src/HOL/PreList.thy
author wenzelm
Thu Dec 14 19:36:48 2000 +0100 (2000-12-14)
changeset 10671 ac6b3b671198
parent 10519 ade64af4c57c
child 10680 26e4aecf3207
permissions -rw-r--r--
added Summation;
nipkow@10519
     1
(*  Title:      HOL/PreList.thy
nipkow@8563
     2
    ID:         $Id$
nipkow@8563
     3
    Author:     Tobias Nipkow
nipkow@8563
     4
    Copyright   2000 TU Muenchen
nipkow@8563
     5
nipkow@8563
     6
A basis for building theory List on. Is defined separately to serve as a
nipkow@8563
     7
basis for theory ToyList in the documentation.
nipkow@8563
     8
*)
wenzelm@8490
     9
wenzelm@8490
    10
theory PreList =
nipkow@10212
    11
  Option + Wellfounded_Relations + NatSimprocs + Recdef + Record +
wenzelm@10261
    12
  Relation_Power + Calculation + SVC_Oracle:
wenzelm@8490
    13
wenzelm@10261
    14
(*belongs to theory HOL*)
wenzelm@10261
    15
declare case_split [cases type: bool]
wenzelm@10261
    16
wenzelm@10261
    17
(*belongs to theory Wellfounded_Recursion*)
wenzelm@10261
    18
declare wf_induct [induct set: wf]
wenzelm@9066
    19
nipkow@10519
    20
(*belongs to theory Datatype_Universe; hides popular names *)
nipkow@10519
    21
hide const Node Atom Leaf Numb Lim Funs Split Case
nipkow@10519
    22
wenzelm@10671
    23
wenzelm@10671
    24
(*belongs to theory Nat, but requires Datatype*)
wenzelm@10671
    25
consts
wenzelm@10671
    26
  Summation :: "(nat => 'a::{zero,plus}) => nat => 'a"
wenzelm@10671
    27
primrec
wenzelm@10671
    28
  "Summation f 0 = 0"
wenzelm@10671
    29
  "Summation f (Suc n) = Summation f n + f n"
wenzelm@10671
    30
wenzelm@10671
    31
syntax
wenzelm@10671
    32
  "_Summation" :: "idt => nat => 'a => nat"    ("\<Sum>_<_. _" [0, 51, 10] 10)
wenzelm@10671
    33
translations
wenzelm@10671
    34
  "\<Sum>i < n. b" == "Summation (\<lambda>i. b) n"
wenzelm@10671
    35
wenzelm@10671
    36
theorem Summation_step:
wenzelm@10671
    37
    "0 < n ==> (\<Sum>i < n. f i) = (\<Sum>i < n - 1. f i) + f (n - 1)"
wenzelm@10671
    38
  by (induct n) simp_all
wenzelm@10671
    39
wenzelm@8490
    40
end