src/Pure/tactic.ML
author berghofe
Thu Apr 21 19:12:03 2005 +0200 (2005-04-21)
changeset 15797 a63605582573
parent 15696 1da4ce092c0b
child 15874 6236cc88d4b8
permissions -rw-r--r--
- Eliminated nodup_vars check.
- Unification and matching functions now check types of term variables / sorts
of type variables when applying a substitution.
- Thm.instantiate now takes (ctyp * ctyp) list instead of (indexname * ctyp) list
as argument, to allow for proper instantiation of theorems containing
type variables with same name but different sorts.
wenzelm@10805
     1
(*  Title:      Pure/tactic.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@10805
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1991  University of Cambridge
clasohm@0
     5
wenzelm@10805
     6
Tactics.
clasohm@0
     7
*)
clasohm@0
     8
wenzelm@11774
     9
signature BASIC_TACTIC =
wenzelm@11774
    10
sig
wenzelm@10805
    11
  val ares_tac          : thm list -> int -> tactic
wenzelm@10805
    12
  val assume_tac        : int -> tactic
wenzelm@10805
    13
  val atac      : int ->tactic
wenzelm@10817
    14
  val bimatch_from_nets_tac:
paulson@1501
    15
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
wenzelm@10805
    16
  val bimatch_tac       : (bool*thm)list -> int -> tactic
wenzelm@10817
    17
  val biresolution_from_nets_tac:
wenzelm@10805
    18
        ('a list -> (bool * thm) list) ->
wenzelm@10805
    19
        bool -> 'a Net.net * 'a Net.net -> int -> tactic
wenzelm@10817
    20
  val biresolve_from_nets_tac:
paulson@1501
    21
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
wenzelm@10805
    22
  val biresolve_tac     : (bool*thm)list -> int -> tactic
wenzelm@10805
    23
  val build_net : thm list -> (int*thm) Net.net
paulson@1501
    24
  val build_netpair:    (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net ->
paulson@1501
    25
      (bool*thm)list -> (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net
wenzelm@10817
    26
  val compose_inst_tac  : (string*string)list -> (bool*thm*int) ->
paulson@3409
    27
                          int -> tactic
wenzelm@10817
    28
  val compose_tac       : (bool * thm * int) -> int -> tactic
wenzelm@10805
    29
  val cut_facts_tac     : thm list -> int -> tactic
paulson@13650
    30
  val cut_rules_tac     : thm list -> int -> tactic
wenzelm@10817
    31
  val cut_inst_tac      : (string*string)list -> thm -> int -> tactic
oheimb@7491
    32
  val datac             : thm -> int -> int -> tactic
wenzelm@10805
    33
  val defer_tac         : int -> tactic
wenzelm@10805
    34
  val distinct_subgoals_tac     : tactic
wenzelm@10805
    35
  val dmatch_tac        : thm list -> int -> tactic
wenzelm@10805
    36
  val dresolve_tac      : thm list -> int -> tactic
wenzelm@10817
    37
  val dres_inst_tac     : (string*string)list -> thm -> int -> tactic
wenzelm@10805
    38
  val dtac              : thm -> int ->tactic
oheimb@7491
    39
  val eatac             : thm -> int -> int -> tactic
wenzelm@10805
    40
  val etac              : thm -> int ->tactic
wenzelm@10817
    41
  val eq_assume_tac     : int -> tactic
wenzelm@10805
    42
  val ematch_tac        : thm list -> int -> tactic
wenzelm@10805
    43
  val eresolve_tac      : thm list -> int -> tactic
wenzelm@10805
    44
  val eres_inst_tac     : (string*string)list -> thm -> int -> tactic
oheimb@7491
    45
  val fatac             : thm -> int -> int -> tactic
wenzelm@10817
    46
  val filter_prems_tac  : (term -> bool) -> int -> tactic
wenzelm@10805
    47
  val filter_thms       : (term*term->bool) -> int*term*thm list -> thm list
wenzelm@10805
    48
  val filt_resolve_tac  : thm list -> int -> int -> tactic
wenzelm@10805
    49
  val flexflex_tac      : tactic
wenzelm@10805
    50
  val fold_goals_tac    : thm list -> tactic
wenzelm@10805
    51
  val fold_rule         : thm list -> thm -> thm
wenzelm@10805
    52
  val fold_tac          : thm list -> tactic
wenzelm@10817
    53
  val forward_tac       : thm list -> int -> tactic
wenzelm@10805
    54
  val forw_inst_tac     : (string*string)list -> thm -> int -> tactic
wenzelm@10805
    55
  val ftac              : thm -> int ->tactic
wenzelm@12320
    56
  val insert_tagged_brl : ('a * (bool * thm)) *
wenzelm@12320
    57
    (('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net) ->
wenzelm@12320
    58
      ('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net
wenzelm@12320
    59
  val delete_tagged_brl : (bool * thm) *
wenzelm@12320
    60
    (('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net) ->
wenzelm@12320
    61
      ('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net
wenzelm@10805
    62
  val is_fact           : thm -> bool
wenzelm@10805
    63
  val lessb             : (bool * thm) * (bool * thm) -> bool
wenzelm@10805
    64
  val lift_inst_rule    : thm * int * (string*string)list * thm -> thm
wenzelm@10805
    65
  val make_elim         : thm -> thm
wenzelm@10805
    66
  val match_from_net_tac        : (int*thm) Net.net -> int -> tactic
wenzelm@10805
    67
  val match_tac : thm list -> int -> tactic
wenzelm@10805
    68
  val metacut_tac       : thm -> int -> tactic
wenzelm@10805
    69
  val net_bimatch_tac   : (bool*thm) list -> int -> tactic
wenzelm@10805
    70
  val net_biresolve_tac : (bool*thm) list -> int -> tactic
wenzelm@10805
    71
  val net_match_tac     : thm list -> int -> tactic
wenzelm@10805
    72
  val net_resolve_tac   : thm list -> int -> tactic
ballarin@15696
    73
  val norm_hhf_plain    : thm -> thm
wenzelm@12801
    74
  val norm_hhf_rule     : thm -> thm
wenzelm@10805
    75
  val norm_hhf_tac      : int -> tactic
wenzelm@10805
    76
  val prune_params_tac  : tactic
wenzelm@10805
    77
  val rename_params_tac : string list -> int -> tactic
wenzelm@10805
    78
  val rename_tac        : string -> int -> tactic
wenzelm@10805
    79
  val rename_last_tac   : string -> string list -> int -> tactic
wenzelm@10805
    80
  val resolve_from_net_tac      : (int*thm) Net.net -> int -> tactic
wenzelm@10805
    81
  val resolve_tac       : thm list -> int -> tactic
wenzelm@10817
    82
  val res_inst_tac      : (string*string)list -> thm -> int -> tactic
wenzelm@10444
    83
  val rewrite_goal_tac  : thm list -> int -> tactic
wenzelm@3575
    84
  val rewrite_goals_rule: thm list -> thm -> thm
wenzelm@10805
    85
  val rewrite_rule      : thm list -> thm -> thm
wenzelm@10805
    86
  val rewrite_goals_tac : thm list -> tactic
wenzelm@10805
    87
  val rewrite_tac       : thm list -> tactic
wenzelm@10805
    88
  val rewtac            : thm -> tactic
wenzelm@10805
    89
  val rotate_tac        : int -> int -> tactic
wenzelm@10805
    90
  val rtac              : thm -> int -> tactic
wenzelm@10805
    91
  val rule_by_tactic    : tactic -> thm -> thm
wenzelm@10805
    92
  val solve_tac         : thm list -> int -> tactic
wenzelm@10805
    93
  val subgoal_tac       : string -> int -> tactic
wenzelm@10805
    94
  val subgoals_tac      : string list -> int -> tactic
wenzelm@10805
    95
  val subgoals_of_brl   : bool * thm -> int
wenzelm@10805
    96
  val term_lift_inst_rule       :
berghofe@15797
    97
      thm * int * ((indexname * sort) * typ) list * ((indexname * typ) * term) list * thm
nipkow@1975
    98
      -> thm
oheimb@10347
    99
  val instantiate_tac   : (string * string) list -> tactic
wenzelm@10805
   100
  val thin_tac          : string -> int -> tactic
wenzelm@10805
   101
  val trace_goalno_tac  : (int -> tactic) -> int -> tactic
wenzelm@11774
   102
end;
clasohm@0
   103
wenzelm@11774
   104
signature TACTIC =
wenzelm@11774
   105
sig
wenzelm@11774
   106
  include BASIC_TACTIC
wenzelm@11929
   107
  val innermost_params: int -> thm -> (string * typ) list
wenzelm@11774
   108
  val untaglist: (int * 'a) list -> 'a list
wenzelm@11774
   109
  val orderlist: (int * 'a) list -> 'a list
wenzelm@11774
   110
  val rewrite: bool -> thm list -> cterm -> thm
wenzelm@11774
   111
  val simplify: bool -> thm list -> thm -> thm
wenzelm@12139
   112
  val conjunction_tac: tactic
wenzelm@11970
   113
  val prove: Sign.sg -> string list -> term list -> term -> (thm list -> tactic) -> thm
wenzelm@11970
   114
  val prove_standard: Sign.sg -> string list -> term list -> term -> (thm list -> tactic) -> thm
berghofe@15442
   115
  val compose_inst_tac' : (indexname * string) list -> (bool * thm * int) ->
berghofe@15442
   116
                          int -> tactic
berghofe@15442
   117
  val lift_inst_rule'   : thm * int * (indexname * string) list * thm -> thm
berghofe@15464
   118
  val eres_inst_tac'    : (indexname * string) list -> thm -> int -> tactic
berghofe@15442
   119
  val res_inst_tac'     : (indexname * string) list -> thm -> int -> tactic
berghofe@15797
   120
  val instantiate_tac'  : (indexname * string) list -> tactic
wenzelm@11774
   121
end;
clasohm@0
   122
wenzelm@11774
   123
structure Tactic: TACTIC =
clasohm@0
   124
struct
clasohm@0
   125
paulson@1501
   126
(*Discover which goal is chosen:  SOMEGOAL(trace_goalno_tac tac) *)
wenzelm@10817
   127
fun trace_goalno_tac tac i st =
wenzelm@4270
   128
    case Seq.pull(tac i st) of
skalberg@15531
   129
        NONE    => Seq.empty
wenzelm@12262
   130
      | seqcell => (tracing ("Subgoal " ^ string_of_int i ^ " selected");
wenzelm@10805
   131
                         Seq.make(fn()=> seqcell));
clasohm@0
   132
clasohm@0
   133
(*Makes a rule by applying a tactic to an existing rule*)
paulson@1501
   134
fun rule_by_tactic tac rl =
paulson@2688
   135
  let val (st, thaw) = freeze_thaw (zero_var_indexes rl)
wenzelm@4270
   136
  in case Seq.pull (tac st)  of
skalberg@15531
   137
        NONE        => raise THM("rule_by_tactic", 0, [rl])
skalberg@15531
   138
      | SOME(st',_) => Thm.varifyT (thaw st')
paulson@2688
   139
  end;
wenzelm@10817
   140
clasohm@0
   141
(*** Basic tactics ***)
clasohm@0
   142
clasohm@0
   143
(*** The following fail if the goal number is out of range:
clasohm@0
   144
     thus (REPEAT (resolve_tac rules i)) stops once subgoal i disappears. *)
clasohm@0
   145
clasohm@0
   146
(*Solve subgoal i by assumption*)
clasohm@0
   147
fun assume_tac i = PRIMSEQ (assumption i);
clasohm@0
   148
clasohm@0
   149
(*Solve subgoal i by assumption, using no unification*)
clasohm@0
   150
fun eq_assume_tac i = PRIMITIVE (eq_assumption i);
clasohm@0
   151
clasohm@0
   152
(** Resolution/matching tactics **)
clasohm@0
   153
clasohm@0
   154
(*The composition rule/state: no lifting or var renaming.
clasohm@0
   155
  The arg = (bires_flg, orule, m) ;  see bicompose for explanation.*)
clasohm@0
   156
fun compose_tac arg i = PRIMSEQ (bicompose false arg i);
clasohm@0
   157
clasohm@0
   158
(*Converts a "destruct" rule like P&Q==>P to an "elimination" rule
clasohm@0
   159
  like [| P&Q; P==>R |] ==> R *)
clasohm@0
   160
fun make_elim rl = zero_var_indexes (rl RS revcut_rl);
clasohm@0
   161
clasohm@0
   162
(*Attack subgoal i by resolution, using flags to indicate elimination rules*)
clasohm@0
   163
fun biresolve_tac brules i = PRIMSEQ (biresolution false brules i);
clasohm@0
   164
clasohm@0
   165
(*Resolution: the simple case, works for introduction rules*)
clasohm@0
   166
fun resolve_tac rules = biresolve_tac (map (pair false) rules);
clasohm@0
   167
clasohm@0
   168
(*Resolution with elimination rules only*)
clasohm@0
   169
fun eresolve_tac rules = biresolve_tac (map (pair true) rules);
clasohm@0
   170
clasohm@0
   171
(*Forward reasoning using destruction rules.*)
clasohm@0
   172
fun forward_tac rls = resolve_tac (map make_elim rls) THEN' assume_tac;
clasohm@0
   173
clasohm@0
   174
(*Like forward_tac, but deletes the assumption after use.*)
clasohm@0
   175
fun dresolve_tac rls = eresolve_tac (map make_elim rls);
clasohm@0
   176
clasohm@0
   177
(*Shorthand versions: for resolution with a single theorem*)
oheimb@7491
   178
val atac    =   assume_tac;
oheimb@7491
   179
fun rtac rl =  resolve_tac [rl];
oheimb@7491
   180
fun dtac rl = dresolve_tac [rl];
clasohm@1460
   181
fun etac rl = eresolve_tac [rl];
oheimb@7491
   182
fun ftac rl =  forward_tac [rl];
oheimb@7491
   183
fun datac thm j = EVERY' (dtac thm::replicate j atac);
oheimb@7491
   184
fun eatac thm j = EVERY' (etac thm::replicate j atac);
oheimb@7491
   185
fun fatac thm j = EVERY' (ftac thm::replicate j atac);
clasohm@0
   186
clasohm@0
   187
(*Use an assumption or some rules ... A popular combination!*)
clasohm@0
   188
fun ares_tac rules = assume_tac  ORELSE'  resolve_tac rules;
clasohm@0
   189
wenzelm@5263
   190
fun solve_tac rules = resolve_tac rules THEN_ALL_NEW assume_tac;
wenzelm@5263
   191
clasohm@0
   192
(*Matching tactics -- as above, but forbid updating of state*)
clasohm@0
   193
fun bimatch_tac brules i = PRIMSEQ (biresolution true brules i);
clasohm@0
   194
fun match_tac rules  = bimatch_tac (map (pair false) rules);
clasohm@0
   195
fun ematch_tac rules = bimatch_tac (map (pair true) rules);
clasohm@0
   196
fun dmatch_tac rls   = ematch_tac (map make_elim rls);
clasohm@0
   197
clasohm@0
   198
(*Smash all flex-flex disagreement pairs in the proof state.*)
clasohm@0
   199
val flexflex_tac = PRIMSEQ flexflex_rule;
clasohm@0
   200
paulson@3409
   201
paulson@3409
   202
(*Remove duplicate subgoals.  By Mark Staples*)
paulson@3409
   203
local
paulson@3409
   204
fun cterm_aconv (a,b) = #t (rep_cterm a) aconv #t (rep_cterm b);
paulson@3409
   205
in
wenzelm@10817
   206
fun distinct_subgoals_tac state =
paulson@3409
   207
    let val (frozth,thawfn) = freeze_thaw state
wenzelm@10805
   208
        val froz_prems = cprems_of frozth
wenzelm@10805
   209
        val assumed = implies_elim_list frozth (map assume froz_prems)
wenzelm@10805
   210
        val implied = implies_intr_list (gen_distinct cterm_aconv froz_prems)
wenzelm@10805
   211
                                        assumed;
wenzelm@4270
   212
    in  Seq.single (thawfn implied)  end
wenzelm@10817
   213
end;
paulson@3409
   214
paulson@3409
   215
wenzelm@11929
   216
(*Determine print names of goal parameters (reversed)*)
wenzelm@11929
   217
fun innermost_params i st =
wenzelm@11929
   218
  let val (_, _, Bi, _) = dest_state (st, i)
wenzelm@11929
   219
  in rename_wrt_term Bi (Logic.strip_params Bi) end;
wenzelm@11929
   220
paulson@15453
   221
(*params of subgoal i as they are printed*)
paulson@15453
   222
fun params_of_state st i =
paulson@15453
   223
  let val (_, _, Bi, _) = dest_state(st,i)
paulson@15453
   224
      val params = Logic.strip_params Bi
paulson@15453
   225
  in rev(rename_wrt_term Bi params) end;
paulson@15453
   226
  
paulson@15453
   227
(*read instantiations with respect to subgoal i of proof state st*)
paulson@15453
   228
fun read_insts_in_state (st, i, sinsts, rule) =
paulson@15453
   229
	let val {sign,...} = rep_thm st
paulson@15453
   230
	    and params = params_of_state st i
paulson@15453
   231
	    and rts = types_sorts rule and (types,sorts) = types_sorts st
skalberg@15531
   232
	    fun types'(a,~1) = (case assoc(params,a) of NONE => types(a,~1) | sm => sm)
paulson@15453
   233
	      | types'(ixn) = types ixn;
wenzelm@15671
   234
	    val used = Drule.add_used rule (Drule.add_used st []);
paulson@15453
   235
	in read_insts sign rts (types',sorts) used sinsts end;
paulson@15453
   236
clasohm@0
   237
(*Lift and instantiate a rule wrt the given state and subgoal number *)
berghofe@15442
   238
fun lift_inst_rule' (st, i, sinsts, rule) =
paulson@15453
   239
let val (Tinsts,insts) = read_insts_in_state (st, i, sinsts, rule)
paulson@15453
   240
    and {maxidx,...} = rep_thm st
paulson@15453
   241
    and params = params_of_state st i
clasohm@0
   242
    val paramTs = map #2 params
clasohm@0
   243
    and inc = maxidx+1
clasohm@0
   244
    fun liftvar (Var ((a,j), T)) = Var((a, j+inc), paramTs---> incr_tvar inc T)
clasohm@0
   245
      | liftvar t = raise TERM("Variable expected", [t]);
wenzelm@10817
   246
    fun liftterm t = list_abs_free (params,
wenzelm@10805
   247
                                    Logic.incr_indexes(paramTs,inc) t)
clasohm@0
   248
    (*Lifts instantiation pair over params*)
lcp@230
   249
    fun liftpair (cv,ct) = (cterm_fun liftvar cv, cterm_fun liftterm ct)
berghofe@15797
   250
    val lifttvar = pairself (ctyp_fun (incr_tvar inc))
paulson@8129
   251
in Drule.instantiate (map lifttvar Tinsts, map liftpair insts)
paulson@8129
   252
                     (lift_rule (st,i) rule)
clasohm@0
   253
end;
clasohm@0
   254
berghofe@15442
   255
fun lift_inst_rule (st, i, sinsts, rule) = lift_inst_rule'
berghofe@15442
   256
  (st, i, map (apfst Syntax.indexname) sinsts, rule);
berghofe@15442
   257
nipkow@3984
   258
(*
nipkow@3984
   259
Like lift_inst_rule but takes terms, not strings, where the terms may contain
nipkow@3984
   260
Bounds referring to parameters of the subgoal.
nipkow@3984
   261
nipkow@3984
   262
insts: [...,(vj,tj),...]
nipkow@3984
   263
nipkow@3984
   264
The tj may contain references to parameters of subgoal i of the state st
nipkow@3984
   265
in the form of Bound k, i.e. the tj may be subterms of the subgoal.
nipkow@3984
   266
To saturate the lose bound vars, the tj are enclosed in abstractions
nipkow@3984
   267
corresponding to the parameters of subgoal i, thus turning them into
nipkow@3984
   268
functions. At the same time, the types of the vj are lifted.
nipkow@3984
   269
nipkow@3984
   270
NB: the types in insts must be correctly instantiated already,
nipkow@3984
   271
    i.e. Tinsts is not applied to insts.
nipkow@3984
   272
*)
nipkow@1975
   273
fun term_lift_inst_rule (st, i, Tinsts, insts, rule) =
nipkow@1966
   274
let val {maxidx,sign,...} = rep_thm st
paulson@15453
   275
    val paramTs = map #2 (params_of_state st i)
nipkow@1966
   276
    and inc = maxidx+1
nipkow@1975
   277
    fun liftvar ((a,j), T) = Var((a, j+inc), paramTs---> incr_tvar inc T)
nipkow@1975
   278
    (*lift only Var, not term, which must be lifted already*)
nipkow@1975
   279
    fun liftpair (v,t) = (cterm_of sign (liftvar v), cterm_of sign t)
berghofe@15797
   280
    fun liftTpair (((a, i), S), T) =
berghofe@15797
   281
      (ctyp_of sign (TVar ((a, i + inc), S)),
berghofe@15797
   282
       ctyp_of sign (incr_tvar inc T))
paulson@8129
   283
in Drule.instantiate (map liftTpair Tinsts, map liftpair insts)
paulson@8129
   284
                     (lift_rule (st,i) rule)
nipkow@1966
   285
end;
clasohm@0
   286
clasohm@0
   287
(*** Resolve after lifting and instantation; may refer to parameters of the
clasohm@0
   288
     subgoal.  Fails if "i" is out of range.  ***)
clasohm@0
   289
clasohm@0
   290
(*compose version: arguments are as for bicompose.*)
berghofe@15442
   291
fun gen_compose_inst_tac instf sinsts (bires_flg, rule, nsubgoal) i st =
paulson@8977
   292
  if i > nprems_of st then no_tac st
paulson@8977
   293
  else st |>
berghofe@15442
   294
    (compose_tac (bires_flg, instf (st, i, sinsts, rule), nsubgoal) i
wenzelm@12262
   295
     handle TERM (msg,_)   => (warning msg;  no_tac)
wenzelm@12262
   296
          | THM  (msg,_,_) => (warning msg;  no_tac));
clasohm@0
   297
berghofe@15442
   298
val compose_inst_tac = gen_compose_inst_tac lift_inst_rule;
berghofe@15442
   299
val compose_inst_tac' = gen_compose_inst_tac lift_inst_rule';
berghofe@15442
   300
lcp@761
   301
(*"Resolve" version.  Note: res_inst_tac cannot behave sensibly if the
lcp@761
   302
  terms that are substituted contain (term or type) unknowns from the
lcp@761
   303
  goal, because it is unable to instantiate goal unknowns at the same time.
lcp@761
   304
paulson@2029
   305
  The type checker is instructed not to freeze flexible type vars that
nipkow@952
   306
  were introduced during type inference and still remain in the term at the
nipkow@952
   307
  end.  This increases flexibility but can introduce schematic type vars in
nipkow@952
   308
  goals.
lcp@761
   309
*)
clasohm@0
   310
fun res_inst_tac sinsts rule i =
clasohm@0
   311
    compose_inst_tac sinsts (false, rule, nprems_of rule) i;
clasohm@0
   312
berghofe@15442
   313
fun res_inst_tac' sinsts rule i =
berghofe@15442
   314
    compose_inst_tac' sinsts (false, rule, nprems_of rule) i;
berghofe@15442
   315
paulson@1501
   316
(*eresolve elimination version*)
clasohm@0
   317
fun eres_inst_tac sinsts rule i =
clasohm@0
   318
    compose_inst_tac sinsts (true, rule, nprems_of rule) i;
clasohm@0
   319
berghofe@15464
   320
fun eres_inst_tac' sinsts rule i =
berghofe@15464
   321
    compose_inst_tac' sinsts (true, rule, nprems_of rule) i;
berghofe@15464
   322
lcp@270
   323
(*For forw_inst_tac and dres_inst_tac.  Preserve Var indexes of rl;
lcp@270
   324
  increment revcut_rl instead.*)
wenzelm@10817
   325
fun make_elim_preserve rl =
lcp@270
   326
  let val {maxidx,...} = rep_thm rl
wenzelm@6390
   327
      fun cvar ixn = cterm_of (Theory.sign_of ProtoPure.thy) (Var(ixn,propT));
wenzelm@10817
   328
      val revcut_rl' =
wenzelm@10805
   329
          instantiate ([],  [(cvar("V",0), cvar("V",maxidx+1)),
wenzelm@10805
   330
                             (cvar("W",0), cvar("W",maxidx+1))]) revcut_rl
clasohm@0
   331
      val arg = (false, rl, nprems_of rl)
wenzelm@4270
   332
      val [th] = Seq.list_of (bicompose false arg 1 revcut_rl')
clasohm@0
   333
  in  th  end
clasohm@0
   334
  handle Bind => raise THM("make_elim_preserve", 1, [rl]);
clasohm@0
   335
lcp@270
   336
(*instantiate and cut -- for a FACT, anyway...*)
lcp@270
   337
fun cut_inst_tac sinsts rule = res_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   338
lcp@270
   339
(*forward tactic applies a RULE to an assumption without deleting it*)
lcp@270
   340
fun forw_inst_tac sinsts rule = cut_inst_tac sinsts rule THEN' assume_tac;
lcp@270
   341
lcp@270
   342
(*dresolve tactic applies a RULE to replace an assumption*)
clasohm@0
   343
fun dres_inst_tac sinsts rule = eres_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   344
oheimb@10347
   345
(*instantiate variables in the whole state*)
oheimb@10347
   346
val instantiate_tac = PRIMITIVE o read_instantiate;
oheimb@10347
   347
berghofe@15797
   348
val instantiate_tac' = PRIMITIVE o Drule.read_instantiate';
berghofe@15797
   349
paulson@1951
   350
(*Deletion of an assumption*)
paulson@1951
   351
fun thin_tac s = eres_inst_tac [("V",s)] thin_rl;
paulson@1951
   352
lcp@270
   353
(*** Applications of cut_rl ***)
clasohm@0
   354
clasohm@0
   355
(*Used by metacut_tac*)
clasohm@0
   356
fun bires_cut_tac arg i =
clasohm@1460
   357
    resolve_tac [cut_rl] i  THEN  biresolve_tac arg (i+1) ;
clasohm@0
   358
clasohm@0
   359
(*The conclusion of the rule gets assumed in subgoal i,
clasohm@0
   360
  while subgoal i+1,... are the premises of the rule.*)
clasohm@0
   361
fun metacut_tac rule = bires_cut_tac [(false,rule)];
clasohm@0
   362
clasohm@0
   363
(*Recognizes theorems that are not rules, but simple propositions*)
clasohm@0
   364
fun is_fact rl =
clasohm@0
   365
    case prems_of rl of
wenzelm@10805
   366
        [] => true  |  _::_ => false;
clasohm@0
   367
paulson@13650
   368
(*"Cut" a list of rules into the goal.  Their premises will become new
paulson@13650
   369
  subgoals.*)
paulson@13650
   370
fun cut_rules_tac ths i = EVERY (map (fn th => metacut_tac th i) ths);
paulson@13650
   371
paulson@13650
   372
(*As above, but inserts only facts (unconditional theorems);
paulson@13650
   373
  generates no additional subgoals. *)
skalberg@15570
   374
fun cut_facts_tac ths = cut_rules_tac  (List.filter is_fact ths);
clasohm@0
   375
clasohm@0
   376
(*Introduce the given proposition as a lemma and subgoal*)
wenzelm@12847
   377
fun subgoal_tac sprop =
wenzelm@12847
   378
  DETERM o res_inst_tac [("psi", sprop)] cut_rl THEN' SUBGOAL (fn (prop, _) =>
wenzelm@12847
   379
    let val concl' = Logic.strip_assums_concl prop in
paulson@4178
   380
      if null (term_tvars concl') then ()
paulson@4178
   381
      else warning"Type variables in new subgoal: add a type constraint?";
wenzelm@12847
   382
      all_tac
wenzelm@12847
   383
  end);
clasohm@0
   384
lcp@439
   385
(*Introduce a list of lemmas and subgoals*)
lcp@439
   386
fun subgoals_tac sprops = EVERY' (map subgoal_tac sprops);
lcp@439
   387
clasohm@0
   388
clasohm@0
   389
(**** Indexing and filtering of theorems ****)
clasohm@0
   390
clasohm@0
   391
(*Returns the list of potentially resolvable theorems for the goal "prem",
wenzelm@10805
   392
        using the predicate  could(subgoal,concl).
clasohm@0
   393
  Resulting list is no longer than "limit"*)
clasohm@0
   394
fun filter_thms could (limit, prem, ths) =
clasohm@0
   395
  let val pb = Logic.strip_assums_concl prem;   (*delete assumptions*)
clasohm@0
   396
      fun filtr (limit, []) = []
wenzelm@10805
   397
        | filtr (limit, th::ths) =
wenzelm@10805
   398
            if limit=0 then  []
wenzelm@10805
   399
            else if could(pb, concl_of th)  then th :: filtr(limit-1, ths)
wenzelm@10805
   400
            else filtr(limit,ths)
clasohm@0
   401
  in  filtr(limit,ths)  end;
clasohm@0
   402
clasohm@0
   403
clasohm@0
   404
(*** biresolution and resolution using nets ***)
clasohm@0
   405
clasohm@0
   406
(** To preserve the order of the rules, tag them with increasing integers **)
clasohm@0
   407
clasohm@0
   408
(*insert tags*)
clasohm@0
   409
fun taglist k [] = []
clasohm@0
   410
  | taglist k (x::xs) = (k,x) :: taglist (k+1) xs;
clasohm@0
   411
clasohm@0
   412
(*remove tags and suppress duplicates -- list is assumed sorted!*)
clasohm@0
   413
fun untaglist [] = []
clasohm@0
   414
  | untaglist [(k:int,x)] = [x]
clasohm@0
   415
  | untaglist ((k,x) :: (rest as (k',x')::_)) =
clasohm@0
   416
      if k=k' then untaglist rest
clasohm@0
   417
      else    x :: untaglist rest;
clasohm@0
   418
clasohm@0
   419
(*return list elements in original order*)
wenzelm@10817
   420
fun orderlist kbrls = untaglist (sort (int_ord o pairself fst) kbrls);
clasohm@0
   421
clasohm@0
   422
(*insert one tagged brl into the pair of nets*)
wenzelm@12320
   423
fun insert_tagged_brl (kbrl as (k, (eres, th)), (inet, enet)) =
wenzelm@12320
   424
  if eres then
wenzelm@12320
   425
    (case try Thm.major_prem_of th of
skalberg@15531
   426
      SOME prem => (inet, Net.insert_term ((prem, kbrl), enet, K false))
skalberg@15531
   427
    | NONE => error "insert_tagged_brl: elimination rule with no premises")
wenzelm@12320
   428
  else (Net.insert_term ((concl_of th, kbrl), inet, K false), enet);
clasohm@0
   429
clasohm@0
   430
(*build a pair of nets for biresolution*)
wenzelm@10817
   431
fun build_netpair netpair brls =
skalberg@15574
   432
    foldr insert_tagged_brl netpair (taglist 1 brls);
clasohm@0
   433
wenzelm@12320
   434
(*delete one kbrl from the pair of nets*)
paulson@1801
   435
local
wenzelm@13105
   436
  fun eq_kbrl ((_, (_, th)), (_, (_, th'))) = Drule.eq_thm_prop (th, th')
paulson@1801
   437
in
wenzelm@12320
   438
fun delete_tagged_brl (brl as (eres, th), (inet, enet)) =
paulson@13925
   439
  (if eres then
wenzelm@12320
   440
    (case try Thm.major_prem_of th of
skalberg@15531
   441
      SOME prem => (inet, Net.delete_term ((prem, ((), brl)), enet, eq_kbrl))
skalberg@15531
   442
    | NONE => (inet, enet))  (*no major premise: ignore*)
paulson@13925
   443
  else (Net.delete_term ((Thm.concl_of th, ((), brl)), inet, eq_kbrl), enet))
paulson@13925
   444
  handle Net.DELETE => (inet,enet);
paulson@1801
   445
end;
paulson@1801
   446
paulson@1801
   447
wenzelm@10817
   448
(*biresolution using a pair of nets rather than rules.
paulson@3706
   449
    function "order" must sort and possibly filter the list of brls.
paulson@3706
   450
    boolean "match" indicates matching or unification.*)
paulson@3706
   451
fun biresolution_from_nets_tac order match (inet,enet) =
clasohm@0
   452
  SUBGOAL
clasohm@0
   453
    (fn (prem,i) =>
clasohm@0
   454
      let val hyps = Logic.strip_assums_hyp prem
wenzelm@10817
   455
          and concl = Logic.strip_assums_concl prem
clasohm@0
   456
          val kbrls = Net.unify_term inet concl @
paulson@2672
   457
                      List.concat (map (Net.unify_term enet) hyps)
paulson@3706
   458
      in PRIMSEQ (biresolution match (order kbrls) i) end);
clasohm@0
   459
paulson@3706
   460
(*versions taking pre-built nets.  No filtering of brls*)
paulson@3706
   461
val biresolve_from_nets_tac = biresolution_from_nets_tac orderlist false;
paulson@3706
   462
val bimatch_from_nets_tac   = biresolution_from_nets_tac orderlist true;
clasohm@0
   463
clasohm@0
   464
(*fast versions using nets internally*)
lcp@670
   465
val net_biresolve_tac =
lcp@670
   466
    biresolve_from_nets_tac o build_netpair(Net.empty,Net.empty);
lcp@670
   467
lcp@670
   468
val net_bimatch_tac =
lcp@670
   469
    bimatch_from_nets_tac o build_netpair(Net.empty,Net.empty);
clasohm@0
   470
clasohm@0
   471
(*** Simpler version for resolve_tac -- only one net, and no hyps ***)
clasohm@0
   472
clasohm@0
   473
(*insert one tagged rl into the net*)
clasohm@0
   474
fun insert_krl (krl as (k,th), net) =
clasohm@0
   475
    Net.insert_term ((concl_of th, krl), net, K false);
clasohm@0
   476
clasohm@0
   477
(*build a net of rules for resolution*)
wenzelm@10817
   478
fun build_net rls =
skalberg@15574
   479
    foldr insert_krl Net.empty (taglist 1 rls);
clasohm@0
   480
clasohm@0
   481
(*resolution using a net rather than rules; pred supports filt_resolve_tac*)
clasohm@0
   482
fun filt_resolution_from_net_tac match pred net =
clasohm@0
   483
  SUBGOAL
clasohm@0
   484
    (fn (prem,i) =>
clasohm@0
   485
      let val krls = Net.unify_term net (Logic.strip_assums_concl prem)
wenzelm@10817
   486
      in
wenzelm@10817
   487
         if pred krls
clasohm@0
   488
         then PRIMSEQ
wenzelm@10805
   489
                (biresolution match (map (pair false) (orderlist krls)) i)
clasohm@0
   490
         else no_tac
clasohm@0
   491
      end);
clasohm@0
   492
clasohm@0
   493
(*Resolve the subgoal using the rules (making a net) unless too flexible,
clasohm@0
   494
   which means more than maxr rules are unifiable.      *)
wenzelm@10817
   495
fun filt_resolve_tac rules maxr =
clasohm@0
   496
    let fun pred krls = length krls <= maxr
clasohm@0
   497
    in  filt_resolution_from_net_tac false pred (build_net rules)  end;
clasohm@0
   498
clasohm@0
   499
(*versions taking pre-built nets*)
clasohm@0
   500
val resolve_from_net_tac = filt_resolution_from_net_tac false (K true);
clasohm@0
   501
val match_from_net_tac = filt_resolution_from_net_tac true (K true);
clasohm@0
   502
clasohm@0
   503
(*fast versions using nets internally*)
clasohm@0
   504
val net_resolve_tac = resolve_from_net_tac o build_net;
clasohm@0
   505
val net_match_tac = match_from_net_tac o build_net;
clasohm@0
   506
clasohm@0
   507
clasohm@0
   508
(*** For Natural Deduction using (bires_flg, rule) pairs ***)
clasohm@0
   509
clasohm@0
   510
(*The number of new subgoals produced by the brule*)
lcp@1077
   511
fun subgoals_of_brl (true,rule)  = nprems_of rule - 1
lcp@1077
   512
  | subgoals_of_brl (false,rule) = nprems_of rule;
clasohm@0
   513
clasohm@0
   514
(*Less-than test: for sorting to minimize number of new subgoals*)
clasohm@0
   515
fun lessb (brl1,brl2) = subgoals_of_brl brl1 < subgoals_of_brl brl2;
clasohm@0
   516
clasohm@0
   517
clasohm@0
   518
(*** Meta-Rewriting Tactics ***)
clasohm@0
   519
wenzelm@3575
   520
val simple_prover =
wenzelm@15021
   521
  SINGLE o (fn ss => ALLGOALS (resolve_tac (MetaSimplifier.prems_of_ss ss)));
wenzelm@3575
   522
wenzelm@11768
   523
val rewrite = MetaSimplifier.rewrite_aux simple_prover;
wenzelm@11768
   524
val simplify = MetaSimplifier.simplify_aux simple_prover;
wenzelm@11768
   525
val rewrite_rule = simplify true;
berghofe@10415
   526
val rewrite_goals_rule = MetaSimplifier.rewrite_goals_rule_aux simple_prover;
wenzelm@3575
   527
wenzelm@10444
   528
fun rewrite_goal_tac rews =
wenzelm@15021
   529
  MetaSimplifier.asm_rewrite_goal_tac (true, false, false) (K no_tac)
wenzelm@15021
   530
    (MetaSimplifier.empty_ss addsimps rews);
wenzelm@10444
   531
lcp@69
   532
(*Rewrite throughout proof state. *)
lcp@69
   533
fun rewrite_tac defs = PRIMITIVE(rewrite_rule defs);
clasohm@0
   534
clasohm@0
   535
(*Rewrite subgoals only, not main goal. *)
lcp@69
   536
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
clasohm@1460
   537
fun rewtac def = rewrite_goals_tac [def];
clasohm@0
   538
ballarin@15696
   539
fun norm_hhf_plain th =
ballarin@15696
   540
  if Drule.is_norm_hhf (prop_of th) then th
ballarin@15696
   541
  else rewrite_rule [Drule.norm_hhf_eq] th;
ballarin@15696
   542
wenzelm@12801
   543
fun norm_hhf_rule th =
ballarin@15696
   544
  th |> norm_hhf_plain |> Drule.gen_all;
wenzelm@10817
   545
wenzelm@12782
   546
val norm_hhf_tac =
wenzelm@12782
   547
  rtac Drule.asm_rl  (*cheap approximation -- thanks to builtin Logic.flatten_params*)
wenzelm@12782
   548
  THEN' SUBGOAL (fn (t, i) =>
wenzelm@12801
   549
    if Drule.is_norm_hhf t then all_tac
wenzelm@12782
   550
    else rewrite_goal_tac [Drule.norm_hhf_eq] i);
wenzelm@10805
   551
clasohm@0
   552
paulson@1501
   553
(*** for folding definitions, handling critical pairs ***)
lcp@69
   554
lcp@69
   555
(*The depth of nesting in a term*)
lcp@69
   556
fun term_depth (Abs(a,T,t)) = 1 + term_depth t
paulson@2145
   557
  | term_depth (f$t) = 1 + Int.max(term_depth f, term_depth t)
lcp@69
   558
  | term_depth _ = 0;
lcp@69
   559
wenzelm@12801
   560
val lhs_of_thm = #1 o Logic.dest_equals o prop_of;
lcp@69
   561
lcp@69
   562
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
lcp@69
   563
  Returns longest lhs first to avoid folding its subexpressions.*)
lcp@69
   564
fun sort_lhs_depths defs =
lcp@69
   565
  let val keylist = make_keylist (term_depth o lhs_of_thm) defs
wenzelm@4438
   566
      val keys = distinct (sort (rev_order o int_ord) (map #2 keylist))
lcp@69
   567
  in  map (keyfilter keylist) keys  end;
lcp@69
   568
wenzelm@7596
   569
val rev_defs = sort_lhs_depths o map symmetric;
lcp@69
   570
skalberg@15570
   571
fun fold_rule defs thm = Library.foldl (fn (th, ds) => rewrite_rule ds th) (thm, rev_defs defs);
wenzelm@7596
   572
fun fold_tac defs = EVERY (map rewrite_tac (rev_defs defs));
wenzelm@7596
   573
fun fold_goals_tac defs = EVERY (map rewrite_goals_tac (rev_defs defs));
lcp@69
   574
lcp@69
   575
lcp@69
   576
(*** Renaming of parameters in a subgoal
lcp@69
   577
     Names may contain letters, digits or primes and must be
lcp@69
   578
     separated by blanks ***)
clasohm@0
   579
clasohm@0
   580
(*Calling this will generate the warning "Same as previous level" since
clasohm@0
   581
  it affects nothing but the names of bound variables!*)
wenzelm@9535
   582
fun rename_params_tac xs i =
wenzelm@14673
   583
  case Library.find_first (not o Syntax.is_identifier) xs of
skalberg@15531
   584
      SOME x => error ("Not an identifier: " ^ x)
skalberg@15531
   585
    | NONE => 
paulson@13559
   586
       (if !Logic.auto_rename
paulson@13559
   587
	 then (warning "Resetting Logic.auto_rename";
paulson@13559
   588
	     Logic.auto_rename := false)
paulson@13559
   589
	else (); PRIMITIVE (rename_params_rule (xs, i)));
wenzelm@9535
   590
wenzelm@10817
   591
fun rename_tac str i =
wenzelm@10817
   592
  let val cs = Symbol.explode str in
wenzelm@4693
   593
  case #2 (take_prefix (Symbol.is_letdig orf Symbol.is_blank) cs) of
wenzelm@9535
   594
      [] => rename_params_tac (scanwords Symbol.is_letdig cs) i
clasohm@0
   595
    | c::_ => error ("Illegal character: " ^ c)
clasohm@0
   596
  end;
clasohm@0
   597
paulson@1501
   598
(*Rename recent parameters using names generated from a and the suffixes,
paulson@1501
   599
  provided the string a, which represents a term, is an identifier. *)
wenzelm@10817
   600
fun rename_last_tac a sufs i =
clasohm@0
   601
  let val names = map (curry op^ a) sufs
clasohm@0
   602
  in  if Syntax.is_identifier a
clasohm@0
   603
      then PRIMITIVE (rename_params_rule (names,i))
clasohm@0
   604
      else all_tac
clasohm@0
   605
  end;
clasohm@0
   606
paulson@2043
   607
(*Prunes all redundant parameters from the proof state by rewriting.
paulson@2043
   608
  DOES NOT rewrite main goal, where quantification over an unused bound
paulson@2043
   609
    variable is sometimes done to avoid the need for cut_facts_tac.*)
paulson@2043
   610
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
clasohm@0
   611
paulson@1501
   612
(*rotate_tac n i: rotate the assumptions of subgoal i by n positions, from
paulson@1501
   613
  right to left if n is positive, and from left to right if n is negative.*)
paulson@2672
   614
fun rotate_tac 0 i = all_tac
paulson@2672
   615
  | rotate_tac k i = PRIMITIVE (rotate_rule k i);
nipkow@1209
   616
paulson@7248
   617
(*Rotates the given subgoal to be the last.*)
paulson@7248
   618
fun defer_tac i = PRIMITIVE (permute_prems (i-1) 1);
paulson@7248
   619
nipkow@5974
   620
(* remove premises that do not satisfy p; fails if all prems satisfy p *)
nipkow@5974
   621
fun filter_prems_tac p =
skalberg@15531
   622
  let fun Then NONE tac = SOME tac
skalberg@15531
   623
        | Then (SOME tac) tac' = SOME(tac THEN' tac');
nipkow@5974
   624
      fun thins ((tac,n),H) =
nipkow@5974
   625
        if p H then (tac,n+1)
nipkow@5974
   626
        else (Then tac (rotate_tac n THEN' etac thin_rl),0);
nipkow@5974
   627
  in SUBGOAL(fn (subg,n) =>
nipkow@5974
   628
       let val Hs = Logic.strip_assums_hyp subg
skalberg@15570
   629
       in case fst(Library.foldl thins ((NONE,0),Hs)) of
skalberg@15531
   630
            NONE => no_tac | SOME tac => tac n
nipkow@5974
   631
       end)
nipkow@5974
   632
  end;
nipkow@5974
   633
wenzelm@11961
   634
wenzelm@12139
   635
(*meta-level conjunction*)
wenzelm@12139
   636
val conj_tac = SUBGOAL (fn (Const ("all", _) $ Abs (_, _, Const ("==>", _) $
wenzelm@12139
   637
      (Const ("==>", _) $ _ $ (Const ("==>", _) $ _ $ Bound 0)) $ Bound 0), i) =>
wenzelm@12139
   638
    (fn st =>
wenzelm@12139
   639
      compose_tac (false, Drule.incr_indexes_wrt [] [] [] [st] Drule.conj_intr_thm, 2) i st)
wenzelm@12139
   640
  | _ => no_tac);
wenzelm@12139
   641
  
wenzelm@12139
   642
val conjunction_tac = ALLGOALS (REPEAT_ALL_NEW conj_tac);
wenzelm@12139
   643
wenzelm@12139
   644
wenzelm@12139
   645
wenzelm@11970
   646
(** minimal goal interface for internal use *)
wenzelm@11961
   647
wenzelm@11970
   648
fun prove sign xs asms prop tac =
wenzelm@11961
   649
  let
wenzelm@11961
   650
    val statement = Logic.list_implies (asms, prop);
wenzelm@11961
   651
    val frees = map Term.dest_Free (Term.term_frees statement);
wenzelm@11970
   652
    val fixed_frees = filter_out (fn (x, _) => x mem_string xs) frees;
berghofe@15797
   653
    val fixed_tfrees = foldr Term.add_typ_tfrees [] (map #2 fixed_frees);
skalberg@15570
   654
    val params = List.mapPartial (fn x => Option.map (pair x) (assoc_string (frees, x))) xs;
wenzelm@11961
   655
wenzelm@12212
   656
    fun err msg = raise ERROR_MESSAGE
wenzelm@12212
   657
      (msg ^ "\nThe error(s) above occurred for the goal statement:\n" ^
wenzelm@12212
   658
        Sign.string_of_term sign (Term.list_all_free (params, statement)));
wenzelm@11961
   659
wenzelm@12170
   660
    fun cert_safe t = Thm.cterm_of sign (Envir.beta_norm t)
wenzelm@11961
   661
      handle TERM (msg, _) => err msg | TYPE (msg, _, _) => err msg;
wenzelm@11961
   662
wenzelm@11961
   663
    val _ = cert_safe statement;
wenzelm@11974
   664
    val _ = Term.no_dummy_patterns statement handle TERM (msg, _) => err msg;
wenzelm@11961
   665
wenzelm@11974
   666
    val cparams = map (cert_safe o Free) params;
wenzelm@11961
   667
    val casms = map cert_safe asms;
wenzelm@12801
   668
    val prems = map (norm_hhf_rule o Thm.assume) casms;
wenzelm@11961
   669
    val goal = Drule.mk_triv_goal (cert_safe prop);
wenzelm@11961
   670
wenzelm@11961
   671
    val goal' =
skalberg@15531
   672
      (case Seq.pull (tac prems goal) of SOME (goal', _) => goal' | _ => err "Tactic failed.");
wenzelm@11961
   673
    val ngoals = Thm.nprems_of goal';
wenzelm@11961
   674
    val raw_result = goal' RS Drule.rev_triv_goal;
wenzelm@12801
   675
    val prop' = prop_of raw_result;
wenzelm@11961
   676
  in
wenzelm@11961
   677
    if ngoals <> 0 then
wenzelm@11961
   678
      err ("Proof failed.\n" ^ Pretty.string_of (Pretty.chunks (Display.pretty_goals ngoals goal'))
wenzelm@11961
   679
        ^ ("\n" ^ string_of_int ngoals ^ " unsolved goal(s)!"))
wenzelm@11970
   680
    else if not (Pattern.matches (Sign.tsig_of sign) (prop, prop')) then
wenzelm@11970
   681
      err ("Proved a different theorem: " ^ Sign.string_of_term sign prop')
wenzelm@11961
   682
    else
wenzelm@11961
   683
      raw_result
wenzelm@11961
   684
      |> Drule.implies_intr_list casms
wenzelm@11974
   685
      |> Drule.forall_intr_list cparams
wenzelm@12801
   686
      |> norm_hhf_rule
wenzelm@12498
   687
      |> (#1 o Thm.varifyT' fixed_tfrees)
wenzelm@11970
   688
      |> Drule.zero_var_indexes
wenzelm@11961
   689
  end;
wenzelm@11961
   690
wenzelm@11970
   691
fun prove_standard sign xs asms prop tac = Drule.standard (prove sign xs asms prop tac);
wenzelm@11970
   692
clasohm@0
   693
end;
paulson@1501
   694
wenzelm@11774
   695
structure BasicTactic: BASIC_TACTIC = Tactic;
wenzelm@11774
   696
open BasicTactic;