|
33471
|
1 |
(* Title: HOL/Tools/Function/induction_schema.ML
|
|
|
2 |
Author: Alexander Krauss, TU Muenchen
|
|
|
3 |
|
|
|
4 |
A method to prove induction schemas.
|
|
|
5 |
*)
|
|
|
6 |
|
|
|
7 |
signature INDUCTION_SCHEMA =
|
|
|
8 |
sig
|
|
|
9 |
val mk_ind_tac : (int -> tactic) -> (int -> tactic) -> (int -> tactic)
|
|
|
10 |
-> Proof.context -> thm list -> tactic
|
|
|
11 |
val induction_schema_tac : Proof.context -> thm list -> tactic
|
|
|
12 |
val setup : theory -> theory
|
|
|
13 |
end
|
|
|
14 |
|
|
|
15 |
|
|
|
16 |
structure Induction_Schema : INDUCTION_SCHEMA =
|
|
|
17 |
struct
|
|
|
18 |
|
|
|
19 |
open Function_Lib
|
|
|
20 |
|
|
|
21 |
|
|
|
22 |
type rec_call_info = int * (string * typ) list * term list * term list
|
|
|
23 |
|
|
|
24 |
datatype scheme_case =
|
|
|
25 |
SchemeCase of
|
|
|
26 |
{
|
|
|
27 |
bidx : int,
|
|
|
28 |
qs: (string * typ) list,
|
|
|
29 |
oqnames: string list,
|
|
|
30 |
gs: term list,
|
|
|
31 |
lhs: term list,
|
|
|
32 |
rs: rec_call_info list
|
|
|
33 |
}
|
|
|
34 |
|
|
|
35 |
datatype scheme_branch =
|
|
|
36 |
SchemeBranch of
|
|
|
37 |
{
|
|
|
38 |
P : term,
|
|
|
39 |
xs: (string * typ) list,
|
|
|
40 |
ws: (string * typ) list,
|
|
|
41 |
Cs: term list
|
|
|
42 |
}
|
|
|
43 |
|
|
|
44 |
datatype ind_scheme =
|
|
|
45 |
IndScheme of
|
|
|
46 |
{
|
|
|
47 |
T: typ, (* sum of products *)
|
|
|
48 |
branches: scheme_branch list,
|
|
|
49 |
cases: scheme_case list
|
|
|
50 |
}
|
|
|
51 |
|
|
|
52 |
val ind_atomize = MetaSimplifier.rewrite true @{thms induct_atomize}
|
|
|
53 |
val ind_rulify = MetaSimplifier.rewrite true @{thms induct_rulify}
|
|
|
54 |
|
|
|
55 |
fun meta thm = thm RS eq_reflection
|
|
|
56 |
|
|
|
57 |
val sum_prod_conv = MetaSimplifier.rewrite true
|
|
|
58 |
(map meta (@{thm split_conv} :: @{thms sum.cases}))
|
|
|
59 |
|
|
|
60 |
fun term_conv thy cv t =
|
|
|
61 |
cv (cterm_of thy t)
|
|
|
62 |
|> prop_of |> Logic.dest_equals |> snd
|
|
|
63 |
|
|
|
64 |
fun mk_relT T = HOLogic.mk_setT (HOLogic.mk_prodT (T, T))
|
|
|
65 |
|
|
|
66 |
fun dest_hhf ctxt t =
|
|
|
67 |
let
|
|
|
68 |
val (ctxt', vars, imp) = dest_all_all_ctx ctxt t
|
|
|
69 |
in
|
|
|
70 |
(ctxt', vars, Logic.strip_imp_prems imp, Logic.strip_imp_concl imp)
|
|
|
71 |
end
|
|
|
72 |
|
|
|
73 |
|
|
|
74 |
fun mk_scheme' ctxt cases concl =
|
|
|
75 |
let
|
|
|
76 |
fun mk_branch concl =
|
|
|
77 |
let
|
|
|
78 |
val (ctxt', ws, Cs, _ $ Pxs) = dest_hhf ctxt concl
|
|
|
79 |
val (P, xs) = strip_comb Pxs
|
|
|
80 |
in
|
|
|
81 |
SchemeBranch { P=P, xs=map dest_Free xs, ws=ws, Cs=Cs }
|
|
|
82 |
end
|
|
|
83 |
|
|
|
84 |
val (branches, cases') = (* correction *)
|
|
|
85 |
case Logic.dest_conjunction_list concl of
|
|
|
86 |
[conc] =>
|
|
|
87 |
let
|
|
|
88 |
val _ $ Pxs = Logic.strip_assums_concl conc
|
|
|
89 |
val (P, _) = strip_comb Pxs
|
|
|
90 |
val (cases', conds) = take_prefix (Term.exists_subterm (curry op aconv P)) cases
|
|
|
91 |
val concl' = fold_rev (curry Logic.mk_implies) conds conc
|
|
|
92 |
in
|
|
|
93 |
([mk_branch concl'], cases')
|
|
|
94 |
end
|
|
|
95 |
| concls => (map mk_branch concls, cases)
|
|
|
96 |
|
|
|
97 |
fun mk_case premise =
|
|
|
98 |
let
|
|
|
99 |
val (ctxt', qs, prems, _ $ Plhs) = dest_hhf ctxt premise
|
|
|
100 |
val (P, lhs) = strip_comb Plhs
|
|
|
101 |
|
|
|
102 |
fun bidx Q = find_index (fn SchemeBranch {P=P',...} => Q aconv P') branches
|
|
|
103 |
|
|
|
104 |
fun mk_rcinfo pr =
|
|
|
105 |
let
|
|
|
106 |
val (ctxt'', Gvs, Gas, _ $ Phyp) = dest_hhf ctxt' pr
|
|
|
107 |
val (P', rcs) = strip_comb Phyp
|
|
|
108 |
in
|
|
|
109 |
(bidx P', Gvs, Gas, rcs)
|
|
|
110 |
end
|
|
|
111 |
|
|
|
112 |
fun is_pred v = exists (fn SchemeBranch {P,...} => v aconv P) branches
|
|
|
113 |
|
|
|
114 |
val (gs, rcprs) =
|
|
|
115 |
take_prefix (not o Term.exists_subterm is_pred) prems
|
|
|
116 |
in
|
|
|
117 |
SchemeCase {bidx=bidx P, qs=qs, oqnames=map fst qs(*FIXME*), gs=gs, lhs=lhs, rs=map mk_rcinfo rcprs}
|
|
|
118 |
end
|
|
|
119 |
|
|
|
120 |
fun PT_of (SchemeBranch { xs, ...}) =
|
|
|
121 |
foldr1 HOLogic.mk_prodT (map snd xs)
|
|
|
122 |
|
|
|
123 |
val ST = Balanced_Tree.make (uncurry SumTree.mk_sumT) (map PT_of branches)
|
|
|
124 |
in
|
|
|
125 |
IndScheme {T=ST, cases=map mk_case cases', branches=branches }
|
|
|
126 |
end
|
|
|
127 |
|
|
|
128 |
|
|
|
129 |
|
|
|
130 |
fun mk_completeness ctxt (IndScheme {cases, branches, ...}) bidx =
|
|
|
131 |
let
|
|
|
132 |
val SchemeBranch { xs, ws, Cs, ... } = nth branches bidx
|
|
|
133 |
val relevant_cases = filter (fn SchemeCase {bidx=bidx', ...} => bidx' = bidx) cases
|
|
|
134 |
|
|
|
135 |
val allqnames = fold (fn SchemeCase {qs, ...} => fold (insert (op =) o Free) qs) relevant_cases []
|
|
|
136 |
val (Pbool :: xs') = map Free (Variable.variant_frees ctxt allqnames (("P", HOLogic.boolT) :: xs))
|
|
|
137 |
val Cs' = map (Pattern.rewrite_term (ProofContext.theory_of ctxt) (filter_out (op aconv) (map Free xs ~~ xs')) []) Cs
|
|
|
138 |
|
|
|
139 |
fun mk_case (SchemeCase {qs, oqnames, gs, lhs, ...}) =
|
|
|
140 |
HOLogic.mk_Trueprop Pbool
|
|
|
141 |
|> fold_rev (fn x_l => curry Logic.mk_implies (HOLogic.mk_Trueprop(HOLogic.mk_eq x_l)))
|
|
|
142 |
(xs' ~~ lhs)
|
|
|
143 |
|> fold_rev (curry Logic.mk_implies) gs
|
|
|
144 |
|> fold_rev mk_forall_rename (oqnames ~~ map Free qs)
|
|
|
145 |
in
|
|
|
146 |
HOLogic.mk_Trueprop Pbool
|
|
|
147 |
|> fold_rev (curry Logic.mk_implies o mk_case) relevant_cases
|
|
|
148 |
|> fold_rev (curry Logic.mk_implies) Cs'
|
|
|
149 |
|> fold_rev (Logic.all o Free) ws
|
|
|
150 |
|> fold_rev mk_forall_rename (map fst xs ~~ xs')
|
|
|
151 |
|> mk_forall_rename ("P", Pbool)
|
|
|
152 |
end
|
|
|
153 |
|
|
|
154 |
fun mk_wf ctxt R (IndScheme {T, ...}) =
|
|
|
155 |
HOLogic.Trueprop $ (Const (@{const_name wf}, mk_relT T --> HOLogic.boolT) $ R)
|
|
|
156 |
|
|
|
157 |
fun mk_ineqs R (IndScheme {T, cases, branches}) =
|
|
|
158 |
let
|
|
|
159 |
fun inject i ts =
|
|
|
160 |
SumTree.mk_inj T (length branches) (i + 1) (foldr1 HOLogic.mk_prod ts)
|
|
|
161 |
|
|
|
162 |
val thesis = Free ("thesis", HOLogic.boolT) (* FIXME *)
|
|
|
163 |
|
|
|
164 |
fun mk_pres bdx args =
|
|
|
165 |
let
|
|
|
166 |
val SchemeBranch { xs, ws, Cs, ... } = nth branches bdx
|
|
|
167 |
fun replace (x, v) t = betapply (lambda (Free x) t, v)
|
|
|
168 |
val Cs' = map (fold replace (xs ~~ args)) Cs
|
|
|
169 |
val cse =
|
|
|
170 |
HOLogic.mk_Trueprop thesis
|
|
|
171 |
|> fold_rev (curry Logic.mk_implies) Cs'
|
|
|
172 |
|> fold_rev (Logic.all o Free) ws
|
|
|
173 |
in
|
|
|
174 |
Logic.mk_implies (cse, HOLogic.mk_Trueprop thesis)
|
|
|
175 |
end
|
|
|
176 |
|
|
|
177 |
fun f (SchemeCase {bidx, qs, oqnames, gs, lhs, rs, ...}) =
|
|
|
178 |
let
|
|
|
179 |
fun g (bidx', Gvs, Gas, rcarg) =
|
|
|
180 |
let val export =
|
|
|
181 |
fold_rev (curry Logic.mk_implies) Gas
|
|
|
182 |
#> fold_rev (curry Logic.mk_implies) gs
|
|
|
183 |
#> fold_rev (Logic.all o Free) Gvs
|
|
|
184 |
#> fold_rev mk_forall_rename (oqnames ~~ map Free qs)
|
|
|
185 |
in
|
|
|
186 |
(HOLogic.mk_mem (HOLogic.mk_prod (inject bidx' rcarg, inject bidx lhs), R)
|
|
|
187 |
|> HOLogic.mk_Trueprop
|
|
|
188 |
|> export,
|
|
|
189 |
mk_pres bidx' rcarg
|
|
|
190 |
|> export
|
|
|
191 |
|> Logic.all thesis)
|
|
|
192 |
end
|
|
|
193 |
in
|
|
|
194 |
map g rs
|
|
|
195 |
end
|
|
|
196 |
in
|
|
|
197 |
map f cases
|
|
|
198 |
end
|
|
|
199 |
|
|
|
200 |
|
|
|
201 |
fun mk_hol_imp a b = HOLogic.imp $ a $ b
|
|
|
202 |
|
|
|
203 |
fun mk_ind_goal thy branches =
|
|
|
204 |
let
|
|
|
205 |
fun brnch (SchemeBranch { P, xs, ws, Cs, ... }) =
|
|
|
206 |
HOLogic.mk_Trueprop (list_comb (P, map Free xs))
|
|
|
207 |
|> fold_rev (curry Logic.mk_implies) Cs
|
|
|
208 |
|> fold_rev (Logic.all o Free) ws
|
|
|
209 |
|> term_conv thy ind_atomize
|
|
|
210 |
|> ObjectLogic.drop_judgment thy
|
|
|
211 |
|> tupled_lambda (foldr1 HOLogic.mk_prod (map Free xs))
|
|
|
212 |
in
|
|
|
213 |
SumTree.mk_sumcases HOLogic.boolT (map brnch branches)
|
|
|
214 |
end
|
|
|
215 |
|
|
|
216 |
|
|
|
217 |
fun mk_induct_rule ctxt R x complete_thms wf_thm ineqss (IndScheme {T, cases=scases, branches}) =
|
|
|
218 |
let
|
|
|
219 |
val n = length branches
|
|
|
220 |
|
|
|
221 |
val scases_idx = map_index I scases
|
|
|
222 |
|
|
|
223 |
fun inject i ts =
|
|
|
224 |
SumTree.mk_inj T n (i + 1) (foldr1 HOLogic.mk_prod ts)
|
|
|
225 |
val P_of = nth (map (fn (SchemeBranch { P, ... }) => P) branches)
|
|
|
226 |
|
|
|
227 |
val thy = ProofContext.theory_of ctxt
|
|
|
228 |
val cert = cterm_of thy
|
|
|
229 |
|
|
|
230 |
val P_comp = mk_ind_goal thy branches
|
|
|
231 |
|
|
|
232 |
(* Inductive Hypothesis: !!z. (z,x):R ==> P z *)
|
|
|
233 |
val ihyp = Term.all T $ Abs ("z", T,
|
|
|
234 |
Logic.mk_implies
|
|
|
235 |
(HOLogic.mk_Trueprop (
|
|
|
236 |
Const ("op :", HOLogic.mk_prodT (T, T) --> mk_relT T --> HOLogic.boolT)
|
|
|
237 |
$ (HOLogic.pair_const T T $ Bound 0 $ x)
|
|
|
238 |
$ R),
|
|
|
239 |
HOLogic.mk_Trueprop (P_comp $ Bound 0)))
|
|
|
240 |
|> cert
|
|
|
241 |
|
|
|
242 |
val aihyp = assume ihyp
|
|
|
243 |
|
|
|
244 |
(* Rule for case splitting along the sum types *)
|
|
|
245 |
val xss = map (fn (SchemeBranch { xs, ... }) => map Free xs) branches
|
|
|
246 |
val pats = map_index (uncurry inject) xss
|
|
|
247 |
val sum_split_rule = Pat_Completeness.prove_completeness thy [x] (P_comp $ x) xss (map single pats)
|
|
|
248 |
|
|
|
249 |
fun prove_branch (bidx, (SchemeBranch { P, xs, ws, Cs, ... }, (complete_thm, pat))) =
|
|
|
250 |
let
|
|
|
251 |
val fxs = map Free xs
|
|
|
252 |
val branch_hyp = assume (cert (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, pat))))
|
|
|
253 |
|
|
|
254 |
val C_hyps = map (cert #> assume) Cs
|
|
|
255 |
|
|
|
256 |
val (relevant_cases, ineqss') = filter (fn ((_, SchemeCase {bidx=bidx', ...}), _) => bidx' = bidx) (scases_idx ~~ ineqss)
|
|
|
257 |
|> split_list
|
|
|
258 |
|
|
|
259 |
fun prove_case (cidx, SchemeCase {qs, oqnames, gs, lhs, rs, ...}) ineq_press =
|
|
|
260 |
let
|
|
|
261 |
val case_hyps = map (assume o cert o HOLogic.mk_Trueprop o HOLogic.mk_eq) (fxs ~~ lhs)
|
|
|
262 |
|
|
|
263 |
val cqs = map (cert o Free) qs
|
|
|
264 |
val ags = map (assume o cert) gs
|
|
|
265 |
|
|
|
266 |
val replace_x_ss = HOL_basic_ss addsimps (branch_hyp :: case_hyps)
|
|
|
267 |
val sih = full_simplify replace_x_ss aihyp
|
|
|
268 |
|
|
|
269 |
fun mk_Prec (idx, Gvs, Gas, rcargs) (ineq, pres) =
|
|
|
270 |
let
|
|
|
271 |
val cGas = map (assume o cert) Gas
|
|
|
272 |
val cGvs = map (cert o Free) Gvs
|
|
|
273 |
val import = fold forall_elim (cqs @ cGvs)
|
|
|
274 |
#> fold Thm.elim_implies (ags @ cGas)
|
|
|
275 |
val ipres = pres
|
|
|
276 |
|> forall_elim (cert (list_comb (P_of idx, rcargs)))
|
|
|
277 |
|> import
|
|
|
278 |
in
|
|
|
279 |
sih |> forall_elim (cert (inject idx rcargs))
|
|
|
280 |
|> Thm.elim_implies (import ineq) (* Psum rcargs *)
|
|
|
281 |
|> Conv.fconv_rule sum_prod_conv
|
|
|
282 |
|> Conv.fconv_rule ind_rulify
|
|
|
283 |
|> (fn th => th COMP ipres) (* P rs *)
|
|
|
284 |
|> fold_rev (implies_intr o cprop_of) cGas
|
|
|
285 |
|> fold_rev forall_intr cGvs
|
|
|
286 |
end
|
|
|
287 |
|
|
|
288 |
val P_recs = map2 mk_Prec rs ineq_press (* [P rec1, P rec2, ... ] *)
|
|
|
289 |
|
|
|
290 |
val step = HOLogic.mk_Trueprop (list_comb (P, lhs))
|
|
|
291 |
|> fold_rev (curry Logic.mk_implies o prop_of) P_recs
|
|
|
292 |
|> fold_rev (curry Logic.mk_implies) gs
|
|
|
293 |
|> fold_rev (Logic.all o Free) qs
|
|
|
294 |
|> cert
|
|
|
295 |
|
|
|
296 |
val Plhs_to_Pxs_conv =
|
|
|
297 |
foldl1 (uncurry Conv.combination_conv)
|
|
|
298 |
(Conv.all_conv :: map (fn ch => K (Thm.symmetric (ch RS eq_reflection))) case_hyps)
|
|
|
299 |
|
|
|
300 |
val res = assume step
|
|
|
301 |
|> fold forall_elim cqs
|
|
|
302 |
|> fold Thm.elim_implies ags
|
|
|
303 |
|> fold Thm.elim_implies P_recs (* P lhs *)
|
|
|
304 |
|> Conv.fconv_rule (Conv.arg_conv Plhs_to_Pxs_conv) (* P xs *)
|
|
|
305 |
|> fold_rev (implies_intr o cprop_of) (ags @ case_hyps)
|
|
|
306 |
|> fold_rev forall_intr cqs (* !!qs. Gas ==> xs = lhss ==> P xs *)
|
|
|
307 |
in
|
|
|
308 |
(res, (cidx, step))
|
|
|
309 |
end
|
|
|
310 |
|
|
|
311 |
val (cases, steps) = split_list (map2 prove_case relevant_cases ineqss')
|
|
|
312 |
|
|
|
313 |
val bstep = complete_thm
|
|
|
314 |
|> forall_elim (cert (list_comb (P, fxs)))
|
|
|
315 |
|> fold (forall_elim o cert) (fxs @ map Free ws)
|
|
|
316 |
|> fold Thm.elim_implies C_hyps (* FIXME: optimization using rotate_prems *)
|
|
|
317 |
|> fold Thm.elim_implies cases (* P xs *)
|
|
|
318 |
|> fold_rev (implies_intr o cprop_of) C_hyps
|
|
|
319 |
|> fold_rev (forall_intr o cert o Free) ws
|
|
|
320 |
|
|
|
321 |
val Pxs = cert (HOLogic.mk_Trueprop (P_comp $ x))
|
|
|
322 |
|> Goal.init
|
|
|
323 |
|> (MetaSimplifier.rewrite_goals_tac (map meta (branch_hyp :: @{thm split_conv} :: @{thms sum.cases}))
|
|
|
324 |
THEN CONVERSION ind_rulify 1)
|
|
|
325 |
|> Seq.hd
|
|
|
326 |
|> Thm.elim_implies (Conv.fconv_rule Drule.beta_eta_conversion bstep)
|
|
|
327 |
|> Goal.finish ctxt
|
|
|
328 |
|> implies_intr (cprop_of branch_hyp)
|
|
|
329 |
|> fold_rev (forall_intr o cert) fxs
|
|
|
330 |
in
|
|
|
331 |
(Pxs, steps)
|
|
|
332 |
end
|
|
|
333 |
|
|
|
334 |
val (branches, steps) = split_list (map_index prove_branch (branches ~~ (complete_thms ~~ pats)))
|
|
|
335 |
|> apsnd flat
|
|
|
336 |
|
|
|
337 |
val istep = sum_split_rule
|
|
|
338 |
|> fold (fn b => fn th => Drule.compose_single (b, 1, th)) branches
|
|
|
339 |
|> implies_intr ihyp
|
|
|
340 |
|> forall_intr (cert x) (* "!!x. (!!y<x. P y) ==> P x" *)
|
|
|
341 |
|
|
|
342 |
val induct_rule =
|
|
|
343 |
@{thm "wf_induct_rule"}
|
|
|
344 |
|> (curry op COMP) wf_thm
|
|
|
345 |
|> (curry op COMP) istep
|
|
|
346 |
|
|
|
347 |
val steps_sorted = map snd (sort (int_ord o pairself fst) steps)
|
|
|
348 |
in
|
|
|
349 |
(steps_sorted, induct_rule)
|
|
|
350 |
end
|
|
|
351 |
|
|
|
352 |
|
|
|
353 |
fun mk_ind_tac comp_tac pres_tac term_tac ctxt facts = (ALLGOALS (Method.insert_tac facts)) THEN HEADGOAL
|
|
|
354 |
(SUBGOAL (fn (t, i) =>
|
|
|
355 |
let
|
|
|
356 |
val (ctxt', _, cases, concl) = dest_hhf ctxt t
|
|
|
357 |
val scheme as IndScheme {T=ST, branches, ...} = mk_scheme' ctxt' cases concl
|
|
|
358 |
(* val _ = tracing (makestring scheme)*)
|
|
|
359 |
val ([Rn,xn], ctxt'') = Variable.variant_fixes ["R","x"] ctxt'
|
|
|
360 |
val R = Free (Rn, mk_relT ST)
|
|
|
361 |
val x = Free (xn, ST)
|
|
|
362 |
val cert = cterm_of (ProofContext.theory_of ctxt)
|
|
|
363 |
|
|
|
364 |
val ineqss = mk_ineqs R scheme
|
|
|
365 |
|> map (map (pairself (assume o cert)))
|
|
|
366 |
val complete = map_range (mk_completeness ctxt scheme #> cert #> assume) (length branches)
|
|
|
367 |
val wf_thm = mk_wf ctxt R scheme |> cert |> assume
|
|
|
368 |
|
|
|
369 |
val (descent, pres) = split_list (flat ineqss)
|
|
|
370 |
val newgoals = complete @ pres @ wf_thm :: descent
|
|
|
371 |
|
|
|
372 |
val (steps, indthm) = mk_induct_rule ctxt'' R x complete wf_thm ineqss scheme
|
|
|
373 |
|
|
|
374 |
fun project (i, SchemeBranch {xs, ...}) =
|
|
|
375 |
let
|
|
|
376 |
val inst = cert (SumTree.mk_inj ST (length branches) (i + 1) (foldr1 HOLogic.mk_prod (map Free xs)))
|
|
|
377 |
in
|
|
|
378 |
indthm |> Drule.instantiate' [] [SOME inst]
|
|
|
379 |
|> simplify SumTree.sumcase_split_ss
|
|
|
380 |
|> Conv.fconv_rule ind_rulify
|
|
|
381 |
(* |> (fn thm => (tracing (makestring thm); thm))*)
|
|
|
382 |
end
|
|
|
383 |
|
|
|
384 |
val res = Conjunction.intr_balanced (map_index project branches)
|
|
|
385 |
|> fold_rev implies_intr (map cprop_of newgoals @ steps)
|
|
|
386 |
|> (fn thm => Thm.generalize ([], [Rn]) (Thm.maxidx_of thm + 1) thm)
|
|
|
387 |
|
|
|
388 |
val nbranches = length branches
|
|
|
389 |
val npres = length pres
|
|
|
390 |
in
|
|
|
391 |
Thm.compose_no_flatten false (res, length newgoals) i
|
|
|
392 |
THEN term_tac (i + nbranches + npres)
|
|
|
393 |
THEN (EVERY (map (TRY o pres_tac) ((i + nbranches + npres - 1) downto (i + nbranches))))
|
|
|
394 |
THEN (EVERY (map (TRY o comp_tac) ((i + nbranches - 1) downto i)))
|
|
|
395 |
end))
|
|
|
396 |
|
|
|
397 |
|
|
|
398 |
fun induction_schema_tac ctxt =
|
|
|
399 |
mk_ind_tac (K all_tac) (assume_tac APPEND' Goal.assume_rule_tac ctxt) (K all_tac) ctxt;
|
|
|
400 |
|
|
|
401 |
val setup =
|
|
|
402 |
Method.setup @{binding induction_schema} (Scan.succeed (RAW_METHOD o induction_schema_tac))
|
|
|
403 |
"proves an induction principle"
|
|
|
404 |
|
|
|
405 |
end
|