src/HOL/Analysis/Linear_Algebra.thy
author wenzelm
Sat, 11 Dec 2021 11:24:48 +0100
changeset 74913 c2a2be496f35
parent 74729 64b3d8d9bd10
child 75455 91c16c5ad3e9
permissions -rw-r--r--
tuned;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
63627
6ddb43c6b711 rename HOL-Multivariate_Analysis to HOL-Analysis.
hoelzl
parents: 63469
diff changeset
     1
(*  Title:      HOL/Analysis/Linear_Algebra.thy
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
     2
    Author:     Amine Chaieb, University of Cambridge
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
     3
*)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
     4
69517
dc20f278e8f3 tuned style and headers
nipkow
parents: 69516
diff changeset
     5
section \<open>Elementary Linear Algebra on Euclidean Spaces\<close>
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
     6
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
     7
theory Linear_Algebra
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
     8
imports
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
     9
  Euclidean_Space
66453
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 66447
diff changeset
    10
  "HOL-Library.Infinite_Set"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    11
begin
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    12
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63881
diff changeset
    13
lemma linear_simps:
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63881
diff changeset
    14
  assumes "bounded_linear f"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63881
diff changeset
    15
  shows
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63881
diff changeset
    16
    "f (a + b) = f a + f b"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63881
diff changeset
    17
    "f (a - b) = f a - f b"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63881
diff changeset
    18
    "f 0 = 0"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63881
diff changeset
    19
    "f (- a) = - f a"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63881
diff changeset
    20
    "f (s *\<^sub>R v) = s *\<^sub>R (f v)"
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63881
diff changeset
    21
proof -
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63881
diff changeset
    22
  interpret f: bounded_linear f by fact
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63881
diff changeset
    23
  show "f (a + b) = f a + f b" by (rule f.add)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63881
diff changeset
    24
  show "f (a - b) = f a - f b" by (rule f.diff)
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63881
diff changeset
    25
  show "f 0 = 0" by (rule f.zero)
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
    26
  show "f (- a) = - f a" by (rule f.neg)
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
    27
  show "f (s *\<^sub>R v) = s *\<^sub>R (f v)" by (rule f.scale)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    28
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    29
68069
36209dfb981e tidying up and using real induction methods
paulson <lp15@cam.ac.uk>
parents: 68062
diff changeset
    30
lemma finite_Atleast_Atmost_nat[simp]: "finite {f x |x. x \<in> (UNIV::'a::finite set)}"
36209dfb981e tidying up and using real induction methods
paulson <lp15@cam.ac.uk>
parents: 68062
diff changeset
    31
  using finite finite_image_set by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
    32
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    33
lemma substdbasis_expansion_unique:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    34
  includes inner_syntax
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    35
  assumes d: "d \<subseteq> Basis"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    36
  shows "(\<Sum>i\<in>d. f i *\<^sub>R i) = (x::'a::euclidean_space) \<longleftrightarrow>
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    37
    (\<forall>i\<in>Basis. (i \<in> d \<longrightarrow> f i = x \<bullet> i) \<and> (i \<notin> d \<longrightarrow> x \<bullet> i = 0))"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    38
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    39
  have *: "\<And>x a b P. x * (if P then a else b) = (if P then x * a else x * b)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    40
    by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    41
  have **: "finite d"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    42
    by (auto intro: finite_subset[OF assms])
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    43
  have ***: "\<And>i. i \<in> Basis \<Longrightarrow> (\<Sum>i\<in>d. f i *\<^sub>R i) \<bullet> i = (\<Sum>x\<in>d. if x = i then f x else 0)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    44
    using d
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    45
    by (auto intro!: sum.cong simp: inner_Basis inner_sum_left)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    46
  show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    47
    unfolding euclidean_eq_iff[where 'a='a] by (auto simp: sum.delta[OF **] ***)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    48
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    49
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    50
lemma independent_substdbasis: "d \<subseteq> Basis \<Longrightarrow> independent d"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    51
  by (rule independent_mono[OF independent_Basis])
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    52
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    53
lemma subset_translation_eq [simp]:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    54
    fixes a :: "'a::real_vector" shows "(+) a ` s \<subseteq> (+) a ` t \<longleftrightarrow> s \<subseteq> t"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    55
  by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    56
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    57
lemma translate_inj_on:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    58
  fixes A :: "'a::ab_group_add set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    59
  shows "inj_on (\<lambda>x. a + x) A"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    60
  unfolding inj_on_def by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    61
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    62
lemma translation_assoc:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    63
  fixes a b :: "'a::ab_group_add"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    64
  shows "(\<lambda>x. b + x) ` ((\<lambda>x. a + x) ` S) = (\<lambda>x. (a + b) + x) ` S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    65
  by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    66
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    67
lemma translation_invert:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    68
  fixes a :: "'a::ab_group_add"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    69
  assumes "(\<lambda>x. a + x) ` A = (\<lambda>x. a + x) ` B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    70
  shows "A = B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    71
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    72
  have "(\<lambda>x. -a + x) ` ((\<lambda>x. a + x) ` A) = (\<lambda>x. - a + x) ` ((\<lambda>x. a + x) ` B)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    73
    using assms by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    74
  then show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    75
    using translation_assoc[of "-a" a A] translation_assoc[of "-a" a B] by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    76
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    77
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    78
lemma translation_galois:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    79
  fixes a :: "'a::ab_group_add"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    80
  shows "T = ((\<lambda>x. a + x) ` S) \<longleftrightarrow> S = ((\<lambda>x. (- a) + x) ` T)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    81
  using translation_assoc[of "-a" a S]
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    82
  apply auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    83
  using translation_assoc[of a "-a" T]
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    84
  apply auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    85
  done
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    86
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    87
lemma translation_inverse_subset:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    88
  assumes "((\<lambda>x. - a + x) ` V) \<le> (S :: 'n::ab_group_add set)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    89
  shows "V \<le> ((\<lambda>x. a + x) ` S)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    90
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    91
  {
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    92
    fix x
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    93
    assume "x \<in> V"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    94
    then have "x-a \<in> S" using assms by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    95
    then have "x \<in> {a + v |v. v \<in> S}"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    96
      apply auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    97
      apply (rule exI[of _ "x-a"], simp)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    98
      done
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
    99
    then have "x \<in> ((\<lambda>x. a+x) ` S)" by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   100
  }
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   101
  then show ?thesis by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   102
qed
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   103
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   104
subsection\<^marker>\<open>tag unimportant\<close> \<open>More interesting properties of the norm\<close>
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   105
69674
fc252acb7100 bundle syntax for inner
immler
parents: 69619
diff changeset
   106
unbundle inner_syntax
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   107
69597
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 69517
diff changeset
   108
text\<open>Equality of vectors in terms of \<^term>\<open>(\<bullet>)\<close> products.\<close>
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   109
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   110
lemma linear_componentwise:
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   111
  fixes f:: "'a::euclidean_space \<Rightarrow> 'b::real_inner"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   112
  assumes lf: "linear f"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   113
  shows "(f x) \<bullet> j = (\<Sum>i\<in>Basis. (x\<bullet>i) * (f i\<bullet>j))" (is "?lhs = ?rhs")
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   114
proof -
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   115
  interpret linear f by fact
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   116
  have "?rhs = (\<Sum>i\<in>Basis. (x\<bullet>i) *\<^sub>R (f i))\<bullet>j"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   117
    by (simp add: inner_sum_left)
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   118
  then show ?thesis
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   119
    by (simp add: euclidean_representation sum[symmetric] scale[symmetric])
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   120
qed
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   121
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   122
lemma vector_eq: "x = y \<longleftrightarrow> x \<bullet> x = x \<bullet> y \<and> y \<bullet> y = x \<bullet> x"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   123
  (is "?lhs \<longleftrightarrow> ?rhs")
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   124
proof
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   125
  assume ?lhs
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   126
  then show ?rhs by simp
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   127
next
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   128
  assume ?rhs
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   129
  then have "x \<bullet> x - x \<bullet> y = 0 \<and> x \<bullet> y - y \<bullet> y = 0"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   130
    by simp
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   131
  then have "x \<bullet> (x - y) = 0 \<and> y \<bullet> (x - y) = 0"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   132
    by (simp add: inner_diff inner_commute)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   133
  then have "(x - y) \<bullet> (x - y) = 0"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   134
    by (simp add: field_simps inner_diff inner_commute)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   135
  then show "x = y" by simp
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   136
qed
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   137
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   138
lemma norm_triangle_half_r:
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   139
  "norm (y - x1) < e / 2 \<Longrightarrow> norm (y - x2) < e / 2 \<Longrightarrow> norm (x1 - x2) < e"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   140
  using dist_triangle_half_r unfolding dist_norm[symmetric] by auto
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   141
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   142
lemma norm_triangle_half_l:
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   143
  assumes "norm (x - y) < e / 2"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   144
    and "norm (x' - y) < e / 2"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   145
  shows "norm (x - x') < e"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   146
  using dist_triangle_half_l[OF assms[unfolded dist_norm[symmetric]]]
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   147
  unfolding dist_norm[symmetric] .
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   148
66420
bc0dab0e7b40 further Hensock tidy-up
paulson <lp15@cam.ac.uk>
parents: 66297
diff changeset
   149
lemma abs_triangle_half_r:
bc0dab0e7b40 further Hensock tidy-up
paulson <lp15@cam.ac.uk>
parents: 66297
diff changeset
   150
  fixes y :: "'a::linordered_field"
bc0dab0e7b40 further Hensock tidy-up
paulson <lp15@cam.ac.uk>
parents: 66297
diff changeset
   151
  shows "abs (y - x1) < e / 2 \<Longrightarrow> abs (y - x2) < e / 2 \<Longrightarrow> abs (x1 - x2) < e"
bc0dab0e7b40 further Hensock tidy-up
paulson <lp15@cam.ac.uk>
parents: 66297
diff changeset
   152
  by linarith
bc0dab0e7b40 further Hensock tidy-up
paulson <lp15@cam.ac.uk>
parents: 66297
diff changeset
   153
bc0dab0e7b40 further Hensock tidy-up
paulson <lp15@cam.ac.uk>
parents: 66297
diff changeset
   154
lemma abs_triangle_half_l:
bc0dab0e7b40 further Hensock tidy-up
paulson <lp15@cam.ac.uk>
parents: 66297
diff changeset
   155
  fixes y :: "'a::linordered_field"
bc0dab0e7b40 further Hensock tidy-up
paulson <lp15@cam.ac.uk>
parents: 66297
diff changeset
   156
  assumes "abs (x - y) < e / 2"
bc0dab0e7b40 further Hensock tidy-up
paulson <lp15@cam.ac.uk>
parents: 66297
diff changeset
   157
    and "abs (x' - y) < e / 2"
bc0dab0e7b40 further Hensock tidy-up
paulson <lp15@cam.ac.uk>
parents: 66297
diff changeset
   158
  shows "abs (x - x') < e"
bc0dab0e7b40 further Hensock tidy-up
paulson <lp15@cam.ac.uk>
parents: 66297
diff changeset
   159
  using assms by linarith
bc0dab0e7b40 further Hensock tidy-up
paulson <lp15@cam.ac.uk>
parents: 66297
diff changeset
   160
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   161
lemma sum_clauses:
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   162
  shows "sum f {} = 0"
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   163
    and "finite S \<Longrightarrow> sum f (insert x S) = (if x \<in> S then sum f S else f x + sum f S)"
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   164
  by (auto simp add: insert_absorb)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   165
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   166
lemma vector_eq_ldot: "(\<forall>x. x \<bullet> y = x \<bullet> z) \<longleftrightarrow> y = z"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   167
proof
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   168
  assume "\<forall>x. x \<bullet> y = x \<bullet> z"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   169
  then have "\<forall>x. x \<bullet> (y - z) = 0"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   170
    by (simp add: inner_diff)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   171
  then have "(y - z) \<bullet> (y - z) = 0" ..
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   172
  then show "y = z" by simp
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   173
qed simp
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   174
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   175
lemma vector_eq_rdot: "(\<forall>z. x \<bullet> z = y \<bullet> z) \<longleftrightarrow> x = y"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   176
proof
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   177
  assume "\<forall>z. x \<bullet> z = y \<bullet> z"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   178
  then have "\<forall>z. (x - y) \<bullet> z = 0"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   179
    by (simp add: inner_diff)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   180
  then have "(x - y) \<bullet> (x - y) = 0" ..
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   181
  then show "x = y" by simp
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   182
qed simp
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   183
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   184
subsection \<open>Substandard Basis\<close>
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   185
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   186
lemma ex_card:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   187
  assumes "n \<le> card A"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   188
  shows "\<exists>S\<subseteq>A. card S = n"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   189
proof (cases "finite A")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   190
  case True
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   191
  from ex_bij_betw_nat_finite[OF this] obtain f where f: "bij_betw f {0..<card A} A" ..
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   192
  moreover from f \<open>n \<le> card A\<close> have "{..< n} \<subseteq> {..< card A}" "inj_on f {..< n}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   193
    by (auto simp: bij_betw_def intro: subset_inj_on)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   194
  ultimately have "f ` {..< n} \<subseteq> A" "card (f ` {..< n}) = n"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   195
    by (auto simp: bij_betw_def card_image)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   196
  then show ?thesis by blast
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   197
next
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   198
  case False
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   199
  with \<open>n \<le> card A\<close> show ?thesis by force
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   200
qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   201
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   202
lemma subspace_substandard: "subspace {x::'a::euclidean_space. (\<forall>i\<in>Basis. P i \<longrightarrow> x\<bullet>i = 0)}"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   203
  by (auto simp: subspace_def inner_add_left)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   204
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   205
lemma dim_substandard:
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   206
  assumes d: "d \<subseteq> Basis"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   207
  shows "dim {x::'a::euclidean_space. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x\<bullet>i = 0} = card d" (is "dim ?A = _")
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   208
proof (rule dim_unique)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   209
  from d show "d \<subseteq> ?A"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   210
    by (auto simp: inner_Basis)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   211
  from d show "independent d"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   212
    by (rule independent_mono [OF independent_Basis])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   213
  have "x \<in> span d" if "\<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x \<bullet> i = 0" for x
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   214
  proof -
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   215
    have "finite d"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   216
      by (rule finite_subset [OF d finite_Basis])
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   217
    then have "(\<Sum>i\<in>d. (x \<bullet> i) *\<^sub>R i) \<in> span d"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   218
      by (simp add: span_sum span_clauses)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   219
    also have "(\<Sum>i\<in>d. (x \<bullet> i) *\<^sub>R i) = (\<Sum>i\<in>Basis. (x \<bullet> i) *\<^sub>R i)"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   220
      by (rule sum.mono_neutral_cong_left [OF finite_Basis d]) (auto simp: that)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   221
    finally show "x \<in> span d"
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   222
      by (simp only: euclidean_representation)
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   223
  qed
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   224
  then show "?A \<subseteq> span d" by auto
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   225
qed simp
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   226
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   227
68901
nipkow
parents: 68607
diff changeset
   228
subsection \<open>Orthogonality\<close>
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   229
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   230
definition\<^marker>\<open>tag important\<close> (in real_inner) "orthogonal x y \<longleftrightarrow> x \<bullet> y = 0"
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67685
diff changeset
   231
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   232
context real_inner
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   233
begin
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   234
63072
eb5d493a9e03 renamings and refinements
paulson <lp15@cam.ac.uk>
parents: 63053
diff changeset
   235
lemma orthogonal_self: "orthogonal x x \<longleftrightarrow> x = 0"
eb5d493a9e03 renamings and refinements
paulson <lp15@cam.ac.uk>
parents: 63053
diff changeset
   236
  by (simp add: orthogonal_def)
eb5d493a9e03 renamings and refinements
paulson <lp15@cam.ac.uk>
parents: 63053
diff changeset
   237
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   238
lemma orthogonal_clauses:
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   239
  "orthogonal a 0"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   240
  "orthogonal a x \<Longrightarrow> orthogonal a (c *\<^sub>R x)"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   241
  "orthogonal a x \<Longrightarrow> orthogonal a (- x)"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   242
  "orthogonal a x \<Longrightarrow> orthogonal a y \<Longrightarrow> orthogonal a (x + y)"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   243
  "orthogonal a x \<Longrightarrow> orthogonal a y \<Longrightarrow> orthogonal a (x - y)"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   244
  "orthogonal 0 a"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   245
  "orthogonal x a \<Longrightarrow> orthogonal (c *\<^sub>R x) a"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   246
  "orthogonal x a \<Longrightarrow> orthogonal (- x) a"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   247
  "orthogonal x a \<Longrightarrow> orthogonal y a \<Longrightarrow> orthogonal (x + y) a"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   248
  "orthogonal x a \<Longrightarrow> orthogonal y a \<Longrightarrow> orthogonal (x - y) a"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   249
  unfolding orthogonal_def inner_add inner_diff by auto
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   250
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   251
end
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   252
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   253
lemma orthogonal_commute: "orthogonal x y \<longleftrightarrow> orthogonal y x"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   254
  by (simp add: orthogonal_def inner_commute)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   255
63114
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   256
lemma orthogonal_scaleR [simp]: "c \<noteq> 0 \<Longrightarrow> orthogonal (c *\<^sub>R x) = orthogonal x"
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   257
  by (rule ext) (simp add: orthogonal_def)
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   258
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   259
lemma pairwise_ortho_scaleR:
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   260
    "pairwise (\<lambda>i j. orthogonal (f i) (g j)) B
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   261
    \<Longrightarrow> pairwise (\<lambda>i j. orthogonal (a i *\<^sub>R f i) (a j *\<^sub>R g j)) B"
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   262
  by (auto simp: pairwise_def orthogonal_clauses)
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   263
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   264
lemma orthogonal_rvsum:
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   265
    "\<lbrakk>finite s; \<And>y. y \<in> s \<Longrightarrow> orthogonal x (f y)\<rbrakk> \<Longrightarrow> orthogonal x (sum f s)"
63114
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   266
  by (induction s rule: finite_induct) (auto simp: orthogonal_clauses)
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   267
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   268
lemma orthogonal_lvsum:
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   269
    "\<lbrakk>finite s; \<And>x. x \<in> s \<Longrightarrow> orthogonal (f x) y\<rbrakk> \<Longrightarrow> orthogonal (sum f s) y"
63114
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   270
  by (induction s rule: finite_induct) (auto simp: orthogonal_clauses)
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   271
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   272
lemma norm_add_Pythagorean:
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   273
  assumes "orthogonal a b"
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   274
    shows "norm(a + b) ^ 2 = norm a ^ 2 + norm b ^ 2"
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   275
proof -
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   276
  from assms have "(a - (0 - b)) \<bullet> (a - (0 - b)) = a \<bullet> a - (0 - b \<bullet> b)"
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   277
    by (simp add: algebra_simps orthogonal_def inner_commute)
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   278
  then show ?thesis
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   279
    by (simp add: power2_norm_eq_inner)
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   280
qed
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   281
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   282
lemma norm_sum_Pythagorean:
63114
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   283
  assumes "finite I" "pairwise (\<lambda>i j. orthogonal (f i) (f j)) I"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   284
    shows "(norm (sum f I))\<^sup>2 = (\<Sum>i\<in>I. (norm (f i))\<^sup>2)"
63114
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   285
using assms
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   286
proof (induction I rule: finite_induct)
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   287
  case empty then show ?case by simp
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   288
next
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   289
  case (insert x I)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   290
  then have "orthogonal (f x) (sum f I)"
63114
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   291
    by (metis pairwise_insert orthogonal_rvsum)
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   292
  with insert show ?case
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   293
    by (simp add: pairwise_insert norm_add_Pythagorean)
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   294
qed
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63075
diff changeset
   295
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   296
69683
8b3458ca0762 subsection is always %important
immler
parents: 69675
diff changeset
   297
subsection  \<open>Orthogonality of a transformation\<close>
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   298
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   299
definition\<^marker>\<open>tag important\<close>  "orthogonal_transformation f \<longleftrightarrow> linear f \<and> (\<forall>v w. f v \<bullet> f w = v \<bullet> w)"
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   300
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   301
lemma\<^marker>\<open>tag unimportant\<close>  orthogonal_transformation:
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   302
  "orthogonal_transformation f \<longleftrightarrow> linear f \<and> (\<forall>v. norm (f v) = norm v)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   303
  unfolding orthogonal_transformation_def
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   304
  apply auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   305
  apply (erule_tac x=v in allE)+
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   306
  apply (simp add: norm_eq_sqrt_inner)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   307
  apply (simp add: dot_norm linear_add[symmetric])
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   308
  done
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   309
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   310
lemma\<^marker>\<open>tag unimportant\<close>  orthogonal_transformation_id [simp]: "orthogonal_transformation (\<lambda>x. x)"
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   311
  by (simp add: linear_iff orthogonal_transformation_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   312
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   313
lemma\<^marker>\<open>tag unimportant\<close>  orthogonal_orthogonal_transformation:
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   314
    "orthogonal_transformation f \<Longrightarrow> orthogonal (f x) (f y) \<longleftrightarrow> orthogonal x y"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   315
  by (simp add: orthogonal_def orthogonal_transformation_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   316
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   317
lemma\<^marker>\<open>tag unimportant\<close>  orthogonal_transformation_compose:
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   318
   "\<lbrakk>orthogonal_transformation f; orthogonal_transformation g\<rbrakk> \<Longrightarrow> orthogonal_transformation(f \<circ> g)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   319
  by (auto simp: orthogonal_transformation_def linear_compose)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   320
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   321
lemma\<^marker>\<open>tag unimportant\<close>  orthogonal_transformation_neg:
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   322
  "orthogonal_transformation(\<lambda>x. -(f x)) \<longleftrightarrow> orthogonal_transformation f"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   323
  by (auto simp: orthogonal_transformation_def dest: linear_compose_neg)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   324
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   325
lemma\<^marker>\<open>tag unimportant\<close>  orthogonal_transformation_scaleR: "orthogonal_transformation f \<Longrightarrow> f (c *\<^sub>R v) = c *\<^sub>R f v"
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   326
  by (simp add: linear_iff orthogonal_transformation_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   327
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   328
lemma\<^marker>\<open>tag unimportant\<close>  orthogonal_transformation_linear:
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   329
   "orthogonal_transformation f \<Longrightarrow> linear f"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   330
  by (simp add: orthogonal_transformation_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   331
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   332
lemma\<^marker>\<open>tag unimportant\<close>  orthogonal_transformation_inj:
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   333
  "orthogonal_transformation f \<Longrightarrow> inj f"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   334
  unfolding orthogonal_transformation_def inj_on_def
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   335
  by (metis vector_eq)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   336
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   337
lemma\<^marker>\<open>tag unimportant\<close>  orthogonal_transformation_surj:
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   338
  "orthogonal_transformation f \<Longrightarrow> surj f"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   339
  for f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   340
  by (simp add: linear_injective_imp_surjective orthogonal_transformation_inj orthogonal_transformation_linear)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   341
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   342
lemma\<^marker>\<open>tag unimportant\<close>  orthogonal_transformation_bij:
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   343
  "orthogonal_transformation f \<Longrightarrow> bij f"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   344
  for f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   345
  by (simp add: bij_def orthogonal_transformation_inj orthogonal_transformation_surj)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   346
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   347
lemma\<^marker>\<open>tag unimportant\<close>  orthogonal_transformation_inv:
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   348
  "orthogonal_transformation f \<Longrightarrow> orthogonal_transformation (inv f)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   349
  for f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
73932
fd21b4a93043 added opaque_combs and renamed hide_lams to opaque_lifting
desharna
parents: 73795
diff changeset
   350
  by (metis (no_types, opaque_lifting) bijection.inv_right bijection_def inj_linear_imp_inv_linear orthogonal_transformation orthogonal_transformation_bij orthogonal_transformation_inj)
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   351
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   352
lemma\<^marker>\<open>tag unimportant\<close>  orthogonal_transformation_norm:
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   353
  "orthogonal_transformation f \<Longrightarrow> norm (f x) = norm x"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   354
  by (metis orthogonal_transformation)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   355
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
   356
68901
nipkow
parents: 68607
diff changeset
   357
subsection \<open>Bilinear functions\<close>
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   358
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   359
definition\<^marker>\<open>tag important\<close>
69600
86e8e7347ac0 typed definitions
nipkow
parents: 69597
diff changeset
   360
bilinear :: "('a::real_vector \<Rightarrow> 'b::real_vector \<Rightarrow> 'c::real_vector) \<Rightarrow> bool" where
86e8e7347ac0 typed definitions
nipkow
parents: 69597
diff changeset
   361
"bilinear f \<longleftrightarrow> (\<forall>x. linear (\<lambda>y. f x y)) \<and> (\<forall>y. linear (\<lambda>x. f x y))"
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   362
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   363
lemma bilinear_ladd: "bilinear h \<Longrightarrow> h (x + y) z = h x z + h y z"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   364
  by (simp add: bilinear_def linear_iff)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   365
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   366
lemma bilinear_radd: "bilinear h \<Longrightarrow> h x (y + z) = h x y + h x z"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   367
  by (simp add: bilinear_def linear_iff)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   368
70707
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
   369
lemma bilinear_times:
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
   370
  fixes c::"'a::real_algebra" shows "bilinear (\<lambda>x y::'a. x*y)"
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
   371
  by (auto simp: bilinear_def distrib_left distrib_right intro!: linearI)
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70688
diff changeset
   372
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   373
lemma bilinear_lmul: "bilinear h \<Longrightarrow> h (c *\<^sub>R x) y = c *\<^sub>R h x y"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   374
  by (simp add: bilinear_def linear_iff)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   375
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   376
lemma bilinear_rmul: "bilinear h \<Longrightarrow> h x (c *\<^sub>R y) = c *\<^sub>R h x y"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   377
  by (simp add: bilinear_def linear_iff)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   378
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   379
lemma bilinear_lneg: "bilinear h \<Longrightarrow> h (- x) y = - h x y"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   380
  by (drule bilinear_lmul [of _ "- 1"]) simp
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   381
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   382
lemma bilinear_rneg: "bilinear h \<Longrightarrow> h x (- y) = - h x y"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   383
  by (drule bilinear_rmul [of _ _ "- 1"]) simp
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   384
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   385
lemma (in ab_group_add) eq_add_iff: "x = x + y \<longleftrightarrow> y = 0"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   386
  using add_left_imp_eq[of x y 0] by auto
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   387
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   388
lemma bilinear_lzero:
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   389
  assumes "bilinear h"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   390
  shows "h 0 x = 0"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   391
  using bilinear_ladd [OF assms, of 0 0 x] by (simp add: eq_add_iff field_simps)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   392
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   393
lemma bilinear_rzero:
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   394
  assumes "bilinear h"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   395
  shows "h x 0 = 0"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   396
  using bilinear_radd [OF assms, of x 0 0 ] by (simp add: eq_add_iff field_simps)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   397
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   398
lemma bilinear_lsub: "bilinear h \<Longrightarrow> h (x - y) z = h x z - h y z"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   399
  using bilinear_ladd [of h x "- y"] by (simp add: bilinear_lneg)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   400
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   401
lemma bilinear_rsub: "bilinear h \<Longrightarrow> h z (x - y) = h z x - h z y"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   402
  using bilinear_radd [of h _ x "- y"] by (simp add: bilinear_rneg)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   403
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   404
lemma bilinear_sum:
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   405
  assumes "bilinear h"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   406
  shows "h (sum f S) (sum g T) = sum (\<lambda>(i,j). h (f i) (g j)) (S \<times> T) "
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   407
proof -
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   408
  interpret l: linear "\<lambda>x. h x y" for y using assms by (simp add: bilinear_def)
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   409
  interpret r: linear "\<lambda>y. h x y" for x using assms by (simp add: bilinear_def)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   410
  have "h (sum f S) (sum g T) = sum (\<lambda>x. h (f x) (sum g T)) S"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   411
    by (simp add: l.sum)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   412
  also have "\<dots> = sum (\<lambda>x. sum (\<lambda>y. h (f x) (g y)) T) S"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   413
    by (rule sum.cong) (simp_all add: r.sum)
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   414
  finally show ?thesis
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   415
    unfolding sum.cartesian_product .
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   416
qed
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   417
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   418
68901
nipkow
parents: 68607
diff changeset
   419
subsection \<open>Adjoints\<close>
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   420
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   421
definition\<^marker>\<open>tag important\<close> adjoint :: "(('a::real_inner) \<Rightarrow> ('b::real_inner)) \<Rightarrow> 'b \<Rightarrow> 'a" where
69600
86e8e7347ac0 typed definitions
nipkow
parents: 69597
diff changeset
   422
"adjoint f = (SOME f'. \<forall>x y. f x \<bullet> y = x \<bullet> f' y)"
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   423
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   424
lemma adjoint_unique:
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   425
  assumes "\<forall>x y. inner (f x) y = inner x (g y)"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   426
  shows "adjoint f = g"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   427
  unfolding adjoint_def
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   428
proof (rule some_equality)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   429
  show "\<forall>x y. inner (f x) y = inner x (g y)"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   430
    by (rule assms)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   431
next
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   432
  fix h
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   433
  assume "\<forall>x y. inner (f x) y = inner x (h y)"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   434
  then have "\<forall>x y. inner x (g y) = inner x (h y)"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   435
    using assms by simp
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   436
  then have "\<forall>x y. inner x (g y - h y) = 0"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   437
    by (simp add: inner_diff_right)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   438
  then have "\<forall>y. inner (g y - h y) (g y - h y) = 0"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   439
    by simp
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   440
  then have "\<forall>y. h y = g y"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   441
    by simp
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   442
  then show "h = g" by (simp add: ext)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   443
qed
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   444
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   445
text \<open>TODO: The following lemmas about adjoints should hold for any
63680
6e1e8b5abbfa more symbols;
wenzelm
parents: 63627
diff changeset
   446
  Hilbert space (i.e. complete inner product space).
68224
1f7308050349 prefer HTTPS;
wenzelm
parents: 68074
diff changeset
   447
  (see \<^url>\<open>https://en.wikipedia.org/wiki/Hermitian_adjoint\<close>)
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   448
\<close>
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   449
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   450
lemma adjoint_works:
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   451
  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   452
  assumes lf: "linear f"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   453
  shows "x \<bullet> adjoint f y = f x \<bullet> y"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   454
proof -
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   455
  interpret linear f by fact
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   456
  have "\<forall>y. \<exists>w. \<forall>x. f x \<bullet> y = x \<bullet> w"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   457
  proof (intro allI exI)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   458
    fix y :: "'m" and x
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   459
    let ?w = "(\<Sum>i\<in>Basis. (f i \<bullet> y) *\<^sub>R i) :: 'n"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   460
    have "f x \<bullet> y = f (\<Sum>i\<in>Basis. (x \<bullet> i) *\<^sub>R i) \<bullet> y"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   461
      by (simp add: euclidean_representation)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   462
    also have "\<dots> = (\<Sum>i\<in>Basis. (x \<bullet> i) *\<^sub>R f i) \<bullet> y"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   463
      by (simp add: sum scale)
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   464
    finally show "f x \<bullet> y = x \<bullet> ?w"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   465
      by (simp add: inner_sum_left inner_sum_right mult.commute)
63050
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   466
  qed
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   467
  then show ?thesis
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   468
    unfolding adjoint_def choice_iff
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   469
    by (intro someI2_ex[where Q="\<lambda>f'. x \<bullet> f' y = f x \<bullet> y"]) auto
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   470
qed
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   471
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   472
lemma adjoint_clauses:
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   473
  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   474
  assumes lf: "linear f"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   475
  shows "x \<bullet> adjoint f y = f x \<bullet> y"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   476
    and "adjoint f y \<bullet> x = y \<bullet> f x"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   477
  by (simp_all add: adjoint_works[OF lf] inner_commute)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   478
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   479
lemma adjoint_linear:
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   480
  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   481
  assumes lf: "linear f"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   482
  shows "linear (adjoint f)"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   483
  by (simp add: lf linear_iff euclidean_eq_iff[where 'a='n] euclidean_eq_iff[where 'a='m]
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   484
    adjoint_clauses[OF lf] inner_distrib)
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   485
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   486
lemma adjoint_adjoint:
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   487
  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   488
  assumes lf: "linear f"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   489
  shows "adjoint (adjoint f) = f"
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   490
  by (rule adjoint_unique, simp add: adjoint_clauses [OF lf])
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   491
ca4cce24c75d Linear_Algebra: move abstract concepts to front
hoelzl
parents: 63007
diff changeset
   492
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   493
subsection\<^marker>\<open>tag unimportant\<close> \<open>Euclidean Spaces as Typeclass\<close>
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   494
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   495
lemma independent_Basis: "independent Basis"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   496
  by (rule independent_Basis)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   497
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   498
lemma span_Basis [simp]: "span Basis = UNIV"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   499
  by (rule span_Basis)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   500
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   501
lemma in_span_Basis: "x \<in> span Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   502
  unfolding span_Basis ..
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   503
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   504
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   505
subsection\<^marker>\<open>tag unimportant\<close> \<open>Linearity and Bilinearity continued\<close>
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   506
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   507
lemma linear_bounded:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   508
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   509
  assumes lf: "linear f"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   510
  shows "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x"
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   511
proof
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   512
  interpret linear f by fact
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   513
  let ?B = "\<Sum>b\<in>Basis. norm (f b)"
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   514
  show "\<forall>x. norm (f x) \<le> ?B * norm x"
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   515
  proof
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   516
    fix x :: 'a
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   517
    let ?g = "\<lambda>b. (x \<bullet> b) *\<^sub>R f b"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   518
    have "norm (f x) = norm (f (\<Sum>b\<in>Basis. (x \<bullet> b) *\<^sub>R b))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   519
      unfolding euclidean_representation ..
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   520
    also have "\<dots> = norm (sum ?g Basis)"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   521
      by (simp add: sum scale)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   522
    finally have th0: "norm (f x) = norm (sum ?g Basis)" .
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   523
    have th: "norm (?g i) \<le> norm (f i) * norm x" if "i \<in> Basis" for i
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   524
    proof -
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   525
      from Basis_le_norm[OF that, of x]
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   526
      show "norm (?g i) \<le> norm (f i) * norm x"
68069
36209dfb981e tidying up and using real induction methods
paulson <lp15@cam.ac.uk>
parents: 68062
diff changeset
   527
        unfolding norm_scaleR  by (metis mult.commute mult_left_mono norm_ge_zero)
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   528
    qed
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   529
    from sum_norm_le[of _ ?g, OF th]
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   530
    show "norm (f x) \<le> ?B * norm x"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   531
      unfolding th0 sum_distrib_right by metis
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   532
  qed
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   533
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   534
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   535
lemma linear_conv_bounded_linear:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   536
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   537
  shows "linear f \<longleftrightarrow> bounded_linear f"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   538
proof
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   539
  assume "linear f"
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   540
  then interpret f: linear f .
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   541
  show "bounded_linear f"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   542
  proof
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   543
    have "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x"
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
   544
      using \<open>linear f\<close> by (rule linear_bounded)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   545
    then show "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   546
      by (simp add: mult.commute)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   547
  qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   548
next
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   549
  assume "bounded_linear f"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   550
  then interpret f: bounded_linear f .
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   551
  show "linear f" ..
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   552
qed
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   553
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61306
diff changeset
   554
lemmas linear_linear = linear_conv_bounded_linear[symmetric]
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61306
diff changeset
   555
70999
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   556
lemma inj_linear_imp_inv_bounded_linear:
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   557
  fixes f::"'a::euclidean_space \<Rightarrow> 'a"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   558
  shows "\<lbrakk>bounded_linear f; inj f\<rbrakk> \<Longrightarrow> bounded_linear (inv f)"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   559
  by (simp add: inj_linear_imp_inv_linear linear_linear)
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   560
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   561
lemma linear_bounded_pos:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   562
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   563
  assumes lf: "linear f"
67982
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   564
 obtains B where "B > 0" "\<And>x. norm (f x) \<le> B * norm x"
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   565
proof -
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   566
  have "\<exists>B > 0. \<forall>x. norm (f x) \<le> norm x * B"
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   567
    using lf unfolding linear_conv_bounded_linear
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   568
    by (rule bounded_linear.pos_bounded)
67982
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   569
  with that show ?thesis
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   570
    by (auto simp: mult.commute)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   571
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   572
67982
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   573
lemma linear_invertible_bounded_below_pos:
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   574
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::euclidean_space"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   575
  assumes "linear f" "linear g" "g \<circ> f = id"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   576
  obtains B where "B > 0" "\<And>x. B * norm x \<le> norm(f x)"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   577
proof -
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   578
  obtain B where "B > 0" and B: "\<And>x. norm (g x) \<le> B * norm x"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   579
    using linear_bounded_pos [OF \<open>linear g\<close>] by blast
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   580
  show thesis
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   581
  proof
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   582
    show "0 < 1/B"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   583
      by (simp add: \<open>B > 0\<close>)
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   584
    show "1/B * norm x \<le> norm (f x)" for x
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   585
    proof -
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   586
      have "1/B * norm x = 1/B * norm (g (f x))"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   587
        using assms by (simp add: pointfree_idE)
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   588
      also have "\<dots> \<le> norm (f x)"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   589
        using B [of "f x"] by (simp add: \<open>B > 0\<close> mult.commute pos_divide_le_eq)
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   590
      finally show ?thesis .
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   591
    qed
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   592
  qed
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   593
qed
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   594
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   595
lemma linear_inj_bounded_below_pos:
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   596
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::euclidean_space"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   597
  assumes "linear f" "inj f"
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   598
  obtains B where "B > 0" "\<And>x. B * norm x \<le> norm(f x)"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   599
  using linear_injective_left_inverse [OF assms]
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   600
    linear_invertible_bounded_below_pos assms by blast
67982
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
   601
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   602
lemma bounded_linearI':
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   603
  fixes f ::"'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   604
  assumes "\<And>x y. f (x + y) = f x + f y"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   605
    and "\<And>c x. f (c *\<^sub>R x) = c *\<^sub>R f x"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   606
  shows "bounded_linear f"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   607
  using assms linearI linear_conv_bounded_linear by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   608
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   609
lemma bilinear_bounded:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   610
  fixes h :: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space \<Rightarrow> 'k::real_normed_vector"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   611
  assumes bh: "bilinear h"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   612
  shows "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   613
proof (clarify intro!: exI[of _ "\<Sum>i\<in>Basis. \<Sum>j\<in>Basis. norm (h i j)"])
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   614
  fix x :: 'm
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   615
  fix y :: 'n
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   616
  have "norm (h x y) = norm (h (sum (\<lambda>i. (x \<bullet> i) *\<^sub>R i) Basis) (sum (\<lambda>i. (y \<bullet> i) *\<^sub>R i) Basis))"
68069
36209dfb981e tidying up and using real induction methods
paulson <lp15@cam.ac.uk>
parents: 68062
diff changeset
   617
    by (simp add: euclidean_representation)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   618
  also have "\<dots> = norm (sum (\<lambda> (i,j). h ((x \<bullet> i) *\<^sub>R i) ((y \<bullet> j) *\<^sub>R j)) (Basis \<times> Basis))"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   619
    unfolding bilinear_sum[OF bh] ..
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   620
  finally have th: "norm (h x y) = \<dots>" .
68069
36209dfb981e tidying up and using real induction methods
paulson <lp15@cam.ac.uk>
parents: 68062
diff changeset
   621
  have "\<And>i j. \<lbrakk>i \<in> Basis; j \<in> Basis\<rbrakk>
36209dfb981e tidying up and using real induction methods
paulson <lp15@cam.ac.uk>
parents: 68062
diff changeset
   622
           \<Longrightarrow> \<bar>x \<bullet> i\<bar> * (\<bar>y \<bullet> j\<bar> * norm (h i j)) \<le> norm x * (norm y * norm (h i j))"
36209dfb981e tidying up and using real induction methods
paulson <lp15@cam.ac.uk>
parents: 68062
diff changeset
   623
    by (auto simp add: zero_le_mult_iff Basis_le_norm mult_mono)
36209dfb981e tidying up and using real induction methods
paulson <lp15@cam.ac.uk>
parents: 68062
diff changeset
   624
  then show "norm (h x y) \<le> (\<Sum>i\<in>Basis. \<Sum>j\<in>Basis. norm (h i j)) * norm x * norm y"
36209dfb981e tidying up and using real induction methods
paulson <lp15@cam.ac.uk>
parents: 68062
diff changeset
   625
    unfolding sum_distrib_right th sum.cartesian_product
36209dfb981e tidying up and using real induction methods
paulson <lp15@cam.ac.uk>
parents: 68062
diff changeset
   626
    by (clarsimp simp add: bilinear_rmul[OF bh] bilinear_lmul[OF bh]
36209dfb981e tidying up and using real induction methods
paulson <lp15@cam.ac.uk>
parents: 68062
diff changeset
   627
      field_simps simp del: scaleR_scaleR intro!: sum_norm_le)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   628
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   629
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   630
lemma bilinear_conv_bounded_bilinear:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   631
  fixes h :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   632
  shows "bilinear h \<longleftrightarrow> bounded_bilinear h"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   633
proof
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   634
  assume "bilinear h"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   635
  show "bounded_bilinear h"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   636
  proof
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   637
    fix x y z
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   638
    show "h (x + y) z = h x z + h y z"
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
   639
      using \<open>bilinear h\<close> unfolding bilinear_def linear_iff by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   640
  next
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   641
    fix x y z
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   642
    show "h x (y + z) = h x y + h x z"
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
   643
      using \<open>bilinear h\<close> unfolding bilinear_def linear_iff by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   644
  next
68069
36209dfb981e tidying up and using real induction methods
paulson <lp15@cam.ac.uk>
parents: 68062
diff changeset
   645
    show "h (scaleR r x) y = scaleR r (h x y)" "h x (scaleR r y) = scaleR r (h x y)" for r x y
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
   646
      using \<open>bilinear h\<close> unfolding bilinear_def linear_iff
68069
36209dfb981e tidying up and using real induction methods
paulson <lp15@cam.ac.uk>
parents: 68062
diff changeset
   647
      by simp_all
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   648
  next
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   649
    have "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y"
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
   650
      using \<open>bilinear h\<close> by (rule bilinear_bounded)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   651
    then show "\<exists>K. \<forall>x y. norm (h x y) \<le> norm x * norm y * K"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   652
      by (simp add: ac_simps)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   653
  qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   654
next
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   655
  assume "bounded_bilinear h"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   656
  then interpret h: bounded_bilinear h .
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   657
  show "bilinear h"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   658
    unfolding bilinear_def linear_conv_bounded_linear
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   659
    using h.bounded_linear_left h.bounded_linear_right by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   660
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   661
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   662
lemma bilinear_bounded_pos:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   663
  fixes h :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector"
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   664
  assumes bh: "bilinear h"
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   665
  shows "\<exists>B > 0. \<forall>x y. norm (h x y) \<le> B * norm x * norm y"
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   666
proof -
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   667
  have "\<exists>B > 0. \<forall>x y. norm (h x y) \<le> norm x * norm y * B"
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   668
    using bh [unfolded bilinear_conv_bounded_bilinear]
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   669
    by (rule bounded_bilinear.pos_bounded)
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   670
  then show ?thesis
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   671
    by (simp only: ac_simps)
53939
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   672
qed
eb25bddf6a22 tuned proofs
huffman
parents: 53938
diff changeset
   673
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   674
lemma bounded_linear_imp_has_derivative: "bounded_linear f \<Longrightarrow> (f has_derivative f) net"
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   675
  by (auto simp add: has_derivative_def linear_diff linear_linear linear_def
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   676
      dest: bounded_linear.linear)
63469
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63170
diff changeset
   677
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63170
diff changeset
   678
lemma linear_imp_has_derivative:
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63170
diff changeset
   679
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63170
diff changeset
   680
  shows "linear f \<Longrightarrow> (f has_derivative f) net"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   681
  by (simp add: bounded_linear_imp_has_derivative linear_conv_bounded_linear)
63469
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63170
diff changeset
   682
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63170
diff changeset
   683
lemma bounded_linear_imp_differentiable: "bounded_linear f \<Longrightarrow> f differentiable net"
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63170
diff changeset
   684
  using bounded_linear_imp_has_derivative differentiable_def by blast
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63170
diff changeset
   685
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63170
diff changeset
   686
lemma linear_imp_differentiable:
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63170
diff changeset
   687
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63170
diff changeset
   688
  shows "linear f \<Longrightarrow> f differentiable net"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   689
  by (metis linear_imp_has_derivative differentiable_def)
63469
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63170
diff changeset
   690
73795
8893e0ed263a new lemmas mostly about paths
paulson <lp15@cam.ac.uk>
parents: 73648
diff changeset
   691
lemma of_real_differentiable [simp,derivative_intros]: "of_real differentiable F"
8893e0ed263a new lemmas mostly about paths
paulson <lp15@cam.ac.uk>
parents: 73648
diff changeset
   692
  by (simp add: bounded_linear_imp_differentiable bounded_linear_of_real)
8893e0ed263a new lemmas mostly about paths
paulson <lp15@cam.ac.uk>
parents: 73648
diff changeset
   693
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   694
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   695
subsection\<^marker>\<open>tag unimportant\<close> \<open>We continue\<close>
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   696
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   697
lemma independent_bound:
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
   698
  fixes S :: "'a::euclidean_space set"
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
   699
  shows "independent S \<Longrightarrow> finite S \<and> card S \<le> DIM('a)"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   700
  by (metis dim_subset_UNIV finiteI_independent dim_span_eq_card_independent)
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   701
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   702
lemmas independent_imp_finite = finiteI_independent
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   703
71120
f4579e6800d7 tuned tags
nipkow
parents: 71044
diff changeset
   704
corollary\<^marker>\<open>tag unimportant\<close> independent_card_le:
60303
00c06f1315d0 New material about paths, and some lemmas
paulson
parents: 60162
diff changeset
   705
  fixes S :: "'a::euclidean_space set"
00c06f1315d0 New material about paths, and some lemmas
paulson
parents: 60162
diff changeset
   706
  assumes "independent S"
71120
f4579e6800d7 tuned tags
nipkow
parents: 71044
diff changeset
   707
  shows "card S \<le> DIM('a)"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   708
  using assms independent_bound by auto
63075
60a42a4166af lemmas about dimension, hyperplanes, span, etc.
paulson <lp15@cam.ac.uk>
parents: 63072
diff changeset
   709
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   710
lemma dependent_biggerset:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   711
  fixes S :: "'a::euclidean_space set"
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   712
  shows "(finite S \<Longrightarrow> card S > DIM('a)) \<Longrightarrow> dependent S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   713
  by (metis independent_bound not_less)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   714
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
   715
text \<open>Picking an orthogonal replacement for a spanning set.\<close>
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   716
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   717
lemma vector_sub_project_orthogonal:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   718
  fixes b x :: "'a::euclidean_space"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   719
  shows "b \<bullet> (x - ((b \<bullet> x) / (b \<bullet> b)) *\<^sub>R b) = 0"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   720
  unfolding inner_simps by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   721
44528
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
   722
lemma pairwise_orthogonal_insert:
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
   723
  assumes "pairwise orthogonal S"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   724
    and "\<And>y. y \<in> S \<Longrightarrow> orthogonal x y"
44528
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
   725
  shows "pairwise orthogonal (insert x S)"
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
   726
  using assms unfolding pairwise_def
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
   727
  by (auto simp add: orthogonal_commute)
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
   728
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   729
lemma basis_orthogonal:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   730
  fixes B :: "'a::real_inner set"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   731
  assumes fB: "finite B"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   732
  shows "\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   733
  (is " \<exists>C. ?P B C")
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   734
  using fB
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   735
proof (induct rule: finite_induct)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   736
  case empty
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   737
  then show ?case
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   738
    apply (rule exI[where x="{}"])
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   739
    apply (auto simp add: pairwise_def)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   740
    done
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   741
next
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   742
  case (insert a B)
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
   743
  note fB = \<open>finite B\<close> and aB = \<open>a \<notin> B\<close>
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
   744
  from \<open>\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C\<close>
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   745
  obtain C where C: "finite C" "card C \<le> card B"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   746
    "span C = span B" "pairwise orthogonal C" by blast
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   747
  let ?a = "a - sum (\<lambda>x. (x \<bullet> a / (x \<bullet> x)) *\<^sub>R x) C"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   748
  let ?C = "insert ?a C"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   749
  from C(1) have fC: "finite ?C"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   750
    by simp
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   751
  from fB aB C(1,2) have cC: "card ?C \<le> card (insert a B)"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   752
    by (simp add: card_insert_if)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   753
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   754
    fix x k
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   755
    have th0: "\<And>(a::'a) b c. a - (b - c) = c + (a - b)"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   756
      by (simp add: field_simps)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   757
    have "x - k *\<^sub>R (a - (\<Sum>x\<in>C. (x \<bullet> a / (x \<bullet> x)) *\<^sub>R x)) \<in> span C \<longleftrightarrow> x - k *\<^sub>R a \<in> span C"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   758
      apply (simp only: scaleR_right_diff_distrib th0)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   759
      apply (rule span_add_eq)
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   760
      apply (rule span_scale)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   761
      apply (rule span_sum)
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   762
      apply (rule span_scale)
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   763
      apply (rule span_base)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   764
      apply assumption
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   765
      done
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   766
  }
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   767
  then have SC: "span ?C = span (insert a B)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   768
    unfolding set_eq_iff span_breakdown_eq C(3)[symmetric] by auto
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   769
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   770
    fix y
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   771
    assume yC: "y \<in> C"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   772
    then have Cy: "C = insert y (C - {y})"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   773
      by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   774
    have fth: "finite (C - {y})"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   775
      using C by simp
44528
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
   776
    have "orthogonal ?a y"
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
   777
      unfolding orthogonal_def
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   778
      unfolding inner_diff inner_sum_left right_minus_eq
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   779
      unfolding sum.remove [OF \<open>finite C\<close> \<open>y \<in> C\<close>]
44528
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
   780
      apply (clarsimp simp add: inner_commute[of y a])
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   781
      apply (rule sum.neutral)
44528
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
   782
      apply clarsimp
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
   783
      apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format])
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
   784
      using \<open>y \<in> C\<close> by auto
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   785
  }
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
   786
  with \<open>pairwise orthogonal C\<close> have CPO: "pairwise orthogonal ?C"
44528
0b8e0dbb2bdd generalize and shorten proof of basis_orthogonal
huffman
parents: 44527
diff changeset
   787
    by (rule pairwise_orthogonal_insert)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   788
  from fC cC SC CPO have "?P (insert a B) ?C"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   789
    by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   790
  then show ?case by blast
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   791
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   792
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   793
lemma orthogonal_basis_exists:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   794
  fixes V :: "('a::euclidean_space) set"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   795
  shows "\<exists>B. independent B \<and> B \<subseteq> span V \<and> V \<subseteq> span B \<and>
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   796
  (card B = dim V) \<and> pairwise orthogonal B"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   797
proof -
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   798
  from basis_exists[of V] obtain B where
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   799
    B: "B \<subseteq> V" "independent B" "V \<subseteq> span B" "card B = dim V"
68073
fad29d2a17a5 merged; resolved conflicts manually (esp. lemmas that have been moved from Linear_Algebra and Cartesian_Euclidean_Space)
immler
parents: 68072 68069
diff changeset
   800
    by force
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   801
  from B have fB: "finite B" "card B = dim V"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   802
    using independent_bound by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   803
  from basis_orthogonal[OF fB(1)] obtain C where
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   804
    C: "finite C" "card C \<le> card B" "span C = span B" "pairwise orthogonal C"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   805
    by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   806
  from C B have CSV: "C \<subseteq> span V"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   807
    by (metis span_superset span_mono subset_trans)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   808
  from span_mono[OF B(3)] C have SVC: "span V \<subseteq> span C"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   809
    by (simp add: span_span)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   810
  from card_le_dim_spanning[OF CSV SVC C(1)] C(2,3) fB
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   811
  have iC: "independent C"
71044
nipkow
parents: 71043
diff changeset
   812
    by (simp)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   813
  from C fB have "card C \<le> dim V"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   814
    by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   815
  moreover have "dim V \<le> card C"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   816
    using span_card_ge_dim[OF CSV SVC C(1)]
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   817
    by simp
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   818
  ultimately have CdV: "card C = dim V"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   819
    using C(1) by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   820
  from C B CSV CdV iC show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   821
    by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   822
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   823
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
   824
text \<open>Low-dimensional subset is in a hyperplane (weak orthogonal complement).\<close>
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   825
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   826
lemma span_not_univ_orthogonal:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   827
  fixes S :: "'a::euclidean_space set"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   828
  assumes sU: "span S \<noteq> UNIV"
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   829
  shows "\<exists>a::'a. a \<noteq> 0 \<and> (\<forall>x \<in> span S. a \<bullet> x = 0)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   830
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   831
  from sU obtain a where a: "a \<notin> span S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   832
    by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   833
  from orthogonal_basis_exists obtain B where
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   834
    B: "independent B" "B \<subseteq> span S" "S \<subseteq> span B"
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   835
    "card B = dim S" "pairwise orthogonal B"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   836
    by blast
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   837
  from B have fB: "finite B" "card B = dim S"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   838
    using independent_bound by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   839
  from span_mono[OF B(2)] span_mono[OF B(3)]
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   840
  have sSB: "span S = span B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   841
    by (simp add: span_span)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   842
  let ?a = "a - sum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *\<^sub>R b) B"
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   843
  have "sum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *\<^sub>R b) B \<in> span S"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   844
    unfolding sSB
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   845
    apply (rule span_sum)
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   846
    apply (rule span_scale)
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   847
    apply (rule span_base)
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   848
    apply assumption
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   849
    done
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   850
  with a have a0:"?a  \<noteq> 0"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   851
    by auto
68058
69715dfdc286 more general tidying up
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
   852
  have "?a \<bullet> x = 0" if "x\<in>span B" for x
69715dfdc286 more general tidying up
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
   853
  proof (rule span_induct [OF that])
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   854
    show "subspace {x. ?a \<bullet> x = 0}"
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   855
      by (auto simp add: subspace_def inner_add)
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   856
  next
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   857
    {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   858
      fix x
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   859
      assume x: "x \<in> B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   860
      from x have B': "B = insert x (B - {x})"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   861
        by blast
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   862
      have fth: "finite (B - {x})"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   863
        using fB by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   864
      have "?a \<bullet> x = 0"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   865
        apply (subst B')
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   866
        using fB fth
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   867
        unfolding sum_clauses(2)[OF fth]
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   868
        apply simp unfolding inner_simps
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   869
        apply (clarsimp simp add: inner_add inner_sum_left)
b9a1486e79be setsum -> sum
nipkow
parents: 64122
diff changeset
   870
        apply (rule sum.neutral, rule ballI)
63170
eae6549dbea2 tuned proofs, to allow unfold_abs_def;
wenzelm
parents: 63148
diff changeset
   871
        apply (simp only: inner_commute)
49711
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
   872
        apply (auto simp add: x field_simps
e5aaae7eadc9 tuned proofs;
wenzelm
parents: 49663
diff changeset
   873
          intro: B(5)[unfolded pairwise_def orthogonal_def, rule_format])
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   874
        done
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   875
    }
68058
69715dfdc286 more general tidying up
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
   876
    then show "?a \<bullet> x = 0" if "x \<in> B" for x
69715dfdc286 more general tidying up
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
   877
      using that by blast
69715dfdc286 more general tidying up
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
   878
    qed
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   879
  with a0 show ?thesis
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   880
    unfolding sSB by (auto intro: exI[where x="?a"])
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   881
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   882
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   883
lemma span_not_univ_subset_hyperplane:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   884
  fixes S :: "'a::euclidean_space set"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   885
  assumes SU: "span S \<noteq> UNIV"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   886
  shows "\<exists> a. a \<noteq>0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   887
  using span_not_univ_orthogonal[OF SU] by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   888
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   889
lemma lowdim_subset_hyperplane:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   890
  fixes S :: "'a::euclidean_space set"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   891
  assumes d: "dim S < DIM('a)"
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   892
  shows "\<exists>a::'a. a \<noteq> 0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   893
proof -
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   894
  {
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   895
    assume "span S = UNIV"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   896
    then have "dim (span S) = dim (UNIV :: ('a) set)"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   897
      by simp
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   898
    then have "dim S = DIM('a)"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   899
      by (metis Euclidean_Space.dim_UNIV dim_span)
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   900
    with d have False by arith
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   901
  }
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   902
  then have th: "span S \<noteq> UNIV"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   903
    by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   904
  from span_not_univ_subset_hyperplane[OF th] show ?thesis .
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   905
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   906
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   907
lemma linear_eq_stdbasis:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   908
  fixes f :: "'a::euclidean_space \<Rightarrow> _"
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   909
  assumes lf: "linear f"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   910
    and lg: "linear g"
68058
69715dfdc286 more general tidying up
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
   911
    and fg: "\<And>b. b \<in> Basis \<Longrightarrow> f b = g b"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   912
  shows "f = g"
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   913
  using linear_eq_on_span[OF lf lg, of Basis] fg
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   914
  by auto
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   915
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   916
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
   917
text \<open>Similar results for bilinear functions.\<close>
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   918
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   919
lemma bilinear_eq:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   920
  assumes bf: "bilinear f"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   921
    and bg: "bilinear g"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   922
    and SB: "S \<subseteq> span B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   923
    and TC: "T \<subseteq> span C"
68058
69715dfdc286 more general tidying up
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
   924
    and "x\<in>S" "y\<in>T"
69715dfdc286 more general tidying up
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
   925
    and fg: "\<And>x y. \<lbrakk>x \<in> B; y\<in> C\<rbrakk> \<Longrightarrow> f x y = g x y"
69715dfdc286 more general tidying up
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
   926
  shows "f x y = g x y"
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   927
proof -
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44166
diff changeset
   928
  let ?P = "{x. \<forall>y\<in> span C. f x y = g x y}"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   929
  from bf bg have sp: "subspace ?P"
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   930
    unfolding bilinear_def linear_iff subspace_def bf bg
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   931
    by (auto simp add: span_zero bilinear_lzero[OF bf] bilinear_lzero[OF bg]
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   932
        span_add Ball_def
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   933
      intro: bilinear_ladd[OF bf])
68058
69715dfdc286 more general tidying up
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
   934
  have sfg: "\<And>x. x \<in> B \<Longrightarrow> subspace {a. f x a = g x a}"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   935
    apply (auto simp add: subspace_def)
53600
8fda7ad57466 make 'linear' into a sublocale of 'bounded_linear';
huffman
parents: 53596
diff changeset
   936
    using bf bg unfolding bilinear_def linear_iff
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   937
      apply (auto simp add: span_zero bilinear_rzero[OF bf] bilinear_rzero[OF bg]
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
   938
        span_add Ball_def
49663
b84fafaea4bb tuned proofs;
wenzelm
parents: 49652
diff changeset
   939
      intro: bilinear_ladd[OF bf])
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   940
    done
68058
69715dfdc286 more general tidying up
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
   941
  have "\<forall>y\<in> span C. f x y = g x y" if "x \<in> span B" for x
69715dfdc286 more general tidying up
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
   942
    apply (rule span_induct [OF that sp])
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
   943
    using fg sfg span_induct by blast
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   944
  then show ?thesis
68058
69715dfdc286 more general tidying up
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
   945
    using SB TC assms by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   946
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   947
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   948
lemma bilinear_eq_stdbasis:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   949
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> _"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   950
  assumes bf: "bilinear f"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   951
    and bg: "bilinear g"
68058
69715dfdc286 more general tidying up
paulson <lp15@cam.ac.uk>
parents: 67982
diff changeset
   952
    and fg: "\<And>i j. i \<in> Basis \<Longrightarrow> j \<in> Basis \<Longrightarrow> f i j = g i j"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   953
  shows "f = g"
68074
8d50467f7555 fixed HOL-Analysis
immler
parents: 68073
diff changeset
   954
  using bilinear_eq[OF bf bg equalityD2[OF span_Basis] equalityD2[OF span_Basis]] fg by blast
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   955
69619
3f7d8e05e0f2 split off Convex.thy: material that does not require Topology_Euclidean_Space
immler
parents: 69600
diff changeset
   956
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
   957
subsection \<open>Infinity norm\<close>
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   958
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
   959
definition\<^marker>\<open>tag important\<close> "infnorm (x::'a::euclidean_space) = Sup {\<bar>x \<bullet> b\<bar> |b. b \<in> Basis}"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   960
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   961
lemma infnorm_set_image:
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
   962
  fixes x :: "'a::euclidean_space"
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   963
  shows "{\<bar>x \<bullet> i\<bar> |i. i \<in> Basis} = (\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
   964
  by blast
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   965
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
   966
lemma infnorm_Max:
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
   967
  fixes x :: "'a::euclidean_space"
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   968
  shows "infnorm x = Max ((\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis)"
62343
24106dc44def prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents: 61973
diff changeset
   969
  by (simp add: infnorm_def infnorm_set_image cSup_eq_Max)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
   970
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   971
lemma infnorm_set_lemma:
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
   972
  fixes x :: "'a::euclidean_space"
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   973
  shows "finite {\<bar>x \<bullet> i\<bar> |i. i \<in> Basis}"
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
   974
    and "{\<bar>x \<bullet> i\<bar> |i. i \<in> Basis} \<noteq> {}"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   975
  unfolding infnorm_set_image
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   976
  by auto
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   977
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   978
lemma infnorm_pos_le:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   979
  fixes x :: "'a::euclidean_space"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   980
  shows "0 \<le> infnorm x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
   981
  by (simp add: infnorm_Max Max_ge_iff ex_in_conv)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   982
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   983
lemma infnorm_triangle:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   984
  fixes x :: "'a::euclidean_space"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   985
  shows "infnorm (x + y) \<le> infnorm x + infnorm y"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   986
proof -
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
   987
  have *: "\<And>a b c d :: real. \<bar>a\<bar> \<le> c \<Longrightarrow> \<bar>b\<bar> \<le> d \<Longrightarrow> \<bar>a + b\<bar> \<le> c + d"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
   988
    by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   989
  show ?thesis
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
   990
    by (auto simp: infnorm_Max inner_add_left intro!: *)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   991
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
   992
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   993
lemma infnorm_eq_0:
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   994
  fixes x :: "'a::euclidean_space"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
   995
  shows "infnorm x = 0 \<longleftrightarrow> x = 0"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
   996
proof -
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
   997
  have "infnorm x \<le> 0 \<longleftrightarrow> x = 0"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
   998
    unfolding infnorm_Max by (simp add: euclidean_all_zero_iff)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
   999
  then show ?thesis
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  1000
    using infnorm_pos_le[of x] by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1001
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1002
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1003
lemma infnorm_0: "infnorm 0 = 0"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1004
  by (simp add: infnorm_eq_0)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1005
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1006
lemma infnorm_neg: "infnorm (- x) = infnorm x"
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1007
  unfolding infnorm_def by simp
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1008
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1009
lemma infnorm_sub: "infnorm (x - y) = infnorm (y - x)"
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1010
  by (metis infnorm_neg minus_diff_eq)
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1011
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1012
lemma absdiff_infnorm: "\<bar>infnorm x - infnorm y\<bar> \<le> infnorm (x - y)"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1013
proof -
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1014
  have *: "\<And>(nx::real) n ny. nx \<le> n + ny \<Longrightarrow> ny \<le> n + nx \<Longrightarrow> \<bar>nx - ny\<bar> \<le> n"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1015
    by arith
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1016
  show ?thesis
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1017
  proof (rule *)
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1018
    from infnorm_triangle[of "x - y" " y"] infnorm_triangle[of "x - y" "-x"]
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1019
    show "infnorm x \<le> infnorm (x - y) + infnorm y" "infnorm y \<le> infnorm (x - y) + infnorm x"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1020
      by (simp_all add: field_simps infnorm_neg)
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1021
  qed
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1022
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1023
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1024
lemma real_abs_infnorm: "\<bar>infnorm x\<bar> = infnorm x"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1025
  using infnorm_pos_le[of x] by arith
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1026
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1027
lemma Basis_le_infnorm:
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1028
  fixes x :: "'a::euclidean_space"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1029
  shows "b \<in> Basis \<Longrightarrow> \<bar>x \<bullet> b\<bar> \<le> infnorm x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  1030
  by (simp add: infnorm_Max)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1031
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  1032
lemma infnorm_mul: "infnorm (a *\<^sub>R x) = \<bar>a\<bar> * infnorm x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  1033
  unfolding infnorm_Max
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  1034
proof (safe intro!: Max_eqI)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  1035
  let ?B = "(\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis"
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1036
  { fix b :: 'a
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1037
    assume "b \<in> Basis"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1038
    then show "\<bar>a *\<^sub>R x \<bullet> b\<bar> \<le> \<bar>a\<bar> * Max ?B"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1039
      by (simp add: abs_mult mult_left_mono)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1040
  next
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1041
    from Max_in[of ?B] obtain b where "b \<in> Basis" "Max ?B = \<bar>x \<bullet> b\<bar>"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1042
      by (auto simp del: Max_in)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1043
    then show "\<bar>a\<bar> * Max ((\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis) \<in> (\<lambda>i. \<bar>a *\<^sub>R x \<bullet> i\<bar>) ` Basis"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1044
      by (intro image_eqI[where x=b]) (auto simp: abs_mult)
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1045
  }
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  1046
qed simp
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  1047
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1048
lemma infnorm_mul_lemma: "infnorm (a *\<^sub>R x) \<le> \<bar>a\<bar> * infnorm x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  1049
  unfolding infnorm_mul ..
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1050
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1051
lemma infnorm_pos_lt: "infnorm x > 0 \<longleftrightarrow> x \<noteq> 0"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1052
  using infnorm_pos_le[of x] infnorm_eq_0[of x] by arith
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1053
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
  1054
text \<open>Prove that it differs only up to a bound from Euclidean norm.\<close>
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1055
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1056
lemma infnorm_le_norm: "infnorm x \<le> norm x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 50526
diff changeset
  1057
  by (simp add: Basis_le_norm infnorm_Max)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50105
diff changeset
  1058
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1059
lemma norm_le_infnorm:
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1060
  fixes x :: "'a::euclidean_space"
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1061
  shows "norm x \<le> sqrt DIM('a) * infnorm x"
73795
8893e0ed263a new lemmas mostly about paths
paulson <lp15@cam.ac.uk>
parents: 73648
diff changeset
  1062
  unfolding norm_eq_sqrt_inner id_def
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1063
proof (rule real_le_lsqrt[OF inner_ge_zero])
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1064
  show "sqrt DIM('a) * infnorm x \<ge> 0"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1065
    by (simp add: zero_le_mult_iff infnorm_pos_le)
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1066
  have "x \<bullet> x \<le> (\<Sum>b\<in>Basis. x \<bullet> b * (x \<bullet> b))"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1067
    by (metis euclidean_inner order_refl)
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1068
  also have "... \<le> DIM('a) * \<bar>infnorm x\<bar>\<^sup>2"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1069
    by (rule sum_bounded_above) (metis Basis_le_infnorm abs_le_square_iff power2_eq_square real_abs_infnorm)
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1070
  also have "... \<le> (sqrt DIM('a) * infnorm x)\<^sup>2"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1071
    by (simp add: power_mult_distrib)
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1072
  finally show "x \<bullet> x \<le> (sqrt DIM('a) * infnorm x)\<^sup>2" .
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1073
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1074
44646
a6047ddd9377 add lemma tendsto_infnorm
huffman
parents: 44629
diff changeset
  1075
lemma tendsto_infnorm [tendsto_intros]:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61915
diff changeset
  1076
  assumes "(f \<longlongrightarrow> a) F"
0c7e865fa7cb more symbols;
wenzelm
parents: 61915
diff changeset
  1077
  shows "((\<lambda>x. infnorm (f x)) \<longlongrightarrow> infnorm a) F"
44646
a6047ddd9377 add lemma tendsto_infnorm
huffman
parents: 44629
diff changeset
  1078
proof (rule tendsto_compose [OF LIM_I assms])
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1079
  fix r :: real
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1080
  assume "r > 0"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1081
  then show "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (infnorm x - infnorm a) < r"
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1082
    by (metis real_norm_def le_less_trans absdiff_infnorm infnorm_le_norm)
44646
a6047ddd9377 add lemma tendsto_infnorm
huffman
parents: 44629
diff changeset
  1083
qed
a6047ddd9377 add lemma tendsto_infnorm
huffman
parents: 44629
diff changeset
  1084
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
  1085
text \<open>Equality in Cauchy-Schwarz and triangle inequalities.\<close>
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1086
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1087
lemma norm_cauchy_schwarz_eq: "x \<bullet> y = norm x * norm y \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x"
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1088
  (is "?lhs \<longleftrightarrow> ?rhs")
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1089
proof (cases "x=0")
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1090
  case True
73795
8893e0ed263a new lemmas mostly about paths
paulson <lp15@cam.ac.uk>
parents: 73648
diff changeset
  1091
  then show ?thesis
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1092
    by auto
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1093
next
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1094
  case False
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1095
  from inner_eq_zero_iff[of "norm y *\<^sub>R x - norm x *\<^sub>R y"]
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1096
  have "?rhs \<longleftrightarrow>
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1097
      (norm y * (norm y * norm x * norm x - norm x * (x \<bullet> y)) -
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1098
        norm x * (norm y * (y \<bullet> x) - norm x * norm y * norm y) =  0)"
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1099
    using False unfolding inner_simps
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1100
    by (auto simp add: power2_norm_eq_inner[symmetric] power2_eq_square inner_commute field_simps)
73795
8893e0ed263a new lemmas mostly about paths
paulson <lp15@cam.ac.uk>
parents: 73648
diff changeset
  1101
  also have "\<dots> \<longleftrightarrow> (2 * norm x * norm y * (norm x * norm y - x \<bullet> y) = 0)"
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1102
    using False  by (simp add: field_simps inner_commute)
73795
8893e0ed263a new lemmas mostly about paths
paulson <lp15@cam.ac.uk>
parents: 73648
diff changeset
  1103
  also have "\<dots> \<longleftrightarrow> ?lhs"
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1104
    using False by auto
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1105
  finally show ?thesis by metis
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1106
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1107
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1108
lemma norm_cauchy_schwarz_abs_eq:
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  1109
  "\<bar>x \<bullet> y\<bar> = norm x * norm y \<longleftrightarrow>
53716
b42d9a71fc1a tuned proofs;
wenzelm
parents: 53600
diff changeset
  1110
    norm x *\<^sub>R y = norm y *\<^sub>R x \<or> norm x *\<^sub>R y = - norm y *\<^sub>R x"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1111
  (is "?lhs \<longleftrightarrow> ?rhs")
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1112
proof -
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  1113
  have th: "\<And>(x::real) a. a \<ge> 0 \<Longrightarrow> \<bar>x\<bar> = a \<longleftrightarrow> x = a \<or> x = - a"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1114
    by arith
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1115
  have "?rhs \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x \<or> norm (- x) *\<^sub>R y = norm y *\<^sub>R (- x)"
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1116
    by simp
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1117
  also have "\<dots> \<longleftrightarrow> (x \<bullet> y = norm x * norm y \<or> (- x) \<bullet> y = norm x * norm y)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1118
    unfolding norm_cauchy_schwarz_eq[symmetric]
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1119
    unfolding norm_minus_cancel norm_scaleR ..
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1120
  also have "\<dots> \<longleftrightarrow> ?lhs"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1121
    unfolding th[OF mult_nonneg_nonneg, OF norm_ge_zero[of x] norm_ge_zero[of y]] inner_simps
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1122
    by auto
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1123
  finally show ?thesis ..
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1124
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1125
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1126
lemma norm_triangle_eq:
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1127
  fixes x y :: "'a::real_inner"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1128
  shows "norm (x + y) = norm x + norm y \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x"
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1129
proof (cases "x = 0 \<or> y = 0")
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1130
  case True
73795
8893e0ed263a new lemmas mostly about paths
paulson <lp15@cam.ac.uk>
parents: 73648
diff changeset
  1131
  then show ?thesis
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1132
    by force
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1133
next
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1134
  case False
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1135
  then have n: "norm x > 0" "norm y > 0"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1136
    by auto
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1137
  have "norm (x + y) = norm x + norm y \<longleftrightarrow> (norm (x + y))\<^sup>2 = (norm x + norm y)\<^sup>2"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1138
    by simp
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1139
  also have "\<dots> \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1140
    unfolding norm_cauchy_schwarz_eq[symmetric]
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1141
    unfolding power2_norm_eq_inner inner_simps
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1142
    by (simp add: power2_norm_eq_inner[symmetric] power2_eq_square inner_commute field_simps)
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1143
  finally show ?thesis .
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1144
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1145
74729
64b3d8d9bd10 new lemmas about convex, concave functions, + tidying
paulson <lp15@cam.ac.uk>
parents: 73933
diff changeset
  1146
lemma dist_triangle_eq:
64b3d8d9bd10 new lemmas about convex, concave functions, + tidying
paulson <lp15@cam.ac.uk>
parents: 73933
diff changeset
  1147
  fixes x y z :: "'a::real_inner"
64b3d8d9bd10 new lemmas about convex, concave functions, + tidying
paulson <lp15@cam.ac.uk>
parents: 73933
diff changeset
  1148
  shows "dist x z = dist x y + dist y z \<longleftrightarrow>
64b3d8d9bd10 new lemmas about convex, concave functions, + tidying
paulson <lp15@cam.ac.uk>
parents: 73933
diff changeset
  1149
    norm (x - y) *\<^sub>R (y - z) = norm (y - z) *\<^sub>R (x - y)"
64b3d8d9bd10 new lemmas about convex, concave functions, + tidying
paulson <lp15@cam.ac.uk>
parents: 73933
diff changeset
  1150
proof -
64b3d8d9bd10 new lemmas about convex, concave functions, + tidying
paulson <lp15@cam.ac.uk>
parents: 73933
diff changeset
  1151
  have *: "x - y + (y - z) = x - z" by auto
64b3d8d9bd10 new lemmas about convex, concave functions, + tidying
paulson <lp15@cam.ac.uk>
parents: 73933
diff changeset
  1152
  show ?thesis unfolding dist_norm norm_triangle_eq[of "x - y" "y - z", unfolded *]
64b3d8d9bd10 new lemmas about convex, concave functions, + tidying
paulson <lp15@cam.ac.uk>
parents: 73933
diff changeset
  1153
    by (auto simp:norm_minus_commute)
64b3d8d9bd10 new lemmas about convex, concave functions, + tidying
paulson <lp15@cam.ac.uk>
parents: 73933
diff changeset
  1154
qed
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1155
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60307
diff changeset
  1156
subsection \<open>Collinearity\<close>
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1157
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
  1158
definition\<^marker>\<open>tag important\<close> collinear :: "'a::real_vector set \<Rightarrow> bool"
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1159
  where "collinear S \<longleftrightarrow> (\<exists>u. \<forall>x \<in> S. \<forall> y \<in> S. \<exists>c. x - y = c *\<^sub>R u)"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1160
66287
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1161
lemma collinear_alt:
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1162
     "collinear S \<longleftrightarrow> (\<exists>u v. \<forall>x \<in> S. \<exists>c. x = u + c *\<^sub>R v)" (is "?lhs = ?rhs")
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1163
proof
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1164
  assume ?lhs
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1165
  then show ?rhs
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1166
    unfolding collinear_def by (metis Groups.add_ac(2) diff_add_cancel)
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1167
next
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1168
  assume ?rhs
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1169
  then obtain u v where *: "\<And>x. x \<in> S \<Longrightarrow> \<exists>c. x = u + c *\<^sub>R v"
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1170
    by (auto simp: )
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1171
  have "\<exists>c. x - y = c *\<^sub>R v" if "x \<in> S" "y \<in> S" for x y
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1172
        by (metis *[OF \<open>x \<in> S\<close>] *[OF \<open>y \<in> S\<close>] scaleR_left.diff add_diff_cancel_left)
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1173
  then show ?lhs
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1174
    using collinear_def by blast
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1175
qed
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1176
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1177
lemma collinear:
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1178
  fixes S :: "'a::{perfect_space,real_vector} set"
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1179
  shows "collinear S \<longleftrightarrow> (\<exists>u. u \<noteq> 0 \<and> (\<forall>x \<in> S. \<forall> y \<in> S. \<exists>c. x - y = c *\<^sub>R u))"
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1180
proof -
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1181
  have "\<exists>v. v \<noteq> 0 \<and> (\<forall>x\<in>S. \<forall>y\<in>S. \<exists>c. x - y = c *\<^sub>R v)"
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1182
    if "\<forall>x\<in>S. \<forall>y\<in>S. \<exists>c. x - y = c *\<^sub>R u" "u=0" for u
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1183
  proof -
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1184
    have "\<forall>x\<in>S. \<forall>y\<in>S. x = y"
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1185
      using that by auto
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1186
    moreover
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1187
    obtain v::'a where "v \<noteq> 0"
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1188
      using UNIV_not_singleton [of 0] by auto
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1189
    ultimately have "\<forall>x\<in>S. \<forall>y\<in>S. \<exists>c. x - y = c *\<^sub>R v"
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1190
      by auto
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1191
    then show ?thesis
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1192
      using \<open>v \<noteq> 0\<close> by blast
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1193
  qed
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1194
  then show ?thesis
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1195
    apply (clarsimp simp: collinear_def)
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67982
diff changeset
  1196
    by (metis scaleR_zero_right vector_fraction_eq_iff)
66287
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1197
qed
005a30862ed0 new material: Colinearity, convex sets, polytopes
paulson <lp15@cam.ac.uk>
parents: 65680
diff changeset
  1198
63881
b746b19197bd lots of new results about topology, affine dimension etc
paulson <lp15@cam.ac.uk>
parents: 63680
diff changeset
  1199
lemma collinear_subset: "\<lbrakk>collinear T; S \<subseteq> T\<rbrakk> \<Longrightarrow> collinear S"
b746b19197bd lots of new results about topology, affine dimension etc
paulson <lp15@cam.ac.uk>
parents: 63680
diff changeset
  1200
  by (meson collinear_def subsetCE)
b746b19197bd lots of new results about topology, affine dimension etc
paulson <lp15@cam.ac.uk>
parents: 63680
diff changeset
  1201
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60420
diff changeset
  1202
lemma collinear_empty [iff]: "collinear {}"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1203
  by (simp add: collinear_def)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1204
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60420
diff changeset
  1205
lemma collinear_sing [iff]: "collinear {x}"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1206
  by (simp add: collinear_def)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1207
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60420
diff changeset
  1208
lemma collinear_2 [iff]: "collinear {x, y}"
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1209
  apply (simp add: collinear_def)
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1210
  apply (rule exI[where x="x - y"])
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1211
  by (metis minus_diff_eq scaleR_left.minus scaleR_one)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1212
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  1213
lemma collinear_lemma: "collinear {0, x, y} \<longleftrightarrow> x = 0 \<or> y = 0 \<or> (\<exists>c. y = c *\<^sub>R x)"
53406
d4374a69ddff tuned proofs;
wenzelm
parents: 53077
diff changeset
  1214
  (is "?lhs \<longleftrightarrow> ?rhs")
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1215
proof (cases "x = 0 \<or> y = 0")
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1216
  case True
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1217
  then show ?thesis
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1218
    by (auto simp: insert_commute)
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1219
next
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1220
  case False
73795
8893e0ed263a new lemmas mostly about paths
paulson <lp15@cam.ac.uk>
parents: 73648
diff changeset
  1221
  show ?thesis
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1222
  proof
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1223
    assume h: "?lhs"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1224
    then obtain u where u: "\<forall> x\<in> {0,x,y}. \<forall>y\<in> {0,x,y}. \<exists>c. x - y = c *\<^sub>R u"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1225
      unfolding collinear_def by blast
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1226
    from u[rule_format, of x 0] u[rule_format, of y 0]
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1227
    obtain cx and cy where
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1228
      cx: "x = cx *\<^sub>R u" and cy: "y = cy *\<^sub>R u"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1229
      by auto
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1230
    from cx cy False have cx0: "cx \<noteq> 0" and cy0: "cy \<noteq> 0" by auto
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1231
    let ?d = "cy / cx"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1232
    from cx cy cx0 have "y = ?d *\<^sub>R x"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1233
      by simp
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1234
    then show ?rhs using False by blast
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1235
  next
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1236
    assume h: "?rhs"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1237
    then obtain c where c: "y = c *\<^sub>R x"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1238
      using False by blast
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1239
    show ?lhs
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1240
      unfolding collinear_def c
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1241
      apply (rule exI[where x=x])
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1242
      apply auto
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1243
          apply (rule exI[where x="- 1"], simp)
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1244
         apply (rule exI[where x= "-c"], simp)
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1245
        apply (rule exI[where x=1], simp)
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1246
       apply (rule exI[where x="1 - c"], simp add: scaleR_left_diff_distrib)
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1247
      apply (rule exI[where x="c - 1"], simp add: scaleR_left_diff_distrib)
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1248
      done
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1249
  qed
44133
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1250
qed
691c52e900ca split Linear_Algebra.thy from Euclidean_Space.thy
huffman
parents:
diff changeset
  1251
73885
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1252
lemma collinear_iff_Reals: "collinear {0::complex,w,z} \<longleftrightarrow> z/w \<in> \<real>"
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1253
proof
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1254
  show "z/w \<in> \<real> \<Longrightarrow> collinear {0,w,z}"
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1255
    by (metis Reals_cases collinear_lemma nonzero_divide_eq_eq scaleR_conv_of_real)
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1256
qed (auto simp: collinear_lemma scaleR_conv_of_real)
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1257
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1258
lemma collinear_scaleR_iff: "collinear {0, \<alpha> *\<^sub>R w, \<beta> *\<^sub>R z} \<longleftrightarrow> collinear {0,w,z} \<or> \<alpha>=0 \<or> \<beta>=0"
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1259
  (is "?lhs = ?rhs")
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1260
proof (cases "\<alpha>=0 \<or> \<beta>=0")
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1261
  case False
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1262
  then have "(\<exists>c. \<beta> *\<^sub>R z = (c * \<alpha>) *\<^sub>R w) = (\<exists>c. z = c *\<^sub>R w)"
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1263
    by (metis mult.commute scaleR_scaleR vector_fraction_eq_iff)
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1264
  then show ?thesis
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1265
    by (auto simp add: collinear_lemma)
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1266
qed (auto simp: collinear_lemma)
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1267
56444
f944ae8c80a3 tuned proofs;
wenzelm
parents: 56409
diff changeset
  1268
lemma norm_cauchy_schwarz_equal: "\<bar>x \<bullet> y\<bar> = norm x * norm y \<longleftrightarrow> collinear {0, x, y}"
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1269
proof (cases "x=0")
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1270
  case True
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1271
  then show ?thesis
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1272
    by (auto simp: insert_commute)
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1273
next
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1274
  case False
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1275
  then have nnz: "norm x \<noteq> 0"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1276
    by auto
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1277
  show ?thesis
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1278
  proof
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1279
    assume "\<bar>x \<bullet> y\<bar> = norm x * norm y"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1280
    then show "collinear {0, x, y}"
73795
8893e0ed263a new lemmas mostly about paths
paulson <lp15@cam.ac.uk>
parents: 73648
diff changeset
  1281
      unfolding norm_cauchy_schwarz_abs_eq collinear_lemma
68062
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1282
      by (meson eq_vector_fraction_iff nnz)
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1283
  next
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1284
    assume "collinear {0, x, y}"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1285
    with False show "\<bar>x \<bullet> y\<bar> = norm x * norm y"
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1286
      unfolding norm_cauchy_schwarz_abs_eq collinear_lemma  by (auto simp: abs_if)
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1287
  qed
ee88c0fccbae simplified some messy proofs
paulson <lp15@cam.ac.uk>
parents: 68058
diff changeset
  1288
qed
49522
355f3d076924 tuned proofs;
wenzelm
parents: 44890
diff changeset
  1289
73885
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1290
lemma norm_triangle_eq_imp_collinear:
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1291
  fixes x y :: "'a::real_inner"
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1292
  assumes "norm (x + y) = norm x + norm y"
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1293
  shows "collinear{0,x,y}"
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1294
proof (cases "x = 0 \<or> y = 0")
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1295
  case False
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1296
  with assms show ?thesis
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1297
    by (meson norm_cauchy_schwarz_abs_eq norm_cauchy_schwarz_equal norm_triangle_eq)
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1298
qed (use collinear_lemma in blast)
26171a89466a A few useful lemmas about derivatives, colinearity and other topics
paulson <lp15@cam.ac.uk>
parents: 73795
diff changeset
  1299
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1300
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1301
subsection\<open>Properties of special hyperplanes\<close>
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1302
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1303
lemma subspace_hyperplane: "subspace {x. a \<bullet> x = 0}"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1304
  by (simp add: subspace_def inner_right_distrib)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1305
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1306
lemma subspace_hyperplane2: "subspace {x. x \<bullet> a = 0}"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1307
  by (simp add: inner_commute inner_right_distrib subspace_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1308
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1309
lemma special_hyperplane_span:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1310
  fixes S :: "'n::euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1311
  assumes "k \<in> Basis"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1312
  shows "{x. k \<bullet> x = 0} = span (Basis - {k})"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1313
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1314
  have *: "x \<in> span (Basis - {k})" if "k \<bullet> x = 0" for x
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1315
  proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1316
    have "x = (\<Sum>b\<in>Basis. (x \<bullet> b) *\<^sub>R b)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1317
      by (simp add: euclidean_representation)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1318
    also have "... = (\<Sum>b \<in> Basis - {k}. (x \<bullet> b) *\<^sub>R b)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1319
      by (auto simp: sum.remove [of _ k] inner_commute assms that)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1320
    finally have "x = (\<Sum>b\<in>Basis - {k}. (x \<bullet> b) *\<^sub>R b)" .
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1321
    then show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1322
      by (simp add: span_finite)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1323
  qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1324
  show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1325
    apply (rule span_subspace [symmetric])
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1326
    using assms
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1327
    apply (auto simp: inner_not_same_Basis intro: * subspace_hyperplane)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1328
    done
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1329
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1330
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1331
lemma dim_special_hyperplane:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1332
  fixes k :: "'n::euclidean_space"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1333
  shows "k \<in> Basis \<Longrightarrow> dim {x. k \<bullet> x = 0} = DIM('n) - 1"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1334
apply (simp add: special_hyperplane_span)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1335
apply (rule dim_unique [OF subset_refl])
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1336
apply (auto simp: independent_substdbasis)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1337
apply (metis member_remove remove_def span_base)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1338
done
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1339
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1340
proposition dim_hyperplane:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1341
  fixes a :: "'a::euclidean_space"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1342
  assumes "a \<noteq> 0"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1343
    shows "dim {x. a \<bullet> x = 0} = DIM('a) - 1"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1344
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1345
  have span0: "span {x. a \<bullet> x = 0} = {x. a \<bullet> x = 0}"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1346
    by (rule span_unique) (auto simp: subspace_hyperplane)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1347
  then obtain B where "independent B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1348
              and Bsub: "B \<subseteq> {x. a \<bullet> x = 0}"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1349
              and subspB: "{x. a \<bullet> x = 0} \<subseteq> span B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1350
              and card0: "(card B = dim {x. a \<bullet> x = 0})"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1351
              and ortho: "pairwise orthogonal B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1352
    using orthogonal_basis_exists by metis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1353
  with assms have "a \<notin> span B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1354
    by (metis (mono_tags, lifting) span_eq inner_eq_zero_iff mem_Collect_eq span0)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1355
  then have ind: "independent (insert a B)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1356
    by (simp add: \<open>independent B\<close> independent_insert)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1357
  have "finite B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1358
    using \<open>independent B\<close> independent_bound by blast
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1359
  have "UNIV \<subseteq> span (insert a B)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1360
  proof fix y::'a
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1361
    obtain r z where z: "y = r *\<^sub>R a + z" "a \<bullet> z = 0"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1362
      apply (rule_tac r="(a \<bullet> y) / (a \<bullet> a)" and z = "y - ((a \<bullet> y) / (a \<bullet> a)) *\<^sub>R a" in that)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1363
      using assms
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1364
      by (auto simp: algebra_simps)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1365
    show "y \<in> span (insert a B)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1366
      by (metis (mono_tags, lifting) z Bsub span_eq_iff
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1367
         add_diff_cancel_left' mem_Collect_eq span0 span_breakdown_eq span_subspace subspB)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1368
  qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1369
  then have dima: "DIM('a) = dim(insert a B)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1370
    by (metis independent_Basis span_Basis dim_eq_card top.extremum_uniqueI)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1371
  then show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1372
    by (metis (mono_tags, lifting) Bsub Diff_insert_absorb \<open>a \<notin> span B\<close> ind card0
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1373
        card_Diff_singleton dim_span indep_card_eq_dim_span insertI1 subsetCE
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1374
        subspB)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1375
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1376
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1377
lemma lowdim_eq_hyperplane:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1378
  fixes S :: "'a::euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1379
  assumes "dim S = DIM('a) - 1"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1380
  obtains a where "a \<noteq> 0" and "span S = {x. a \<bullet> x = 0}"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1381
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1382
  have dimS: "dim S < DIM('a)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1383
    by (simp add: assms)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1384
  then obtain b where b: "b \<noteq> 0" "span S \<subseteq> {a. b \<bullet> a = 0}"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1385
    using lowdim_subset_hyperplane [of S] by fastforce
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1386
  show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1387
    apply (rule that[OF b(1)])
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1388
    apply (rule subspace_dim_equal)
71044
nipkow
parents: 71043
diff changeset
  1389
    by (auto simp: assms b dim_hyperplane subspace_hyperplane)
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1390
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1391
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1392
lemma dim_eq_hyperplane:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1393
  fixes S :: "'n::euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1394
  shows "dim S = DIM('n) - 1 \<longleftrightarrow> (\<exists>a. a \<noteq> 0 \<and> span S = {x. a \<bullet> x = 0})"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1395
by (metis One_nat_def dim_hyperplane dim_span lowdim_eq_hyperplane)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1396
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1397
71044
nipkow
parents: 71043
diff changeset
  1398
subsection\<open> Orthogonal bases and Gram-Schmidt process\<close>
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1399
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1400
lemma pairwise_orthogonal_independent:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1401
  assumes "pairwise orthogonal S" and "0 \<notin> S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1402
    shows "independent S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1403
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1404
  have 0: "\<And>x y. \<lbrakk>x \<noteq> y; x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> x \<bullet> y = 0"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1405
    using assms by (simp add: pairwise_def orthogonal_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1406
  have "False" if "a \<in> S" and a: "a \<in> span (S - {a})" for a
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1407
  proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1408
    obtain T U where "T \<subseteq> S - {a}" "a = (\<Sum>v\<in>T. U v *\<^sub>R v)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1409
      using a by (force simp: span_explicit)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1410
    then have "a \<bullet> a = a \<bullet> (\<Sum>v\<in>T. U v *\<^sub>R v)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1411
      by simp
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1412
    also have "... = 0"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1413
      apply (simp add: inner_sum_right)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1414
      apply (rule comm_monoid_add_class.sum.neutral)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1415
      by (metis "0" DiffE \<open>T \<subseteq> S - {a}\<close> mult_not_zero singletonI subsetCE \<open>a \<in> S\<close>)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1416
    finally show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1417
      using \<open>0 \<notin> S\<close> \<open>a \<in> S\<close> by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1418
  qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1419
  then show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1420
    by (force simp: dependent_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1421
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1422
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1423
lemma pairwise_orthogonal_imp_finite:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1424
  fixes S :: "'a::euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1425
  assumes "pairwise orthogonal S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1426
    shows "finite S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1427
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1428
  have "independent (S - {0})"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1429
    apply (rule pairwise_orthogonal_independent)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1430
     apply (metis Diff_iff assms pairwise_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1431
    by blast
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1432
  then show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1433
    by (meson independent_imp_finite infinite_remove)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1434
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1435
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1436
lemma subspace_orthogonal_to_vector: "subspace {y. orthogonal x y}"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1437
  by (simp add: subspace_def orthogonal_clauses)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1438
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1439
lemma subspace_orthogonal_to_vectors: "subspace {y. \<forall>x \<in> S. orthogonal x y}"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1440
  by (simp add: subspace_def orthogonal_clauses)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1441
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1442
lemma orthogonal_to_span:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1443
  assumes a: "a \<in> span S" and x: "\<And>y. y \<in> S \<Longrightarrow> orthogonal x y"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1444
    shows "orthogonal x a"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1445
  by (metis a orthogonal_clauses(1,2,4)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1446
      span_induct_alt x)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1447
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1448
proposition Gram_Schmidt_step:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1449
  fixes S :: "'a::euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1450
  assumes S: "pairwise orthogonal S" and x: "x \<in> span S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1451
    shows "orthogonal x (a - (\<Sum>b\<in>S. (b \<bullet> a / (b \<bullet> b)) *\<^sub>R b))"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1452
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1453
  have "finite S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1454
    by (simp add: S pairwise_orthogonal_imp_finite)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1455
  have "orthogonal (a - (\<Sum>b\<in>S. (b \<bullet> a / (b \<bullet> b)) *\<^sub>R b)) x"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1456
       if "x \<in> S" for x
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1457
  proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1458
    have "a \<bullet> x = (\<Sum>y\<in>S. if y = x then y \<bullet> a else 0)"
71044
nipkow
parents: 71043
diff changeset
  1459
      by (simp add: \<open>finite S\<close> inner_commute that)
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1460
    also have "... =  (\<Sum>b\<in>S. b \<bullet> a * (b \<bullet> x) / (b \<bullet> b))"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1461
      apply (rule sum.cong [OF refl], simp)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1462
      by (meson S orthogonal_def pairwise_def that)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1463
   finally show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1464
     by (simp add: orthogonal_def algebra_simps inner_sum_left)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1465
  qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1466
  then show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1467
    using orthogonal_to_span orthogonal_commute x by blast
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1468
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1469
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1470
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1471
lemma orthogonal_extension_aux:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1472
  fixes S :: "'a::euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1473
  assumes "finite T" "finite S" "pairwise orthogonal S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1474
    shows "\<exists>U. pairwise orthogonal (S \<union> U) \<and> span (S \<union> U) = span (S \<union> T)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1475
using assms
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1476
proof (induction arbitrary: S)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1477
  case empty then show ?case
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1478
    by simp (metis sup_bot_right)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1479
next
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1480
  case (insert a T)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1481
  have 0: "\<And>x y. \<lbrakk>x \<noteq> y; x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> x \<bullet> y = 0"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1482
    using insert by (simp add: pairwise_def orthogonal_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1483
  define a' where "a' = a - (\<Sum>b\<in>S. (b \<bullet> a / (b \<bullet> b)) *\<^sub>R b)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1484
  obtain U where orthU: "pairwise orthogonal (S \<union> insert a' U)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1485
             and spanU: "span (insert a' S \<union> U) = span (insert a' S \<union> T)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1486
    by (rule exE [OF insert.IH [of "insert a' S"]])
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1487
      (auto simp: Gram_Schmidt_step a'_def insert.prems orthogonal_commute
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1488
        pairwise_orthogonal_insert span_clauses)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1489
  have orthS: "\<And>x. x \<in> S \<Longrightarrow> a' \<bullet> x = 0"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1490
    apply (simp add: a'_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1491
    using Gram_Schmidt_step [OF \<open>pairwise orthogonal S\<close>]
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1492
    apply (force simp: orthogonal_def inner_commute span_superset [THEN subsetD])
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1493
    done
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1494
  have "span (S \<union> insert a' U) = span (insert a' (S \<union> T))"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1495
    using spanU by simp
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1496
  also have "... = span (insert a (S \<union> T))"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1497
    apply (rule eq_span_insert_eq)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1498
    apply (simp add: a'_def span_neg span_sum span_base span_mul)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1499
    done
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1500
  also have "... = span (S \<union> insert a T)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1501
    by simp
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1502
  finally show ?case
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1503
    by (rule_tac x="insert a' U" in exI) (use orthU in auto)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1504
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1505
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1506
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1507
proposition orthogonal_extension:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1508
  fixes S :: "'a::euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1509
  assumes S: "pairwise orthogonal S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1510
  obtains U where "pairwise orthogonal (S \<union> U)" "span (S \<union> U) = span (S \<union> T)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1511
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1512
  obtain B where "finite B" "span B = span T"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1513
    using basis_subspace_exists [of "span T"] subspace_span by metis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1514
  with orthogonal_extension_aux [of B S]
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1515
  obtain U where "pairwise orthogonal (S \<union> U)" "span (S \<union> U) = span (S \<union> B)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1516
    using assms pairwise_orthogonal_imp_finite by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1517
  with \<open>span B = span T\<close> show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1518
    by (rule_tac U=U in that) (auto simp: span_Un)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1519
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1520
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
  1521
corollary\<^marker>\<open>tag unimportant\<close> orthogonal_extension_strong:
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1522
  fixes S :: "'a::euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1523
  assumes S: "pairwise orthogonal S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1524
  obtains U where "U \<inter> (insert 0 S) = {}" "pairwise orthogonal (S \<union> U)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1525
                  "span (S \<union> U) = span (S \<union> T)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1526
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1527
  obtain U where "pairwise orthogonal (S \<union> U)" "span (S \<union> U) = span (S \<union> T)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1528
    using orthogonal_extension assms by blast
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1529
  then show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1530
    apply (rule_tac U = "U - (insert 0 S)" in that)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1531
      apply blast
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1532
     apply (force simp: pairwise_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1533
    apply (metis Un_Diff_cancel Un_insert_left span_redundant span_zero)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1534
    done
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1535
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1536
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1537
subsection\<open>Decomposing a vector into parts in orthogonal subspaces\<close>
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1538
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1539
text\<open>existence of orthonormal basis for a subspace.\<close>
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1540
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1541
lemma orthogonal_spanningset_subspace:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1542
  fixes S :: "'a :: euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1543
  assumes "subspace S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1544
  obtains B where "B \<subseteq> S" "pairwise orthogonal B" "span B = S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1545
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1546
  obtain B where "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1547
    using basis_exists by blast
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1548
  with orthogonal_extension [of "{}" B]
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1549
  show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1550
    by (metis Un_empty_left assms pairwise_empty span_superset span_subspace that)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1551
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1552
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1553
lemma orthogonal_basis_subspace:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1554
  fixes S :: "'a :: euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1555
  assumes "subspace S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1556
  obtains B where "0 \<notin> B" "B \<subseteq> S" "pairwise orthogonal B" "independent B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1557
                  "card B = dim S" "span B = S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1558
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1559
  obtain B where "B \<subseteq> S" "pairwise orthogonal B" "span B = S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1560
    using assms orthogonal_spanningset_subspace by blast
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1561
  then show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1562
    apply (rule_tac B = "B - {0}" in that)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1563
    apply (auto simp: indep_card_eq_dim_span pairwise_subset pairwise_orthogonal_independent elim: pairwise_subset)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1564
    done
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1565
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1566
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1567
proposition orthonormal_basis_subspace:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1568
  fixes S :: "'a :: euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1569
  assumes "subspace S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1570
  obtains B where "B \<subseteq> S" "pairwise orthogonal B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1571
              and "\<And>x. x \<in> B \<Longrightarrow> norm x = 1"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1572
              and "independent B" "card B = dim S" "span B = S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1573
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1574
  obtain B where "0 \<notin> B" "B \<subseteq> S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1575
             and orth: "pairwise orthogonal B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1576
             and "independent B" "card B = dim S" "span B = S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1577
    by (blast intro: orthogonal_basis_subspace [OF assms])
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1578
  have 1: "(\<lambda>x. x /\<^sub>R norm x) ` B \<subseteq> S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1579
    using \<open>span B = S\<close> span_superset span_mul by fastforce
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1580
  have 2: "pairwise orthogonal ((\<lambda>x. x /\<^sub>R norm x) ` B)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1581
    using orth by (force simp: pairwise_def orthogonal_clauses)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1582
  have 3: "\<And>x. x \<in> (\<lambda>x. x /\<^sub>R norm x) ` B \<Longrightarrow> norm x = 1"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1583
    by (metis (no_types, lifting) \<open>0 \<notin> B\<close> image_iff norm_sgn sgn_div_norm)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1584
  have 4: "independent ((\<lambda>x. x /\<^sub>R norm x) ` B)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1585
    by (metis "2" "3" norm_zero pairwise_orthogonal_independent zero_neq_one)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1586
  have "inj_on (\<lambda>x. x /\<^sub>R norm x) B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1587
  proof
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1588
    fix x y
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1589
    assume "x \<in> B" "y \<in> B" "x /\<^sub>R norm x = y /\<^sub>R norm y"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1590
    moreover have "\<And>i. i \<in> B \<Longrightarrow> norm (i /\<^sub>R norm i) = 1"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1591
      using 3 by blast
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1592
    ultimately show "x = y"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1593
      by (metis norm_eq_1 orth orthogonal_clauses(7) orthogonal_commute orthogonal_def pairwise_def zero_neq_one)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1594
  qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1595
  then have 5: "card ((\<lambda>x. x /\<^sub>R norm x) ` B) = dim S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1596
    by (metis \<open>card B = dim S\<close> card_image)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1597
  have 6: "span ((\<lambda>x. x /\<^sub>R norm x) ` B) = S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1598
    by (metis "1" "4" "5" assms card_eq_dim independent_imp_finite span_subspace)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1599
  show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1600
    by (rule that [OF 1 2 3 4 5 6])
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1601
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1602
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1603
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
  1604
proposition\<^marker>\<open>tag unimportant\<close> orthogonal_to_subspace_exists_gen:
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1605
  fixes S :: "'a :: euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1606
  assumes "span S \<subset> span T"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1607
  obtains x where "x \<noteq> 0" "x \<in> span T" "\<And>y. y \<in> span S \<Longrightarrow> orthogonal x y"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1608
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1609
  obtain B where "B \<subseteq> span S" and orthB: "pairwise orthogonal B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1610
             and "\<And>x. x \<in> B \<Longrightarrow> norm x = 1"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1611
             and "independent B" "card B = dim S" "span B = span S"
71044
nipkow
parents: 71043
diff changeset
  1612
    by (rule orthonormal_basis_subspace [of "span S", OF subspace_span]) (auto)
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1613
  with assms obtain u where spanBT: "span B \<subseteq> span T" and "u \<notin> span B" "u \<in> span T"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1614
    by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1615
  obtain C where orthBC: "pairwise orthogonal (B \<union> C)" and spanBC: "span (B \<union> C) = span (B \<union> {u})"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1616
    by (blast intro: orthogonal_extension [OF orthB])
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1617
  show thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1618
  proof (cases "C \<subseteq> insert 0 B")
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1619
    case True
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1620
    then have "C \<subseteq> span B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1621
      using span_eq
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1622
      by (metis span_insert_0 subset_trans)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1623
    moreover have "u \<in> span (B \<union> C)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1624
      using \<open>span (B \<union> C) = span (B \<union> {u})\<close> span_superset by force
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1625
    ultimately show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1626
      using True \<open>u \<notin> span B\<close>
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1627
      by (metis Un_insert_left span_insert_0 sup.orderE)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1628
  next
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1629
    case False
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1630
    then obtain x where "x \<in> C" "x \<noteq> 0" "x \<notin> B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1631
      by blast
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1632
    then have "x \<in> span T"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1633
      by (metis (no_types, lifting) Un_insert_right Un_upper2 \<open>u \<in> span T\<close> spanBT spanBC
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1634
          \<open>u \<in> span T\<close> insert_subset span_superset span_mono
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1635
          span_span subsetCE subset_trans sup_bot.comm_neutral)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1636
    moreover have "orthogonal x y" if "y \<in> span B" for y
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1637
      using that
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1638
    proof (rule span_induct)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1639
      show "subspace {a. orthogonal x a}"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1640
        by (simp add: subspace_orthogonal_to_vector)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1641
      show "\<And>b. b \<in> B \<Longrightarrow> orthogonal x b"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1642
        by (metis Un_iff \<open>x \<in> C\<close> \<open>x \<notin> B\<close> orthBC pairwise_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1643
    qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1644
    ultimately show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1645
      using \<open>x \<noteq> 0\<close> that \<open>span B = span S\<close> by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1646
  qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1647
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1648
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
  1649
corollary\<^marker>\<open>tag unimportant\<close> orthogonal_to_subspace_exists:
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1650
  fixes S :: "'a :: euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1651
  assumes "dim S < DIM('a)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1652
  obtains x where "x \<noteq> 0" "\<And>y. y \<in> span S \<Longrightarrow> orthogonal x y"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1653
proof -
71044
nipkow
parents: 71043
diff changeset
  1654
  have "span S \<subset> UNIV"
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1655
  by (metis (mono_tags) UNIV_I assms inner_eq_zero_iff less_le lowdim_subset_hyperplane
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1656
      mem_Collect_eq top.extremum_strict top.not_eq_extremum)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1657
  with orthogonal_to_subspace_exists_gen [of S UNIV] that show ?thesis
71044
nipkow
parents: 71043
diff changeset
  1658
    by (auto)
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1659
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1660
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
  1661
corollary\<^marker>\<open>tag unimportant\<close> orthogonal_to_vector_exists:
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1662
  fixes x :: "'a :: euclidean_space"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1663
  assumes "2 \<le> DIM('a)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1664
  obtains y where "y \<noteq> 0" "orthogonal x y"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1665
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1666
  have "dim {x} < DIM('a)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1667
    using assms by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1668
  then show thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1669
    by (rule orthogonal_to_subspace_exists) (simp add: orthogonal_commute span_base that)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1670
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1671
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69683
diff changeset
  1672
proposition\<^marker>\<open>tag unimportant\<close> orthogonal_subspace_decomp_exists:
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1673
  fixes S :: "'a :: euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1674
  obtains y z
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1675
  where "y \<in> span S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1676
    and "\<And>w. w \<in> span S \<Longrightarrow> orthogonal z w"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1677
    and "x = y + z"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1678
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1679
  obtain T where "0 \<notin> T" "T \<subseteq> span S" "pairwise orthogonal T" "independent T"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1680
    "card T = dim (span S)" "span T = span S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1681
    using orthogonal_basis_subspace subspace_span by blast
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1682
  let ?a = "\<Sum>b\<in>T. (b \<bullet> x / (b \<bullet> b)) *\<^sub>R b"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1683
  have orth: "orthogonal (x - ?a) w" if "w \<in> span S" for w
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1684
    by (simp add: Gram_Schmidt_step \<open>pairwise orthogonal T\<close> \<open>span T = span S\<close>
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1685
        orthogonal_commute that)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1686
  show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1687
    apply (rule_tac y = "?a" and z = "x - ?a" in that)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1688
      apply (meson \<open>T \<subseteq> span S\<close> span_scale span_sum subsetCE)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1689
     apply (fact orth, simp)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1690
    done
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1691
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1692
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1693
lemma orthogonal_subspace_decomp_unique:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1694
  fixes S :: "'a :: euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1695
  assumes "x + y = x' + y'"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1696
      and ST: "x \<in> span S" "x' \<in> span S" "y \<in> span T" "y' \<in> span T"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1697
      and orth: "\<And>a b. \<lbrakk>a \<in> S; b \<in> T\<rbrakk> \<Longrightarrow> orthogonal a b"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1698
  shows "x = x' \<and> y = y'"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1699
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1700
  have "x + y - y' = x'"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1701
    by (simp add: assms)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1702
  moreover have "\<And>a b. \<lbrakk>a \<in> span S; b \<in> span T\<rbrakk> \<Longrightarrow> orthogonal a b"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1703
    by (meson orth orthogonal_commute orthogonal_to_span)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1704
  ultimately have "0 = x' - x"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1705
    by (metis (full_types) add_diff_cancel_left' ST diff_right_commute orthogonal_clauses(10) orthogonal_clauses(5) orthogonal_self)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1706
  with assms show ?thesis by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1707
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1708
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1709
lemma vector_in_orthogonal_spanningset:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1710
  fixes a :: "'a::euclidean_space"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1711
  obtains S where "a \<in> S" "pairwise orthogonal S" "span S = UNIV"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1712
  by (metis UNIV_I Un_iff empty_iff insert_subset orthogonal_extension pairwise_def
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1713
      pairwise_orthogonal_insert span_UNIV subsetI subset_antisym)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1714
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1715
lemma vector_in_orthogonal_basis:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1716
  fixes a :: "'a::euclidean_space"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1717
  assumes "a \<noteq> 0"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1718
  obtains S where "a \<in> S" "0 \<notin> S" "pairwise orthogonal S" "independent S" "finite S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1719
                  "span S = UNIV" "card S = DIM('a)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1720
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1721
  obtain S where S: "a \<in> S" "pairwise orthogonal S" "span S = UNIV"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1722
    using vector_in_orthogonal_spanningset .
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1723
  show thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1724
  proof
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1725
    show "pairwise orthogonal (S - {0})"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1726
      using pairwise_mono S(2) by blast
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1727
    show "independent (S - {0})"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1728
      by (simp add: \<open>pairwise orthogonal (S - {0})\<close> pairwise_orthogonal_independent)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1729
    show "finite (S - {0})"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1730
      using \<open>independent (S - {0})\<close> independent_imp_finite by blast
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1731
    show "card (S - {0}) = DIM('a)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1732
      using span_delete_0 [of S] S
71044
nipkow
parents: 71043
diff changeset
  1733
      by (simp add: \<open>independent (S - {0})\<close> indep_card_eq_dim_span)
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1734
  qed (use S \<open>a \<noteq> 0\<close> in auto)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1735
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1736
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1737
lemma vector_in_orthonormal_basis:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1738
  fixes a :: "'a::euclidean_space"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1739
  assumes "norm a = 1"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1740
  obtains S where "a \<in> S" "pairwise orthogonal S" "\<And>x. x \<in> S \<Longrightarrow> norm x = 1"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1741
    "independent S" "card S = DIM('a)" "span S = UNIV"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1742
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1743
  have "a \<noteq> 0"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1744
    using assms by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1745
  then obtain S where "a \<in> S" "0 \<notin> S" "finite S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1746
          and S: "pairwise orthogonal S" "independent S" "span S = UNIV" "card S = DIM('a)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1747
    by (metis vector_in_orthogonal_basis)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1748
  let ?S = "(\<lambda>x. x /\<^sub>R norm x) ` S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1749
  show thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1750
  proof
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1751
    show "a \<in> ?S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1752
      using \<open>a \<in> S\<close> assms image_iff by fastforce
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1753
  next
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1754
    show "pairwise orthogonal ?S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1755
      using \<open>pairwise orthogonal S\<close> by (auto simp: pairwise_def orthogonal_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1756
    show "\<And>x. x \<in> (\<lambda>x. x /\<^sub>R norm x) ` S \<Longrightarrow> norm x = 1"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70707
diff changeset
  1757
      using \<open>0 \<notin> S\<close> by (auto simp: field_split_simps)
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1758
    then show "independent ?S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1759
      by (metis \<open>pairwise orthogonal ((\<lambda>x. x /\<^sub>R norm x) ` S)\<close> norm_zero pairwise_orthogonal_independent zero_neq_one)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1760
    have "inj_on (\<lambda>x. x /\<^sub>R norm x) S"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1761
      unfolding inj_on_def
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1762
      by (metis (full_types) S(1) \<open>0 \<notin> S\<close> inverse_nonzero_iff_nonzero norm_eq_zero orthogonal_scaleR orthogonal_self pairwise_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1763
    then show "card ?S = DIM('a)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1764
      by (simp add: card_image S)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1765
    show "span ?S = UNIV"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1766
      by (metis (no_types) \<open>0 \<notin> S\<close> \<open>finite S\<close> \<open>span S = UNIV\<close>
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1767
          field_class.field_inverse_zero inverse_inverse_eq less_irrefl span_image_scale
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1768
          zero_less_norm_iff)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1769
  qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1770
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1771
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1772
proposition dim_orthogonal_sum:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1773
  fixes A :: "'a::euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1774
  assumes "\<And>x y. \<lbrakk>x \<in> A; y \<in> B\<rbrakk> \<Longrightarrow> x \<bullet> y = 0"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1775
    shows "dim(A \<union> B) = dim A + dim B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1776
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1777
  have 1: "\<And>x y. \<lbrakk>x \<in> span A; y \<in> B\<rbrakk> \<Longrightarrow> x \<bullet> y = 0"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1778
    by (erule span_induct [OF _ subspace_hyperplane2]; simp add: assms)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1779
  have "\<And>x y. \<lbrakk>x \<in> span A; y \<in> span B\<rbrakk> \<Longrightarrow> x \<bullet> y = 0"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1780
    using 1 by (simp add: span_induct [OF _ subspace_hyperplane])
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1781
  then have 0: "\<And>x y. \<lbrakk>x \<in> span A; y \<in> span B\<rbrakk> \<Longrightarrow> x \<bullet> y = 0"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1782
    by simp
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1783
  have "dim(A \<union> B) = dim (span (A \<union> B))"
71044
nipkow
parents: 71043
diff changeset
  1784
    by (simp)
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1785
  also have "span (A \<union> B) = ((\<lambda>(a, b). a + b) ` (span A \<times> span B))"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1786
    by (auto simp add: span_Un image_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1787
  also have "dim \<dots> = dim {x + y |x y. x \<in> span A \<and> y \<in> span B}"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1788
    by (auto intro!: arg_cong [where f=dim])
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1789
  also have "... = dim {x + y |x y. x \<in> span A \<and> y \<in> span B} + dim(span A \<inter> span B)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1790
    by (auto simp: dest: 0)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1791
  also have "... = dim (span A) + dim (span B)"
71044
nipkow
parents: 71043
diff changeset
  1792
    by (rule dim_sums_Int) (auto)
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1793
  also have "... = dim A + dim B"
71044
nipkow
parents: 71043
diff changeset
  1794
    by (simp)
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1795
  finally show ?thesis .
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1796
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1797
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1798
lemma dim_subspace_orthogonal_to_vectors:
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1799
  fixes A :: "'a::euclidean_space set"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1800
  assumes "subspace A" "subspace B" "A \<subseteq> B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1801
    shows "dim {y \<in> B. \<forall>x \<in> A. orthogonal x y} + dim A = dim B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1802
proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1803
  have "dim (span ({y \<in> B. \<forall>x\<in>A. orthogonal x y} \<union> A)) = dim (span B)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1804
  proof (rule arg_cong [where f=dim, OF subset_antisym])
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1805
    show "span ({y \<in> B. \<forall>x\<in>A. orthogonal x y} \<union> A) \<subseteq> span B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1806
      by (simp add: \<open>A \<subseteq> B\<close> Collect_restrict span_mono)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1807
  next
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1808
    have *: "x \<in> span ({y \<in> B. \<forall>x\<in>A. orthogonal x y} \<union> A)"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1809
         if "x \<in> B" for x
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1810
    proof -
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1811
      obtain y z where "x = y + z" "y \<in> span A" and orth: "\<And>w. w \<in> span A \<Longrightarrow> orthogonal z w"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1812
        using orthogonal_subspace_decomp_exists [of A x] that by auto
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1813
      have "y \<in> span B"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1814
        using \<open>y \<in> span A\<close> assms(3) span_mono by blast
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1815
      then have "z \<in> {a \<in> B. \<forall>x. x \<in> A \<longrightarrow> orthogonal x a}"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1816
        apply simp
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1817
        using \<open>x = y + z\<close> assms(1) assms(2) orth orthogonal_commute span_add_eq
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1818
          span_eq_iff that by blast
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1819
      then have z: "z \<in> span {y \<in> B. \<forall>x\<in>A. orthogonal x y}"
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1820
        by (meson span_superset subset_iff)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1821
      then show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1822
        apply (auto simp: span_Un image_def  \<open>x = y + z\<close> \<open>y \<in> span A\<close>)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1823
        using \<open>y \<in> span A\<close> add.commute by blast
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1824
    qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1825
    show "span B \<subseteq> span ({y \<in> B. \<forall>x\<in>A. orthogonal x y} \<union> A)"
71044
nipkow
parents: 71043
diff changeset
  1826
      by (rule span_minimal) (auto intro: * span_minimal)
69675
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1827
  qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1828
  then show ?thesis
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1829
    by (metis (no_types, lifting) dim_orthogonal_sum dim_span mem_Collect_eq
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1830
        orthogonal_commute orthogonal_def)
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1831
qed
880ab0f27ddf Reorg, in particular Determinants as well as some linear algebra from Starlike and Change_Of_Vars
immler
parents: 69674
diff changeset
  1832
70688
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1833
subsection\<open>Linear functions are (uniformly) continuous on any set\<close>
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1834
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1835
subsection\<^marker>\<open>tag unimportant\<close> \<open>Topological properties of linear functions\<close>
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1836
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1837
lemma linear_lim_0:
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1838
  assumes "bounded_linear f"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1839
  shows "(f \<longlongrightarrow> 0) (at (0))"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1840
proof -
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1841
  interpret f: bounded_linear f by fact
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1842
  have "(f \<longlongrightarrow> f 0) (at 0)"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1843
    using tendsto_ident_at by (rule f.tendsto)
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1844
  then show ?thesis unfolding f.zero .
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1845
qed
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1846
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1847
lemma linear_continuous_at:
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1848
  assumes "bounded_linear f"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1849
  shows "continuous (at a) f"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1850
  unfolding continuous_at using assms
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1851
  apply (rule bounded_linear.tendsto)
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1852
  apply (rule tendsto_ident_at)
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1853
  done
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1854
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1855
lemma linear_continuous_within:
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1856
  "bounded_linear f \<Longrightarrow> continuous (at x within s) f"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1857
  using continuous_at_imp_continuous_at_within linear_continuous_at by blast
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1858
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1859
lemma linear_continuous_on:
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1860
  "bounded_linear f \<Longrightarrow> continuous_on s f"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1861
  using continuous_at_imp_continuous_on[of s f] using linear_continuous_at[of f] by auto
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1862
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1863
lemma Lim_linear:
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1864
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" and h :: "'b \<Rightarrow> 'c::real_normed_vector"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1865
  assumes "(f \<longlongrightarrow> l) F" "linear h"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1866
  shows "((\<lambda>x. h(f x)) \<longlongrightarrow> h l) F"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1867
proof -
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1868
  obtain B where B: "B > 0" "\<And>x. norm (h x) \<le> B * norm x"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1869
    using linear_bounded_pos [OF \<open>linear h\<close>] by blast
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1870
  show ?thesis
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1871
    unfolding tendsto_iff
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1872
  proof (intro allI impI)
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1873
    show "\<forall>\<^sub>F x in F. dist (h (f x)) (h l) < e" if "e > 0" for e
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1874
    proof -
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1875
      have "\<forall>\<^sub>F x in F. dist (f x) l < e/B"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1876
        by (simp add: \<open>0 < B\<close> assms(1) tendstoD that)
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1877
      then show ?thesis
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1878
        unfolding dist_norm
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1879
      proof (rule eventually_mono)
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1880
        show "norm (h (f x) - h l) < e" if "norm (f x - l) < e / B" for x
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1881
          using that B
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70707
diff changeset
  1882
          apply (simp add: field_split_simps)
71044
nipkow
parents: 71043
diff changeset
  1883
          by (metis \<open>linear h\<close> le_less_trans linear_diff)
70688
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1884
      qed
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1885
    qed
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1886
  qed
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1887
qed
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1888
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1889
lemma linear_continuous_compose:
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1890
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" and g :: "'b \<Rightarrow> 'c::real_normed_vector"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1891
  assumes "continuous F f" "linear g"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1892
  shows "continuous F (\<lambda>x. g(f x))"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1893
  using assms unfolding continuous_def by (rule Lim_linear)
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1894
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1895
lemma linear_continuous_on_compose:
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1896
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" and g :: "'b \<Rightarrow> 'c::real_normed_vector"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1897
  assumes "continuous_on S f" "linear g"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1898
  shows "continuous_on S (\<lambda>x. g(f x))"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1899
  using assms by (simp add: continuous_on_eq_continuous_within linear_continuous_compose)
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1900
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1901
text\<open>Also bilinear functions, in composition form\<close>
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1902
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1903
lemma bilinear_continuous_compose:
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1904
  fixes h :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1905
  assumes "continuous F f" "continuous F g" "bilinear h"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1906
  shows "continuous F (\<lambda>x. h (f x) (g x))"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1907
  using assms bilinear_conv_bounded_bilinear bounded_bilinear.continuous by blast
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1908
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1909
lemma bilinear_continuous_on_compose:
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1910
  fixes h :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1911
    and f :: "'d::t2_space \<Rightarrow> 'a"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1912
  assumes "continuous_on S f" "continuous_on S g" "bilinear h"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1913
  shows "continuous_on S (\<lambda>x. h (f x) (g x))"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1914
  using assms by (simp add: continuous_on_eq_continuous_within bilinear_continuous_compose)
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1915
54776
db890d9fc5c2 ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents: 54703
diff changeset
  1916
end