src/HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy
author haftmann
Wed, 08 Sep 2010 19:21:46 +0200
changeset 39246 9e58f0499f57
parent 36409 d323e7773aa8
child 41403 7eba049f7310
permissions -rw-r--r--
modernized primrec
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
     1
(*  Title:      HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
     2
    Author:     Amine Chaieb
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
     3
*)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
     4
35046
1266f04f42ec tuned header
haftmann
parents: 34915
diff changeset
     5
header {* Implementation and verification of multivariate polynomials *}
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
     6
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
     7
theory Reflected_Multivariate_Polynomial
35046
1266f04f42ec tuned header
haftmann
parents: 34915
diff changeset
     8
imports Complex_Main Abstract_Rat Polynomial_List
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
     9
begin
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    10
35046
1266f04f42ec tuned header
haftmann
parents: 34915
diff changeset
    11
  (* Implementation *)
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    12
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    13
subsection{* Datatype of polynomial expressions *} 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    14
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    15
datatype poly = C Num| Bound nat| Add poly poly|Sub poly poly
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    16
  | Mul poly poly| Neg poly| Pw poly nat| CN poly nat poly
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    17
35054
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 35046
diff changeset
    18
abbreviation poly_0 :: "poly" ("0\<^sub>p") where "0\<^sub>p \<equiv> C (0\<^sub>N)"
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 35046
diff changeset
    19
abbreviation poly_p :: "int \<Rightarrow> poly" ("_\<^sub>p") where "i\<^sub>p \<equiv> C (i\<^sub>N)"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    20
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    21
subsection{* Boundedness, substitution and all that *}
39246
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    22
primrec polysize:: "poly \<Rightarrow> nat" where
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    23
  "polysize (C c) = 1"
39246
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    24
| "polysize (Bound n) = 1"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    25
| "polysize (Neg p) = 1 + polysize p"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    26
| "polysize (Add p q) = 1 + polysize p + polysize q"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    27
| "polysize (Sub p q) = 1 + polysize p + polysize q"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    28
| "polysize (Mul p q) = 1 + polysize p + polysize q"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    29
| "polysize (Pw p n) = 1 + polysize p"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    30
| "polysize (CN c n p) = 4 + polysize c + polysize p"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    31
39246
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    32
primrec polybound0:: "poly \<Rightarrow> bool" (* a poly is INDEPENDENT of Bound 0 *) where
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    33
  "polybound0 (C c) = True"
39246
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    34
| "polybound0 (Bound n) = (n>0)"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    35
| "polybound0 (Neg a) = polybound0 a"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    36
| "polybound0 (Add a b) = (polybound0 a \<and> polybound0 b)"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    37
| "polybound0 (Sub a b) = (polybound0 a \<and> polybound0 b)" 
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    38
| "polybound0 (Mul a b) = (polybound0 a \<and> polybound0 b)"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    39
| "polybound0 (Pw p n) = (polybound0 p)"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    40
| "polybound0 (CN c n p) = (n \<noteq> 0 \<and> polybound0 c \<and> polybound0 p)"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    41
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    42
primrec polysubst0:: "poly \<Rightarrow> poly \<Rightarrow> poly" (* substitute a poly into a poly for Bound 0 *) where
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    43
  "polysubst0 t (C c) = (C c)"
39246
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    44
| "polysubst0 t (Bound n) = (if n=0 then t else Bound n)"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    45
| "polysubst0 t (Neg a) = Neg (polysubst0 t a)"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    46
| "polysubst0 t (Add a b) = Add (polysubst0 t a) (polysubst0 t b)"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    47
| "polysubst0 t (Sub a b) = Sub (polysubst0 t a) (polysubst0 t b)" 
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    48
| "polysubst0 t (Mul a b) = Mul (polysubst0 t a) (polysubst0 t b)"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    49
| "polysubst0 t (Pw p n) = Pw (polysubst0 t p) n"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
    50
| "polysubst0 t (CN c n p) = (if n=0 then Add (polysubst0 t c) (Mul t (polysubst0 t p))
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    51
                             else CN (polysubst0 t c) n (polysubst0 t p))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    52
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    53
consts 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    54
  decrpoly:: "poly \<Rightarrow> poly" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    55
recdef decrpoly "measure polysize"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    56
  "decrpoly (Bound n) = Bound (n - 1)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    57
  "decrpoly (Neg a) = Neg (decrpoly a)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    58
  "decrpoly (Add a b) = Add (decrpoly a) (decrpoly b)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    59
  "decrpoly (Sub a b) = Sub (decrpoly a) (decrpoly b)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    60
  "decrpoly (Mul a b) = Mul (decrpoly a) (decrpoly b)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    61
  "decrpoly (Pw p n) = Pw (decrpoly p) n"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    62
  "decrpoly (CN c n p) = CN (decrpoly c) (n - 1) (decrpoly p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    63
  "decrpoly a = a"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    64
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    65
subsection{* Degrees and heads and coefficients *}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    66
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    67
consts degree:: "poly \<Rightarrow> nat"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    68
recdef degree "measure size"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    69
  "degree (CN c 0 p) = 1 + degree p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    70
  "degree p = 0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    71
consts head:: "poly \<Rightarrow> poly"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    72
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    73
recdef head "measure size"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    74
  "head (CN c 0 p) = head p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    75
  "head p = p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    76
  (* More general notions of degree and head *)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    77
consts degreen:: "poly \<Rightarrow> nat \<Rightarrow> nat"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    78
recdef degreen "measure size"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    79
  "degreen (CN c n p) = (\<lambda>m. if n=m then 1 + degreen p n else 0)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    80
  "degreen p = (\<lambda>m. 0)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    81
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    82
consts headn:: "poly \<Rightarrow> nat \<Rightarrow> poly"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    83
recdef headn "measure size"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    84
  "headn (CN c n p) = (\<lambda>m. if n \<le> m then headn p m else CN c n p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    85
  "headn p = (\<lambda>m. p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    86
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    87
consts coefficients:: "poly \<Rightarrow> poly list"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    88
recdef coefficients "measure size"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    89
  "coefficients (CN c 0 p) = c#(coefficients p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    90
  "coefficients p = [p]"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    91
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    92
consts isconstant:: "poly \<Rightarrow> bool"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    93
recdef isconstant "measure size"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    94
  "isconstant (CN c 0 p) = False"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    95
  "isconstant p = True"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    96
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    97
consts behead:: "poly \<Rightarrow> poly"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    98
recdef behead "measure size"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
    99
  "behead (CN c 0 p) = (let p' = behead p in if p' = 0\<^sub>p then c else CN c 0 p')"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   100
  "behead p = 0\<^sub>p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   101
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   102
consts headconst:: "poly \<Rightarrow> Num"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   103
recdef headconst "measure size"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   104
  "headconst (CN c n p) = headconst p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   105
  "headconst (C n) = n"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   106
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   107
subsection{* Operations for normalization *}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   108
consts 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   109
  polyadd :: "poly\<times>poly \<Rightarrow> poly"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   110
  polyneg :: "poly \<Rightarrow> poly" ("~\<^sub>p")
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   111
  polysub :: "poly\<times>poly \<Rightarrow> poly"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   112
  polymul :: "poly\<times>poly \<Rightarrow> poly"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   113
  polypow :: "nat \<Rightarrow> poly \<Rightarrow> poly"
35054
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 35046
diff changeset
   114
abbreviation poly_add :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "+\<^sub>p" 60)
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 35046
diff changeset
   115
  where "a +\<^sub>p b \<equiv> polyadd (a,b)"
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 35046
diff changeset
   116
abbreviation poly_mul :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "*\<^sub>p" 60)
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 35046
diff changeset
   117
  where "a *\<^sub>p b \<equiv> polymul (a,b)"
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 35046
diff changeset
   118
abbreviation poly_sub :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "-\<^sub>p" 60)
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 35046
diff changeset
   119
  where "a -\<^sub>p b \<equiv> polysub (a,b)"
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 35046
diff changeset
   120
abbreviation poly_pow :: "poly \<Rightarrow> nat \<Rightarrow> poly" (infixl "^\<^sub>p" 60)
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 35046
diff changeset
   121
  where "a ^\<^sub>p k \<equiv> polypow k a"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   122
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   123
recdef polyadd "measure (\<lambda> (a,b). polysize a + polysize b)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   124
  "polyadd (C c, C c') = C (c+\<^sub>Nc')"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   125
  "polyadd (C c, CN c' n' p') = CN (polyadd (C c, c')) n' p'"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   126
  "polyadd (CN c n p, C c') = CN (polyadd (c, C c')) n p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   127
stupid:  "polyadd (CN c n p, CN c' n' p') = 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   128
    (if n < n' then CN (polyadd(c,CN c' n' p')) n p
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   129
     else if n'<n then CN (polyadd(CN c n p, c')) n' p'
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   130
     else (let cc' = polyadd (c,c') ; 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   131
               pp' = polyadd (p,p')
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   132
           in (if pp' = 0\<^sub>p then cc' else CN cc' n pp')))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   133
  "polyadd (a, b) = Add a b"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   134
(hints recdef_simp add: Let_def measure_def split_def inv_image_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   135
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   136
(*
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   137
declare stupid [simp del, code del]
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   138
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   139
lemma [simp,code]: "polyadd (CN c n p, CN c' n' p') = 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   140
    (if n < n' then CN (polyadd(c,CN c' n' p')) n p
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   141
     else if n'<n then CN (polyadd(CN c n p, c')) n' p'
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   142
     else (let cc' = polyadd (c,c') ; 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   143
               pp' = polyadd (p,p')
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   144
           in (if pp' = 0\<^sub>p then cc' else CN cc' n pp')))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   145
  by (simp add: Let_def stupid)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   146
*)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   147
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   148
recdef polyneg "measure size"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   149
  "polyneg (C c) = C (~\<^sub>N c)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   150
  "polyneg (CN c n p) = CN (polyneg c) n (polyneg p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   151
  "polyneg a = Neg a"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   152
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   153
defs polysub_def[code]: "polysub \<equiv> \<lambda> (p,q). polyadd (p,polyneg q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   155
recdef polymul "measure (\<lambda>(a,b). size a + size b)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   156
  "polymul(C c, C c') = C (c*\<^sub>Nc')"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   157
  "polymul(C c, CN c' n' p') = 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   158
      (if c = 0\<^sub>N then 0\<^sub>p else CN (polymul(C c,c')) n' (polymul(C c, p')))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   159
  "polymul(CN c n p, C c') = 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   160
      (if c' = 0\<^sub>N  then 0\<^sub>p else CN (polymul(c,C c')) n (polymul(p, C c')))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   161
  "polymul(CN c n p, CN c' n' p') = 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   162
  (if n<n' then CN (polymul(c,CN c' n' p')) n (polymul(p,CN c' n' p'))
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   163
  else if n' < n 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   164
  then CN (polymul(CN c n p,c')) n' (polymul(CN c n p,p'))
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   165
  else polyadd(polymul(CN c n p, c'),CN 0\<^sub>p n' (polymul(CN c n p, p'))))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   166
  "polymul (a,b) = Mul a b"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   167
recdef polypow "measure id"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   168
  "polypow 0 = (\<lambda>p. 1\<^sub>p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   169
  "polypow n = (\<lambda>p. let q = polypow (n div 2) p ; d = polymul(q,q) in 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   170
                    if even n then d else polymul(p,d))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   171
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   172
consts polynate :: "poly \<Rightarrow> poly"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   173
recdef polynate "measure polysize"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   174
  "polynate (Bound n) = CN 0\<^sub>p n 1\<^sub>p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   175
  "polynate (Add p q) = (polynate p +\<^sub>p polynate q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   176
  "polynate (Sub p q) = (polynate p -\<^sub>p polynate q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   177
  "polynate (Mul p q) = (polynate p *\<^sub>p polynate q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   178
  "polynate (Neg p) = (~\<^sub>p (polynate p))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   179
  "polynate (Pw p n) = ((polynate p) ^\<^sub>p n)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   180
  "polynate (CN c n p) = polynate (Add c (Mul (Bound n) p))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   181
  "polynate (C c) = C (normNum c)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   182
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   183
fun poly_cmul :: "Num \<Rightarrow> poly \<Rightarrow> poly" where
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   184
  "poly_cmul y (C x) = C (y *\<^sub>N x)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   185
| "poly_cmul y (CN c n p) = CN (poly_cmul y c) n (poly_cmul y p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   186
| "poly_cmul y p = C y *\<^sub>p p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   187
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35054
diff changeset
   188
definition monic :: "poly \<Rightarrow> (poly \<times> bool)" where
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   189
  "monic p \<equiv> (let h = headconst p in if h = 0\<^sub>N then (p,False) else ((C (Ninv h)) *\<^sub>p p, 0>\<^sub>N h))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   190
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   191
subsection{* Pseudo-division *}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   192
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35054
diff changeset
   193
definition shift1 :: "poly \<Rightarrow> poly" where
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   194
  "shift1 p \<equiv> CN 0\<^sub>p 0 p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   195
39246
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   196
abbreviation funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a)" where
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   197
  "funpow \<equiv> compow"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   198
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   199
function (tailrec) polydivide_aux :: "(poly \<times> nat \<times> poly \<times> nat \<times> poly) \<Rightarrow> (nat \<times> poly)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   200
  where
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   201
  "polydivide_aux (a,n,p,k,s) = 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   202
  (if s = 0\<^sub>p then (k,s)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   203
  else (let b = head s; m = degree s in
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   204
  (if m < n then (k,s) else 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   205
  (let p'= funpow (m - n) shift1 p in 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   206
  (if a = b then polydivide_aux (a,n,p,k,s -\<^sub>p p') 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   207
  else polydivide_aux (a,n,p,Suc k, (a *\<^sub>p s) -\<^sub>p (b *\<^sub>p p')))))))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   208
  by pat_completeness auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   209
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35054
diff changeset
   210
definition polydivide :: "poly \<Rightarrow> poly \<Rightarrow> (nat \<times> poly)" where
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   211
  "polydivide s p \<equiv> polydivide_aux (head p,degree p,p,0, s)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   212
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   213
fun poly_deriv_aux :: "nat \<Rightarrow> poly \<Rightarrow> poly" where
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   214
  "poly_deriv_aux n (CN c 0 p) = CN (poly_cmul ((int n)\<^sub>N) c) 0 (poly_deriv_aux (n + 1) p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   215
| "poly_deriv_aux n p = poly_cmul ((int n)\<^sub>N) p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   216
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   217
fun poly_deriv :: "poly \<Rightarrow> poly" where
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   218
  "poly_deriv (CN c 0 p) = poly_deriv_aux 1 p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   219
| "poly_deriv p = 0\<^sub>p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   220
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   221
  (* Verification *)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   222
lemma nth_pos2[simp]: "0 < n \<Longrightarrow> (x#xs) ! n = xs ! (n - 1)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   223
using Nat.gr0_conv_Suc
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   224
by clarsimp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   225
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   226
subsection{* Semantics of the polynomial representation *}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   227
39246
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   228
primrec Ipoly :: "'a list \<Rightarrow> poly \<Rightarrow> 'a::{field_char_0, field_inverse_zero, power}" where
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   229
  "Ipoly bs (C c) = INum c"
39246
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   230
| "Ipoly bs (Bound n) = bs!n"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   231
| "Ipoly bs (Neg a) = - Ipoly bs a"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   232
| "Ipoly bs (Add a b) = Ipoly bs a + Ipoly bs b"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   233
| "Ipoly bs (Sub a b) = Ipoly bs a - Ipoly bs b"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   234
| "Ipoly bs (Mul a b) = Ipoly bs a * Ipoly bs b"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   235
| "Ipoly bs (Pw t n) = (Ipoly bs t) ^ n"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   236
| "Ipoly bs (CN c n p) = (Ipoly bs c) + (bs!n)*(Ipoly bs p)"
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   237
35054
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 35046
diff changeset
   238
abbreviation
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   239
  Ipoly_syntax :: "poly \<Rightarrow> 'a list \<Rightarrow>'a::{field_char_0, field_inverse_zero, power}" ("\<lparr>_\<rparr>\<^sub>p\<^bsup>_\<^esup>")
35054
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 35046
diff changeset
   240
  where "\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<equiv> Ipoly bs p"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   241
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   242
lemma Ipoly_CInt: "Ipoly bs (C (i,1)) = of_int i" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   243
  by (simp add: INum_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   244
lemma Ipoly_CRat: "Ipoly bs (C (i, j)) = of_int i / of_int j" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   245
  by (simp  add: INum_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   246
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   247
lemmas RIpoly_eqs = Ipoly.simps(2-7) Ipoly_CInt Ipoly_CRat
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   248
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   249
subsection {* Normal form and normalization *}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   250
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   251
consts isnpolyh:: "poly \<Rightarrow> nat \<Rightarrow> bool"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   252
recdef isnpolyh "measure size"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   253
  "isnpolyh (C c) = (\<lambda>k. isnormNum c)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   254
  "isnpolyh (CN c n p) = (\<lambda>k. n\<ge> k \<and> (isnpolyh c (Suc n)) \<and> (isnpolyh p n) \<and> (p \<noteq> 0\<^sub>p))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   255
  "isnpolyh p = (\<lambda>k. False)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   256
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   257
lemma isnpolyh_mono: "\<lbrakk>n' \<le> n ; isnpolyh p n\<rbrakk> \<Longrightarrow> isnpolyh p n'"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   258
by (induct p rule: isnpolyh.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   259
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35054
diff changeset
   260
definition isnpoly :: "poly \<Rightarrow> bool" where
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   261
  "isnpoly p \<equiv> isnpolyh p 0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   262
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   263
text{* polyadd preserves normal forms *}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   264
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   265
lemma polyadd_normh: "\<lbrakk>isnpolyh p n0 ; isnpolyh q n1\<rbrakk> 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   266
      \<Longrightarrow> isnpolyh (polyadd(p,q)) (min n0 n1)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   267
proof(induct p q arbitrary: n0 n1 rule: polyadd.induct)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   268
  case (2 a b c' n' p' n0 n1)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   269
  from prems have  th1: "isnpolyh (C (a,b)) (Suc n')" by simp 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   270
  from prems(3) have th2: "isnpolyh c' (Suc n')"  and nplen1: "n' \<ge> n1" by simp_all
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   271
  with isnpolyh_mono have cp: "isnpolyh c' (Suc n')" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   272
  with prems(1)[OF th1 th2] have th3:"isnpolyh (C (a,b) +\<^sub>p c') (Suc n')" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   273
  from nplen1 have n01len1: "min n0 n1 \<le> n'" by simp 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   274
  thus ?case using prems th3 by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   275
next
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   276
  case (3 c' n' p' a b n1 n0)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   277
  from prems have  th1: "isnpolyh (C (a,b)) (Suc n')" by simp 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   278
  from prems(2) have th2: "isnpolyh c' (Suc n')"  and nplen1: "n' \<ge> n1" by simp_all
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   279
  with isnpolyh_mono have cp: "isnpolyh c' (Suc n')" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   280
  with prems(1)[OF th2 th1] have th3:"isnpolyh (c' +\<^sub>p C (a,b)) (Suc n')" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   281
  from nplen1 have n01len1: "min n0 n1 \<le> n'" by simp 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   282
  thus ?case using prems th3 by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   283
next
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   284
  case (4 c n p c' n' p' n0 n1)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   285
  hence nc: "isnpolyh c (Suc n)" and np: "isnpolyh p n" by simp_all
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   286
  from prems have nc': "isnpolyh c' (Suc n')" and np': "isnpolyh p' n'" by simp_all 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   287
  from prems have ngen0: "n \<ge> n0" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   288
  from prems have n'gen1: "n' \<ge> n1" by simp 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   289
  have "n < n' \<or> n' < n \<or> n = n'" by auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   290
  moreover {assume eq: "n = n'" hence eq': "\<not> n' < n \<and> \<not> n < n'" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   291
    with prems(2)[rule_format, OF eq' nc nc'] 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   292
    have ncc':"isnpolyh (c +\<^sub>p c') (Suc n)" by auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   293
    hence ncc'n01: "isnpolyh (c +\<^sub>p c') (min n0 n1)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   294
      using isnpolyh_mono[where n'="min n0 n1" and n="Suc n"] ngen0 n'gen1 by auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   295
    from eq prems(1)[rule_format, OF eq' np np'] have npp': "isnpolyh (p +\<^sub>p p') n" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   296
    have minle: "min n0 n1 \<le> n'" using ngen0 n'gen1 eq by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   297
    from minle npp' ncc'n01 prems ngen0 n'gen1 ncc' have ?case by (simp add: Let_def)}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   298
  moreover {assume lt: "n < n'"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   299
    have "min n0 n1 \<le> n0" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   300
    with prems have th1:"min n0 n1 \<le> n" by auto 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   301
    from prems have th21: "isnpolyh c (Suc n)" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   302
    from prems have th22: "isnpolyh (CN c' n' p') n'" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   303
    from lt have th23: "min (Suc n) n' = Suc n" by arith
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   304
    from prems(4)[rule_format, OF lt th21 th22]
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   305
    have "isnpolyh (polyadd (c, CN c' n' p')) (Suc n)" using th23 by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   306
    with prems th1 have ?case by simp } 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   307
  moreover {assume gt: "n' < n" hence gt': "n' < n \<and> \<not> n < n'" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   308
    have "min n0 n1 \<le> n1"  by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   309
    with prems have th1:"min n0 n1 \<le> n'" by auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   310
    from prems have th21: "isnpolyh c' (Suc n')" by simp_all
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   311
    from prems have th22: "isnpolyh (CN c n p) n" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   312
    from gt have th23: "min n (Suc n') = Suc n'" by arith
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   313
    from prems(3)[rule_format, OF  gt' th22 th21]
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   314
    have "isnpolyh (polyadd (CN c n p,c')) (Suc n')" using th23 by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   315
    with prems th1 have ?case by simp}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   316
      ultimately show ?case by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   317
qed auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   318
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   319
lemma polyadd[simp]: "Ipoly bs (polyadd (p,q)) = (Ipoly bs p) + (Ipoly bs q)"
36349
39be26d1bc28 class division_ring_inverse_zero
haftmann
parents: 35416
diff changeset
   320
by (induct p q rule: polyadd.induct, auto simp add: Let_def field_simps right_distrib[symmetric] simp del: right_distrib)
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   321
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   322
lemma polyadd_norm: "\<lbrakk> isnpoly p ; isnpoly q\<rbrakk> \<Longrightarrow> isnpoly (polyadd(p,q))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   323
  using polyadd_normh[of "p" "0" "q" "0"] isnpoly_def by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   324
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   325
text{* The degree of addition and other general lemmas needed for the normal form of polymul*}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   326
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   327
lemma polyadd_different_degreen: 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   328
  "\<lbrakk>isnpolyh p n0 ; isnpolyh q n1; degreen p m \<noteq> degreen q m ; m \<le> min n0 n1\<rbrakk> \<Longrightarrow> 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   329
  degreen (polyadd(p,q)) m = max (degreen p m) (degreen q m)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   330
proof (induct p q arbitrary: m n0 n1 rule: polyadd.induct)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   331
  case (4 c n p c' n' p' m n0 n1)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   332
  thus ?case 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   333
    apply (cases "n' < n", simp_all add: Let_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   334
    apply (cases "n = n'", simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   335
    apply (cases "n' = m", simp_all add: Let_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   336
    by (erule allE[where x="m"], erule allE[where x="Suc m"], 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   337
           erule allE[where x="m"], erule allE[where x="Suc m"], 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   338
           clarsimp,erule allE[where x="m"],erule allE[where x="Suc m"], simp)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   339
qed simp_all 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   340
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   341
lemma headnz[simp]: "\<lbrakk>isnpolyh p n ; p \<noteq> 0\<^sub>p\<rbrakk> \<Longrightarrow> headn p m \<noteq> 0\<^sub>p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   342
  by (induct p arbitrary: n rule: headn.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   343
lemma degree_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> degree p = 0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   344
  by (induct p arbitrary: n rule: degree.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   345
lemma degreen_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> degreen p m = 0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   346
  by (induct p arbitrary: n rule: degreen.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   347
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   348
lemma degree_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> degree p = 0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   349
  by (induct p arbitrary: n rule: degree.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   350
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   351
lemma degree_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degree c = 0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   352
  using degree_isnpolyh_Suc by auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   353
lemma degreen_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degreen c n = 0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   354
  using degreen_0 by auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   355
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   356
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   357
lemma degreen_polyadd:
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   358
  assumes np: "isnpolyh p n0" and nq: "isnpolyh q n1" and m: "m \<le> max n0 n1"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   359
  shows "degreen (p +\<^sub>p q) m \<le> max (degreen p m) (degreen q m)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   360
  using np nq m
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   361
proof (induct p q arbitrary: n0 n1 m rule: polyadd.induct)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   362
  case (2 c c' n' p' n0 n1) thus ?case  by (cases n', simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   363
next
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   364
  case (3 c n p c' n0 n1) thus ?case by (cases n, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   365
next
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   366
  case (4 c n p c' n' p' n0 n1 m) 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   367
  thus ?case 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   368
    apply (cases "n < n'", simp_all add: Let_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   369
    apply (cases "n' < n", simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   370
    apply (erule allE[where x="n"],erule allE[where x="Suc n"],clarify)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   371
    apply (erule allE[where x="n'"],erule allE[where x="Suc n'"],clarify)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   372
    by (erule allE[where x="m"],erule allE[where x="m"], auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   373
qed auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   374
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   375
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   376
lemma polyadd_eq_const_degreen: "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1 ; polyadd (p,q) = C c\<rbrakk> 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   377
  \<Longrightarrow> degreen p m = degreen q m"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   378
proof (induct p q arbitrary: m n0 n1 c rule: polyadd.induct)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   379
  case (4 c n p c' n' p' m n0 n1 x) 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   380
  hence z: "CN c n p +\<^sub>p CN c' n' p' = C x" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   381
  {assume nn': "n' < n" hence ?case using prems by simp}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   382
  moreover 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   383
  {assume nn':"\<not> n' < n" hence "n < n' \<or> n = n'" by arith
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   384
    moreover {assume "n < n'" with prems have ?case by simp }
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   385
    moreover {assume eq: "n = n'" hence ?case using prems 
33268
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   386
        by (cases "p +\<^sub>p p' = 0\<^sub>p", auto simp add: Let_def) }
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   387
    ultimately have ?case by blast}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   388
  ultimately show ?case by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   389
qed simp_all
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   390
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   391
lemma polymul_properties:
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   392
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   393
  and np: "isnpolyh p n0" and nq: "isnpolyh q n1" and m: "m \<le> min n0 n1"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   394
  shows "isnpolyh (p *\<^sub>p q) (min n0 n1)" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   395
  and "(p *\<^sub>p q = 0\<^sub>p) = (p = 0\<^sub>p \<or> q = 0\<^sub>p)" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   396
  and "degreen (p *\<^sub>p q) m = (if (p = 0\<^sub>p \<or> q = 0\<^sub>p) then 0 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   397
                             else degreen p m + degreen q m)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   398
  using np nq m
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   399
proof(induct p q arbitrary: n0 n1 m rule: polymul.induct)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   400
  case (2 a b c' n' p') 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   401
  let ?c = "(a,b)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   402
  { case (1 n0 n1) 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   403
    hence n: "isnpolyh (C ?c) n'" "isnpolyh c' (Suc n')" "isnpolyh p' n'" "isnormNum ?c" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   404
      "isnpolyh (CN c' n' p') n1"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   405
      by simp_all
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   406
    {assume "?c = 0\<^sub>N" hence ?case by auto}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   407
      moreover {assume cnz: "?c \<noteq> 0\<^sub>N" 
33268
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   408
        from "2.hyps"(1)[rule_format,where xb="n'",  OF cnz n(1) n(3)] 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   409
          "2.hyps"(2)[rule_format, where x="Suc n'" 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   410
          and xa="Suc n'" and xb = "n'", OF cnz ] cnz n have ?case
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   411
          by (auto simp add: min_def)}
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   412
      ultimately show ?case by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   413
  next
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   414
    case (2 n0 n1) thus ?case by auto 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   415
  next
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   416
    case (3 n0 n1) thus ?case  using "2.hyps" by auto } 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   417
next
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   418
  case (3 c n p a b){
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   419
    let ?c' = "(a,b)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   420
    case (1 n0 n1) 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   421
    hence n: "isnpolyh (C ?c') n" "isnpolyh c (Suc n)" "isnpolyh p n" "isnormNum ?c'" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   422
      "isnpolyh (CN c n p) n0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   423
      by simp_all
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   424
    {assume "?c' = 0\<^sub>N" hence ?case by auto}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   425
      moreover {assume cnz: "?c' \<noteq> 0\<^sub>N"
33268
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   426
        from "3.hyps"(1)[rule_format,where xb="n",  OF cnz n(3) n(1)] 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   427
          "3.hyps"(2)[rule_format, where x="Suc n" 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   428
          and xa="Suc n" and xb = "n", OF cnz ] cnz n have ?case
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   429
          by (auto simp add: min_def)}
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   430
      ultimately show ?case by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   431
  next
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   432
    case (2 n0 n1) thus ?case apply auto done
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   433
  next
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   434
    case (3 n0 n1) thus ?case  using "3.hyps" by auto } 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   435
next
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   436
  case (4 c n p c' n' p')
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   437
  let ?cnp = "CN c n p" let ?cnp' = "CN c' n' p'"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   438
    {fix n0 n1
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   439
      assume "isnpolyh ?cnp n0" and "isnpolyh ?cnp' n1"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   440
      hence cnp: "isnpolyh ?cnp n" and cnp': "isnpolyh ?cnp' n'"
33268
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   441
        and np: "isnpolyh p n" and nc: "isnpolyh c (Suc n)" 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   442
        and np': "isnpolyh p' n'" and nc': "isnpolyh c' (Suc n')"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   443
        and nn0: "n \<ge> n0" and nn1:"n' \<ge> n1"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   444
        by simp_all
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   445
      have "n < n' \<or> n' < n \<or> n' = n" by auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   446
      moreover
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   447
      {assume nn': "n < n'"
33268
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   448
        with "4.hyps"(5)[rule_format, OF nn' np cnp', where xb ="n"] 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   449
          "4.hyps"(6)[rule_format, OF nn' nc cnp', where xb="n"] nn' nn0 nn1 cnp
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   450
        have "isnpolyh (?cnp *\<^sub>p ?cnp') (min n0 n1)"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   451
          by (simp add: min_def) }
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   452
      moreover
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   453
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   454
      {assume nn': "n > n'" hence stupid: "n' < n \<and> \<not> n < n'" by arith
33268
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   455
        with "4.hyps"(3)[rule_format, OF stupid cnp np', where xb="n'"]
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   456
          "4.hyps"(4)[rule_format, OF stupid cnp nc', where xb="Suc n'"] 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   457
          nn' nn0 nn1 cnp'
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   458
        have "isnpolyh (?cnp *\<^sub>p ?cnp') (min n0 n1)"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   459
          by (cases "Suc n' = n", simp_all add: min_def)}
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   460
      moreover
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   461
      {assume nn': "n' = n" hence stupid: "\<not> n' < n \<and> \<not> n < n'" by arith
33268
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   462
        from "4.hyps"(1)[rule_format, OF stupid cnp np', where xb="n"]
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   463
          "4.hyps"(2)[rule_format, OF stupid cnp nc', where xb="n"] nn' cnp cnp' nn1
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   464
        
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   465
        have "isnpolyh (?cnp *\<^sub>p ?cnp') (min n0 n1)"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   466
          by simp (rule polyadd_normh,simp_all add: min_def isnpolyh_mono[OF nn0]) }
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   467
      ultimately show "isnpolyh (?cnp *\<^sub>p ?cnp') (min n0 n1)" by blast }
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   468
    note th = this
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   469
    {fix n0 n1 m
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   470
      assume np: "isnpolyh ?cnp n0" and np':"isnpolyh ?cnp' n1"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   471
      and m: "m \<le> min n0 n1"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   472
      let ?d = "degreen (?cnp *\<^sub>p ?cnp') m"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   473
      let ?d1 = "degreen ?cnp m"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   474
      let ?d2 = "degreen ?cnp' m"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   475
      let ?eq = "?d = (if ?cnp = 0\<^sub>p \<or> ?cnp' = 0\<^sub>p then 0  else ?d1 + ?d2)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   476
      have "n'<n \<or> n < n' \<or> n' = n" by auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   477
      moreover 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   478
      {assume "n' < n \<or> n < n'"
33268
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   479
        with "4.hyps" np np' m 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   480
        have ?eq apply (cases "n' < n", simp_all)
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   481
        apply (erule allE[where x="n"],erule allE[where x="n"],auto) 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   482
        done }
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   483
      moreover
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   484
      {assume nn': "n' = n"  hence nn:"\<not> n' < n \<and> \<not> n < n'" by arith
33268
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   485
        from "4.hyps"(1)[rule_format, OF nn, where x="n" and xa ="n'" and xb="n"]
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   486
          "4.hyps"(2)[rule_format, OF nn, where x="n" and xa ="Suc n'" and xb="n"] 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   487
          np np' nn'
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   488
        have norm: "isnpolyh ?cnp n" "isnpolyh c' (Suc n)" "isnpolyh (?cnp *\<^sub>p c') n"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   489
          "isnpolyh p' n" "isnpolyh (?cnp *\<^sub>p p') n" "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   490
          "(?cnp *\<^sub>p c' = 0\<^sub>p) = (c' = 0\<^sub>p)" 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   491
          "?cnp *\<^sub>p p' \<noteq> 0\<^sub>p" by (auto simp add: min_def)
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   492
        {assume mn: "m = n" 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   493
          from "4.hyps"(1)[rule_format, OF nn norm(1,4), where xb="n"]
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   494
            "4.hyps"(2)[rule_format, OF nn norm(1,2), where xb="n"] norm nn' mn
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   495
          have degs:  "degreen (?cnp *\<^sub>p c') n = 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   496
            (if c'=0\<^sub>p then 0 else ?d1 + degreen c' n)"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   497
            "degreen (?cnp *\<^sub>p p') n = ?d1  + degreen p' n" by (simp_all add: min_def)
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   498
          from degs norm
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   499
          have th1: "degreen(?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" by simp
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   500
          hence neq: "degreen (?cnp *\<^sub>p c') n \<noteq> degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   501
            by simp
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   502
          have nmin: "n \<le> min n n" by (simp add: min_def)
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   503
          from polyadd_different_degreen[OF norm(3,6) neq nmin] th1
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   504
          have deg: "degreen (CN c n p *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n = degreen (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   505
          from "4.hyps"(1)[rule_format, OF nn norm(1,4), where xb="n"]
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   506
            "4.hyps"(2)[rule_format, OF nn norm(1,2), where xb="n"]
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   507
            mn norm m nn' deg
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   508
          have ?eq by simp}
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   509
        moreover
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   510
        {assume mn: "m \<noteq> n" hence mn': "m < n" using m np by auto
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   511
          from nn' m np have max1: "m \<le> max n n"  by simp 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   512
          hence min1: "m \<le> min n n" by simp     
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   513
          hence min2: "m \<le> min n (Suc n)" by simp
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   514
          {assume "c' = 0\<^sub>p"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   515
            from `c' = 0\<^sub>p` have ?eq
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   516
              using "4.hyps"(1)[rule_format, OF nn norm(1,4) min1]
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   517
            "4.hyps"(2)[rule_format, OF nn norm(1,2) min2] mn nn'
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   518
              apply simp
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   519
              done}
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   520
          moreover
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   521
          {assume cnz: "c' \<noteq> 0\<^sub>p"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   522
            from "4.hyps"(1)[rule_format, OF nn norm(1,4) min1]
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   523
              "4.hyps"(2)[rule_format, OF nn norm(1,2) min2]
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   524
              degreen_polyadd[OF norm(3,6) max1]
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   525
33268
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   526
            have "degreen (?cnp *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (?cnp *\<^sub>p p')) m 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   527
              \<le> max (degreen (?cnp *\<^sub>p c') m) (degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) m)"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   528
              using mn nn' cnz np np' by simp
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   529
            with "4.hyps"(1)[rule_format, OF nn norm(1,4) min1]
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   530
              "4.hyps"(2)[rule_format, OF nn norm(1,2) min2]
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   531
              degreen_0[OF norm(3) mn'] have ?eq using nn' mn cnz np np' by clarsimp}
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   532
          ultimately have ?eq by blast }
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   533
        ultimately have ?eq by blast}
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   534
      ultimately show ?eq by blast}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   535
    note degth = this
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   536
    { case (2 n0 n1)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   537
      hence np: "isnpolyh ?cnp n0" and np': "isnpolyh ?cnp' n1" 
33268
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   538
        and m: "m \<le> min n0 n1" by simp_all
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   539
      hence mn: "m \<le> n" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   540
      let ?c0p = "CN 0\<^sub>p n (?cnp *\<^sub>p p')"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   541
      {assume C: "?cnp *\<^sub>p c' +\<^sub>p ?c0p = 0\<^sub>p" "n' = n"
33268
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   542
        hence nn: "\<not>n' < n \<and> \<not> n<n'" by simp
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   543
        from "4.hyps"(1) [rule_format, OF nn, where x="n" and xa = "n" and xb="n"] 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   544
          "4.hyps"(2) [rule_format, OF nn, where x="n" and xa = "Suc n" and xb="n"] 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   545
          np np' C(2) mn
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   546
        have norm: "isnpolyh ?cnp n" "isnpolyh c' (Suc n)" "isnpolyh (?cnp *\<^sub>p c') n"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   547
          "isnpolyh p' n" "isnpolyh (?cnp *\<^sub>p p') n" "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   548
          "(?cnp *\<^sub>p c' = 0\<^sub>p) = (c' = 0\<^sub>p)" 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   549
          "?cnp *\<^sub>p p' \<noteq> 0\<^sub>p" 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   550
          "degreen (?cnp *\<^sub>p c') n = (if c'=0\<^sub>p then 0 else degreen ?cnp n + degreen c' n)"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   551
            "degreen (?cnp *\<^sub>p p') n = degreen ?cnp n + degreen p' n"
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   552
          by (simp_all add: min_def)
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   553
            
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   554
          from norm have cn: "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   555
          have degneq: "degreen (?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" 
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   556
            using norm by simp
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   557
        from polyadd_eq_const_degreen[OF norm(3) cn C(1), where m="n"]  degneq
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
   558
        have "False" by simp }
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   559
      thus ?case using "4.hyps" by clarsimp}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   560
qed auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   561
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   562
lemma polymul[simp]: "Ipoly bs (p *\<^sub>p q) = (Ipoly bs p) * (Ipoly bs q)"
36349
39be26d1bc28 class division_ring_inverse_zero
haftmann
parents: 35416
diff changeset
   563
by(induct p q rule: polymul.induct, auto simp add: field_simps)
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   564
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   565
lemma polymul_normh: 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   566
    assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   567
  shows "\<lbrakk>isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> isnpolyh (p *\<^sub>p q) (min n0 n1)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   568
  using polymul_properties(1)  by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   569
lemma polymul_eq0_iff: 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   570
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   571
  shows "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> (p *\<^sub>p q = 0\<^sub>p) = (p = 0\<^sub>p \<or> q = 0\<^sub>p) "
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   572
  using polymul_properties(2)  by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   573
lemma polymul_degreen:  
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   574
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   575
  shows "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1 ; m \<le> min n0 n1\<rbrakk> \<Longrightarrow> degreen (p *\<^sub>p q) m = (if (p = 0\<^sub>p \<or> q = 0\<^sub>p) then 0 else degreen p m + degreen q m)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   576
  using polymul_properties(3) by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   577
lemma polymul_norm:   
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   578
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   579
  shows "\<lbrakk> isnpoly p; isnpoly q\<rbrakk> \<Longrightarrow> isnpoly (polymul (p,q))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   580
  using polymul_normh[of "p" "0" "q" "0"] isnpoly_def by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   581
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   582
lemma headconst_zero: "isnpolyh p n0 \<Longrightarrow> headconst p = 0\<^sub>N \<longleftrightarrow> p = 0\<^sub>p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   583
  by (induct p arbitrary: n0 rule: headconst.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   584
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   585
lemma headconst_isnormNum: "isnpolyh p n0 \<Longrightarrow> isnormNum (headconst p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   586
  by (induct p arbitrary: n0, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   587
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   588
lemma monic_eqI: assumes np: "isnpolyh p n0" 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   589
  shows "INum (headconst p) * Ipoly bs (fst (monic p)) = (Ipoly bs p ::'a::{field_char_0, field_inverse_zero, power})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   590
  unfolding monic_def Let_def
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   591
proof(cases "headconst p = 0\<^sub>N", simp_all add: headconst_zero[OF np])
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   592
  let ?h = "headconst p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   593
  assume pz: "p \<noteq> 0\<^sub>p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   594
  {assume hz: "INum ?h = (0::'a)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   595
    from headconst_isnormNum[OF np] have norm: "isnormNum ?h" "isnormNum 0\<^sub>N" by simp_all
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   596
    from isnormNum_unique[where ?'a = 'a, OF norm] hz have "?h = 0\<^sub>N" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   597
    with headconst_zero[OF np] have "p =0\<^sub>p" by blast with pz have "False" by blast}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   598
  thus "INum (headconst p) = (0::'a) \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0" by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   599
qed
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   600
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   601
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   602
 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   603
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   604
text{* polyneg is a negation and preserves normal form *}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   605
lemma polyneg[simp]: "Ipoly bs (polyneg p) = - Ipoly bs p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   606
by (induct p rule: polyneg.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   607
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   608
lemma polyneg0: "isnpolyh p n \<Longrightarrow> ((~\<^sub>p p) = 0\<^sub>p) = (p = 0\<^sub>p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   609
  by (induct p arbitrary: n rule: polyneg.induct, auto simp add: Nneg_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   610
lemma polyneg_polyneg: "isnpolyh p n0 \<Longrightarrow> ~\<^sub>p (~\<^sub>p p) = p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   611
  by (induct p arbitrary: n0 rule: polyneg.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   612
lemma polyneg_normh: "\<And>n. isnpolyh p n \<Longrightarrow> isnpolyh (polyneg p) n "
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   613
by (induct p rule: polyneg.induct, auto simp add: polyneg0)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   614
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   615
lemma polyneg_norm: "isnpoly p \<Longrightarrow> isnpoly (polyneg p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   616
  using isnpoly_def polyneg_normh by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   617
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   618
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   619
text{* polysub is a substraction and preserves normalform *}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   620
lemma polysub[simp]: "Ipoly bs (polysub (p,q)) = (Ipoly bs p) - (Ipoly bs q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   621
by (simp add: polysub_def polyneg polyadd)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   622
lemma polysub_normh: "\<And> n0 n1. \<lbrakk> isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> isnpolyh (polysub(p,q)) (min n0 n1)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   623
by (simp add: polysub_def polyneg_normh polyadd_normh)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   624
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   625
lemma polysub_norm: "\<lbrakk> isnpoly p; isnpoly q\<rbrakk> \<Longrightarrow> isnpoly (polysub(p,q))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   626
  using polyadd_norm polyneg_norm by (simp add: polysub_def) 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   627
lemma polysub_same_0[simp]:   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   628
  shows "isnpolyh p n0 \<Longrightarrow> polysub (p, p) = 0\<^sub>p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   629
unfolding polysub_def split_def fst_conv snd_conv
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   630
by (induct p arbitrary: n0,auto simp add: Let_def Nsub0[simplified Nsub_def])
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   631
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   632
lemma polysub_0: 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   633
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   634
  shows "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> (p -\<^sub>p q = 0\<^sub>p) = (p = q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   635
  unfolding polysub_def split_def fst_conv snd_conv
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   636
  apply (induct p q arbitrary: n0 n1 rule:polyadd.induct, simp_all add: Nsub0[simplified Nsub_def])
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   637
  apply (clarsimp simp add: Let_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   638
  apply (case_tac "n < n'", simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   639
  apply (case_tac "n' < n", simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   640
  apply (erule impE)+
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   641
  apply (rule_tac x="Suc n" in exI, simp)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   642
  apply (rule_tac x="n" in exI, simp)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   643
  apply (erule impE)+
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   644
  apply (rule_tac x="n" in exI, simp)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   645
  apply (rule_tac x="Suc n" in exI, simp)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   646
  apply (erule impE)+
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   647
  apply (rule_tac x="Suc n" in exI, simp)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   648
  apply (rule_tac x="n" in exI, simp)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   649
  apply (erule impE)+
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   650
  apply (rule_tac x="Suc n" in exI, simp)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   651
  apply clarsimp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   652
  done
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   653
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   654
text{* polypow is a power function and preserves normal forms *}
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   655
lemma polypow[simp]: "Ipoly bs (polypow n p) = ((Ipoly bs p :: 'a::{field_char_0, field_inverse_zero})) ^ n"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   656
proof(induct n rule: polypow.induct)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   657
  case 1 thus ?case by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   658
next
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   659
  case (2 n)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   660
  let ?q = "polypow ((Suc n) div 2) p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   661
  let ?d = "polymul(?q,?q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   662
  have "odd (Suc n) \<or> even (Suc n)" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   663
  moreover 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   664
  {assume odd: "odd (Suc n)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   665
    have th: "(Suc (Suc (Suc (0\<Colon>nat)) * (Suc n div Suc (Suc (0\<Colon>nat))))) = Suc n div 2 + Suc n div 2 + 1" by arith
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   666
    from odd have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs (polymul(p, ?d))" by (simp add: Let_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   667
    also have "\<dots> = (Ipoly bs p) * (Ipoly bs p)^(Suc n div 2)*(Ipoly bs p)^(Suc n div 2)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   668
      using "2.hyps" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   669
    also have "\<dots> = (Ipoly bs p) ^ (Suc n div 2 + Suc n div 2 + 1)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   670
      apply (simp only: power_add power_one_right) by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   671
    also have "\<dots> = (Ipoly bs p) ^ (Suc (Suc (Suc (0\<Colon>nat)) * (Suc n div Suc (Suc (0\<Colon>nat)))))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   672
      by (simp only: th)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   673
    finally have ?case 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   674
    using odd_nat_div_two_times_two_plus_one[OF odd, symmetric] by simp  }
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   675
  moreover 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   676
  {assume even: "even (Suc n)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   677
    have th: "(Suc (Suc (0\<Colon>nat))) * (Suc n div Suc (Suc (0\<Colon>nat))) = Suc n div 2 + Suc n div 2" by arith
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   678
    from even have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs ?d" by (simp add: Let_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   679
    also have "\<dots> = (Ipoly bs p) ^ (Suc n div 2 + Suc n div 2)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   680
      using "2.hyps" apply (simp only: power_add) by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   681
    finally have ?case using even_nat_div_two_times_two[OF even] by (simp only: th)}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   682
  ultimately show ?case by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   683
qed
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   684
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   685
lemma polypow_normh: 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   686
    assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   687
  shows "isnpolyh p n \<Longrightarrow> isnpolyh (polypow k p) n"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   688
proof (induct k arbitrary: n rule: polypow.induct)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   689
  case (2 k n)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   690
  let ?q = "polypow (Suc k div 2) p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   691
  let ?d = "polymul (?q,?q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   692
  from prems have th1:"isnpolyh ?q n" and th2: "isnpolyh p n" by blast+
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   693
  from polymul_normh[OF th1 th1] have dn: "isnpolyh ?d n" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   694
  from polymul_normh[OF th2 dn] have on: "isnpolyh (polymul(p,?d)) n" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   695
  from dn on show ?case by (simp add: Let_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   696
qed auto 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   697
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   698
lemma polypow_norm:   
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   699
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   700
  shows "isnpoly p \<Longrightarrow> isnpoly (polypow k p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   701
  by (simp add: polypow_normh isnpoly_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   702
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   703
text{* Finally the whole normalization*}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   704
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   705
lemma polynate[simp]: "Ipoly bs (polynate p) = (Ipoly bs p :: 'a ::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   706
by (induct p rule:polynate.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   707
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   708
lemma polynate_norm[simp]: 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   709
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   710
  shows "isnpoly (polynate p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   711
  by (induct p rule: polynate.induct, simp_all add: polyadd_norm polymul_norm polysub_norm polyneg_norm polypow_norm) (simp_all add: isnpoly_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   712
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   713
text{* shift1 *}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   714
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   715
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   716
lemma shift1: "Ipoly bs (shift1 p) = Ipoly bs (Mul (Bound 0) p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   717
by (simp add: shift1_def polymul)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   718
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   719
lemma shift1_isnpoly: 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   720
  assumes pn: "isnpoly p" and pnz: "p \<noteq> 0\<^sub>p" shows "isnpoly (shift1 p) "
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   721
  using pn pnz by (simp add: shift1_def isnpoly_def )
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   722
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   723
lemma shift1_nz[simp]:"shift1 p \<noteq> 0\<^sub>p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   724
  by (simp add: shift1_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   725
lemma funpow_shift1_isnpoly: 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   726
  "\<lbrakk> isnpoly p ; p \<noteq> 0\<^sub>p\<rbrakk> \<Longrightarrow> isnpoly (funpow n shift1 p)"
39246
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   727
  by (induct n arbitrary: p) (auto simp add: shift1_isnpoly funpow_swap1)
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   728
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   729
lemma funpow_isnpolyh: 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   730
  assumes f: "\<And> p. isnpolyh p n \<Longrightarrow> isnpolyh (f p) n "and np: "isnpolyh p n"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   731
  shows "isnpolyh (funpow k f p) n"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   732
  using f np by (induct k arbitrary: p, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   733
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   734
lemma funpow_shift1: "(Ipoly bs (funpow n shift1 p) :: 'a :: {field_char_0, field_inverse_zero}) = Ipoly bs (Mul (Pw (Bound 0) n) p)"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   735
  by (induct n arbitrary: p, simp_all add: shift1_isnpoly shift1 power_Suc )
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   736
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   737
lemma shift1_isnpolyh: "isnpolyh p n0 \<Longrightarrow> p\<noteq> 0\<^sub>p \<Longrightarrow> isnpolyh (shift1 p) 0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   738
  using isnpolyh_mono[where n="n0" and n'="0" and p="p"] by (simp add: shift1_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   739
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   740
lemma funpow_shift1_1: 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   741
  "(Ipoly bs (funpow n shift1 p) :: 'a :: {field_char_0, field_inverse_zero}) = Ipoly bs (funpow n shift1 1\<^sub>p *\<^sub>p p)"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   742
  by (simp add: funpow_shift1)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   743
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   744
lemma poly_cmul[simp]: "Ipoly bs (poly_cmul c p) = Ipoly bs (Mul (C c) p)"
36349
39be26d1bc28 class division_ring_inverse_zero
haftmann
parents: 35416
diff changeset
   745
by (induct p  arbitrary: n0 rule: poly_cmul.induct, auto simp add: field_simps)
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   746
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   747
lemma behead:
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   748
  assumes np: "isnpolyh p n"
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   749
  shows "Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) = (Ipoly bs p :: 'a :: {field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   750
  using np
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   751
proof (induct p arbitrary: n rule: behead.induct)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   752
  case (1 c p n) hence pn: "isnpolyh p n" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   753
  from prems(2)[OF pn] 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   754
  have th:"Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) = Ipoly bs p" . 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   755
  then show ?case using "1.hyps" apply (simp add: Let_def,cases "behead p = 0\<^sub>p")
36349
39be26d1bc28 class division_ring_inverse_zero
haftmann
parents: 35416
diff changeset
   756
    by (simp_all add: th[symmetric] field_simps power_Suc)
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   757
qed (auto simp add: Let_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   758
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   759
lemma behead_isnpolyh:
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   760
  assumes np: "isnpolyh p n" shows "isnpolyh (behead p) n"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   761
  using np by (induct p rule: behead.induct, auto simp add: Let_def isnpolyh_mono)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   762
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   763
subsection{* Miscilanious lemmas about indexes, decrementation, substitution  etc ... *}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   764
lemma isnpolyh_polybound0: "isnpolyh p (Suc n) \<Longrightarrow> polybound0 p"
39246
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   765
proof(induct p arbitrary: n rule: poly.induct, auto)
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   766
  case (goal1 c n p n')
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   767
  hence "n = Suc (n - 1)" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   768
  hence "isnpolyh p (Suc (n - 1))"  using `isnpolyh p n` by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   769
  with prems(2) show ?case by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   770
qed
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   771
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   772
lemma isconstant_polybound0: "isnpolyh p n0 \<Longrightarrow> isconstant p \<longleftrightarrow> polybound0 p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   773
by (induct p arbitrary: n0 rule: isconstant.induct, auto simp add: isnpolyh_polybound0)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   774
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   775
lemma decrpoly_zero[simp]: "decrpoly p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" by (induct p, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   776
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   777
lemma decrpoly_normh: "isnpolyh p n0 \<Longrightarrow> polybound0 p \<Longrightarrow> isnpolyh (decrpoly p) (n0 - 1)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   778
  apply (induct p arbitrary: n0, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   779
  apply (atomize)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   780
  apply (erule_tac x = "Suc nat" in allE)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   781
  apply auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   782
  done
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   783
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   784
lemma head_polybound0: "isnpolyh p n0 \<Longrightarrow> polybound0 (head p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   785
 by (induct p  arbitrary: n0 rule: head.induct, auto intro: isnpolyh_polybound0)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   786
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   787
lemma polybound0_I:
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   788
  assumes nb: "polybound0 a"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   789
  shows "Ipoly (b#bs) a = Ipoly (b'#bs) a"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   790
using nb
39246
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   791
by (induct a rule: poly.induct) auto 
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   792
lemma polysubst0_I:
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   793
  shows "Ipoly (b#bs) (polysubst0 a t) = Ipoly ((Ipoly (b#bs) a)#bs) t"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   794
  by (induct t) simp_all
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   795
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   796
lemma polysubst0_I':
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   797
  assumes nb: "polybound0 a"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   798
  shows "Ipoly (b#bs) (polysubst0 a t) = Ipoly ((Ipoly (b'#bs) a)#bs) t"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   799
  by (induct t) (simp_all add: polybound0_I[OF nb, where b="b" and b'="b'"])
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   800
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   801
lemma decrpoly: assumes nb: "polybound0 t"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   802
  shows "Ipoly (x#bs) t = Ipoly bs (decrpoly t)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   803
  using nb by (induct t rule: decrpoly.induct, simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   804
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   805
lemma polysubst0_polybound0: assumes nb: "polybound0 t"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   806
  shows "polybound0 (polysubst0 t a)"
39246
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   807
using nb by (induct a rule: poly.induct, auto)
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   808
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   809
lemma degree0_polybound0: "isnpolyh p n \<Longrightarrow> degree p = 0 \<Longrightarrow> polybound0 p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   810
  by (induct p arbitrary: n rule: degree.induct, auto simp add: isnpolyh_polybound0)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   811
39246
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
   812
primrec maxindex :: "poly \<Rightarrow> nat" where
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   813
  "maxindex (Bound n) = n + 1"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   814
| "maxindex (CN c n p) = max  (n + 1) (max (maxindex c) (maxindex p))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   815
| "maxindex (Add p q) = max (maxindex p) (maxindex q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   816
| "maxindex (Sub p q) = max (maxindex p) (maxindex q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   817
| "maxindex (Mul p q) = max (maxindex p) (maxindex q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   818
| "maxindex (Neg p) = maxindex p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   819
| "maxindex (Pw p n) = maxindex p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   820
| "maxindex (C x) = 0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   821
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   822
definition wf_bs :: "'a list \<Rightarrow> poly \<Rightarrow> bool" where
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   823
  "wf_bs bs p = (length bs \<ge> maxindex p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   824
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   825
lemma wf_bs_coefficients: "wf_bs bs p \<Longrightarrow> \<forall> c \<in> set (coefficients p). wf_bs bs c"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   826
proof(induct p rule: coefficients.induct)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   827
  case (1 c p) 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   828
  show ?case 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   829
  proof
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   830
    fix x assume xc: "x \<in> set (coefficients (CN c 0 p))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   831
    hence "x = c \<or> x \<in> set (coefficients p)" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   832
    moreover 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   833
    {assume "x = c" hence "wf_bs bs x" using "1.prems"  unfolding wf_bs_def by simp}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   834
    moreover 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   835
    {assume H: "x \<in> set (coefficients p)" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   836
      from "1.prems" have "wf_bs bs p" unfolding wf_bs_def by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   837
      with "1.hyps" H have "wf_bs bs x" by blast }
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   838
    ultimately  show "wf_bs bs x" by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   839
  qed
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   840
qed simp_all
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   841
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   842
lemma maxindex_coefficients: " \<forall>c\<in> set (coefficients p). maxindex c \<le> maxindex p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   843
by (induct p rule: coefficients.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   844
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   845
lemma length_exists: "\<exists>xs. length xs = n" by (rule exI[where x="replicate n x"], simp)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   846
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   847
lemma wf_bs_I: "wf_bs bs p ==> Ipoly (bs@bs') p = Ipoly bs p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   848
  unfolding wf_bs_def by (induct p, auto simp add: nth_append)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   849
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   850
lemma take_maxindex_wf: assumes wf: "wf_bs bs p" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   851
  shows "Ipoly (take (maxindex p) bs) p = Ipoly bs p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   852
proof-
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   853
  let ?ip = "maxindex p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   854
  let ?tbs = "take ?ip bs"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   855
  from wf have "length ?tbs = ?ip" unfolding wf_bs_def by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   856
  hence wf': "wf_bs ?tbs p" unfolding wf_bs_def by  simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   857
  have eq: "bs = ?tbs @ (drop ?ip bs)" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   858
  from wf_bs_I[OF wf', of "drop ?ip bs"] show ?thesis using eq by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   859
qed
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   860
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   861
lemma decr_maxindex: "polybound0 p \<Longrightarrow> maxindex (decrpoly p) = maxindex p - 1"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   862
  by (induct p, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   863
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   864
lemma wf_bs_insensitive: "length bs = length bs' \<Longrightarrow> wf_bs bs p = wf_bs bs' p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   865
  unfolding wf_bs_def by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   866
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   867
lemma wf_bs_insensitive': "wf_bs (x#bs) p = wf_bs (y#bs) p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   868
  unfolding wf_bs_def by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   869
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   870
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   871
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   872
lemma wf_bs_coefficients': "\<forall>c \<in> set (coefficients p). wf_bs bs c \<Longrightarrow> wf_bs (x#bs) p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   873
by(induct p rule: coefficients.induct, auto simp add: wf_bs_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   874
lemma coefficients_Nil[simp]: "coefficients p \<noteq> []"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   875
  by (induct p rule: coefficients.induct, simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   876
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   877
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   878
lemma coefficients_head: "last (coefficients p) = head p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   879
  by (induct p rule: coefficients.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   880
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   881
lemma wf_bs_decrpoly: "wf_bs bs (decrpoly p) \<Longrightarrow> wf_bs (x#bs) p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   882
  unfolding wf_bs_def by (induct p rule: decrpoly.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   883
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   884
lemma length_le_list_ex: "length xs \<le> n \<Longrightarrow> \<exists> ys. length (xs @ ys) = n"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   885
  apply (rule exI[where x="replicate (n - length xs) z"])
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   886
  by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   887
lemma isnpolyh_Suc_const:"isnpolyh p (Suc n) \<Longrightarrow> isconstant p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   888
by (cases p, auto) (case_tac "nat", simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   889
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   890
lemma wf_bs_polyadd: "wf_bs bs p \<and> wf_bs bs q \<longrightarrow> wf_bs bs (p +\<^sub>p q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   891
  unfolding wf_bs_def 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   892
  apply (induct p q rule: polyadd.induct)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   893
  apply (auto simp add: Let_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   894
  done
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   895
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   896
lemma wf_bs_polyul: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p *\<^sub>p q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   897
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   898
 unfolding wf_bs_def 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   899
  apply (induct p q arbitrary: bs rule: polymul.induct) 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   900
  apply (simp_all add: wf_bs_polyadd)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   901
  apply clarsimp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   902
  apply (rule wf_bs_polyadd[unfolded wf_bs_def, rule_format])
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   903
  apply auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   904
  done
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   905
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   906
lemma wf_bs_polyneg: "wf_bs bs p \<Longrightarrow> wf_bs bs (~\<^sub>p p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   907
  unfolding wf_bs_def by (induct p rule: polyneg.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   908
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   909
lemma wf_bs_polysub: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p -\<^sub>p q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   910
  unfolding polysub_def split_def fst_conv snd_conv using wf_bs_polyadd wf_bs_polyneg by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   911
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   912
subsection{* Canonicity of polynomial representation, see lemma isnpolyh_unique*}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   913
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   914
definition "polypoly bs p = map (Ipoly bs) (coefficients p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   915
definition "polypoly' bs p = map ((Ipoly bs o decrpoly)) (coefficients p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   916
definition "poly_nate bs p = map ((Ipoly bs o decrpoly)) (coefficients (polynate p))"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   917
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   918
lemma coefficients_normh: "isnpolyh p n0 \<Longrightarrow> \<forall> q \<in> set (coefficients p). isnpolyh q n0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   919
proof (induct p arbitrary: n0 rule: coefficients.induct)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   920
  case (1 c p n0)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   921
  have cp: "isnpolyh (CN c 0 p) n0" by fact
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   922
  hence norm: "isnpolyh c 0" "isnpolyh p 0" "p \<noteq> 0\<^sub>p" "n0 = 0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   923
    by (auto simp add: isnpolyh_mono[where n'=0])
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   924
  from "1.hyps"[OF norm(2)] norm(1) norm(4)  show ?case by simp 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   925
qed auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   926
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   927
lemma coefficients_isconst:
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   928
  "isnpolyh p n \<Longrightarrow> \<forall>q\<in>set (coefficients p). isconstant q"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   929
  by (induct p arbitrary: n rule: coefficients.induct, 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   930
    auto simp add: isnpolyh_Suc_const)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   931
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   932
lemma polypoly_polypoly':
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   933
  assumes np: "isnpolyh p n0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   934
  shows "polypoly (x#bs) p = polypoly' bs p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   935
proof-
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   936
  let ?cf = "set (coefficients p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   937
  from coefficients_normh[OF np] have cn_norm: "\<forall> q\<in> ?cf. isnpolyh q n0" .
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   938
  {fix q assume q: "q \<in> ?cf"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   939
    from q cn_norm have th: "isnpolyh q n0" by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   940
    from coefficients_isconst[OF np] q have "isconstant q" by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   941
    with isconstant_polybound0[OF th] have "polybound0 q" by blast}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   942
  hence "\<forall>q \<in> ?cf. polybound0 q" ..
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   943
  hence "\<forall>q \<in> ?cf. Ipoly (x#bs) q = Ipoly bs (decrpoly q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   944
    using polybound0_I[where b=x and bs=bs and b'=y] decrpoly[where x=x and bs=bs]
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   945
    by auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   946
  
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   947
  thus ?thesis unfolding polypoly_def polypoly'_def by simp 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   948
qed
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   949
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   950
lemma polypoly_poly:
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   951
  assumes np: "isnpolyh p n0" shows "Ipoly (x#bs) p = poly (polypoly (x#bs) p) x"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   952
  using np 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   953
by (induct p arbitrary: n0 bs rule: coefficients.induct, auto simp add: polypoly_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   954
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   955
lemma polypoly'_poly: 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   956
  assumes np: "isnpolyh p n0" shows "\<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup> = poly (polypoly' bs p) x"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   957
  using polypoly_poly[OF np, simplified polypoly_polypoly'[OF np]] .
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   958
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   959
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   960
lemma polypoly_poly_polybound0:
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   961
  assumes np: "isnpolyh p n0" and nb: "polybound0 p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   962
  shows "polypoly bs p = [Ipoly bs p]"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   963
  using np nb unfolding polypoly_def 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   964
  by (cases p, auto, case_tac nat, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   965
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   966
lemma head_isnpolyh: "isnpolyh p n0 \<Longrightarrow> isnpolyh (head p) n0" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   967
  by (induct p rule: head.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   968
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   969
lemma headn_nz[simp]: "isnpolyh p n0 \<Longrightarrow> (headn p m = 0\<^sub>p) = (p = 0\<^sub>p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   970
  by (cases p,auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   971
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   972
lemma head_eq_headn0: "head p = headn p 0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   973
  by (induct p rule: head.induct, simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   974
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   975
lemma head_nz[simp]: "isnpolyh p n0 \<Longrightarrow> (head p = 0\<^sub>p) = (p = 0\<^sub>p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   976
  by (simp add: head_eq_headn0)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   977
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   978
lemma isnpolyh_zero_iff: 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
   979
  assumes nq: "isnpolyh p n0" and eq :"\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a::{field_char_0, field_inverse_zero, power})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   980
  shows "p = 0\<^sub>p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   981
using nq eq
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 33268
diff changeset
   982
proof (induct "maxindex p" arbitrary: p n0 rule: less_induct)
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 33268
diff changeset
   983
  case less
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 33268
diff changeset
   984
  note np = `isnpolyh p n0` and zp = `\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)`
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 33268
diff changeset
   985
  {assume nz: "maxindex p = 0"
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 33268
diff changeset
   986
    then obtain c where "p = C c" using np by (cases p, auto)
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   987
    with zp np have "p = 0\<^sub>p" unfolding wf_bs_def by simp}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   988
  moreover
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 33268
diff changeset
   989
  {assume nz: "maxindex p \<noteq> 0"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   990
    let ?h = "head p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   991
    let ?hd = "decrpoly ?h"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   992
    let ?ihd = "maxindex ?hd"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   993
    from head_isnpolyh[OF np] head_polybound0[OF np] have h:"isnpolyh ?h n0" "polybound0 ?h" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   994
      by simp_all
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   995
    hence nhd: "isnpolyh ?hd (n0 - 1)" using decrpoly_normh by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   996
    
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
   997
    from maxindex_coefficients[of p] coefficients_head[of p, symmetric]
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 33268
diff changeset
   998
    have mihn: "maxindex ?h \<le> maxindex p" by auto
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 33268
diff changeset
   999
    with decr_maxindex[OF h(2)] nz  have ihd_lt_n: "?ihd < maxindex p" by auto
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1000
    {fix bs:: "'a list"  assume bs: "wf_bs bs ?hd"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1001
      let ?ts = "take ?ihd bs"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1002
      let ?rs = "drop ?ihd bs"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1003
      have ts: "wf_bs ?ts ?hd" using bs unfolding wf_bs_def by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1004
      have bs_ts_eq: "?ts@ ?rs = bs" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1005
      from wf_bs_decrpoly[OF ts] have tsh: " \<forall>x. wf_bs (x#?ts) ?h" by simp
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 33268
diff changeset
  1006
      from ihd_lt_n have "ALL x. length (x#?ts) \<le> maxindex p" by simp
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 33268
diff changeset
  1007
      with length_le_list_ex obtain xs where xs:"length ((x#?ts) @ xs) = maxindex p" by blast
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 33268
diff changeset
  1008
      hence "\<forall> x. wf_bs ((x#?ts) @ xs) p" unfolding wf_bs_def by simp
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1009
      with zp have "\<forall> x. Ipoly ((x#?ts) @ xs) p = 0" by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1010
      hence "\<forall> x. Ipoly (x#(?ts @ xs)) p = 0" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1011
      with polypoly_poly[OF np, where ?'a = 'a] polypoly_polypoly'[OF np, where ?'a = 'a]
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1012
      have "\<forall>x. poly (polypoly' (?ts @ xs) p) x = poly [] x"  by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1013
      hence "poly (polypoly' (?ts @ xs) p) = poly []" by (auto intro: ext) 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1014
      hence "\<forall> c \<in> set (coefficients p). Ipoly (?ts @ xs) (decrpoly c) = 0"
33268
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
  1015
        using poly_zero[where ?'a='a] by (simp add: polypoly'_def list_all_iff)
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1016
      with coefficients_head[of p, symmetric]
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1017
      have th0: "Ipoly (?ts @ xs) ?hd = 0" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1018
      from bs have wf'': "wf_bs ?ts ?hd" unfolding wf_bs_def by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1019
      with th0 wf_bs_I[of ?ts ?hd xs] have "Ipoly ?ts ?hd = 0" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1020
      with wf'' wf_bs_I[of ?ts ?hd ?rs] bs_ts_eq have "\<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0" by simp }
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1021
    then have hdz: "\<forall>bs. wf_bs bs ?hd \<longrightarrow> \<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)" by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1022
    
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 33268
diff changeset
  1023
    from less(1)[OF ihd_lt_n nhd] hdz have "?hd = 0\<^sub>p" by blast
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1024
    hence "?h = 0\<^sub>p" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1025
    with head_nz[OF np] have "p = 0\<^sub>p" by simp}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1026
  ultimately show "p = 0\<^sub>p" by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1027
qed
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1028
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1029
lemma isnpolyh_unique:  
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1030
  assumes np:"isnpolyh p n0" and nq: "isnpolyh q n1"
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
  1031
  shows "(\<forall>bs. \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (\<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup> :: 'a::{field_char_0, field_inverse_zero, power})) \<longleftrightarrow>  p = q"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1032
proof(auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1033
  assume H: "\<forall>bs. (\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> ::'a)= \<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup>"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1034
  hence "\<forall>bs.\<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup>= (0::'a)" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1035
  hence "\<forall>bs. wf_bs bs (p -\<^sub>p q) \<longrightarrow> \<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1036
    using wf_bs_polysub[where p=p and q=q] by auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1037
  with isnpolyh_zero_iff[OF polysub_normh[OF np nq]] polysub_0[OF np nq]
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1038
  show "p = q" by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1039
qed
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1040
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1041
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1042
text{* consequenses of unicity on the algorithms for polynomial normalization *}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1043
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
  1044
lemma polyadd_commute:   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1045
  and np: "isnpolyh p n0" and nq: "isnpolyh q n1" shows "p +\<^sub>p q = q +\<^sub>p p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1046
  using isnpolyh_unique[OF polyadd_normh[OF np nq] polyadd_normh[OF nq np]] by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1047
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1048
lemma zero_normh: "isnpolyh 0\<^sub>p n" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1049
lemma one_normh: "isnpolyh 1\<^sub>p n" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1050
lemma polyadd_0[simp]: 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
  1051
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1052
  and np: "isnpolyh p n0" shows "p +\<^sub>p 0\<^sub>p = p" and "0\<^sub>p +\<^sub>p p = p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1053
  using isnpolyh_unique[OF polyadd_normh[OF np zero_normh] np] 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1054
    isnpolyh_unique[OF polyadd_normh[OF zero_normh np] np] by simp_all
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1055
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1056
lemma polymul_1[simp]: 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
  1057
    assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1058
  and np: "isnpolyh p n0" shows "p *\<^sub>p 1\<^sub>p = p" and "1\<^sub>p *\<^sub>p p = p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1059
  using isnpolyh_unique[OF polymul_normh[OF np one_normh] np] 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1060
    isnpolyh_unique[OF polymul_normh[OF one_normh np] np] by simp_all
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1061
lemma polymul_0[simp]: 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
  1062
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1063
  and np: "isnpolyh p n0" shows "p *\<^sub>p 0\<^sub>p = 0\<^sub>p" and "0\<^sub>p *\<^sub>p p = 0\<^sub>p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1064
  using isnpolyh_unique[OF polymul_normh[OF np zero_normh] zero_normh] 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1065
    isnpolyh_unique[OF polymul_normh[OF zero_normh np] zero_normh] by simp_all
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1066
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1067
lemma polymul_commute: 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
  1068
    assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1069
  and np:"isnpolyh p n0" and nq: "isnpolyh q n1"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1070
  shows "p *\<^sub>p q = q *\<^sub>p p"
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
  1071
using isnpolyh_unique[OF polymul_normh[OF np nq] polymul_normh[OF nq np], where ?'a = "'a\<Colon>{field_char_0, field_inverse_zero, power}"] by simp
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1072
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1073
declare polyneg_polyneg[simp]
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1074
  
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1075
lemma isnpolyh_polynate_id[simp]: 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
  1076
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1077
  and np:"isnpolyh p n0" shows "polynate p = p"
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
  1078
  using isnpolyh_unique[where ?'a= "'a::{field_char_0, field_inverse_zero}", OF polynate_norm[of p, unfolded isnpoly_def] np] polynate[where ?'a = "'a::{field_char_0, field_inverse_zero}"] by simp
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1079
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1080
lemma polynate_idempotent[simp]: 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
  1081
    assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1082
  shows "polynate (polynate p) = polynate p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1083
  using isnpolyh_polynate_id[OF polynate_norm[of p, unfolded isnpoly_def]] .
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1084
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1085
lemma poly_nate_polypoly': "poly_nate bs p = polypoly' bs (polynate p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1086
  unfolding poly_nate_def polypoly'_def ..
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
  1087
lemma poly_nate_poly: shows "poly (poly_nate bs p) = (\<lambda>x:: 'a ::{field_char_0, field_inverse_zero}. \<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup>)"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1088
  using polypoly'_poly[OF polynate_norm[unfolded isnpoly_def], symmetric, of bs p]
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1089
  unfolding poly_nate_polypoly' by (auto intro: ext)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1090
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1091
subsection{* heads, degrees and all that *}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1092
lemma degree_eq_degreen0: "degree p = degreen p 0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1093
  by (induct p rule: degree.induct, simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1094
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1095
lemma degree_polyneg: assumes n: "isnpolyh p n"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1096
  shows "degree (polyneg p) = degree p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1097
  using n
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1098
  by (induct p arbitrary: n rule: polyneg.induct, simp_all) (case_tac na, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1099
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1100
lemma degree_polyadd:
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1101
  assumes np: "isnpolyh p n0" and nq: "isnpolyh q n1"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1102
  shows "degree (p +\<^sub>p q) \<le> max (degree p) (degree q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1103
using degreen_polyadd[OF np nq, where m= "0"] degree_eq_degreen0 by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1104
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1105
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1106
lemma degree_polysub: assumes np: "isnpolyh p n0" and nq: "isnpolyh q n1"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1107
  shows "degree (p -\<^sub>p q) \<le> max (degree p) (degree q)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1108
proof-
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1109
  from nq have nq': "isnpolyh (~\<^sub>p q) n1" using polyneg_normh by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1110
  from degree_polyadd[OF np nq'] show ?thesis by (simp add: polysub_def degree_polyneg[OF nq])
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1111
qed
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1112
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1113
lemma degree_polysub_samehead: 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
  1114
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1115
  and np: "isnpolyh p n0" and nq: "isnpolyh q n1" and h: "head p = head q" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1116
  and d: "degree p = degree q"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1117
  shows "degree (p -\<^sub>p q) < degree p \<or> (p -\<^sub>p q = 0\<^sub>p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1118
unfolding polysub_def split_def fst_conv snd_conv
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1119
using np nq h d
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1120
proof(induct p q rule:polyadd.induct)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1121
  case (1 a b a' b') thus ?case by (simp add: Nsub_def Nsub0[simplified Nsub_def]) 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1122
next
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1123
  case (2 a b c' n' p') 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1124
  let ?c = "(a,b)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1125
  from prems have "degree (C ?c) = degree (CN c' n' p')" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1126
  hence nz:"n' > 0" by (cases n', auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1127
  hence "head (CN c' n' p') = CN c' n' p'" by (cases n', auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1128
  with prems show ?case by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1129
next
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1130
  case (3 c n p a' b') 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1131
  let ?c' = "(a',b')"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1132
  from prems have "degree (C ?c') = degree (CN c n p)" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1133
  hence nz:"n > 0" by (cases n, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1134
  hence "head (CN c n p) = CN c n p" by (cases n, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1135
  with prems show ?case by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1136
next
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1137
  case (4 c n p c' n' p')
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1138
  hence H: "isnpolyh (CN c n p) n0" "isnpolyh (CN c' n' p') n1" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1139
    "head (CN c n p) = head (CN c' n' p')" "degree (CN c n p) = degree (CN c' n' p')" by simp+
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1140
  hence degc: "degree c = 0" and degc': "degree c' = 0" by simp_all  
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1141
  hence degnc: "degree (~\<^sub>p c) = 0" and degnc': "degree (~\<^sub>p c') = 0" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1142
    using H(1-2) degree_polyneg by auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1143
  from H have cnh: "isnpolyh c (Suc n)" and c'nh: "isnpolyh c' (Suc n')"  by simp+
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1144
  from degree_polysub[OF cnh c'nh, simplified polysub_def] degc degc' have degcmc': "degree (c +\<^sub>p  ~\<^sub>pc') = 0"  by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1145
  from H have pnh: "isnpolyh p n" and p'nh: "isnpolyh p' n'" by auto
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1146
  have "n = n' \<or> n < n' \<or> n > n'" by arith
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1147
  moreover
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1148
  {assume nn': "n = n'"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1149
    have "n = 0 \<or> n >0" by arith
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1150
    moreover {assume nz: "n = 0" hence ?case using prems by (auto simp add: Let_def degcmc')}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1151
    moreover {assume nz: "n > 0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1152
      with nn' H(3) have  cc':"c = c'" and pp': "p = p'" by (cases n, auto)+
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1153
      hence ?case using polysub_same_0[OF p'nh, simplified polysub_def split_def fst_conv snd_conv] polysub_same_0[OF c'nh, simplified polysub_def split_def fst_conv snd_conv] using nn' prems by (simp add: Let_def)}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1154
    ultimately have ?case by blast}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1155
  moreover
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1156
  {assume nn': "n < n'" hence n'p: "n' > 0" by simp 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1157
    hence headcnp':"head (CN c' n' p') = CN c' n' p'"  by (cases n', simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1158
    have degcnp': "degree (CN c' n' p') = 0" and degcnpeq: "degree (CN c n p) = degree (CN c' n' p')" using prems by (cases n', simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1159
    hence "n > 0" by (cases n, simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1160
    hence headcnp: "head (CN c n p) = CN c n p" by (cases n, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1161
    from H(3) headcnp headcnp' nn' have ?case by auto}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1162
  moreover
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1163
  {assume nn': "n > n'"  hence np: "n > 0" by simp 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1164
    hence headcnp:"head (CN c n p) = CN c n p"  by (cases n, simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1165
    from prems have degcnpeq: "degree (CN c' n' p') = degree (CN c n p)" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1166
    from np have degcnp: "degree (CN c n p) = 0" by (cases n, simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1167
    with degcnpeq have "n' > 0" by (cases n', simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1168
    hence headcnp': "head (CN c' n' p') = CN c' n' p'" by (cases n', auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1169
    from H(3) headcnp headcnp' nn' have ?case by auto}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1170
  ultimately show ?case  by blast
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1171
qed auto 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1172
 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1173
lemma shift1_head : "isnpolyh p n0 \<Longrightarrow> head (shift1 p) = head p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1174
by (induct p arbitrary: n0 rule: head.induct, simp_all add: shift1_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1175
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1176
lemma funpow_shift1_head: "isnpolyh p n0 \<Longrightarrow> p\<noteq> 0\<^sub>p \<Longrightarrow> head (funpow k shift1 p) = head p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1177
proof(induct k arbitrary: n0 p)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1178
  case (Suc k n0 p) hence "isnpolyh (shift1 p) 0" by (simp add: shift1_isnpolyh)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1179
  with prems have "head (funpow k shift1 (shift1 p)) = head (shift1 p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1180
    and "head (shift1 p) = head p" by (simp_all add: shift1_head) 
39246
9e58f0499f57 modernized primrec
haftmann
parents: 36409
diff changeset
  1181
  thus ?case by (simp add: funpow_swap1)
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1182
qed auto  
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1183
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1184
lemma shift1_degree: "degree (shift1 p) = 1 + degree p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1185
  by (simp add: shift1_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1186
lemma funpow_shift1_degree: "degree (funpow k shift1 p) = k + degree p "
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1187
  by (induct k arbitrary: p, auto simp add: shift1_degree)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1188
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1189
lemma funpow_shift1_nz: "p \<noteq> 0\<^sub>p \<Longrightarrow> funpow n shift1 p \<noteq> 0\<^sub>p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1190
  by (induct n arbitrary: p, simp_all add: funpow_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1191
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1192
lemma head_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> head p = p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1193
  by (induct p arbitrary: n rule: degree.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1194
lemma headn_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> headn p m = p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1195
  by (induct p arbitrary: n rule: degreen.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1196
lemma head_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> head p = p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1197
  by (induct p arbitrary: n rule: degree.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1198
lemma head_head[simp]: "isnpolyh p n0 \<Longrightarrow> head (head p) = head p"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1199
  by (induct p rule: head.induct, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1200
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1201
lemma polyadd_eq_const_degree: 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1202
  "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1 ; polyadd (p,q) = C c\<rbrakk> \<Longrightarrow> degree p = degree q" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1203
  using polyadd_eq_const_degreen degree_eq_degreen0 by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1204
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1205
lemma polyadd_head: assumes np: "isnpolyh p n0" and nq: "isnpolyh q n1"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1206
  and deg: "degree p \<noteq> degree q"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1207
  shows "head (p +\<^sub>p q) = (if degree p < degree q then head q else head p)"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1208
using np nq deg
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1209
apply(induct p q arbitrary: n0 n1 rule: polyadd.induct,simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1210
apply (case_tac n', simp, simp)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1211
apply (case_tac n, simp, simp)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1212
apply (case_tac n, case_tac n', simp add: Let_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1213
apply (case_tac "pa +\<^sub>p p' = 0\<^sub>p")
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1214
apply (clarsimp simp add: polyadd_eq_const_degree)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1215
apply clarsimp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1216
apply (erule_tac impE,blast)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1217
apply (erule_tac impE,blast)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1218
apply clarsimp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1219
apply simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1220
apply (case_tac n', simp_all)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1221
done
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1222
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1223
lemma polymul_head_polyeq: 
36409
d323e7773aa8 use new classes (linordered_)field_inverse_zero
haftmann
parents: 36349
diff changeset
  1224
   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1225
  shows "\<lbrakk>isnpolyh p n0; isnpolyh q n1 ; p \<noteq> 0\<^sub>p ; q \<noteq> 0\<^sub>p \<rbrakk> \<Longrightarrow> head (p *\<^sub>p q) = head p *\<^sub>p head q"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1226
proof (induct p q arbitrary: n0 n1 rule: polymul.induct)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1227
  case (2 a b c' n' p' n0 n1)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1228
  hence "isnpolyh (head (CN c' n' p')) n1" "isnormNum (a,b)"  by (simp_all add: head_isnpolyh)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1229
  thus ?case using prems by (cases n', auto) 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1230
next 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1231
  case (3 c n p a' b' n0 n1) 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1232
  hence "isnpolyh (head (CN c n p)) n0" "isnormNum (a',b')"  by (simp_all add: head_isnpolyh)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1233
  thus ?case using prems by (cases n, auto)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1234
next
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1235
  case (4 c n p c' n' p' n0 n1)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1236
  hence norm: "isnpolyh p n" "isnpolyh c (Suc n)" "isnpolyh p' n'" "isnpolyh c' (Suc n')"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1237
    "isnpolyh (CN c n p) n" "isnpolyh (CN c' n' p') n'"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1238
    by simp_all
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1239
  have "n < n' \<or> n' < n \<or> n = n'" by arith
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1240
  moreover 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1241
  {assume nn': "n < n'" hence ?case 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1242
      thm prems
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1243
      using norm 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1244
    prems(6)[rule_format, OF nn' norm(1,6)]
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1245
    prems(7)[rule_format, OF nn' norm(2,6)] by (simp, cases n, simp,cases n', simp_all)}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1246
  moreover {assume nn': "n'< n"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1247
    hence stupid: "n' < n \<and> \<not> n < n'" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1248
    hence ?case using norm prems(4) [rule_format, OF stupid norm(5,3)]
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1249
      prems(5)[rule_format, OF stupid norm(5,4)] 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1250
      by (simp,cases n',simp,cases n,auto)}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1251
  moreover {assume nn': "n' = n"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1252
    hence stupid: "\<not> n' < n \<and> \<not> n < n'" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1253
    from nn' polymul_normh[OF norm(5,4)] 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1254
    have ncnpc':"isnpolyh (CN c n p *\<^sub>p c') n" by (simp add: min_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1255
    from nn' polymul_normh[OF norm(5,3)] norm 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1256
    have ncnpp':"isnpolyh (CN c n p *\<^sub>p p') n" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1257
    from nn' ncnpp' polymul_eq0_iff[OF norm(5,3)] norm(6)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1258
    have ncnpp0':"isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1259
    from polyadd_normh[OF ncnpc' ncnpp0'] 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1260
    have nth: "isnpolyh ((CN c n p *\<^sub>p c') +\<^sub>p (CN 0\<^sub>p n (CN c n p *\<^sub>p p'))) n" 
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1261
      by (simp add: min_def)
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1262
    {assume np: "n > 0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1263
      with nn' head_isnpolyh_Suc'[OF np nth]
33268
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
  1264
        head_isnpolyh_Suc'[OF np norm(5)] head_isnpolyh_Suc'[OF np norm(6)[simplified nn']]
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1265
      have ?case by simp}
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1266
    moreover
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1267
    {moreover assume nz: "n = 0"
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1268
      from polymul_degreen[OF norm(5,4), where m="0"]
33268
02de0317f66f eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 33154
diff changeset
  1269
        polymul_degreen[OF norm(5,3), where m="0"] nn' nz degree_eq_degreen0
33154
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1270
      norm(5,6) degree_npolyhCN[OF norm(6)]
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1271
    have dth:"degree (CN c 0 p *\<^sub>p c') < degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1272
    hence dth':"degree (CN c 0 p *\<^sub>p c') \<noteq> degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))" by simp
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1273
    from polyadd_head[OF ncnpc'[simplified nz] ncnpp0'[simplified nz] dth'] dth
daa6ddece9f0 Multivariate polynomials library over fields
chaieb
parents:
diff changeset
  1274
    have ?case   using norm prems(2)[rule_format, OF stupid norm(5,3)]
33268
02de0317f66f eliminated hard tabulators, guessing at each au