author | berghofe |
Thu, 13 Sep 2007 18:06:50 +0200 | |
changeset 24568 | 9a4cce088aec |
parent 24544 | da7de38392df |
child 24571 | a6d0428dea8e |
permissions | -rw-r--r-- |
17870 | 1 |
(* $Id$ *) |
2 |
||
19494 | 3 |
theory Nominal |
20809 | 4 |
imports Main Infinite_Set |
18068 | 5 |
uses |
22245
1b8f4ef50c48
moved the infrastructure from the nominal_tags file to nominal_thmdecls
urbanc
parents:
22231
diff
changeset
|
6 |
("nominal_thmdecls.ML") |
18068 | 7 |
("nominal_atoms.ML") |
8 |
("nominal_package.ML") |
|
18264 | 9 |
("nominal_induct.ML") |
18068 | 10 |
("nominal_permeq.ML") |
22762 | 11 |
("nominal_fresh_fun.ML") |
21541
ea881fbe0489
Implemented new "nominal_primrec" command for defining
berghofe
parents:
21405
diff
changeset
|
12 |
("nominal_primrec.ML") |
22312 | 13 |
("nominal_inductive.ML") |
17870 | 14 |
begin |
15 |
||
16 |
section {* Permutations *} |
|
17 |
(*======================*) |
|
18 |
||
19 |
types |
|
20 |
'x prm = "('x \<times> 'x) list" |
|
21 |
||
19477 | 22 |
(* polymorphic operations for permutation and swapping *) |
17870 | 23 |
consts |
18491 | 24 |
perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<bullet>" 80) |
17870 | 25 |
swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x" |
26 |
||
24544 | 27 |
(* an auxiliary constant for the decision procedure involving *) |
28 |
(* permutations (to avoid loops when using perm-composition) *) |
|
19477 | 29 |
constdefs |
30 |
"perm_aux pi x \<equiv> pi\<bullet>x" |
|
31 |
||
17870 | 32 |
(* permutation on sets *) |
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
33 |
defs (unchecked overloaded) |
22829
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
urbanc
parents:
22808
diff
changeset
|
34 |
perm_set_def: "pi\<bullet>(X::'a set) \<equiv> {pi\<bullet>x | x. x\<in>X}" |
17870 | 35 |
|
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
36 |
lemma empty_eqvt: |
18656 | 37 |
shows "pi\<bullet>{} = {}" |
38 |
by (simp add: perm_set_def) |
|
39 |
||
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
40 |
lemma union_eqvt: |
18264 | 41 |
shows "pi \<bullet> (X \<union> Y) = (pi \<bullet> X) \<union> (pi \<bullet> Y)" |
42 |
by (auto simp add: perm_set_def) |
|
43 |
||
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
44 |
lemma insert_eqvt: |
18656 | 45 |
shows "pi\<bullet>(insert x X) = insert (pi\<bullet>x) (pi\<bullet>X)" |
46 |
by (auto simp add: perm_set_def) |
|
47 |
||
17870 | 48 |
(* permutation on units and products *) |
19687 | 49 |
primrec (unchecked perm_unit) |
50 |
"pi\<bullet>() = ()" |
|
51 |
||
52 |
primrec (unchecked perm_prod) |
|
22829
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
urbanc
parents:
22808
diff
changeset
|
53 |
"pi\<bullet>(x,y) = (pi\<bullet>x,pi\<bullet>y)" |
17870 | 54 |
|
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
55 |
lemma fst_eqvt: |
17870 | 56 |
"pi\<bullet>(fst x) = fst (pi\<bullet>x)" |
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
57 |
by (cases x) simp |
17870 | 58 |
|
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
59 |
lemma snd_eqvt: |
17870 | 60 |
"pi\<bullet>(snd x) = snd (pi\<bullet>x)" |
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
61 |
by (cases x) simp |
17870 | 62 |
|
63 |
(* permutation on lists *) |
|
19687 | 64 |
primrec (unchecked perm_list) |
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
65 |
nil_eqvt: "pi\<bullet>[] = []" |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
66 |
cons_eqvt: "pi\<bullet>(x#xs) = (pi\<bullet>x)#(pi\<bullet>xs)" |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
67 |
|
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
68 |
lemma append_eqvt: |
17870 | 69 |
fixes pi :: "'x prm" |
70 |
and l1 :: "'a list" |
|
71 |
and l2 :: "'a list" |
|
72 |
shows "pi\<bullet>(l1@l2) = (pi\<bullet>l1)@(pi\<bullet>l2)" |
|
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
73 |
by (induct l1) auto |
17870 | 74 |
|
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
75 |
lemma rev_eqvt: |
17870 | 76 |
fixes pi :: "'x prm" |
77 |
and l :: "'a list" |
|
78 |
shows "pi\<bullet>(rev l) = rev (pi\<bullet>l)" |
|
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
79 |
by (induct l) (simp_all add: append_eqvt) |
17870 | 80 |
|
22768
d41fe3416f52
simplified the proof of pt_set_eqvt (as suggested by Randy Pollack)
urbanc
parents:
22762
diff
changeset
|
81 |
lemma set_eqvt: |
d41fe3416f52
simplified the proof of pt_set_eqvt (as suggested by Randy Pollack)
urbanc
parents:
22762
diff
changeset
|
82 |
fixes pi :: "'x prm" |
d41fe3416f52
simplified the proof of pt_set_eqvt (as suggested by Randy Pollack)
urbanc
parents:
22762
diff
changeset
|
83 |
and xs :: "'a list" |
d41fe3416f52
simplified the proof of pt_set_eqvt (as suggested by Randy Pollack)
urbanc
parents:
22762
diff
changeset
|
84 |
shows "pi\<bullet>(set xs) = set (pi\<bullet>xs)" |
d41fe3416f52
simplified the proof of pt_set_eqvt (as suggested by Randy Pollack)
urbanc
parents:
22762
diff
changeset
|
85 |
by (induct xs, auto simp add: empty_eqvt insert_eqvt) |
d41fe3416f52
simplified the proof of pt_set_eqvt (as suggested by Randy Pollack)
urbanc
parents:
22762
diff
changeset
|
86 |
|
17870 | 87 |
(* permutation on functions *) |
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
88 |
defs (unchecked overloaded) |
17870 | 89 |
perm_fun_def: "pi\<bullet>(f::'a\<Rightarrow>'b) \<equiv> (\<lambda>x. pi\<bullet>f((rev pi)\<bullet>x))" |
90 |
||
91 |
(* permutation on bools *) |
|
19687 | 92 |
primrec (unchecked perm_bool) |
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
93 |
true_eqvt: "pi\<bullet>True = True" |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
94 |
false_eqvt: "pi\<bullet>False = False" |
17870 | 95 |
|
18264 | 96 |
lemma perm_bool: |
97 |
shows "pi\<bullet>(b::bool) = b" |
|
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
98 |
by (cases b) auto |
18264 | 99 |
|
19972
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
100 |
lemma perm_boolI: |
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
101 |
assumes a: "P" |
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
102 |
shows "pi\<bullet>P" |
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
103 |
using a by (simp add: perm_bool) |
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
104 |
|
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
105 |
lemma perm_boolE: |
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
106 |
assumes a: "pi\<bullet>P" |
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
107 |
shows "P" |
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
108 |
using a by (simp add: perm_bool) |
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
109 |
|
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
110 |
lemma if_eqvt: |
21010
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
111 |
fixes pi::"'a prm" |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
112 |
shows "pi\<bullet>(if b then c1 else c2) = (if (pi\<bullet>b) then (pi\<bullet>c1) else (pi\<bullet>c2))" |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
113 |
apply(simp add: perm_fun_def) |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
114 |
done |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
115 |
|
22514 | 116 |
lemma imp_eqvt: |
117 |
shows "pi\<bullet>(A\<longrightarrow>B) = ((pi\<bullet>A)\<longrightarrow>(pi\<bullet>B))" |
|
118 |
by (simp add: perm_bool) |
|
119 |
||
120 |
lemma conj_eqvt: |
|
121 |
shows "pi\<bullet>(A\<and>B) = ((pi\<bullet>A)\<and>(pi\<bullet>B))" |
|
122 |
by (simp add: perm_bool) |
|
123 |
||
124 |
lemma disj_eqvt: |
|
125 |
shows "pi\<bullet>(A\<or>B) = ((pi\<bullet>A)\<or>(pi\<bullet>B))" |
|
126 |
by (simp add: perm_bool) |
|
127 |
||
128 |
lemma neg_eqvt: |
|
129 |
shows "pi\<bullet>(\<not> A) = (\<not> (pi\<bullet>A))" |
|
130 |
by (simp add: perm_bool) |
|
131 |
||
17870 | 132 |
(* permutation on options *) |
21010
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
133 |
|
19687 | 134 |
primrec (unchecked perm_option) |
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
135 |
some_eqvt: "pi\<bullet>Some(x) = Some(pi\<bullet>x)" |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
136 |
none_eqvt: "pi\<bullet>None = None" |
17870 | 137 |
|
138 |
(* a "private" copy of the option type used in the abstraction function *) |
|
18579
002d371401f5
changed the name of the type "nOption" to "noption".
urbanc
parents:
18578
diff
changeset
|
139 |
datatype 'a noption = nSome 'a | nNone |
17870 | 140 |
|
19687 | 141 |
primrec (unchecked perm_noption) |
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
142 |
nSome_eqvt: "pi\<bullet>nSome(x) = nSome(pi\<bullet>x)" |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
143 |
nNone_eqvt: "pi\<bullet>nNone = nNone" |
18600 | 144 |
|
145 |
(* a "private" copy of the product type used in the nominal induct method *) |
|
146 |
datatype ('a,'b) nprod = nPair 'a 'b |
|
147 |
||
19687 | 148 |
primrec (unchecked perm_nprod) |
149 |
perm_nProd_def: "pi\<bullet>(nPair x1 x2) = nPair (pi\<bullet>x1) (pi\<bullet>x2)" |
|
17870 | 150 |
|
151 |
(* permutation on characters (used in strings) *) |
|
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
152 |
defs (unchecked overloaded) |
23050 | 153 |
perm_char_def: "pi\<bullet>(c::char) \<equiv> c" |
154 |
||
155 |
lemma perm_string: |
|
156 |
fixes s::"string" |
|
157 |
shows "pi\<bullet>s = s" |
|
158 |
by (induct s)(auto simp add: perm_char_def) |
|
17870 | 159 |
|
160 |
(* permutation on ints *) |
|
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
161 |
defs (unchecked overloaded) |
17870 | 162 |
perm_int_def: "pi\<bullet>(i::int) \<equiv> i" |
163 |
||
164 |
(* permutation on nats *) |
|
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
165 |
defs (unchecked overloaded) |
17870 | 166 |
perm_nat_def: "pi\<bullet>(i::nat) \<equiv> i" |
167 |
||
168 |
section {* permutation equality *} |
|
169 |
(*==============================*) |
|
170 |
||
171 |
constdefs |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
172 |
prm_eq :: "'x prm \<Rightarrow> 'x prm \<Rightarrow> bool" (" _ \<triangleq> _ " [80,80] 80) |
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
173 |
"pi1 \<triangleq> pi2 \<equiv> \<forall>a::'x. pi1\<bullet>a = pi2\<bullet>a" |
17870 | 174 |
|
175 |
section {* Support, Freshness and Supports*} |
|
176 |
(*========================================*) |
|
177 |
constdefs |
|
178 |
supp :: "'a \<Rightarrow> ('x set)" |
|
179 |
"supp x \<equiv> {a . (infinite {b . [(a,b)]\<bullet>x \<noteq> x})}" |
|
180 |
||
17871 | 181 |
fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" ("_ \<sharp> _" [80,80] 80) |
17870 | 182 |
"a \<sharp> x \<equiv> a \<notin> supp x" |
183 |
||
22808 | 184 |
supports :: "'x set \<Rightarrow> 'a \<Rightarrow> bool" (infixl "supports" 80) |
17870 | 185 |
"S supports x \<equiv> \<forall>a b. (a\<notin>S \<and> b\<notin>S \<longrightarrow> [(a,b)]\<bullet>x=x)" |
186 |
||
187 |
lemma supp_fresh_iff: |
|
188 |
fixes x :: "'a" |
|
189 |
shows "(supp x) = {a::'x. \<not>a\<sharp>x}" |
|
190 |
apply(simp add: fresh_def) |
|
191 |
done |
|
192 |
||
193 |
lemma supp_unit: |
|
194 |
shows "supp () = {}" |
|
195 |
by (simp add: supp_def) |
|
196 |
||
18264 | 197 |
lemma supp_set_empty: |
198 |
shows "supp {} = {}" |
|
199 |
by (force simp add: supp_def perm_set_def) |
|
200 |
||
201 |
lemma supp_singleton: |
|
202 |
shows "supp {x} = supp x" |
|
203 |
by (force simp add: supp_def perm_set_def) |
|
204 |
||
17870 | 205 |
lemma supp_prod: |
206 |
fixes x :: "'a" |
|
207 |
and y :: "'b" |
|
208 |
shows "(supp (x,y)) = (supp x)\<union>(supp y)" |
|
209 |
by (force simp add: supp_def Collect_imp_eq Collect_neg_eq) |
|
210 |
||
18600 | 211 |
lemma supp_nprod: |
212 |
fixes x :: "'a" |
|
213 |
and y :: "'b" |
|
214 |
shows "(supp (nPair x y)) = (supp x)\<union>(supp y)" |
|
215 |
by (force simp add: supp_def Collect_imp_eq Collect_neg_eq) |
|
216 |
||
17870 | 217 |
lemma supp_list_nil: |
218 |
shows "supp [] = {}" |
|
219 |
apply(simp add: supp_def) |
|
220 |
done |
|
221 |
||
222 |
lemma supp_list_cons: |
|
223 |
fixes x :: "'a" |
|
224 |
and xs :: "'a list" |
|
225 |
shows "supp (x#xs) = (supp x)\<union>(supp xs)" |
|
226 |
apply(auto simp add: supp_def Collect_imp_eq Collect_neg_eq) |
|
227 |
done |
|
228 |
||
229 |
lemma supp_list_append: |
|
230 |
fixes xs :: "'a list" |
|
231 |
and ys :: "'a list" |
|
232 |
shows "supp (xs@ys) = (supp xs)\<union>(supp ys)" |
|
233 |
by (induct xs, auto simp add: supp_list_nil supp_list_cons) |
|
234 |
||
235 |
lemma supp_list_rev: |
|
236 |
fixes xs :: "'a list" |
|
237 |
shows "supp (rev xs) = (supp xs)" |
|
238 |
by (induct xs, auto simp add: supp_list_append supp_list_cons supp_list_nil) |
|
239 |
||
240 |
lemma supp_bool: |
|
241 |
fixes x :: "bool" |
|
242 |
shows "supp (x) = {}" |
|
243 |
apply(case_tac "x") |
|
244 |
apply(simp_all add: supp_def) |
|
245 |
done |
|
246 |
||
247 |
lemma supp_some: |
|
248 |
fixes x :: "'a" |
|
249 |
shows "supp (Some x) = (supp x)" |
|
250 |
apply(simp add: supp_def) |
|
251 |
done |
|
252 |
||
253 |
lemma supp_none: |
|
254 |
fixes x :: "'a" |
|
255 |
shows "supp (None) = {}" |
|
256 |
apply(simp add: supp_def) |
|
257 |
done |
|
258 |
||
259 |
lemma supp_int: |
|
260 |
fixes i::"int" |
|
261 |
shows "supp (i) = {}" |
|
262 |
apply(simp add: supp_def perm_int_def) |
|
263 |
done |
|
264 |
||
20388 | 265 |
lemma supp_nat: |
266 |
fixes n::"nat" |
|
267 |
shows "supp (n) = {}" |
|
268 |
apply(simp add: supp_def perm_nat_def) |
|
269 |
done |
|
270 |
||
18627 | 271 |
lemma supp_char: |
272 |
fixes c::"char" |
|
273 |
shows "supp (c) = {}" |
|
274 |
apply(simp add: supp_def perm_char_def) |
|
275 |
done |
|
276 |
||
277 |
lemma supp_string: |
|
278 |
fixes s::"string" |
|
279 |
shows "supp (s) = {}" |
|
23050 | 280 |
apply(simp add: supp_def perm_string) |
18627 | 281 |
done |
282 |
||
18264 | 283 |
lemma fresh_set_empty: |
284 |
shows "a\<sharp>{}" |
|
285 |
by (simp add: fresh_def supp_set_empty) |
|
286 |
||
18578 | 287 |
lemma fresh_singleton: |
288 |
shows "a\<sharp>{x} = a\<sharp>x" |
|
289 |
by (simp add: fresh_def supp_singleton) |
|
290 |
||
19858 | 291 |
lemma fresh_unit: |
292 |
shows "a\<sharp>()" |
|
293 |
by (simp add: fresh_def supp_unit) |
|
294 |
||
17870 | 295 |
lemma fresh_prod: |
296 |
fixes a :: "'x" |
|
297 |
and x :: "'a" |
|
298 |
and y :: "'b" |
|
299 |
shows "a\<sharp>(x,y) = (a\<sharp>x \<and> a\<sharp>y)" |
|
300 |
by (simp add: fresh_def supp_prod) |
|
301 |
||
302 |
lemma fresh_list_nil: |
|
303 |
fixes a :: "'x" |
|
18264 | 304 |
shows "a\<sharp>[]" |
17870 | 305 |
by (simp add: fresh_def supp_list_nil) |
306 |
||
307 |
lemma fresh_list_cons: |
|
308 |
fixes a :: "'x" |
|
309 |
and x :: "'a" |
|
310 |
and xs :: "'a list" |
|
311 |
shows "a\<sharp>(x#xs) = (a\<sharp>x \<and> a\<sharp>xs)" |
|
312 |
by (simp add: fresh_def supp_list_cons) |
|
313 |
||
314 |
lemma fresh_list_append: |
|
315 |
fixes a :: "'x" |
|
316 |
and xs :: "'a list" |
|
317 |
and ys :: "'a list" |
|
318 |
shows "a\<sharp>(xs@ys) = (a\<sharp>xs \<and> a\<sharp>ys)" |
|
319 |
by (simp add: fresh_def supp_list_append) |
|
320 |
||
321 |
lemma fresh_list_rev: |
|
322 |
fixes a :: "'x" |
|
323 |
and xs :: "'a list" |
|
324 |
shows "a\<sharp>(rev xs) = a\<sharp>xs" |
|
325 |
by (simp add: fresh_def supp_list_rev) |
|
326 |
||
327 |
lemma fresh_none: |
|
328 |
fixes a :: "'x" |
|
329 |
shows "a\<sharp>None" |
|
22831
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
urbanc
parents:
22829
diff
changeset
|
330 |
by (simp add: fresh_def supp_none) |
17870 | 331 |
|
332 |
lemma fresh_some: |
|
333 |
fixes a :: "'x" |
|
334 |
and x :: "'a" |
|
335 |
shows "a\<sharp>(Some x) = a\<sharp>x" |
|
22831
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
urbanc
parents:
22829
diff
changeset
|
336 |
by (simp add: fresh_def supp_some) |
17870 | 337 |
|
21010
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
338 |
lemma fresh_int: |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
339 |
fixes a :: "'x" |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
340 |
and i :: "int" |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
341 |
shows "a\<sharp>i" |
22831
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
urbanc
parents:
22829
diff
changeset
|
342 |
by (simp add: fresh_def supp_int) |
21010
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
343 |
|
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
344 |
lemma fresh_nat: |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
345 |
fixes a :: "'x" |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
346 |
and n :: "nat" |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
347 |
shows "a\<sharp>n" |
22831
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
urbanc
parents:
22829
diff
changeset
|
348 |
by (simp add: fresh_def supp_nat) |
21010
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
349 |
|
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
350 |
lemma fresh_char: |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
351 |
fixes a :: "'x" |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
352 |
and c :: "char" |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
353 |
shows "a\<sharp>c" |
22831
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
urbanc
parents:
22829
diff
changeset
|
354 |
by (simp add: fresh_def supp_char) |
21010
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
355 |
|
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
356 |
lemma fresh_string: |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
357 |
fixes a :: "'x" |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
358 |
and s :: "string" |
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
359 |
shows "a\<sharp>s" |
22831
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
urbanc
parents:
22829
diff
changeset
|
360 |
by (simp add: fresh_def supp_string) |
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
urbanc
parents:
22829
diff
changeset
|
361 |
|
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
urbanc
parents:
22829
diff
changeset
|
362 |
lemma fresh_bool: |
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
urbanc
parents:
22829
diff
changeset
|
363 |
fixes a :: "'x" |
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
urbanc
parents:
22829
diff
changeset
|
364 |
and b :: "bool" |
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
urbanc
parents:
22829
diff
changeset
|
365 |
shows "a\<sharp>b" |
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
urbanc
parents:
22829
diff
changeset
|
366 |
by (simp add: fresh_def supp_bool) |
21010
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
urbanc
parents:
20809
diff
changeset
|
367 |
|
18294
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents:
18268
diff
changeset
|
368 |
text {* Normalization of freshness results; cf.\ @{text nominal_induct} *} |
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents:
18268
diff
changeset
|
369 |
|
21377
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
370 |
lemma fresh_unit_elim: |
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
371 |
shows "(a\<sharp>() \<Longrightarrow> PROP C) \<equiv> PROP C" |
18294
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents:
18268
diff
changeset
|
372 |
by (simp add: fresh_def supp_unit) |
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents:
18268
diff
changeset
|
373 |
|
21377
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
374 |
lemma fresh_prod_elim: |
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
375 |
shows "(a\<sharp>(x,y) \<Longrightarrow> PROP C) \<equiv> (a\<sharp>x \<Longrightarrow> a\<sharp>y \<Longrightarrow> PROP C)" |
18294
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents:
18268
diff
changeset
|
376 |
by rule (simp_all add: fresh_prod) |
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents:
18268
diff
changeset
|
377 |
|
21405
26b51f724fe6
added an intro lemma for freshness of products; set up
urbanc
parents:
21377
diff
changeset
|
378 |
(* this rule needs to be added before the fresh_prodD is *) |
26b51f724fe6
added an intro lemma for freshness of products; set up
urbanc
parents:
21377
diff
changeset
|
379 |
(* added to the simplifier with mksimps *) |
26b51f724fe6
added an intro lemma for freshness of products; set up
urbanc
parents:
21377
diff
changeset
|
380 |
lemma [simp]: |
26b51f724fe6
added an intro lemma for freshness of products; set up
urbanc
parents:
21377
diff
changeset
|
381 |
shows "a\<sharp>x1 \<Longrightarrow> a\<sharp>x2 \<Longrightarrow> a\<sharp>(x1,x2)" |
26b51f724fe6
added an intro lemma for freshness of products; set up
urbanc
parents:
21377
diff
changeset
|
382 |
by (simp add: fresh_prod) |
26b51f724fe6
added an intro lemma for freshness of products; set up
urbanc
parents:
21377
diff
changeset
|
383 |
|
21318
edb595802d22
added fresh_prodD, which is included fresh_prodD into mksimps setup;
wenzelm
parents:
21010
diff
changeset
|
384 |
lemma fresh_prodD: |
21377
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
385 |
shows "a\<sharp>(x,y) \<Longrightarrow> a\<sharp>x" |
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
386 |
and "a\<sharp>(x,y) \<Longrightarrow> a\<sharp>y" |
21318
edb595802d22
added fresh_prodD, which is included fresh_prodD into mksimps setup;
wenzelm
parents:
21010
diff
changeset
|
387 |
by (simp_all add: fresh_prod) |
edb595802d22
added fresh_prodD, which is included fresh_prodD into mksimps setup;
wenzelm
parents:
21010
diff
changeset
|
388 |
|
edb595802d22
added fresh_prodD, which is included fresh_prodD into mksimps setup;
wenzelm
parents:
21010
diff
changeset
|
389 |
ML_setup {* |
21377
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
390 |
val mksimps_pairs = ("Nominal.fresh", thms "fresh_prodD")::mksimps_pairs; |
21318
edb595802d22
added fresh_prodD, which is included fresh_prodD into mksimps setup;
wenzelm
parents:
21010
diff
changeset
|
391 |
change_simpset (fn ss => ss setmksimps (mksimps mksimps_pairs)); |
edb595802d22
added fresh_prodD, which is included fresh_prodD into mksimps setup;
wenzelm
parents:
21010
diff
changeset
|
392 |
*} |
edb595802d22
added fresh_prodD, which is included fresh_prodD into mksimps setup;
wenzelm
parents:
21010
diff
changeset
|
393 |
|
18294
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents:
18268
diff
changeset
|
394 |
|
17870 | 395 |
section {* Abstract Properties for Permutations and Atoms *} |
396 |
(*=========================================================*) |
|
397 |
||
398 |
(* properties for being a permutation type *) |
|
399 |
constdefs |
|
400 |
"pt TYPE('a) TYPE('x) \<equiv> |
|
401 |
(\<forall>(x::'a). ([]::'x prm)\<bullet>x = x) \<and> |
|
402 |
(\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). (pi1@pi2)\<bullet>x = pi1\<bullet>(pi2\<bullet>x)) \<and> |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
403 |
(\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). pi1 \<triangleq> pi2 \<longrightarrow> pi1\<bullet>x = pi2\<bullet>x)" |
17870 | 404 |
|
405 |
(* properties for being an atom type *) |
|
406 |
constdefs |
|
407 |
"at TYPE('x) \<equiv> |
|
408 |
(\<forall>(x::'x). ([]::'x prm)\<bullet>x = x) \<and> |
|
409 |
(\<forall>(a::'x) (b::'x) (pi::'x prm) (x::'x). ((a,b)#(pi::'x prm))\<bullet>x = swap (a,b) (pi\<bullet>x)) \<and> |
|
410 |
(\<forall>(a::'x) (b::'x) (c::'x). swap (a,b) c = (if a=c then b else (if b=c then a else c))) \<and> |
|
411 |
(infinite (UNIV::'x set))" |
|
412 |
||
413 |
(* property of two atom-types being disjoint *) |
|
414 |
constdefs |
|
415 |
"disjoint TYPE('x) TYPE('y) \<equiv> |
|
416 |
(\<forall>(pi::'x prm)(x::'y). pi\<bullet>x = x) \<and> |
|
417 |
(\<forall>(pi::'y prm)(x::'x). pi\<bullet>x = x)" |
|
418 |
||
419 |
(* composition property of two permutation on a type 'a *) |
|
420 |
constdefs |
|
421 |
"cp TYPE ('a) TYPE('x) TYPE('y) \<equiv> |
|
422 |
(\<forall>(pi2::'y prm) (pi1::'x prm) (x::'a) . pi1\<bullet>(pi2\<bullet>x) = (pi1\<bullet>pi2)\<bullet>(pi1\<bullet>x))" |
|
423 |
||
424 |
(* property of having finite support *) |
|
425 |
constdefs |
|
426 |
"fs TYPE('a) TYPE('x) \<equiv> \<forall>(x::'a). finite ((supp x)::'x set)" |
|
427 |
||
428 |
section {* Lemmas about the atom-type properties*} |
|
429 |
(*==============================================*) |
|
430 |
||
431 |
lemma at1: |
|
432 |
fixes x::"'x" |
|
433 |
assumes a: "at TYPE('x)" |
|
434 |
shows "([]::'x prm)\<bullet>x = x" |
|
435 |
using a by (simp add: at_def) |
|
436 |
||
437 |
lemma at2: |
|
438 |
fixes a ::"'x" |
|
439 |
and b ::"'x" |
|
440 |
and x ::"'x" |
|
441 |
and pi::"'x prm" |
|
442 |
assumes a: "at TYPE('x)" |
|
443 |
shows "((a,b)#pi)\<bullet>x = swap (a,b) (pi\<bullet>x)" |
|
444 |
using a by (simp only: at_def) |
|
445 |
||
446 |
lemma at3: |
|
447 |
fixes a ::"'x" |
|
448 |
and b ::"'x" |
|
449 |
and c ::"'x" |
|
450 |
assumes a: "at TYPE('x)" |
|
451 |
shows "swap (a,b) c = (if a=c then b else (if b=c then a else c))" |
|
452 |
using a by (simp only: at_def) |
|
453 |
||
454 |
(* rules to calculate simple premutations *) |
|
455 |
lemmas at_calc = at2 at1 at3 |
|
456 |
||
22610 | 457 |
lemma at_swap_simps: |
458 |
fixes a ::"'x" |
|
459 |
and b ::"'x" |
|
460 |
assumes a: "at TYPE('x)" |
|
461 |
shows "[(a,b)]\<bullet>a = b" |
|
462 |
and "[(a,b)]\<bullet>b = a" |
|
463 |
using a by (simp_all add: at_calc) |
|
464 |
||
17870 | 465 |
lemma at4: |
466 |
assumes a: "at TYPE('x)" |
|
467 |
shows "infinite (UNIV::'x set)" |
|
468 |
using a by (simp add: at_def) |
|
469 |
||
470 |
lemma at_append: |
|
471 |
fixes pi1 :: "'x prm" |
|
472 |
and pi2 :: "'x prm" |
|
473 |
and c :: "'x" |
|
474 |
assumes at: "at TYPE('x)" |
|
475 |
shows "(pi1@pi2)\<bullet>c = pi1\<bullet>(pi2\<bullet>c)" |
|
476 |
proof (induct pi1) |
|
477 |
case Nil show ?case by (simp add: at1[OF at]) |
|
478 |
next |
|
479 |
case (Cons x xs) |
|
18053
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents:
18048
diff
changeset
|
480 |
have "(xs@pi2)\<bullet>c = xs\<bullet>(pi2\<bullet>c)" by fact |
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents:
18048
diff
changeset
|
481 |
also have "(x#xs)@pi2 = x#(xs@pi2)" by simp |
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents:
18048
diff
changeset
|
482 |
ultimately show ?case by (cases "x", simp add: at2[OF at]) |
17870 | 483 |
qed |
484 |
||
485 |
lemma at_swap: |
|
486 |
fixes a :: "'x" |
|
487 |
and b :: "'x" |
|
488 |
and c :: "'x" |
|
489 |
assumes at: "at TYPE('x)" |
|
490 |
shows "swap (a,b) (swap (a,b) c) = c" |
|
491 |
by (auto simp add: at3[OF at]) |
|
492 |
||
493 |
lemma at_rev_pi: |
|
494 |
fixes pi :: "'x prm" |
|
495 |
and c :: "'x" |
|
496 |
assumes at: "at TYPE('x)" |
|
497 |
shows "(rev pi)\<bullet>(pi\<bullet>c) = c" |
|
498 |
proof(induct pi) |
|
499 |
case Nil show ?case by (simp add: at1[OF at]) |
|
500 |
next |
|
501 |
case (Cons x xs) thus ?case |
|
502 |
by (cases "x", simp add: at2[OF at] at_append[OF at] at1[OF at] at_swap[OF at]) |
|
503 |
qed |
|
504 |
||
505 |
lemma at_pi_rev: |
|
506 |
fixes pi :: "'x prm" |
|
507 |
and x :: "'x" |
|
508 |
assumes at: "at TYPE('x)" |
|
509 |
shows "pi\<bullet>((rev pi)\<bullet>x) = x" |
|
510 |
by (rule at_rev_pi[OF at, of "rev pi" _,simplified]) |
|
511 |
||
512 |
lemma at_bij1: |
|
513 |
fixes pi :: "'x prm" |
|
514 |
and x :: "'x" |
|
515 |
and y :: "'x" |
|
516 |
assumes at: "at TYPE('x)" |
|
517 |
and a: "(pi\<bullet>x) = y" |
|
518 |
shows "x=(rev pi)\<bullet>y" |
|
519 |
proof - |
|
520 |
from a have "y=(pi\<bullet>x)" by (rule sym) |
|
521 |
thus ?thesis by (simp only: at_rev_pi[OF at]) |
|
522 |
qed |
|
523 |
||
524 |
lemma at_bij2: |
|
525 |
fixes pi :: "'x prm" |
|
526 |
and x :: "'x" |
|
527 |
and y :: "'x" |
|
528 |
assumes at: "at TYPE('x)" |
|
529 |
and a: "((rev pi)\<bullet>x) = y" |
|
530 |
shows "x=pi\<bullet>y" |
|
531 |
proof - |
|
532 |
from a have "y=((rev pi)\<bullet>x)" by (rule sym) |
|
533 |
thus ?thesis by (simp only: at_pi_rev[OF at]) |
|
534 |
qed |
|
535 |
||
536 |
lemma at_bij: |
|
537 |
fixes pi :: "'x prm" |
|
538 |
and x :: "'x" |
|
539 |
and y :: "'x" |
|
540 |
assumes at: "at TYPE('x)" |
|
541 |
shows "(pi\<bullet>x = pi\<bullet>y) = (x=y)" |
|
542 |
proof |
|
543 |
assume "pi\<bullet>x = pi\<bullet>y" |
|
544 |
hence "x=(rev pi)\<bullet>(pi\<bullet>y)" by (rule at_bij1[OF at]) |
|
545 |
thus "x=y" by (simp only: at_rev_pi[OF at]) |
|
546 |
next |
|
547 |
assume "x=y" |
|
548 |
thus "pi\<bullet>x = pi\<bullet>y" by simp |
|
549 |
qed |
|
550 |
||
551 |
lemma at_supp: |
|
552 |
fixes x :: "'x" |
|
553 |
assumes at: "at TYPE('x)" |
|
554 |
shows "supp x = {x}" |
|
555 |
proof (simp add: supp_def Collect_conj_eq Collect_imp_eq at_calc[OF at], auto) |
|
556 |
assume f: "finite {b::'x. b \<noteq> x}" |
|
557 |
have a1: "{b::'x. b \<noteq> x} = UNIV-{x}" by force |
|
558 |
have a2: "infinite (UNIV::'x set)" by (rule at4[OF at]) |
|
559 |
from f a1 a2 show False by force |
|
560 |
qed |
|
561 |
||
562 |
lemma at_fresh: |
|
563 |
fixes a :: "'x" |
|
564 |
and b :: "'x" |
|
565 |
assumes at: "at TYPE('x)" |
|
566 |
shows "(a\<sharp>b) = (a\<noteq>b)" |
|
567 |
by (simp add: at_supp[OF at] fresh_def) |
|
568 |
||
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
569 |
lemma at_prm_fresh: |
17870 | 570 |
fixes c :: "'x" |
571 |
and pi:: "'x prm" |
|
572 |
assumes at: "at TYPE('x)" |
|
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
573 |
and a: "c\<sharp>pi" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
574 |
shows "pi\<bullet>c = c" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
575 |
using a |
17870 | 576 |
apply(induct pi) |
577 |
apply(simp add: at1[OF at]) |
|
578 |
apply(force simp add: fresh_list_cons at2[OF at] fresh_prod at_fresh[OF at] at3[OF at]) |
|
579 |
done |
|
580 |
||
581 |
lemma at_prm_rev_eq: |
|
582 |
fixes pi1 :: "'x prm" |
|
583 |
and pi2 :: "'x prm" |
|
584 |
assumes at: "at TYPE('x)" |
|
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
585 |
shows "((rev pi1) \<triangleq> (rev pi2)) = (pi1 \<triangleq> pi2)" |
17870 | 586 |
proof (simp add: prm_eq_def, auto) |
587 |
fix x |
|
588 |
assume "\<forall>x::'x. (rev pi1)\<bullet>x = (rev pi2)\<bullet>x" |
|
589 |
hence "(rev (pi1::'x prm))\<bullet>(pi2\<bullet>(x::'x)) = (rev (pi2::'x prm))\<bullet>(pi2\<bullet>x)" by simp |
|
590 |
hence "(rev (pi1::'x prm))\<bullet>((pi2::'x prm)\<bullet>x) = (x::'x)" by (simp add: at_rev_pi[OF at]) |
|
591 |
hence "(pi2::'x prm)\<bullet>x = (pi1::'x prm)\<bullet>x" by (simp add: at_bij2[OF at]) |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
592 |
thus "pi1\<bullet>x = pi2\<bullet>x" by simp |
17870 | 593 |
next |
594 |
fix x |
|
595 |
assume "\<forall>x::'x. pi1\<bullet>x = pi2\<bullet>x" |
|
596 |
hence "(pi1::'x prm)\<bullet>((rev pi2)\<bullet>x) = (pi2::'x prm)\<bullet>((rev pi2)\<bullet>(x::'x))" by simp |
|
597 |
hence "(pi1::'x prm)\<bullet>((rev pi2)\<bullet>(x::'x)) = x" by (simp add: at_pi_rev[OF at]) |
|
598 |
hence "(rev pi2)\<bullet>x = (rev pi1)\<bullet>(x::'x)" by (simp add: at_bij1[OF at]) |
|
599 |
thus "(rev pi1)\<bullet>x = (rev pi2)\<bullet>(x::'x)" by simp |
|
600 |
qed |
|
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
601 |
|
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
602 |
lemma at_prm_eq_append: |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
603 |
fixes pi1 :: "'x prm" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
604 |
and pi2 :: "'x prm" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
605 |
and pi3 :: "'x prm" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
606 |
assumes at: "at TYPE('x)" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
607 |
and a: "pi1 \<triangleq> pi2" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
608 |
shows "(pi3@pi1) \<triangleq> (pi3@pi2)" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
609 |
using a by (simp add: prm_eq_def at_append[OF at] at_bij[OF at]) |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
610 |
|
19325 | 611 |
lemma at_prm_eq_append': |
612 |
fixes pi1 :: "'x prm" |
|
613 |
and pi2 :: "'x prm" |
|
614 |
and pi3 :: "'x prm" |
|
615 |
assumes at: "at TYPE('x)" |
|
616 |
and a: "pi1 \<triangleq> pi2" |
|
617 |
shows "(pi1@pi3) \<triangleq> (pi2@pi3)" |
|
618 |
using a by (simp add: prm_eq_def at_append[OF at]) |
|
619 |
||
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
620 |
lemma at_prm_eq_trans: |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
621 |
fixes pi1 :: "'x prm" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
622 |
and pi2 :: "'x prm" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
623 |
and pi3 :: "'x prm" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
624 |
assumes a1: "pi1 \<triangleq> pi2" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
625 |
and a2: "pi2 \<triangleq> pi3" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
626 |
shows "pi1 \<triangleq> pi3" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
627 |
using a1 a2 by (auto simp add: prm_eq_def) |
17870 | 628 |
|
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
629 |
lemma at_prm_eq_refl: |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
630 |
fixes pi :: "'x prm" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
631 |
shows "pi \<triangleq> pi" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
632 |
by (simp add: prm_eq_def) |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
633 |
|
17870 | 634 |
lemma at_prm_rev_eq1: |
635 |
fixes pi1 :: "'x prm" |
|
636 |
and pi2 :: "'x prm" |
|
637 |
assumes at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
638 |
shows "pi1 \<triangleq> pi2 \<Longrightarrow> (rev pi1) \<triangleq> (rev pi2)" |
17870 | 639 |
by (simp add: at_prm_rev_eq[OF at]) |
640 |
||
22774
8c64803fae48
adds op in front of an infix to fix SML compilation
narboux
parents:
22768
diff
changeset
|
641 |
|
17870 | 642 |
lemma at_ds1: |
643 |
fixes a :: "'x" |
|
644 |
assumes at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
645 |
shows "[(a,a)] \<triangleq> []" |
17870 | 646 |
by (force simp add: prm_eq_def at_calc[OF at]) |
647 |
||
648 |
lemma at_ds2: |
|
649 |
fixes pi :: "'x prm" |
|
650 |
and a :: "'x" |
|
651 |
and b :: "'x" |
|
652 |
assumes at: "at TYPE('x)" |
|
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
653 |
shows "([(a,b)]@pi) \<triangleq> (pi@[((rev pi)\<bullet>a,(rev pi)\<bullet>b)])" |
17870 | 654 |
by (force simp add: prm_eq_def at_append[OF at] at_bij[OF at] at_pi_rev[OF at] |
655 |
at_rev_pi[OF at] at_calc[OF at]) |
|
656 |
||
657 |
lemma at_ds3: |
|
658 |
fixes a :: "'x" |
|
659 |
and b :: "'x" |
|
660 |
and c :: "'x" |
|
661 |
assumes at: "at TYPE('x)" |
|
662 |
and a: "distinct [a,b,c]" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
663 |
shows "[(a,c),(b,c),(a,c)] \<triangleq> [(a,b)]" |
17870 | 664 |
using a by (force simp add: prm_eq_def at_calc[OF at]) |
665 |
||
666 |
lemma at_ds4: |
|
667 |
fixes a :: "'x" |
|
668 |
and b :: "'x" |
|
669 |
and pi :: "'x prm" |
|
670 |
assumes at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
671 |
shows "(pi@[(a,(rev pi)\<bullet>b)]) \<triangleq> ([(pi\<bullet>a,b)]@pi)" |
17870 | 672 |
by (force simp add: prm_eq_def at_append[OF at] at_calc[OF at] at_bij[OF at] |
673 |
at_pi_rev[OF at] at_rev_pi[OF at]) |
|
674 |
||
675 |
lemma at_ds5: |
|
676 |
fixes a :: "'x" |
|
677 |
and b :: "'x" |
|
678 |
assumes at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
679 |
shows "[(a,b)] \<triangleq> [(b,a)]" |
17870 | 680 |
by (force simp add: prm_eq_def at_calc[OF at]) |
681 |
||
19164 | 682 |
lemma at_ds5': |
683 |
fixes a :: "'x" |
|
684 |
and b :: "'x" |
|
685 |
assumes at: "at TYPE('x)" |
|
686 |
shows "[(a,b),(b,a)] \<triangleq> []" |
|
687 |
by (force simp add: prm_eq_def at_calc[OF at]) |
|
688 |
||
17870 | 689 |
lemma at_ds6: |
690 |
fixes a :: "'x" |
|
691 |
and b :: "'x" |
|
692 |
and c :: "'x" |
|
693 |
assumes at: "at TYPE('x)" |
|
694 |
and a: "distinct [a,b,c]" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
695 |
shows "[(a,c),(a,b)] \<triangleq> [(b,c),(a,c)]" |
17870 | 696 |
using a by (force simp add: prm_eq_def at_calc[OF at]) |
697 |
||
698 |
lemma at_ds7: |
|
699 |
fixes pi :: "'x prm" |
|
700 |
assumes at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
701 |
shows "((rev pi)@pi) \<triangleq> []" |
17870 | 702 |
by (simp add: prm_eq_def at1[OF at] at_append[OF at] at_rev_pi[OF at]) |
703 |
||
704 |
lemma at_ds8_aux: |
|
705 |
fixes pi :: "'x prm" |
|
706 |
and a :: "'x" |
|
707 |
and b :: "'x" |
|
708 |
and c :: "'x" |
|
709 |
assumes at: "at TYPE('x)" |
|
710 |
shows "pi\<bullet>(swap (a,b) c) = swap (pi\<bullet>a,pi\<bullet>b) (pi\<bullet>c)" |
|
711 |
by (force simp add: at_calc[OF at] at_bij[OF at]) |
|
712 |
||
713 |
lemma at_ds8: |
|
714 |
fixes pi1 :: "'x prm" |
|
715 |
and pi2 :: "'x prm" |
|
716 |
and a :: "'x" |
|
717 |
and b :: "'x" |
|
718 |
assumes at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
719 |
shows "(pi1@pi2) \<triangleq> ((pi1\<bullet>pi2)@pi1)" |
17870 | 720 |
apply(induct_tac pi2) |
721 |
apply(simp add: prm_eq_def) |
|
722 |
apply(auto simp add: prm_eq_def) |
|
723 |
apply(simp add: at2[OF at]) |
|
724 |
apply(drule_tac x="aa" in spec) |
|
725 |
apply(drule sym) |
|
726 |
apply(simp) |
|
727 |
apply(simp add: at_append[OF at]) |
|
728 |
apply(simp add: at2[OF at]) |
|
729 |
apply(simp add: at_ds8_aux[OF at]) |
|
730 |
done |
|
731 |
||
732 |
lemma at_ds9: |
|
733 |
fixes pi1 :: "'x prm" |
|
734 |
and pi2 :: "'x prm" |
|
735 |
and a :: "'x" |
|
736 |
and b :: "'x" |
|
737 |
assumes at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
738 |
shows " ((rev pi2)@(rev pi1)) \<triangleq> ((rev pi1)@(rev (pi1\<bullet>pi2)))" |
17870 | 739 |
apply(induct_tac pi2) |
740 |
apply(simp add: prm_eq_def) |
|
741 |
apply(auto simp add: prm_eq_def) |
|
742 |
apply(simp add: at_append[OF at]) |
|
743 |
apply(simp add: at2[OF at] at1[OF at]) |
|
744 |
apply(drule_tac x="swap(pi1\<bullet>a,pi1\<bullet>b) aa" in spec) |
|
745 |
apply(drule sym) |
|
746 |
apply(simp) |
|
747 |
apply(simp add: at_ds8_aux[OF at]) |
|
748 |
apply(simp add: at_rev_pi[OF at]) |
|
749 |
done |
|
750 |
||
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
751 |
lemma at_ds10: |
19132 | 752 |
fixes pi :: "'x prm" |
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
753 |
and a :: "'x" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
754 |
and b :: "'x" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
755 |
assumes at: "at TYPE('x)" |
19132 | 756 |
and a: "b\<sharp>(rev pi)" |
757 |
shows "([(pi\<bullet>a,b)]@pi) \<triangleq> (pi@[(a,b)])" |
|
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
758 |
using a |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
759 |
apply - |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
760 |
apply(rule at_prm_eq_trans) |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
761 |
apply(rule at_ds2[OF at]) |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
762 |
apply(simp add: at_prm_fresh[OF at] at_rev_pi[OF at]) |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
763 |
apply(rule at_prm_eq_refl) |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
764 |
done |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
765 |
|
21377
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
766 |
--"there always exists an atom that is not being in a finite set" |
17870 | 767 |
lemma ex_in_inf: |
768 |
fixes A::"'x set" |
|
769 |
assumes at: "at TYPE('x)" |
|
770 |
and fs: "finite A" |
|
21377
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
771 |
obtains c::"'x" where "c\<notin>A" |
17870 | 772 |
proof - |
773 |
from fs at4[OF at] have "infinite ((UNIV::'x set) - A)" |
|
774 |
by (simp add: Diff_infinite_finite) |
|
775 |
hence "((UNIV::'x set) - A) \<noteq> ({}::'x set)" by (force simp only:) |
|
21377
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
776 |
then obtain c::"'x" where "c\<in>((UNIV::'x set) - A)" by force |
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
777 |
then have "c\<notin>A" by simp |
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
778 |
then show ?thesis using prems by simp |
17870 | 779 |
qed |
780 |
||
21377
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
781 |
text {* there always exists a fresh name for an object with finite support *} |
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
782 |
lemma at_exists_fresh': |
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
783 |
fixes x :: "'a" |
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
784 |
assumes at: "at TYPE('x)" |
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
785 |
and fs: "finite ((supp x)::'x set)" |
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
786 |
shows "\<exists>c::'x. c\<sharp>x" |
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
787 |
by (auto simp add: fresh_def intro: ex_in_inf[OF at, OF fs]) |
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
788 |
|
17870 | 789 |
lemma at_exists_fresh: |
790 |
fixes x :: "'a" |
|
791 |
assumes at: "at TYPE('x)" |
|
792 |
and fs: "finite ((supp x)::'x set)" |
|
21377
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
793 |
obtains c::"'x" where "c\<sharp>x" |
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
794 |
by (auto intro: ex_in_inf[OF at, OF fs] simp add: fresh_def) |
17870 | 795 |
|
21377
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
796 |
lemma at_finite_select: |
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
urbanc
parents:
21318
diff
changeset
|
797 |
shows "at (TYPE('a)) \<Longrightarrow> finite (S::'a set) \<Longrightarrow> \<exists>x. x \<notin> S" |
18657 | 798 |
apply (drule Diff_infinite_finite) |
799 |
apply (simp add: at_def) |
|
800 |
apply blast |
|
801 |
apply (subgoal_tac "UNIV - S \<noteq> {}") |
|
802 |
apply (simp only: ex_in_conv [symmetric]) |
|
803 |
apply blast |
|
804 |
apply (rule notI) |
|
805 |
apply simp |
|
806 |
done |
|
807 |
||
19140 | 808 |
lemma at_different: |
19132 | 809 |
assumes at: "at TYPE('x)" |
19140 | 810 |
shows "\<exists>(b::'x). a\<noteq>b" |
19132 | 811 |
proof - |
19140 | 812 |
have "infinite (UNIV::'x set)" by (rule at4[OF at]) |
813 |
hence inf2: "infinite (UNIV-{a})" by (rule infinite_remove) |
|
19132 | 814 |
have "(UNIV-{a}) \<noteq> ({}::'x set)" |
815 |
proof (rule_tac ccontr, drule_tac notnotD) |
|
816 |
assume "UNIV-{a} = ({}::'x set)" |
|
817 |
with inf2 have "infinite ({}::'x set)" by simp |
|
19869 | 818 |
then show "False" by auto |
19132 | 819 |
qed |
820 |
hence "\<exists>(b::'x). b\<in>(UNIV-{a})" by blast |
|
821 |
then obtain b::"'x" where mem2: "b\<in>(UNIV-{a})" by blast |
|
19140 | 822 |
from mem2 have "a\<noteq>b" by blast |
823 |
then show "\<exists>(b::'x). a\<noteq>b" by blast |
|
19132 | 824 |
qed |
825 |
||
17870 | 826 |
--"the at-props imply the pt-props" |
827 |
lemma at_pt_inst: |
|
828 |
assumes at: "at TYPE('x)" |
|
829 |
shows "pt TYPE('x) TYPE('x)" |
|
830 |
apply(auto simp only: pt_def) |
|
831 |
apply(simp only: at1[OF at]) |
|
832 |
apply(simp only: at_append[OF at]) |
|
18053
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents:
18048
diff
changeset
|
833 |
apply(simp only: prm_eq_def) |
17870 | 834 |
done |
835 |
||
836 |
section {* finite support properties *} |
|
837 |
(*===================================*) |
|
838 |
||
839 |
lemma fs1: |
|
840 |
fixes x :: "'a" |
|
841 |
assumes a: "fs TYPE('a) TYPE('x)" |
|
842 |
shows "finite ((supp x)::'x set)" |
|
843 |
using a by (simp add: fs_def) |
|
844 |
||
845 |
lemma fs_at_inst: |
|
846 |
fixes a :: "'x" |
|
847 |
assumes at: "at TYPE('x)" |
|
848 |
shows "fs TYPE('x) TYPE('x)" |
|
849 |
apply(simp add: fs_def) |
|
850 |
apply(simp add: at_supp[OF at]) |
|
851 |
done |
|
852 |
||
853 |
lemma fs_unit_inst: |
|
854 |
shows "fs TYPE(unit) TYPE('x)" |
|
855 |
apply(simp add: fs_def) |
|
856 |
apply(simp add: supp_unit) |
|
857 |
done |
|
858 |
||
859 |
lemma fs_prod_inst: |
|
860 |
assumes fsa: "fs TYPE('a) TYPE('x)" |
|
861 |
and fsb: "fs TYPE('b) TYPE('x)" |
|
862 |
shows "fs TYPE('a\<times>'b) TYPE('x)" |
|
863 |
apply(unfold fs_def) |
|
864 |
apply(auto simp add: supp_prod) |
|
865 |
apply(rule fs1[OF fsa]) |
|
866 |
apply(rule fs1[OF fsb]) |
|
867 |
done |
|
868 |
||
18600 | 869 |
lemma fs_nprod_inst: |
870 |
assumes fsa: "fs TYPE('a) TYPE('x)" |
|
871 |
and fsb: "fs TYPE('b) TYPE('x)" |
|
872 |
shows "fs TYPE(('a,'b) nprod) TYPE('x)" |
|
873 |
apply(unfold fs_def, rule allI) |
|
874 |
apply(case_tac x) |
|
875 |
apply(auto simp add: supp_nprod) |
|
876 |
apply(rule fs1[OF fsa]) |
|
877 |
apply(rule fs1[OF fsb]) |
|
878 |
done |
|
879 |
||
17870 | 880 |
lemma fs_list_inst: |
881 |
assumes fs: "fs TYPE('a) TYPE('x)" |
|
882 |
shows "fs TYPE('a list) TYPE('x)" |
|
883 |
apply(simp add: fs_def, rule allI) |
|
884 |
apply(induct_tac x) |
|
885 |
apply(simp add: supp_list_nil) |
|
886 |
apply(simp add: supp_list_cons) |
|
887 |
apply(rule fs1[OF fs]) |
|
888 |
done |
|
889 |
||
18431 | 890 |
lemma fs_option_inst: |
891 |
assumes fs: "fs TYPE('a) TYPE('x)" |
|
892 |
shows "fs TYPE('a option) TYPE('x)" |
|
17870 | 893 |
apply(simp add: fs_def, rule allI) |
18431 | 894 |
apply(case_tac x) |
895 |
apply(simp add: supp_none) |
|
896 |
apply(simp add: supp_some) |
|
897 |
apply(rule fs1[OF fs]) |
|
17870 | 898 |
done |
899 |
||
900 |
section {* Lemmas about the permutation properties *} |
|
901 |
(*=================================================*) |
|
902 |
||
903 |
lemma pt1: |
|
904 |
fixes x::"'a" |
|
905 |
assumes a: "pt TYPE('a) TYPE('x)" |
|
906 |
shows "([]::'x prm)\<bullet>x = x" |
|
907 |
using a by (simp add: pt_def) |
|
908 |
||
909 |
lemma pt2: |
|
910 |
fixes pi1::"'x prm" |
|
911 |
and pi2::"'x prm" |
|
912 |
and x ::"'a" |
|
913 |
assumes a: "pt TYPE('a) TYPE('x)" |
|
914 |
shows "(pi1@pi2)\<bullet>x = pi1\<bullet>(pi2\<bullet>x)" |
|
915 |
using a by (simp add: pt_def) |
|
916 |
||
917 |
lemma pt3: |
|
918 |
fixes pi1::"'x prm" |
|
919 |
and pi2::"'x prm" |
|
920 |
and x ::"'a" |
|
921 |
assumes a: "pt TYPE('a) TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
922 |
shows "pi1 \<triangleq> pi2 \<Longrightarrow> pi1\<bullet>x = pi2\<bullet>x" |
17870 | 923 |
using a by (simp add: pt_def) |
924 |
||
925 |
lemma pt3_rev: |
|
926 |
fixes pi1::"'x prm" |
|
927 |
and pi2::"'x prm" |
|
928 |
and x ::"'a" |
|
929 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
930 |
and at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
931 |
shows "pi1 \<triangleq> pi2 \<Longrightarrow> (rev pi1)\<bullet>x = (rev pi2)\<bullet>x" |
17870 | 932 |
by (rule pt3[OF pt], simp add: at_prm_rev_eq[OF at]) |
933 |
||
934 |
section {* composition properties *} |
|
935 |
(* ============================== *) |
|
936 |
lemma cp1: |
|
937 |
fixes pi1::"'x prm" |
|
938 |
and pi2::"'y prm" |
|
939 |
and x ::"'a" |
|
940 |
assumes cp: "cp TYPE ('a) TYPE('x) TYPE('y)" |
|
941 |
shows "pi1\<bullet>(pi2\<bullet>x) = (pi1\<bullet>pi2)\<bullet>(pi1\<bullet>x)" |
|
942 |
using cp by (simp add: cp_def) |
|
943 |
||
944 |
lemma cp_pt_inst: |
|
945 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
946 |
and at: "at TYPE('x)" |
|
947 |
shows "cp TYPE('a) TYPE('x) TYPE('x)" |
|
948 |
apply(auto simp add: cp_def pt2[OF pt,symmetric]) |
|
949 |
apply(rule pt3[OF pt]) |
|
950 |
apply(rule at_ds8[OF at]) |
|
951 |
done |
|
952 |
||
19638
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
953 |
section {* disjointness properties *} |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
954 |
(*=================================*) |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
955 |
lemma dj_perm_forget: |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
956 |
fixes pi::"'y prm" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
957 |
and x ::"'x" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
958 |
assumes dj: "disjoint TYPE('x) TYPE('y)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
959 |
shows "pi\<bullet>x=x" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
960 |
using dj by (simp_all add: disjoint_def) |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
961 |
|
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
962 |
lemma dj_perm_perm_forget: |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
963 |
fixes pi1::"'x prm" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
964 |
and pi2::"'y prm" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
965 |
assumes dj: "disjoint TYPE('x) TYPE('y)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
966 |
shows "pi2\<bullet>pi1=pi1" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
967 |
using dj by (induct pi1, auto simp add: disjoint_def) |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
968 |
|
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
969 |
lemma dj_cp: |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
970 |
fixes pi1::"'x prm" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
971 |
and pi2::"'y prm" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
972 |
and x ::"'a" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
973 |
assumes cp: "cp TYPE ('a) TYPE('x) TYPE('y)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
974 |
and dj: "disjoint TYPE('y) TYPE('x)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
975 |
shows "pi1\<bullet>(pi2\<bullet>x) = (pi2)\<bullet>(pi1\<bullet>x)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
976 |
by (simp add: cp1[OF cp] dj_perm_perm_forget[OF dj]) |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
977 |
|
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
978 |
lemma dj_supp: |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
979 |
fixes a::"'x" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
980 |
assumes dj: "disjoint TYPE('x) TYPE('y)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
981 |
shows "(supp a) = ({}::'y set)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
982 |
apply(simp add: supp_def dj_perm_forget[OF dj]) |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
983 |
done |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
984 |
|
19972
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
985 |
lemma at_fresh_ineq: |
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
986 |
fixes a :: "'x" |
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
987 |
and b :: "'y" |
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
988 |
assumes dj: "disjoint TYPE('y) TYPE('x)" |
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
989 |
shows "a\<sharp>b" |
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
990 |
by (simp add: fresh_def dj_supp[OF dj]) |
89c5afe4139a
added more infrastructure for the recursion combinator
urbanc
parents:
19869
diff
changeset
|
991 |
|
17870 | 992 |
section {* permutation type instances *} |
993 |
(* ===================================*) |
|
994 |
||
995 |
lemma pt_set_inst: |
|
996 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
997 |
shows "pt TYPE('a set) TYPE('x)" |
|
998 |
apply(simp add: pt_def) |
|
999 |
apply(simp_all add: perm_set_def) |
|
1000 |
apply(simp add: pt1[OF pt]) |
|
1001 |
apply(force simp add: pt2[OF pt] pt3[OF pt]) |
|
1002 |
done |
|
1003 |
||
1004 |
lemma pt_list_nil: |
|
1005 |
fixes xs :: "'a list" |
|
1006 |
assumes pt: "pt TYPE('a) TYPE ('x)" |
|
1007 |
shows "([]::'x prm)\<bullet>xs = xs" |
|
1008 |
apply(induct_tac xs) |
|
1009 |
apply(simp_all add: pt1[OF pt]) |
|
1010 |
done |
|
1011 |
||
1012 |
lemma pt_list_append: |
|
1013 |
fixes pi1 :: "'x prm" |
|
1014 |
and pi2 :: "'x prm" |
|
1015 |
and xs :: "'a list" |
|
1016 |
assumes pt: "pt TYPE('a) TYPE ('x)" |
|
1017 |
shows "(pi1@pi2)\<bullet>xs = pi1\<bullet>(pi2\<bullet>xs)" |
|
1018 |
apply(induct_tac xs) |
|
1019 |
apply(simp_all add: pt2[OF pt]) |
|
1020 |
done |
|
1021 |
||
1022 |
lemma pt_list_prm_eq: |
|
1023 |
fixes pi1 :: "'x prm" |
|
1024 |
and pi2 :: "'x prm" |
|
1025 |
and xs :: "'a list" |
|
1026 |
assumes pt: "pt TYPE('a) TYPE ('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
1027 |
shows "pi1 \<triangleq> pi2 \<Longrightarrow> pi1\<bullet>xs = pi2\<bullet>xs" |
17870 | 1028 |
apply(induct_tac xs) |
1029 |
apply(simp_all add: prm_eq_def pt3[OF pt]) |
|
1030 |
done |
|
1031 |
||
1032 |
lemma pt_list_inst: |
|
1033 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1034 |
shows "pt TYPE('a list) TYPE('x)" |
|
1035 |
apply(auto simp only: pt_def) |
|
1036 |
apply(rule pt_list_nil[OF pt]) |
|
1037 |
apply(rule pt_list_append[OF pt]) |
|
1038 |
apply(rule pt_list_prm_eq[OF pt],assumption) |
|
1039 |
done |
|
1040 |
||
1041 |
lemma pt_unit_inst: |
|
1042 |
shows "pt TYPE(unit) TYPE('x)" |
|
1043 |
by (simp add: pt_def) |
|
1044 |
||
1045 |
lemma pt_prod_inst: |
|
1046 |
assumes pta: "pt TYPE('a) TYPE('x)" |
|
1047 |
and ptb: "pt TYPE('b) TYPE('x)" |
|
1048 |
shows "pt TYPE('a \<times> 'b) TYPE('x)" |
|
1049 |
apply(auto simp add: pt_def) |
|
1050 |
apply(rule pt1[OF pta]) |
|
1051 |
apply(rule pt1[OF ptb]) |
|
1052 |
apply(rule pt2[OF pta]) |
|
1053 |
apply(rule pt2[OF ptb]) |
|
1054 |
apply(rule pt3[OF pta],assumption) |
|
1055 |
apply(rule pt3[OF ptb],assumption) |
|
1056 |
done |
|
1057 |
||
18600 | 1058 |
lemma pt_nprod_inst: |
1059 |
assumes pta: "pt TYPE('a) TYPE('x)" |
|
1060 |
and ptb: "pt TYPE('b) TYPE('x)" |
|
1061 |
shows "pt TYPE(('a,'b) nprod) TYPE('x)" |
|
1062 |
apply(auto simp add: pt_def) |
|
1063 |
apply(case_tac x) |
|
1064 |
apply(simp add: pt1[OF pta] pt1[OF ptb]) |
|
1065 |
apply(case_tac x) |
|
1066 |
apply(simp add: pt2[OF pta] pt2[OF ptb]) |
|
1067 |
apply(case_tac x) |
|
1068 |
apply(simp add: pt3[OF pta] pt3[OF ptb]) |
|
1069 |
done |
|
1070 |
||
17870 | 1071 |
lemma pt_fun_inst: |
1072 |
assumes pta: "pt TYPE('a) TYPE('x)" |
|
1073 |
and ptb: "pt TYPE('b) TYPE('x)" |
|
1074 |
and at: "at TYPE('x)" |
|
1075 |
shows "pt TYPE('a\<Rightarrow>'b) TYPE('x)" |
|
1076 |
apply(auto simp only: pt_def) |
|
1077 |
apply(simp_all add: perm_fun_def) |
|
1078 |
apply(simp add: pt1[OF pta] pt1[OF ptb]) |
|
1079 |
apply(simp add: pt2[OF pta] pt2[OF ptb]) |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
1080 |
apply(subgoal_tac "(rev pi1) \<triangleq> (rev pi2)")(*A*) |
17870 | 1081 |
apply(simp add: pt3[OF pta] pt3[OF ptb]) |
1082 |
(*A*) |
|
1083 |
apply(simp add: at_prm_rev_eq[OF at]) |
|
1084 |
done |
|
1085 |
||
1086 |
lemma pt_option_inst: |
|
1087 |
assumes pta: "pt TYPE('a) TYPE('x)" |
|
1088 |
shows "pt TYPE('a option) TYPE('x)" |
|
1089 |
apply(auto simp only: pt_def) |
|
1090 |
apply(case_tac "x") |
|
1091 |
apply(simp_all add: pt1[OF pta]) |
|
1092 |
apply(case_tac "x") |
|
1093 |
apply(simp_all add: pt2[OF pta]) |
|
1094 |
apply(case_tac "x") |
|
1095 |
apply(simp_all add: pt3[OF pta]) |
|
1096 |
done |
|
1097 |
||
1098 |
lemma pt_noption_inst: |
|
1099 |
assumes pta: "pt TYPE('a) TYPE('x)" |
|
18579
002d371401f5
changed the name of the type "nOption" to "noption".
urbanc
parents:
18578
diff
changeset
|
1100 |
shows "pt TYPE('a noption) TYPE('x)" |
17870 | 1101 |
apply(auto simp only: pt_def) |
1102 |
apply(case_tac "x") |
|
1103 |
apply(simp_all add: pt1[OF pta]) |
|
1104 |
apply(case_tac "x") |
|
1105 |
apply(simp_all add: pt2[OF pta]) |
|
1106 |
apply(case_tac "x") |
|
1107 |
apply(simp_all add: pt3[OF pta]) |
|
1108 |
done |
|
1109 |
||
24544 | 1110 |
lemma pt_bool_inst: |
1111 |
shows "pt TYPE(bool) TYPE('x)" |
|
1112 |
by (simp add: pt_def perm_bool) |
|
1113 |
||
17870 | 1114 |
section {* further lemmas for permutation types *} |
1115 |
(*==============================================*) |
|
1116 |
||
1117 |
lemma pt_rev_pi: |
|
1118 |
fixes pi :: "'x prm" |
|
1119 |
and x :: "'a" |
|
1120 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1121 |
and at: "at TYPE('x)" |
|
1122 |
shows "(rev pi)\<bullet>(pi\<bullet>x) = x" |
|
1123 |
proof - |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
1124 |
have "((rev pi)@pi) \<triangleq> ([]::'x prm)" by (simp add: at_ds7[OF at]) |
17870 | 1125 |
hence "((rev pi)@pi)\<bullet>(x::'a) = ([]::'x prm)\<bullet>x" by (simp add: pt3[OF pt]) |
1126 |
thus ?thesis by (simp add: pt1[OF pt] pt2[OF pt]) |
|
1127 |
qed |
|
1128 |
||
1129 |
lemma pt_pi_rev: |
|
1130 |
fixes pi :: "'x prm" |
|
1131 |
and x :: "'a" |
|
1132 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1133 |
and at: "at TYPE('x)" |
|
1134 |
shows "pi\<bullet>((rev pi)\<bullet>x) = x" |
|
1135 |
by (simp add: pt_rev_pi[OF pt, OF at,of "rev pi" "x",simplified]) |
|
1136 |
||
1137 |
lemma pt_bij1: |
|
1138 |
fixes pi :: "'x prm" |
|
1139 |
and x :: "'a" |
|
1140 |
and y :: "'a" |
|
1141 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1142 |
and at: "at TYPE('x)" |
|
1143 |
and a: "(pi\<bullet>x) = y" |
|
1144 |
shows "x=(rev pi)\<bullet>y" |
|
1145 |
proof - |
|
1146 |
from a have "y=(pi\<bullet>x)" by (rule sym) |
|
1147 |
thus ?thesis by (simp only: pt_rev_pi[OF pt, OF at]) |
|
1148 |
qed |
|
1149 |
||
1150 |
lemma pt_bij2: |
|
1151 |
fixes pi :: "'x prm" |
|
1152 |
and x :: "'a" |
|
1153 |
and y :: "'a" |
|
1154 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1155 |
and at: "at TYPE('x)" |
|
1156 |
and a: "x = (rev pi)\<bullet>y" |
|
1157 |
shows "(pi\<bullet>x)=y" |
|
1158 |
using a by (simp add: pt_pi_rev[OF pt, OF at]) |
|
1159 |
||
1160 |
lemma pt_bij: |
|
1161 |
fixes pi :: "'x prm" |
|
1162 |
and x :: "'a" |
|
1163 |
and y :: "'a" |
|
1164 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1165 |
and at: "at TYPE('x)" |
|
1166 |
shows "(pi\<bullet>x = pi\<bullet>y) = (x=y)" |
|
1167 |
proof |
|
1168 |
assume "pi\<bullet>x = pi\<bullet>y" |
|
1169 |
hence "x=(rev pi)\<bullet>(pi\<bullet>y)" by (rule pt_bij1[OF pt, OF at]) |
|
1170 |
thus "x=y" by (simp only: pt_rev_pi[OF pt, OF at]) |
|
1171 |
next |
|
1172 |
assume "x=y" |
|
1173 |
thus "pi\<bullet>x = pi\<bullet>y" by simp |
|
1174 |
qed |
|
1175 |
||
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1176 |
lemma pt_eq_eqvt: |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1177 |
fixes pi :: "'x prm" |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1178 |
and x :: "'a" |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1179 |
and y :: "'a" |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1180 |
assumes pt: "pt TYPE('a) TYPE('x)" |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1181 |
and at: "at TYPE('x)" |
22829
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
urbanc
parents:
22808
diff
changeset
|
1182 |
shows "pi\<bullet>(x=y) = (pi\<bullet>x = pi\<bullet>y)" |
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1183 |
using assms |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1184 |
by (auto simp add: pt_bij perm_bool) |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1185 |
|
17870 | 1186 |
lemma pt_bij3: |
1187 |
fixes pi :: "'x prm" |
|
1188 |
and x :: "'a" |
|
1189 |
and y :: "'a" |
|
1190 |
assumes a: "x=y" |
|
1191 |
shows "(pi\<bullet>x = pi\<bullet>y)" |
|
1192 |
using a by simp |
|
1193 |
||
1194 |
lemma pt_bij4: |
|
1195 |
fixes pi :: "'x prm" |
|
1196 |
and x :: "'a" |
|
1197 |
and y :: "'a" |
|
1198 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1199 |
and at: "at TYPE('x)" |
|
1200 |
and a: "pi\<bullet>x = pi\<bullet>y" |
|
1201 |
shows "x = y" |
|
1202 |
using a by (simp add: pt_bij[OF pt, OF at]) |
|
1203 |
||
1204 |
lemma pt_swap_bij: |
|
1205 |
fixes a :: "'x" |
|
1206 |
and b :: "'x" |
|
1207 |
and x :: "'a" |
|
1208 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1209 |
and at: "at TYPE('x)" |
|
1210 |
shows "[(a,b)]\<bullet>([(a,b)]\<bullet>x) = x" |
|
1211 |
by (rule pt_bij2[OF pt, OF at], simp) |
|
1212 |
||
19164 | 1213 |
lemma pt_swap_bij': |
1214 |
fixes a :: "'x" |
|
1215 |
and b :: "'x" |
|
1216 |
and x :: "'a" |
|
1217 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1218 |
and at: "at TYPE('x)" |
|
1219 |
shows "[(a,b)]\<bullet>([(b,a)]\<bullet>x) = x" |
|
1220 |
apply(simp add: pt2[OF pt,symmetric]) |
|
1221 |
apply(rule trans) |
|
1222 |
apply(rule pt3[OF pt]) |
|
1223 |
apply(rule at_ds5'[OF at]) |
|
1224 |
apply(rule pt1[OF pt]) |
|
1225 |
done |
|
1226 |
||
17870 | 1227 |
lemma pt_set_bij1: |
1228 |
fixes pi :: "'x prm" |
|
1229 |
and x :: "'a" |
|
1230 |
and X :: "'a set" |
|
1231 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1232 |
and at: "at TYPE('x)" |
|
1233 |
shows "((pi\<bullet>x)\<in>X) = (x\<in>((rev pi)\<bullet>X))" |
|
1234 |
by (force simp add: perm_set_def pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at]) |
|
1235 |
||
1236 |
lemma pt_set_bij1a: |
|
1237 |
fixes pi :: "'x prm" |
|
1238 |
and x :: "'a" |
|
1239 |
and X :: "'a set" |
|
1240 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1241 |
and at: "at TYPE('x)" |
|
1242 |
shows "(x\<in>(pi\<bullet>X)) = (((rev pi)\<bullet>x)\<in>X)" |
|
1243 |
by (force simp add: perm_set_def pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at]) |
|
1244 |
||
1245 |
lemma pt_set_bij: |
|
1246 |
fixes pi :: "'x prm" |
|
1247 |
and x :: "'a" |
|
1248 |
and X :: "'a set" |
|
1249 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1250 |
and at: "at TYPE('x)" |
|
1251 |
shows "((pi\<bullet>x)\<in>(pi\<bullet>X)) = (x\<in>X)" |
|
18053
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents:
18048
diff
changeset
|
1252 |
by (simp add: perm_set_def pt_bij[OF pt, OF at]) |
17870 | 1253 |
|
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1254 |
lemma pt_in_eqvt: |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1255 |
fixes pi :: "'x prm" |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1256 |
and x :: "'a" |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1257 |
and X :: "'a set" |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1258 |
assumes pt: "pt TYPE('a) TYPE('x)" |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1259 |
and at: "at TYPE('x)" |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1260 |
shows "pi\<bullet>(x\<in>X)=((pi\<bullet>x)\<in>(pi\<bullet>X))" |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1261 |
using assms |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1262 |
by (auto simp add: pt_set_bij perm_bool) |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
22326
diff
changeset
|
1263 |
|
17870 | 1264 |
lemma pt_set_bij2: |
1265 |
fixes pi :: "'x prm" |
|
1266 |
and x :: "'a" |
|
1267 |
and X :: "'a set" |
|
1268 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1269 |
and at: "at TYPE('x)" |
|
1270 |
and a: "x\<in>X" |
|
1271 |
shows "(pi\<bullet>x)\<in>(pi\<bullet>X)" |
|
1272 |
using a by (simp add: pt_set_bij[OF pt, OF at]) |
|
1273 |
||
18264 | 1274 |
lemma pt_set_bij2a: |
1275 |
fixes pi :: "'x prm" |
|
1276 |
and x :: "'a" |
|
1277 |
and X :: "'a set" |
|
1278 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1279 |
and at: "at TYPE('x)" |
|
1280 |
and a: "x\<in>((rev pi)\<bullet>X)" |
|
1281 |
shows "(pi\<bullet>x)\<in>X" |
|
1282 |
using a by (simp add: pt_set_bij1[OF pt, OF at]) |
|
1283 |
||
17870 | 1284 |
lemma pt_set_bij3: |
1285 |
fixes pi :: "'x prm" |
|
1286 |
and x :: "'a" |
|
1287 |
and X :: "'a set" |
|
1288 |
shows "pi\<bullet>(x\<in>X) = (x\<in>X)" |
|
1289 |
apply(case_tac "x\<in>X = True") |
|
1290 |
apply(auto) |
|
1291 |
done |
|
1292 |
||
18159
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1293 |
lemma pt_subseteq_eqvt: |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1294 |
fixes pi :: "'x prm" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1295 |
and Y :: "'a set" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1296 |
and X :: "'a set" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1297 |
assumes pt: "pt TYPE('a) TYPE('x)" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1298 |
and at: "at TYPE('x)" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1299 |
shows "((pi\<bullet>X)\<subseteq>(pi\<bullet>Y)) = (X\<subseteq>Y)" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1300 |
proof (auto) |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1301 |
fix x::"'a" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1302 |
assume a: "(pi\<bullet>X)\<subseteq>(pi\<bullet>Y)" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1303 |
and "x\<in>X" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1304 |
hence "(pi\<bullet>x)\<in>(pi\<bullet>X)" by (simp add: pt_set_bij[OF pt, OF at]) |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1305 |
with a have "(pi\<bullet>x)\<in>(pi\<bullet>Y)" by force |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1306 |
thus "x\<in>Y" by (simp add: pt_set_bij[OF pt, OF at]) |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1307 |
next |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1308 |
fix x::"'a" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1309 |
assume a: "X\<subseteq>Y" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1310 |
and "x\<in>(pi\<bullet>X)" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1311 |
thus "x\<in>(pi\<bullet>Y)" by (force simp add: pt_set_bij1a[OF pt, OF at]) |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1312 |
qed |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1313 |
|
19772
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1314 |
lemma pt_set_diff_eqvt: |
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1315 |
fixes X::"'a set" |
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1316 |
and Y::"'a set" |
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1317 |
and pi::"'x prm" |
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1318 |
assumes pt: "pt TYPE('a) TYPE('x)" |
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1319 |
and at: "at TYPE('x)" |
22829
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
urbanc
parents:
22808
diff
changeset
|
1320 |
shows "pi\<bullet>(X - Y) = (pi\<bullet>X) - (pi\<bullet>Y)" |
19772
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1321 |
by (auto simp add: perm_set_def pt_bij[OF pt, OF at]) |
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1322 |
|
22829
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
urbanc
parents:
22808
diff
changeset
|
1323 |
lemma pt_Collect_eqvt: |
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
urbanc
parents:
22808
diff
changeset
|
1324 |
fixes pi::"'x prm" |
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
urbanc
parents:
22808
diff
changeset
|
1325 |
assumes pt: "pt TYPE('a) TYPE('x)" |
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
urbanc
parents:
22808
diff
changeset
|
1326 |
and at: "at TYPE('x)" |
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
urbanc
parents:
22808
diff
changeset
|
1327 |
shows "pi\<bullet>{x::'a. P x} = {x. P ((rev pi)\<bullet>x)}" |
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
urbanc
parents:
22808
diff
changeset
|
1328 |
apply(auto simp add: perm_set_def pt_rev_pi[OF pt, OF at]) |
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
urbanc
parents:
22808
diff
changeset
|
1329 |
apply(rule_tac x="(rev pi)\<bullet>x" in exI) |
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
urbanc
parents:
22808
diff
changeset
|
1330 |
apply(simp add: pt_pi_rev[OF pt, OF at]) |
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
urbanc
parents:
22808
diff
changeset
|
1331 |
done |
19772
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1332 |
|
17870 | 1333 |
-- "some helper lemmas for the pt_perm_supp_ineq lemma" |
1334 |
lemma Collect_permI: |
|
1335 |
fixes pi :: "'x prm" |
|
1336 |
and x :: "'a" |
|
1337 |
assumes a: "\<forall>x. (P1 x = P2 x)" |
|
1338 |
shows "{pi\<bullet>x| x. P1 x} = {pi\<bullet>x| x. P2 x}" |
|
1339 |
using a by force |
|
1340 |
||
1341 |
lemma Infinite_cong: |
|
1342 |
assumes a: "X = Y" |
|
1343 |
shows "infinite X = infinite Y" |
|
1344 |
using a by (simp) |
|
1345 |
||
1346 |
lemma pt_set_eq_ineq: |
|
1347 |
fixes pi :: "'y prm" |
|
1348 |
assumes pt: "pt TYPE('x) TYPE('y)" |
|
1349 |
and at: "at TYPE('y)" |
|
1350 |
shows "{pi\<bullet>x| x::'x. P x} = {x::'x. P ((rev pi)\<bullet>x)}" |
|
1351 |
by (force simp only: pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at]) |
|
1352 |
||
1353 |
lemma pt_inject_on_ineq: |
|
1354 |
fixes X :: "'y set" |
|
1355 |
and pi :: "'x prm" |
|
1356 |
assumes pt: "pt TYPE('y) TYPE('x)" |
|
1357 |
and at: "at TYPE('x)" |
|
1358 |
shows "inj_on (perm pi) X" |
|
1359 |
proof (unfold inj_on_def, intro strip) |
|
1360 |
fix x::"'y" and y::"'y" |
|
1361 |
assume "pi\<bullet>x = pi\<bullet>y" |
|
1362 |
thus "x=y" by (simp add: pt_bij[OF pt, OF at]) |
|
1363 |
qed |
|
1364 |
||
1365 |
lemma pt_set_finite_ineq: |
|
1366 |
fixes X :: "'x set" |
|
1367 |
and pi :: "'y prm" |
|
1368 |
assumes pt: "pt TYPE('x) TYPE('y)" |
|
1369 |
and at: "at TYPE('y)" |
|
1370 |
shows "finite (pi\<bullet>X) = finite X" |
|
1371 |
proof - |
|
1372 |
have image: "(pi\<bullet>X) = (perm pi ` X)" by (force simp only: perm_set_def) |
|
1373 |
show ?thesis |
|
1374 |
proof (rule iffI) |
|
1375 |
assume "finite (pi\<bullet>X)" |
|
1376 |
hence "finite (perm pi ` X)" using image by (simp) |
|
1377 |
thus "finite X" using pt_inject_on_ineq[OF pt, OF at] by (rule finite_imageD) |
|
1378 |
next |
|
1379 |
assume "finite X" |
|
1380 |
hence "finite (perm pi ` X)" by (rule finite_imageI) |
|
1381 |
thus "finite (pi\<bullet>X)" using image by (simp) |
|
1382 |
qed |
|
1383 |
qed |
|
1384 |
||
1385 |
lemma pt_set_infinite_ineq: |
|
1386 |
fixes X :: "'x set" |
|
1387 |
and pi :: "'y prm" |
|
1388 |
assumes pt: "pt TYPE('x) TYPE('y)" |
|
1389 |
and at: "at TYPE('y)" |
|
1390 |
shows "infinite (pi\<bullet>X) = infinite X" |
|
1391 |
using pt at by (simp add: pt_set_finite_ineq) |
|
1392 |
||
1393 |
lemma pt_perm_supp_ineq: |
|
1394 |
fixes pi :: "'x prm" |
|
1395 |
and x :: "'a" |
|
1396 |
assumes pta: "pt TYPE('a) TYPE('x)" |
|
1397 |
and ptb: "pt TYPE('y) TYPE('x)" |
|
1398 |
and at: "at TYPE('x)" |
|
1399 |
and cp: "cp TYPE('a) TYPE('x) TYPE('y)" |
|
1400 |
shows "(pi\<bullet>((supp x)::'y set)) = supp (pi\<bullet>x)" (is "?LHS = ?RHS") |
|
1401 |
proof - |
|
1402 |
have "?LHS = {pi\<bullet>a | a. infinite {b. [(a,b)]\<bullet>x \<noteq> x}}" by (simp add: supp_def perm_set_def) |
|
1403 |
also have "\<dots> = {pi\<bullet>a | a. infinite {pi\<bullet>b | b. [(a,b)]\<bullet>x \<noteq> x}}" |
|
1404 |
proof (rule Collect_permI, rule allI, rule iffI) |
|
1405 |
fix a |
|
1406 |
assume "infinite {b::'y. [(a,b)]\<bullet>x \<noteq> x}" |
|
1407 |
hence "infinite (pi\<bullet>{b::'y. [(a,b)]\<bullet>x \<noteq> x})" by (simp add: pt_set_infinite_ineq[OF ptb, OF at]) |
|
1408 |
thus "infinite {pi\<bullet>b |b::'y. [(a,b)]\<bullet>x \<noteq> x}" by (simp add: perm_set_def) |
|
1409 |
next |
|
1410 |
fix a |
|
1411 |
assume "infinite {pi\<bullet>b |b::'y. [(a,b)]\<bullet>x \<noteq> x}" |
|
1412 |
hence "infinite (pi\<bullet>{b::'y. [(a,b)]\<bullet>x \<noteq> x})" by (simp add: perm_set_def) |
|
1413 |
thus "infinite {b::'y. [(a,b)]\<bullet>x \<noteq> x}" |
|
1414 |
by (simp add: pt_set_infinite_ineq[OF ptb, OF at]) |
|
1415 |
qed |
|
1416 |
also have "\<dots> = {a. infinite {b::'y. [((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x \<noteq> x}}" |
|
1417 |
by (simp add: pt_set_eq_ineq[OF ptb, OF at]) |
|
1418 |
also have "\<dots> = {a. infinite {b. pi\<bullet>([((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x) \<noteq> (pi\<bullet>x)}}" |
|
1419 |
by (simp add: pt_bij[OF pta, OF at]) |
|
1420 |
also have "\<dots> = {a. infinite {b. [(a,b)]\<bullet>(pi\<bullet>x) \<noteq> (pi\<bullet>x)}}" |
|
1421 |
proof (rule Collect_cong, rule Infinite_cong, rule Collect_cong) |
|