26170

1 
(* Title: HOL/Library/Array.thy


2 
ID: $Id$


3 
Author: John Matthews, Galois Connections; Alexander Krauss, Lukas Bulwahn & Florian Haftmann, TU Muenchen


4 
*)


5 


6 
header {* Monadic arrays *}


7 


8 
theory Array

26182

9 
imports Heap_Monad Code_Index

26170

10 
begin


11 


12 
subsection {* Primitives *}


13 


14 
definition


15 
new :: "nat \<Rightarrow> 'a\<Colon>heap \<Rightarrow> 'a array Heap" where


16 
[code del]: "new n x = Heap_Monad.heap (Heap.array n x)"


17 


18 
definition


19 
of_list :: "'a\<Colon>heap list \<Rightarrow> 'a array Heap" where


20 
[code del]: "of_list xs = Heap_Monad.heap (Heap.array_of_list xs)"


21 


22 
definition


23 
length :: "'a\<Colon>heap array \<Rightarrow> nat Heap" where


24 
[code del]: "length arr = Heap_Monad.heap (\<lambda>h. (Heap.length arr h, h))"


25 


26 
definition


27 
nth :: "'a\<Colon>heap array \<Rightarrow> nat \<Rightarrow> 'a Heap"


28 
where


29 
[code del]: "nth a i = (do len \<leftarrow> length a;


30 
(if i < len


31 
then Heap_Monad.heap (\<lambda>h. (get_array a h ! i, h))


32 
else raise (''array lookup: index out of range''))


33 
done)"


34 


35 
 {* FIXME adjustion for List theory *}


36 
no_syntax


37 
nth :: "'a list \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!" 100)


38 


39 
abbreviation


40 
nth_list :: "'a list \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!" 100)


41 
where


42 
"nth_list \<equiv> List.nth"


43 


44 
definition


45 
upd :: "nat \<Rightarrow> 'a \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> 'a\<Colon>heap array Heap"


46 
where


47 
[code del]: "upd i x a = (do len \<leftarrow> length a;


48 
(if i < len

26719

49 
then Heap_Monad.heap (\<lambda>h. (a, Heap.upd a i x h))


50 
else raise (''array update: index out of range''))

26170

51 
done)"


52 


53 
lemma upd_return:


54 
"upd i x a \<guillemotright> return a = upd i x a"

26719

55 
proof (rule Heap_eqI)


56 
fix h


57 
obtain len h' where "Heap_Monad.execute (Array.length a) h = (len, h')"


58 
by (cases "Heap_Monad.execute (Array.length a) h")


59 
then show "Heap_Monad.execute (upd i x a \<guillemotright> return a) h = Heap_Monad.execute (upd i x a) h"


60 
by (auto simp add: upd_def bindM_def run_drop split: sum.split)


61 
qed

26170

62 


63 


64 
subsection {* Derivates *}


65 


66 
definition


67 
map_entry :: "nat \<Rightarrow> ('a\<Colon>heap \<Rightarrow> 'a) \<Rightarrow> 'a array \<Rightarrow> 'a array Heap"


68 
where


69 
"map_entry i f a = (do


70 
x \<leftarrow> nth a i;


71 
upd i (f x) a


72 
done)"


73 


74 
definition


75 
swap :: "nat \<Rightarrow> 'a \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> 'a Heap"


76 
where


77 
"swap i x a = (do


78 
y \<leftarrow> nth a i;


79 
upd i x a;


80 
return x


81 
done)"


82 


83 
definition


84 
make :: "nat \<Rightarrow> (nat \<Rightarrow> 'a\<Colon>heap) \<Rightarrow> 'a array Heap"


85 
where


86 
"make n f = of_list (map f [0 ..< n])"


87 


88 
definition


89 
freeze :: "'a\<Colon>heap array \<Rightarrow> 'a list Heap"


90 
where


91 
"freeze a = (do


92 
n \<leftarrow> length a;


93 
mapM (nth a) [0..<n]


94 
done)"


95 


96 
definition


97 
map :: "('a\<Colon>heap \<Rightarrow> 'a) \<Rightarrow> 'a array \<Rightarrow> 'a array Heap"


98 
where


99 
"map f a = (do


100 
n \<leftarrow> length a;


101 
foldM (\<lambda>n. map_entry n f) [0..<n] a


102 
done)"


103 


104 
hide (open) const new map  {* avoid clashed with some popular names *}


105 


106 


107 
subsection {* Properties *}


108 


109 
lemma array_make [code func]:


110 
"Array.new n x = make n (\<lambda>_. x)"


111 
by (induct n) (simp_all add: make_def new_def Heap_Monad.heap_def


112 
monad_simp array_of_list_replicate [symmetric]


113 
map_replicate_trivial replicate_append_same


114 
of_list_def)


115 


116 
lemma array_of_list_make [code func]:


117 
"of_list xs = make (List.length xs) (\<lambda>n. xs ! n)"


118 
unfolding make_def map_nth ..


119 

26182

120 


121 
subsection {* Code generator setup *}


122 


123 
subsubsection {* Logical intermediate layer *}


124 


125 
definition new' where


126 
[code del]: "new' = Array.new o nat_of_index"


127 
hide (open) const new'


128 
lemma [code func]:


129 
"Array.new = Array.new' o index_of_nat"


130 
by (simp add: new'_def o_def)


131 


132 
definition of_list' where


133 
[code del]: "of_list' i xs = Array.of_list (take (nat_of_index i) xs)"


134 
hide (open) const of_list'


135 
lemma [code func]:


136 
"Array.of_list xs = Array.of_list' (index_of_nat (List.length xs)) xs"


137 
by (simp add: of_list'_def)


138 


139 
definition make' where


140 
[code del]: "make' i f = Array.make (nat_of_index i) (f o index_of_nat)"


141 
hide (open) const make'


142 
lemma [code func]:


143 
"Array.make n f = Array.make' (index_of_nat n) (f o nat_of_index)"


144 
by (simp add: make'_def o_def)


145 


146 
definition length' where


147 
[code del]: "length' = Array.length \<guillemotright>== liftM index_of_nat"


148 
hide (open) const length'


149 
lemma [code func]:


150 
"Array.length = Array.length' \<guillemotright>== liftM nat_of_index"


151 
by (simp add: length'_def monad_simp',


152 
simp add: liftM_def comp_def monad_simp,


153 
simp add: monad_simp')


154 


155 
definition nth' where


156 
[code del]: "nth' a = Array.nth a o nat_of_index"


157 
hide (open) const nth'


158 
lemma [code func]:


159 
"Array.nth a n = Array.nth' a (index_of_nat n)"


160 
by (simp add: nth'_def)


161 


162 
definition upd' where


163 
[code del]: "upd' a i x = Array.upd (nat_of_index i) x a \<guillemotright> return ()"


164 
hide (open) const upd'


165 
lemma [code func]:


166 
"Array.upd i x a = Array.upd' a (index_of_nat i) x \<guillemotright> return a"

26719

167 
apply (simp add: upd'_def monad_simp)


168 
oops

26182

169 


170 


171 
subsubsection {* SML *}


172 


173 
code_type array (SML "_/ array")


174 
code_const Array (SML "raise/ (Fail/ \"bare Array\")")


175 
code_const Array.new' (SML "Array.array ((_), (_))")


176 
code_const Array.of_list (SML "Array.fromList")


177 
code_const Array.make' (SML "Array.tabulate ((_), (_))")


178 
code_const Array.length' (SML "Array.length")


179 
code_const Array.nth' (SML "Array.sub ((_), (_))")


180 
code_const Array.upd' (SML "Array.update ((_), (_), (_))")


181 


182 
code_reserved SML Array


183 


184 


185 
subsubsection {* OCaml *}


186 


187 
code_type array (OCaml "_/ array")


188 
code_const Array (OCaml "failwith/ \"bare Array\"")


189 
code_const Array.new' (OCaml "Array.make")


190 
code_const Array.of_list (OCaml "Array.of_list")


191 
code_const Array.make' (OCaml "Array.init")


192 
code_const Array.length' (OCaml "Array.length")


193 
code_const Array.nth' (OCaml "Array.get")


194 
code_const Array.upd' (OCaml "Array.set")


195 


196 
code_reserved OCaml Array


197 


198 


199 
subsubsection {* Haskell *}


200 


201 
code_type array (Haskell "STArray '_s _")


202 
code_const Array (Haskell "error/ \"bare Array\"")


203 
code_const Array.new' (Haskell "newArray/ (0,/ _)")


204 
code_const Array.of_list' (Haskell "newListArray/ (0,/ _)")


205 
code_const Array.length' (Haskell "length")


206 
code_const Array.nth' (Haskell "readArray")


207 
code_const Array.upd' (Haskell "writeArray")


208 


209 

26170

210 
end
