule sep_rules | simp)+
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   118
done
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   119
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   120
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   121
subsection{*Separation for Converse*}
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   122
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   123
lemma converse_Reflects:
13314
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
   124
  "REFLECTS[\<lambda>z. \<exists>p[L]. p\<in>r & (\<exists>x[L]. \<exists>y[L]. pair(L,x,y,p) & pair(L,y,x,z)),
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   125
     \<lambda>i z. \<exists>p\<in>Lset(i). p\<in>r & (\<exists>x\<in>Lset(i). \<exists>y\<in>Lset(i).
13314
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
   126
                     pair(**Lset(i),x,y,p) & pair(**Lset(i),y,x,z))]"
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   127
by (intro FOL_reflections function_reflections)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   128
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   129
lemma converse_separation:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   130
     "L(r) ==> separation(L,
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   131
         \<lambda>z. \<exists>p[L]. p\<in>r & (\<exists>x[L]. \<exists>y[L]. pair(L,x,y,p) & pair(L,y,x,z)))"
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   132
apply (rule separation_CollectI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   133
apply (rule_tac A="{r,z}" in subset_LsetE, blast )
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   134
apply (rule ReflectsE [OF converse_Reflects], assumption)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   135
apply (drule subset_Lset_ltD, assumption)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   136
apply (erule reflection_imp_L_separation)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   137
  apply (simp_all add: lt_Ord2, clarify)
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13363
diff changeset
   138
apply (rule DPow_LsetI)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   139
apply (rename_tac u)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   140
apply (rule bex_iff_sats)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   141
apply (rule conj_iff_sats)
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13324
diff changeset
   142
apply (rule_tac i=0 and j=2 and env="[p,u,r]" in mem_iff_sats, simp_all)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   143
apply (rule sep_rules | simp)+
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   144
done
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   145
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   146
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   147
subsection{*Separation for Restriction*}
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   148
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   149
lemma restrict_Reflects:
13314
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
   150
     "REFLECTS[\<lambda>z. \<exists>x[L]. x\<in>A & (\<exists>y[L]. pair(L,x,y,z)),
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
   151
        \<lambda>i z. \<exists>x\<in>Lset(i). x\<in>A & (\<exists>y\<in>Lset(i). pair(**Lset(i),x,y,z))]"
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   152
by (intro FOL_reflections function_reflections)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   153
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   154
lemma restrict_separation:
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   155
   "L(A) ==> separation(L, \<lambda>z. \<exists>x[L]. x\<in>A & (\<exists>y[L]. pair(L,x,y,z)))"
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   156
apply (rule separation_CollectI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   157
apply (rule_tac A="{A,z}" in subset_LsetE, blast )
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   158
apply (rule ReflectsE [OF restrict_Reflects], assumption)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   159
apply (drule subset_Lset_ltD, assumption)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   160
apply (erule reflection_imp_L_separation)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   161
  apply (simp_all add: lt_Ord2, clarify)
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13363
diff changeset
   162
apply (rule DPow_LsetI)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   163
apply (rename_tac u)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   164
apply (rule bex_iff_sats)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   165
apply (rule conj_iff_sats)
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13324
diff changeset
   166
apply (rule_tac i=0 and j=2 and env="[x,u,A]" in mem_iff_sats, simp_all)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   167
apply (rule sep_rules | simp)+
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   168
done
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   169
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   170
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   171
subsection{*Separation for Composition*}
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   172
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   173
lemma comp_Reflects:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   174
     "REFLECTS[\<lambda>xz. \<exists>x[L]. \<exists>y[L]. \<exists>z[L]. \<exists>xy[L]. \<exists>yz[L].
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   175
                  pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) &
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   176
                  xy\<in>s & yz\<in>r,
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   177
        \<lambda>i xz. \<exists>x\<in>Lset(i). \<exists>y\<in>Lset(i). \<exists>z\<in>Lset(i). \<exists>xy\<in>Lset(i). \<exists>yz\<in>Lset(i).
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   178
                  pair(**Lset(i),x,z,xz) & pair(**Lset(i),x,y,xy) &
13314
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
   179
                  pair(**Lset(i),y,z,yz) & xy\<in>s & yz\<in>r]"
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   180
by (intro FOL_reflections function_reflections)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   181
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   182
lemma comp_separation:
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   183
     "[| L(r); L(s) |]
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   184
      ==> separation(L, \<lambda>xz. \<exists>x[L]. \<exists>y[L]. \<exists>z[L]. \<exists>xy[L]. \<exists>yz[L].
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   185
                  pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) &
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   186
                  xy\<in>s & yz\<in>r)"
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   187
apply (rule separation_CollectI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   188
apply (rule_tac A="{r,s,z}" in subset_LsetE, blast )
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   189
apply (rule ReflectsE [OF comp_Reflects], assumption)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   190
apply (drule subset_Lset_ltD, assumption)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   191
apply (erule reflection_imp_L_separation)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   192
  apply (simp_all add: lt_Ord2, clarify)
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13363
diff changeset
   193
apply (rule DPow_LsetI)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   194
apply (rename_tac u)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   195
apply (rule bex_iff_sats)+
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   196
apply (rename_tac x y z)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   197
apply (rule conj_iff_sats)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   198
apply (rule_tac env="[z,y,x,u,r,s]" in pair_iff_sats)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   199
apply (rule sep_rules | simp)+
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   200
done
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   201
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   202
subsection{*Separation for Predecessors in an Order*}
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   203
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   204
lemma pred_Reflects:
13314
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
   205
     "REFLECTS[\<lambda>y. \<exists>p[L]. p\<in>r & pair(L,y,x,p),
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
   206
                    \<lambda>i y. \<exists>p \<in> Lset(i). p\<in>r & pair(**Lset(i),y,x,p)]"
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   207
by (intro FOL_reflections function_reflections)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   208
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   209
lemma pred_separation:
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   210
     "[| L(r); L(x) |] ==> separation(L, \<lambda>y. \<exists>p[L]. p\<in>r & pair(L,y,x,p))"
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   211
apply (rule separation_CollectI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   212
apply (rule_tac A="{r,x,z}" in subset_LsetE, blast )
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   213
apply (rule ReflectsE [OF pred_Reflects], assumption)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   214
apply (drule subset_Lset_ltD, assumption)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   215
apply (erule reflection_imp_L_separation)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   216
  apply (simp_all add: lt_Ord2, clarify)
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13363
diff changeset
   217
apply (rule DPow_LsetI)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   218
apply (rename_tac u)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   219
apply (rule bex_iff_sats)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   220
apply (rule conj_iff_sats)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   221
apply (rule_tac env = "[p,u,r,x]" in mem_iff_sats)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   222
apply (rule sep_rules | simp)+
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   223
done
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   224
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   225
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   226
subsection{*Separation for the Membership Relation*}
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   227
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   228
lemma Memrel_Reflects:
13314
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
   229
     "REFLECTS[\<lambda>z. \<exists>x[L]. \<exists>y[L]. pair(L,x,y,z) & x \<in> y,
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
   230
            \<lambda>i z. \<exists>x \<in> Lset(i). \<exists>y \<in> Lset(i). pair(**Lset(i),x,y,z) & x \<in> y]"
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   231
by (intro FOL_reflections function_reflections)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   232
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   233
lemma Memrel_separation:
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   234
     "separation(L, \<lambda>z. \<exists>x[L]. \<exists>y[L]. pair(L,x,y,z) & x \<in> y)"
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   235
apply (rule separation_CollectI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   236
apply (rule_tac A="{z}" in subset_LsetE, blast )
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   237
apply (rule ReflectsE [OF Memrel_Reflects], assumption)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   238
apply (drule subset_Lset_ltD, assumption)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   239
apply (erule reflection_imp_L_separation)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   240
  apply (simp_all add: lt_Ord2)
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13363
diff changeset
   241
apply (rule DPow_LsetI)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   242
apply (rename_tac u)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   243
apply (rule bex_iff_sats conj_iff_sats)+
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   244
apply (rule_tac env = "[y,x,u]" in pair_iff_sats)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   245
apply (rule sep_rules | simp)+
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   246
done
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   247
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   248
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   249
subsection{*Replacement for FunSpace*}
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   250
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   251
lemma funspace_succ_Reflects:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   252
 "REFLECTS[\<lambda>z. \<exists>p[L]. p\<in>A & (\<exists>f[L]. \<exists>b[L]. \<exists>nb[L]. \<exists>cnbf[L].
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   253
            pair(L,f,b,p) & pair(L,n,b,nb) & is_cons(L,nb,f,cnbf) &
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   254
            upair(L,cnbf,cnbf,z)),
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   255
        \<lambda>i z. \<exists>p \<in> Lset(i). p\<in>A & (\<exists>f \<in> Lset(i). \<exists>b \<in> Lset(i).
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   256
              \<exists>nb \<in> Lset(i). \<exists>cnbf \<in> Lset(i).
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   257
                pair(**Lset(i),f,b,p) & pair(**Lset(i),n,b,nb) &
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   258
                is_cons(**Lset(i),nb,f,cnbf) & upair(**Lset(i),cnbf,cnbf,z))]"
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   259
by (intro FOL_reflections function_reflections)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   260
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   261
lemma funspace_succ_replacement:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   262
     "L(n) ==>
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   263
      strong_replacement(L, \<lambda>p z. \<exists>f[L]. \<exists>b[L]. \<exists>nb[L]. \<exists>cnbf[L].
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   264
                pair(L,f,b,p) & pair(L,n,b,nb) & is_cons(L,nb,f,cnbf) &
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   265
                upair(L,cnbf,cnbf,z))"
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   266
apply (rule strong_replacementI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   267
apply (rule rallI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   268
apply (rule separation_CollectI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   269
apply (rule_tac A="{n,A,z}" in subset_LsetE, blast )
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   270
apply (rule ReflectsE [OF funspace_succ_Reflects], assumption)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   271
apply (drule subset_Lset_ltD, assumption)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   272
apply (erule reflection_imp_L_separation)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   273
  apply (simp_all add: lt_Ord2)
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13363
diff changeset
   274
apply (rule DPow_LsetI)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   275
apply (rename_tac u)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   276
apply (rule bex_iff_sats)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   277
apply (rule conj_iff_sats)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   278
apply (rule_tac env = "[p,u,n,A]" in mem_iff_sats)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   279
apply (rule sep_rules | simp)+
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   280
done
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   281
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   282
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   283
subsection{*Separation for Order-Isomorphisms*}
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   284
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   285
lemma well_ord_iso_Reflects:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   286
  "REFLECTS[\<lambda>x. x\<in>A -->
13314
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
   287
                (\<exists>y[L]. \<exists>p[L]. fun_apply(L,f,x,y) & pair(L,y,x,p) & p \<in> r),
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   288
        \<lambda>i x. x\<in>A --> (\<exists>y \<in> Lset(i). \<exists>p \<in> Lset(i).
13314
84b9de3cbc91 Defining a meta-existential quantifier.
paulson
parents: 13306
diff changeset
   289
                fun_apply(**Lset(i),f,x,y) & pair(**Lset(i),y,x,p) & p \<in> r)]"
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   290
by (intro FOL_reflections function_reflections)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   291
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   292
lemma well_ord_iso_separation:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   293
     "[| L(A); L(f); L(r) |]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   294
      ==> separation (L, \<lambda>x. x\<in>A --> (\<exists>y[L]. (\<exists>p[L].
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   295
                     fun_apply(L,f,x,y) & pair(L,y,x,p) & p \<in> r)))"
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   296
apply (rule separation_CollectI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   297
apply (rule_tac A="{A,f,r,z}" in subset_LsetE, blast )
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   298
apply (rule ReflectsE [OF well_ord_iso_Reflects], assumption)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   299
apply (drule subset_Lset_ltD, assumption)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   300
apply (erule reflection_imp_L_separation)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   301
  apply (simp_all add: lt_Ord2)
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13363
diff changeset
   302
apply (rule DPow_LsetI)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   303
apply (rename_tac u)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   304
apply (rule imp_iff_sats)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   305
apply (rule_tac env = "[u,A,f,r]" in mem_iff_sats)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   306
apply (rule sep_rules | simp)+
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   307
done
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   308
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   309
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   310
subsection{*Separation for @{term "obase"}*}
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   311
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   312
lemma obase_reflects:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   313
  "REFLECTS[\<lambda>a. \<exists>x[L]. \<exists>g[L]. \<exists>mx[L]. \<exists>par[L].
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   314
             ordinal(L,x) & membership(L,x,mx) & pred_set(L,A,a,r,par) &
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   315
             order_isomorphism(L,par,r,x,mx,g),
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   316
        \<lambda>i a. \<exists>x \<in> Lset(i). \<exists>g \<in> Lset(i). \<exists>mx \<in> Lset(i). \<exists>par \<in> Lset(i).
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   317
             ordinal(**Lset(i),x) & membership(**Lset(i),x,mx) & pred_set(**Lset(i),A,a,r,par) &
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   318
             order_isomorphism(**Lset(i),par,r,x,mx,g)]"
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   319
by (intro FOL_reflections function_reflections fun_plus_reflections)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   320
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   321
lemma obase_separation:
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   322
     --{*part of the order type formalization*}
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   323
     "[| L(A); L(r) |]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   324
      ==> separation(L, \<lambda>a. \<exists>x[L]. \<exists>g[L]. \<exists>mx[L]. \<exists>par[L].
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   325
             ordinal(L,x) & membership(L,x,mx) & pred_set(L,A,a,r,par) &
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   326
             order_isomorphism(L,par,r,x,mx,g))"
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   327
apply (rule separation_CollectI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   328
apply (rule_tac A="{A,r,z}" in subset_LsetE, blast )
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   329
apply (rule ReflectsE [OF obase_reflects], assumption)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   330
apply (drule subset_Lset_ltD, assumption)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   331
apply (erule reflection_imp_L_separation)
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   332
  apply (simp_all add: lt_Ord2)
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13363
diff changeset
   333
apply (rule DPow_LsetI)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   334
apply (rename_tac u)
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   335
apply (rule bex_iff_sats)
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   336
apply (rule conj_iff_sats)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   337
apply (rule_tac env = "[x,u,A,r]" in ordinal_iff_sats)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   338
apply (rule sep_rules | simp)+
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   339
done
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   340
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   341
13319
23de7b3af453 More Separation proofs
paulson
parents: 13316
diff changeset
   342
subsection{*Separation for a Theorem about @{term "obase"}*}
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   343
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   344
lemma obase_equals_reflects:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   345
  "REFLECTS[\<lambda>x. x\<in>A --> ~(\<exists>y[L]. \<exists>g[L].
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   346
                ordinal(L,y) & (\<exists>my[L]. \<exists>pxr[L].
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   347
                membership(L,y,my) & pred_set(L,A,x,r,pxr) &
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   348
                order_isomorphism(L,pxr,r,y,my,g))),
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   349
        \<lambda>i x. x\<in>A --> ~(\<exists>y \<in> Lset(i). \<exists>g \<in> Lset(i).
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   350
                ordinal(**Lset(i),y) & (\<exists>my \<in> Lset(i). \<exists>pxr \<in> Lset(i).
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   351
                membership(**Lset(i),y,my) & pred_set(**Lset(i),A,x,r,pxr) &
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   352
                order_isomorphism(**Lset(i),pxr,r,y,my,g)))]"
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   353
by (intro FOL_reflections function_reflections fun_plus_reflections)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   354
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   355
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   356
lemma obase_equals_separation:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   357
     "[| L(A); L(r) |]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   358
      ==> separation (L, \<lambda>x. x\<in>A --> ~(\<exists>y[L]. \<exists>g[L].
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   359
                              ordinal(L,y) & (\<exists>my[L]. \<exists>pxr[L].
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   360
                              membership(L,y,my) & pred_set(L,A,x,r,pxr) &
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   361
                              order_isomorphism(L,pxr,r,y,my,g))))"
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   362
apply (rule separation_CollectI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   363
apply (rule_tac A="{A,r,z}" in subset_LsetE, blast )
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   364
apply (rule ReflectsE [OF obase_equals_reflects], assumption)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   365
apply (drule subset_Lset_ltD, assumption)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   366
apply (erule reflection_imp_L_separation)
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   367
  apply (simp_all add: lt_Ord2)
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13363
diff changeset
   368
apply (rule DPow_LsetI)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   369
apply (rename_tac u)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   370
apply (rule imp_iff_sats ball_iff_sats disj_iff_sats not_iff_sats)+
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   371
apply (rule_tac env = "[u,A,r]" in mem_iff_sats)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   372
apply (rule sep_rules | simp)+
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   373
done
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   374
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   375
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   376
subsection{*Replacement for @{term "omap"}*}
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   377
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   378
lemma omap_reflects:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   379
 "REFLECTS[\<lambda>z. \<exists>a[L]. a\<in>B & (\<exists>x[L]. \<exists>g[L]. \<exists>mx[L]. \<exists>par[L].
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   380
     ordinal(L,x) & pair(L,a,x,z) & membership(L,x,mx) &
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   381
     pred_set(L,A,a,r,par) & order_isomorphism(L,par,r,x,mx,g)),
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   382
 \<lambda>i z. \<exists>a \<in> Lset(i). a\<in>B & (\<exists>x \<in> Lset(i). \<exists>g \<in> Lset(i). \<exists>mx \<in> Lset(i).
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   383
        \<exists>par \<in> Lset(i).
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   384
         ordinal(**Lset(i),x) & pair(**Lset(i),a,x,z) &
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   385
         membership(**Lset(i),x,mx) & pred_set(**Lset(i),A,a,r,par) &
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   386
         order_isomorphism(**Lset(i),par,r,x,mx,g))]"
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   387
by (intro FOL_reflections function_reflections fun_plus_reflections)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   388
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   389
lemma omap_replacement:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   390
     "[| L(A); L(r) |]
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   391
      ==> strong_replacement(L,
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   392
             \<lambda>a z. \<exists>x[L]. \<exists>g[L]. \<exists>mx[L]. \<exists>par[L].
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   393
             ordinal(L,x) & pair(L,a,x,z) & membership(L,x,mx) &
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   394
             pred_set(L,A,a,r,par) & order_isomorphism(L,par,r,x,mx,g))"
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   395
apply (rule strong_replacementI)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   396
apply (rule rallI)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   397
apply (rename_tac B)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   398
apply (rule separation_CollectI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   399
apply (rule_tac A="{A,B,r,z}" in subset_LsetE, blast )
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   400
apply (rule ReflectsE [OF omap_reflects], assumption)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   401
apply (drule subset_Lset_ltD, assumption)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   402
apply (erule reflection_imp_L_separation)
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   403
  apply (simp_all add: lt_Ord2)
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13363
diff changeset
   404
apply (rule DPow_LsetI)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   405
apply (rename_tac u)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   406
apply (rule bex_iff_sats conj_iff_sats)+
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   407
apply (rule_tac env = "[a,u,A,B,r]" in mem_iff_sats)
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13314
diff changeset
   408
apply (rule sep_rules | simp)+
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   409
done
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   410
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   411
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   412
subsection{*Separation for a Theorem about @{term "obase"}*}
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   413
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   414
lemma is_recfun_reflects:
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   415
  "REFLECTS[\<lambda>x. \<exists>xa[L]. \<exists>xb[L].
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   416
                pair(L,x,a,xa) & xa \<in> r & pair(L,x,b,xb) & xb \<in> r &
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   417
                (\<exists>fx[L]. \<exists>gx[L]. fun_apply(L,f,x,fx) & fun_apply(L,g,x,gx) &
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   418
                                   fx \<noteq> gx),
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   419
   \<lambda>i x. \<exists>xa \<in> Lset(i). \<exists>xb \<in> Lset(i).
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   420
          pair(**Lset(i),x,a,xa) & xa \<in> r & pair(**Lset(i),x,b,xb) & xb \<in> r &
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   421
                (\<exists>fx \<in> Lset(i). \<exists>gx \<in> Lset(i). fun_apply(**Lset(i),f,x,fx) &
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   422
                  fun_apply(**Lset(i),g,x,gx) & fx \<noteq> gx)]"
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   423
by (intro FOL_reflections function_reflections fun_plus_reflections)
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   424
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   425
lemma is_recfun_separation:
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   426
     --{*for well-founded recursion*}
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   427
     "[| L(r); L(f); L(g); L(a); L(b) |]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   428
     ==> separation(L,
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   429
            \<lambda>x. \<exists>xa[L]. \<exists>xb[L].
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   430
                pair(L,x,a,xa) & xa \<in> r & pair(L,x,b,xb) & xb \<in> r &
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   431
                (\<exists>fx[L]. \<exists>gx[L]. fun_apply(L,f,x,fx) & fun_apply(L,g,x,gx) &
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   432
                                   fx \<noteq> gx))"
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   433
apply (rule separation_CollectI)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   434
apply (rule_tac A="{r,f,g,a,b,z}" in subset_LsetE, blast )
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   435
apply (rule ReflectsE [OF is_recfun_reflects], assumption)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   436
apply (drule subset_Lset_ltD, assumption)
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   437
apply (erule reflection_imp_L_separation)
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   438
  apply (simp_all add: lt_Ord2)
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13363
diff changeset
   439
apply (rule DPow_LsetI)
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   440
apply (rename_tac u)
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   441
apply (rule bex_iff_sats conj_iff_sats)+
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   442
apply (rule_tac env = "[xa,u,r,f,g,a,b]" in pair_iff_sats)
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   443
apply (rule sep_rules | simp)+
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   444
done
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   445
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   446
13363
c26eeb000470 instantiation of locales M_trancl and M_wfrank;
paulson
parents: 13352
diff changeset
   447
subsection{*Instantiating the locale @{text M_axioms}*}
c26eeb000470 instantiation of locales M_trancl and M_wfrank;
paulson
parents: 13352
diff changeset
   448
text{*Separation (and Strong Replacement) for basic set-theoretic constructions
c26eeb000470 instantiation of locales M_trancl and M_wfrank;
paulson
parents: 13352
diff changeset
   449
such as intersection, Cartesian Product and image.*}
c26eeb000470 instantiation of locales M_trancl and M_wfrank;
paulson
parents: 13352
diff changeset
   450
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   451
theorem M_axioms_axioms_L: "M_axioms_axioms(L)"
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   452
  apply (rule M_axioms_axioms.intro)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   453
               apply (assumption | rule
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   454
                 Inter_separation cartprod_separation image_separation
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   455
                 converse_separation restrict_separation
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   456
                 comp_separation pred_separation Memrel_separation
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   457
                 funspace_succ_replacement well_ord_iso_separation
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   458
                 obase_separation obase_equals_separation
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   459
                 omap_replacement is_recfun_separation)+
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   460
  done
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   461
  
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   462
theorem M_axioms_L: "PROP M_axioms(L)"
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   463
  apply (rule M_axioms.intro)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   464
   apply (rule M_triv_axioms_L)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   465
  apply (rule M_axioms_axioms_L)
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   466
  done
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   467
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   468
lemmas cartprod_iff = M_axioms.cartprod_iff [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   469
  and cartprod_closed = M_axioms.cartprod_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   470
  and sum_closed = M_axioms.sum_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   471
  and M_converse_iff = M_axioms.M_converse_iff [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   472
  and converse_closed = M_axioms.converse_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   473
  and converse_abs = M_axioms.converse_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   474
  and image_closed = M_axioms.image_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   475
  and vimage_abs = M_axioms.vimage_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   476
  and vimage_closed = M_axioms.vimage_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   477
  and domain_abs = M_axioms.domain_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   478
  and domain_closed = M_axioms.domain_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   479
  and range_abs = M_axioms.range_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   480
  and range_closed = M_axioms.range_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   481
  and field_abs = M_axioms.field_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   482
  and field_closed = M_axioms.field_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   483
  and relation_abs = M_axioms.relation_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   484
  and function_abs = M_axioms.function_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   485
  and apply_closed = M_axioms.apply_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   486
  and apply_abs = M_axioms.apply_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   487
  and typed_function_abs = M_axioms.typed_function_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   488
  and injection_abs = M_axioms.injection_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   489
  and surjection_abs = M_axioms.surjection_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   490
  and bijection_abs = M_axioms.bijection_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   491
  and M_comp_iff = M_axioms.M_comp_iff [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   492
  and comp_closed = M_axioms.comp_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   493
  and composition_abs = M_axioms.composition_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   494
  and restriction_is_function = M_axioms.restriction_is_function [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   495
  and restriction_abs = M_axioms.restriction_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   496
  and M_restrict_iff = M_axioms.M_restrict_iff [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   497
  and restrict_closed = M_axioms.restrict_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   498
  and Inter_abs = M_axioms.Inter_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   499
  and Inter_closed = M_axioms.Inter_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   500
  and Int_closed = M_axioms.Int_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   501
  and finite_fun_closed = M_axioms.finite_fun_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   502
  and is_funspace_abs = M_axioms.is_funspace_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   503
  and succ_fun_eq2 = M_axioms.succ_fun_eq2 [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   504
  and funspace_succ = M_axioms.funspace_succ [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   505
  and finite_funspace_closed = M_axioms.finite_funspace_closed [OF M_axioms_L]
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   506
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   507
lemmas is_recfun_equal = M_axioms.is_recfun_equal [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   508
  and is_recfun_cut = M_axioms.is_recfun_cut [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   509
  and is_recfun_functional = M_axioms.is_recfun_functional [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   510
  and is_recfun_relativize = M_axioms.is_recfun_relativize [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   511
  and is_recfun_restrict = M_axioms.is_recfun_restrict [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   512
  and univalent_is_recfun = M_axioms.univalent_is_recfun [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   513
  and exists_is_recfun_indstep = M_axioms.exists_is_recfun_indstep [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   514
  and wellfounded_exists_is_recfun = M_axioms.wellfounded_exists_is_recfun [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   515
  and wf_exists_is_recfun = M_axioms.wf_exists_is_recfun [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   516
  and is_recfun_abs = M_axioms.is_recfun_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   517
  and irreflexive_abs = M_axioms.irreflexive_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   518
  and transitive_rel_abs = M_axioms.transitive_rel_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   519
  and linear_rel_abs = M_axioms.linear_rel_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   520
  and wellordered_is_trans_on = M_axioms.wellordered_is_trans_on [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   521
  and wellordered_is_linear = M_axioms.wellordered_is_linear [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   522
  and wellordered_is_wellfounded_on = M_axioms.wellordered_is_wellfounded_on [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   523
  and wellfounded_imp_wellfounded_on = M_axioms.wellfounded_imp_wellfounded_on [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   524
  and wellfounded_on_subset_A = M_axioms.wellfounded_on_subset_A [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   525
  and wellfounded_on_iff_wellfounded = M_axioms.wellfounded_on_iff_wellfounded [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   526
  and wellfounded_on_imp_wellfounded = M_axioms.wellfounded_on_imp_wellfounded [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   527
  and wellfounded_on_field_imp_wellfounded = M_axioms.wellfounded_on_field_imp_wellfounded [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   528
  and wellfounded_iff_wellfounded_on_field = M_axioms.wellfounded_iff_wellfounded_on_field [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   529
  and wellfounded_induct = M_axioms.wellfounded_induct [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   530
  and wellfounded_on_induct = M_axioms.wellfounded_on_induct [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   531
  and wellfounded_on_induct2 = M_axioms.wellfounded_on_induct2 [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   532
  and linear_imp_relativized = M_axioms.linear_imp_relativized [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   533
  and trans_on_imp_relativized = M_axioms.trans_on_imp_relativized [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   534
  and wf_on_imp_relativized = M_axioms.wf_on_imp_relativized [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   535
  and wf_imp_relativized = M_axioms.wf_imp_relativized [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   536
  and well_ord_imp_relativized = M_axioms.well_ord_imp_relativized [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   537
  and order_isomorphism_abs = M_axioms.order_isomorphism_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   538
  and pred_set_abs = M_axioms.pred_set_abs [OF M_axioms_L]
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   539
13428
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   540
lemmas pred_closed = M_axioms.pred_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   541
  and membership_abs = M_axioms.membership_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   542
  and M_Memrel_iff = M_axioms.M_Memrel_iff [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   543
  and Memrel_closed = M_axioms.Memrel_closed [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   544
  and wellordered_iso_predD = M_axioms.wellordered_iso_predD [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   545
  and wellordered_iso_pred_eq = M_axioms.wellordered_iso_pred_eq [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   546
  and wellfounded_on_asym = M_axioms.wellfounded_on_asym [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   547
  and wellordered_asym = M_axioms.wellordered_asym [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   548
  and ord_iso_pred_imp_lt = M_axioms.ord_iso_pred_imp_lt [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   549
  and obase_iff = M_axioms.obase_iff [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   550
  and omap_iff = M_axioms.omap_iff [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   551
  and omap_unique = M_axioms.omap_unique [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   552
  and omap_yields_Ord = M_axioms.omap_yields_Ord [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   553
  and otype_iff = M_axioms.otype_iff [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   554
  and otype_eq_range = M_axioms.otype_eq_range [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   555
  and Ord_otype = M_axioms.Ord_otype [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   556
  and domain_omap = M_axioms.domain_omap [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   557
  and omap_subset = M_axioms.omap_subset [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   558
  and omap_funtype = M_axioms.omap_funtype [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   559
  and wellordered_omap_bij = M_axioms.wellordered_omap_bij [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   560
  and omap_ord_iso = M_axioms.omap_ord_iso [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   561
  and Ord_omap_image_pred = M_axioms.Ord_omap_image_pred [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   562
  and restrict_omap_ord_iso = M_axioms.restrict_omap_ord_iso [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   563
  and obase_equals = M_axioms.obase_equals [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   564
  and omap_ord_iso_otype = M_axioms.omap_ord_iso_otype [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   565
  and obase_exists = M_axioms.obase_exists [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   566
  and omap_exists = M_axioms.omap_exists [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   567
  and otype_exists = M_axioms.otype_exists [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   568
  and omap_ord_iso_otype' = M_axioms.omap_ord_iso_otype' [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   569
  and ordertype_exists = M_axioms.ordertype_exists [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   570
  and relativized_imp_well_ord = M_axioms.relativized_imp_well_ord [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   571
  and well_ord_abs = M_axioms.well_ord_abs [OF M_axioms_L]
99e52e78eb65 eliminate open locales and special ML code;
wenzelm
parents: 13385
diff changeset
   572
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   573
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   574
declare cartprod_closed [intro,simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   575
declare sum_closed [intro,simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   576
declare converse_closed [intro,simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   577
declare converse_abs [simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   578
declare image_closed [intro,simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   579
declare vimage_abs [simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   580
declare vimage_closed [intro,simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   581
declare domain_abs [simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   582
declare domain_closed [intro,simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   583
declare range_abs [simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   584
declare range_closed [intro,simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   585
declare field_abs [simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   586
declare field_closed [intro,simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   587
declare relation_abs [simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   588
declare function_abs [simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   589
declare apply_closed [intro,simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   590
declare typed_function_abs [simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   591
declare injection_abs [simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   592
declare surjection_abs [simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   593
declare bijection_abs [simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   594
declare comp_closed [intro,simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   595
declare composition_abs [simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   596
declare restriction_abs [simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   597
declare restrict_closed [intro,simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   598
declare Inter_abs [simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   599
declare Inter_closed [intro,simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   600
declare Int_closed [intro,simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   601
declare is_funspace_abs [simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   602
declare finite_funspace_closed [intro,simp]
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   603
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents:
diff changeset
   604
end