author  wenzelm 
Sat, 04 Nov 2017 12:39:25 +0100  
changeset 67001  b34fbf33a7ea 
parent 65447  fae6051ec192 
child 67399  eab6ce8368fa 
permissions  rwrr 
17441  1 
(* Title: CTT/CTT.thy 
0  2 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory 
3 
Copyright 1993 University of Cambridge 

4 
*) 

5 

17441  6 
theory CTT 
7 
imports Pure 

8 
begin 

9 

65447
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

10 
section \<open>Constructive Type Theory: axiomatic basis\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

11 

48891  12 
ML_file "~~/src/Provers/typedsimp.ML" 
39557
fe5722fce758
renamed structure PureThy to Pure_Thy and moved most content to Global_Theory, to emphasize that this is globalonly;
wenzelm
parents:
35762
diff
changeset

13 
setup Pure_Thy.old_appl_syntax_setup 
26956
1309a6a0a29f
setup PureThy.old_appl_syntax_setup  theory Pure provides regular application syntax by default;
wenzelm
parents:
26391
diff
changeset

14 

17441  15 
typedecl i 
16 
typedecl t 

17 
typedecl o 

0  18 

19 
consts 

63505  20 
\<comment> \<open>Types\<close> 
17441  21 
F :: "t" 
63505  22 
T :: "t" \<comment> \<open>\<open>F\<close> is empty, \<open>T\<close> contains one element\<close> 
58977  23 
contr :: "i\<Rightarrow>i" 
0  24 
tt :: "i" 
63505  25 
\<comment> \<open>Natural numbers\<close> 
0  26 
N :: "t" 
58977  27 
succ :: "i\<Rightarrow>i" 
28 
rec :: "[i, i, [i,i]\<Rightarrow>i] \<Rightarrow> i" 

63505  29 
\<comment> \<open>Unions\<close> 
58977  30 
inl :: "i\<Rightarrow>i" 
31 
inr :: "i\<Rightarrow>i" 

60555
51a6997b1384
support 'when' statement, which corresponds to 'presume';
wenzelm
parents:
59780
diff
changeset

32 
"when" :: "[i, i\<Rightarrow>i, i\<Rightarrow>i]\<Rightarrow>i" 
63505  33 
\<comment> \<open>General Sum and Binary Product\<close> 
58977  34 
Sum :: "[t, i\<Rightarrow>t]\<Rightarrow>t" 
35 
fst :: "i\<Rightarrow>i" 

36 
snd :: "i\<Rightarrow>i" 

37 
split :: "[i, [i,i]\<Rightarrow>i] \<Rightarrow>i" 

63505  38 
\<comment> \<open>General Product and Function Space\<close> 
58977  39 
Prod :: "[t, i\<Rightarrow>t]\<Rightarrow>t" 
63505  40 
\<comment> \<open>Types\<close> 
58977  41 
Plus :: "[t,t]\<Rightarrow>t" (infixr "+" 40) 
63505  42 
\<comment> \<open>Equality type\<close> 
58977  43 
Eq :: "[t,i,i]\<Rightarrow>t" 
0  44 
eq :: "i" 
63505  45 
\<comment> \<open>Judgements\<close> 
58977  46 
Type :: "t \<Rightarrow> prop" ("(_ type)" [10] 5) 
47 
Eqtype :: "[t,t]\<Rightarrow>prop" ("(_ =/ _)" [10,10] 5) 

48 
Elem :: "[i, t]\<Rightarrow>prop" ("(_ /: _)" [10,10] 5) 

49 
Eqelem :: "[i,i,t]\<Rightarrow>prop" ("(_ =/ _ :/ _)" [10,10,10] 5) 

50 
Reduce :: "[i,i]\<Rightarrow>prop" ("Reduce[_,_]") 

14765  51 

63505  52 
\<comment> \<open>Types\<close> 
53 

54 
\<comment> \<open>Functions\<close> 

61391  55 
lambda :: "(i \<Rightarrow> i) \<Rightarrow> i" (binder "\<^bold>\<lambda>" 10) 
58977  56 
app :: "[i,i]\<Rightarrow>i" (infixl "`" 60) 
63505  57 
\<comment> \<open>Natural numbers\<close> 
41310  58 
Zero :: "i" ("0") 
63505  59 
\<comment> \<open>Pairing\<close> 
58977  60 
pair :: "[i,i]\<Rightarrow>i" ("(1<_,/_>)") 
0  61 

14765  62 
syntax 
61391  63 
"_PROD" :: "[idt,t,t]\<Rightarrow>t" ("(3\<Prod>_:_./ _)" 10) 
64 
"_SUM" :: "[idt,t,t]\<Rightarrow>t" ("(3\<Sum>_:_./ _)" 10) 

0  65 
translations 
61391  66 
"\<Prod>x:A. B" \<rightleftharpoons> "CONST Prod(A, \<lambda>x. B)" 
67 
"\<Sum>x:A. B" \<rightleftharpoons> "CONST Sum(A, \<lambda>x. B)" 

19761  68 

63505  69 
abbreviation Arrow :: "[t,t]\<Rightarrow>t" (infixr "\<longrightarrow>" 30) 
70 
where "A \<longrightarrow> B \<equiv> \<Prod>_:A. B" 

71 

72 
abbreviation Times :: "[t,t]\<Rightarrow>t" (infixr "\<times>" 50) 

73 
where "A \<times> B \<equiv> \<Sum>_:A. B" 

10467
e6e7205e9e91
xsymbol support for Pi, Sigma, >, : (membership)
paulson
parents:
3837
diff
changeset

74 

63505  75 
text \<open> 
76 
Reduction: a weaker notion than equality; a hack for simplification. 

77 
\<open>Reduce[a,b]\<close> means either that \<open>a = b : A\<close> for some \<open>A\<close> or else 

78 
that \<open>a\<close> and \<open>b\<close> are textually identical. 

0  79 

63505  80 
Does not verify \<open>a:A\<close>! Sound because only \<open>trans_red\<close> uses a \<open>Reduce\<close> 
81 
premise. No new theorems can be proved about the standard judgements. 

82 
\<close> 

83 
axiomatization 

84 
where 

51308  85 
refl_red: "\<And>a. Reduce[a,a]" and 
58977  86 
red_if_equal: "\<And>a b A. a = b : A \<Longrightarrow> Reduce[a,b]" and 
87 
trans_red: "\<And>a b c A. \<lbrakk>a = b : A; Reduce[b,c]\<rbrakk> \<Longrightarrow> a = c : A" and 

0  88 

63505  89 
\<comment> \<open>Reflexivity\<close> 
0  90 

58977  91 
refl_type: "\<And>A. A type \<Longrightarrow> A = A" and 
92 
refl_elem: "\<And>a A. a : A \<Longrightarrow> a = a : A" and 

0  93 

63505  94 
\<comment> \<open>Symmetry\<close> 
0  95 

58977  96 
sym_type: "\<And>A B. A = B \<Longrightarrow> B = A" and 
97 
sym_elem: "\<And>a b A. a = b : A \<Longrightarrow> b = a : A" and 

0  98 

63505  99 
\<comment> \<open>Transitivity\<close> 
0  100 

58977  101 
trans_type: "\<And>A B C. \<lbrakk>A = B; B = C\<rbrakk> \<Longrightarrow> A = C" and 
102 
trans_elem: "\<And>a b c A. \<lbrakk>a = b : A; b = c : A\<rbrakk> \<Longrightarrow> a = c : A" and 

0  103 

58977  104 
equal_types: "\<And>a A B. \<lbrakk>a : A; A = B\<rbrakk> \<Longrightarrow> a : B" and 
105 
equal_typesL: "\<And>a b A B. \<lbrakk>a = b : A; A = B\<rbrakk> \<Longrightarrow> a = b : B" and 

0  106 

63505  107 
\<comment> \<open>Substitution\<close> 
0  108 

58977  109 
subst_type: "\<And>a A B. \<lbrakk>a : A; \<And>z. z:A \<Longrightarrow> B(z) type\<rbrakk> \<Longrightarrow> B(a) type" and 
110 
subst_typeL: "\<And>a c A B D. \<lbrakk>a = c : A; \<And>z. z:A \<Longrightarrow> B(z) = D(z)\<rbrakk> \<Longrightarrow> B(a) = D(c)" and 

0  111 

58977  112 
subst_elem: "\<And>a b A B. \<lbrakk>a : A; \<And>z. z:A \<Longrightarrow> b(z):B(z)\<rbrakk> \<Longrightarrow> b(a):B(a)" and 
17441  113 
subst_elemL: 
58977  114 
"\<And>a b c d A B. \<lbrakk>a = c : A; \<And>z. z:A \<Longrightarrow> b(z)=d(z) : B(z)\<rbrakk> \<Longrightarrow> b(a)=d(c) : B(a)" and 
0  115 

116 

63505  117 
\<comment> \<open>The type \<open>N\<close>  natural numbers\<close> 
0  118 

51308  119 
NF: "N type" and 
120 
NI0: "0 : N" and 

58977  121 
NI_succ: "\<And>a. a : N \<Longrightarrow> succ(a) : N" and 
122 
NI_succL: "\<And>a b. a = b : N \<Longrightarrow> succ(a) = succ(b) : N" and 

0  123 

17441  124 
NE: 
58977  125 
"\<And>p a b C. \<lbrakk>p: N; a: C(0); \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v): C(succ(u))\<rbrakk> 
126 
\<Longrightarrow> rec(p, a, \<lambda>u v. b(u,v)) : C(p)" and 

0  127 

17441  128 
NEL: 
58977  129 
"\<And>p q a b c d C. \<lbrakk>p = q : N; a = c : C(0); 
130 
\<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v) = d(u,v): C(succ(u))\<rbrakk> 

131 
\<Longrightarrow> rec(p, a, \<lambda>u v. b(u,v)) = rec(q,c,d) : C(p)" and 

0  132 

17441  133 
NC0: 
58977  134 
"\<And>a b C. \<lbrakk>a: C(0); \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v): C(succ(u))\<rbrakk> 
135 
\<Longrightarrow> rec(0, a, \<lambda>u v. b(u,v)) = a : C(0)" and 

0  136 

17441  137 
NC_succ: 
58977  138 
"\<And>p a b C. \<lbrakk>p: N; a: C(0); \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v): C(succ(u))\<rbrakk> \<Longrightarrow> 
139 
rec(succ(p), a, \<lambda>u v. b(u,v)) = b(p, rec(p, a, \<lambda>u v. b(u,v))) : C(succ(p))" and 

0  140 

63505  141 
\<comment> \<open>The fourth Peano axiom. See page 91 of MartinLÃ¶f's book.\<close> 
58977  142 
zero_ne_succ: "\<And>a. \<lbrakk>a: N; 0 = succ(a) : N\<rbrakk> \<Longrightarrow> 0: F" and 
0  143 

144 

63505  145 
\<comment> \<open>The Product of a family of types\<close> 
0  146 

61391  147 
ProdF: "\<And>A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> B(x) type\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x) type" and 
0  148 

17441  149 
ProdFL: 
61391  150 
"\<And>A B C D. \<lbrakk>A = C; \<And>x. x:A \<Longrightarrow> B(x) = D(x)\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x) = \<Prod>x:C. D(x)" and 
0  151 

17441  152 
ProdI: 
61391  153 
"\<And>b A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> b(x):B(x)\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b(x) : \<Prod>x:A. B(x)" and 
0  154 

58977  155 
ProdIL: "\<And>b c A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> b(x) = c(x) : B(x)\<rbrakk> \<Longrightarrow> 
61391  156 
\<^bold>\<lambda>x. b(x) = \<^bold>\<lambda>x. c(x) : \<Prod>x:A. B(x)" and 
0  157 

61391  158 
ProdE: "\<And>p a A B. \<lbrakk>p : \<Prod>x:A. B(x); a : A\<rbrakk> \<Longrightarrow> p`a : B(a)" and 
159 
ProdEL: "\<And>p q a b A B. \<lbrakk>p = q: \<Prod>x:A. B(x); a = b : A\<rbrakk> \<Longrightarrow> p`a = q`b : B(a)" and 

0  160 

61391  161 
ProdC: "\<And>a b A B. \<lbrakk>a : A; \<And>x. x:A \<Longrightarrow> b(x) : B(x)\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. b(x)) ` a = b(a) : B(a)" and 
0  162 

61391  163 
ProdC2: "\<And>p A B. p : \<Prod>x:A. B(x) \<Longrightarrow> (\<^bold>\<lambda>x. p`x) = p : \<Prod>x:A. B(x)" and 
0  164 

165 

63505  166 
\<comment> \<open>The Sum of a family of types\<close> 
0  167 

61391  168 
SumF: "\<And>A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> B(x) type\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x) type" and 
169 
SumFL: "\<And>A B C D. \<lbrakk>A = C; \<And>x. x:A \<Longrightarrow> B(x) = D(x)\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x) = \<Sum>x:C. D(x)" and 

0  170 

61391  171 
SumI: "\<And>a b A B. \<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> <a,b> : \<Sum>x:A. B(x)" and 
172 
SumIL: "\<And>a b c d A B. \<lbrakk> a = c : A; b = d : B(a)\<rbrakk> \<Longrightarrow> <a,b> = <c,d> : \<Sum>x:A. B(x)" and 

0  173 

61391  174 
SumE: "\<And>p c A B C. \<lbrakk>p: \<Sum>x:A. B(x); \<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> c(x,y): C(<x,y>)\<rbrakk> 
58977  175 
\<Longrightarrow> split(p, \<lambda>x y. c(x,y)) : C(p)" and 
0  176 

61391  177 
SumEL: "\<And>p q c d A B C. \<lbrakk>p = q : \<Sum>x:A. B(x); 
58977  178 
\<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> c(x,y)=d(x,y): C(<x,y>)\<rbrakk> 
179 
\<Longrightarrow> split(p, \<lambda>x y. c(x,y)) = split(q, \<lambda>x y. d(x,y)) : C(p)" and 

0  180 

58977  181 
SumC: "\<And>a b c A B C. \<lbrakk>a: A; b: B(a); \<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> c(x,y): C(<x,y>)\<rbrakk> 
182 
\<Longrightarrow> split(<a,b>, \<lambda>x y. c(x,y)) = c(a,b) : C(<a,b>)" and 

0  183 

61391  184 
fst_def: "\<And>a. fst(a) \<equiv> split(a, \<lambda>x y. x)" and 
185 
snd_def: "\<And>a. snd(a) \<equiv> split(a, \<lambda>x y. y)" and 

0  186 

187 

63505  188 
\<comment> \<open>The sum of two types\<close> 
0  189 

58977  190 
PlusF: "\<And>A B. \<lbrakk>A type; B type\<rbrakk> \<Longrightarrow> A+B type" and 
191 
PlusFL: "\<And>A B C D. \<lbrakk>A = C; B = D\<rbrakk> \<Longrightarrow> A+B = C+D" and 

0  192 

58977  193 
PlusI_inl: "\<And>a A B. \<lbrakk>a : A; B type\<rbrakk> \<Longrightarrow> inl(a) : A+B" and 
194 
PlusI_inlL: "\<And>a c A B. \<lbrakk>a = c : A; B type\<rbrakk> \<Longrightarrow> inl(a) = inl(c) : A+B" and 

0  195 

58977  196 
PlusI_inr: "\<And>b A B. \<lbrakk>A type; b : B\<rbrakk> \<Longrightarrow> inr(b) : A+B" and 
197 
PlusI_inrL: "\<And>b d A B. \<lbrakk>A type; b = d : B\<rbrakk> \<Longrightarrow> inr(b) = inr(d) : A+B" and 

0  198 

17441  199 
PlusE: 
58977  200 
"\<And>p c d A B C. \<lbrakk>p: A+B; 
201 
\<And>x. x:A \<Longrightarrow> c(x): C(inl(x)); 

202 
\<And>y. y:B \<Longrightarrow> d(y): C(inr(y)) \<rbrakk> \<Longrightarrow> when(p, \<lambda>x. c(x), \<lambda>y. d(y)) : C(p)" and 

0  203 

17441  204 
PlusEL: 
58977  205 
"\<And>p q c d e f A B C. \<lbrakk>p = q : A+B; 
206 
\<And>x. x: A \<Longrightarrow> c(x) = e(x) : C(inl(x)); 

207 
\<And>y. y: B \<Longrightarrow> d(y) = f(y) : C(inr(y))\<rbrakk> 

208 
\<Longrightarrow> when(p, \<lambda>x. c(x), \<lambda>y. d(y)) = when(q, \<lambda>x. e(x), \<lambda>y. f(y)) : C(p)" and 

0  209 

17441  210 
PlusC_inl: 
64980  211 
"\<And>a c d A B C. \<lbrakk>a: A; 
58977  212 
\<And>x. x:A \<Longrightarrow> c(x): C(inl(x)); 
213 
\<And>y. y:B \<Longrightarrow> d(y): C(inr(y)) \<rbrakk> 

214 
\<Longrightarrow> when(inl(a), \<lambda>x. c(x), \<lambda>y. d(y)) = c(a) : C(inl(a))" and 

0  215 

17441  216 
PlusC_inr: 
58977  217 
"\<And>b c d A B C. \<lbrakk>b: B; 
218 
\<And>x. x:A \<Longrightarrow> c(x): C(inl(x)); 

219 
\<And>y. y:B \<Longrightarrow> d(y): C(inr(y))\<rbrakk> 

220 
\<Longrightarrow> when(inr(b), \<lambda>x. c(x), \<lambda>y. d(y)) = d(b) : C(inr(b))" and 

0  221 

222 

63505  223 
\<comment> \<open>The type \<open>Eq\<close>\<close> 
0  224 

58977  225 
EqF: "\<And>a b A. \<lbrakk>A type; a : A; b : A\<rbrakk> \<Longrightarrow> Eq(A,a,b) type" and 
226 
EqFL: "\<And>a b c d A B. \<lbrakk>A = B; a = c : A; b = d : A\<rbrakk> \<Longrightarrow> Eq(A,a,b) = Eq(B,c,d)" and 

227 
EqI: "\<And>a b A. a = b : A \<Longrightarrow> eq : Eq(A,a,b)" and 

228 
EqE: "\<And>p a b A. p : Eq(A,a,b) \<Longrightarrow> a = b : A" and 

0  229 

63505  230 
\<comment> \<open>By equality of types, can prove \<open>C(p)\<close> from \<open>C(eq)\<close>, an elimination rule\<close> 
58977  231 
EqC: "\<And>p a b A. p : Eq(A,a,b) \<Longrightarrow> p = eq : Eq(A,a,b)" and 
0  232 

63505  233 

234 
\<comment> \<open>The type \<open>F\<close>\<close> 

0  235 

51308  236 
FF: "F type" and 
58977  237 
FE: "\<And>p C. \<lbrakk>p: F; C type\<rbrakk> \<Longrightarrow> contr(p) : C" and 
238 
FEL: "\<And>p q C. \<lbrakk>p = q : F; C type\<rbrakk> \<Longrightarrow> contr(p) = contr(q) : C" and 

0  239 

63505  240 

241 
\<comment> \<open>The type T\<close> 

242 
\<comment> \<open> 

243 
MartinLÃ¶f's book (page 68) discusses elimination and computation. 

244 
Elimination can be derived by computation and equality of types, 

245 
but with an extra premise \<open>C(x)\<close> type \<open>x:T\<close>. 

246 
Also computation can be derived from elimination. 

247 
\<close> 

0  248 

51308  249 
TF: "T type" and 
250 
TI: "tt : T" and 

58977  251 
TE: "\<And>p c C. \<lbrakk>p : T; c : C(tt)\<rbrakk> \<Longrightarrow> c : C(p)" and 
252 
TEL: "\<And>p q c d C. \<lbrakk>p = q : T; c = d : C(tt)\<rbrakk> \<Longrightarrow> c = d : C(p)" and 

253 
TC: "\<And>p. p : T \<Longrightarrow> p = tt : T" 

0  254 

19761  255 

256 
subsection "Tactics and derived rules for Constructive Type Theory" 

257 

63505  258 
text \<open>Formation rules.\<close> 
19761  259 
lemmas form_rls = NF ProdF SumF PlusF EqF FF TF 
260 
and formL_rls = ProdFL SumFL PlusFL EqFL 

261 

63505  262 
text \<open> 
263 
Introduction rules. OMITTED: 

264 
\<^item> \<open>EqI\<close>, because its premise is an \<open>eqelem\<close>, not an \<open>elem\<close>. 

265 
\<close> 

19761  266 
lemmas intr_rls = NI0 NI_succ ProdI SumI PlusI_inl PlusI_inr TI 
267 
and intrL_rls = NI_succL ProdIL SumIL PlusI_inlL PlusI_inrL 

268 

63505  269 
text \<open> 
270 
Elimination rules. OMITTED: 

271 
\<^item> \<open>EqE\<close>, because its conclusion is an \<open>eqelem\<close>, not an \<open>elem\<close> 

272 
\<^item> \<open>TE\<close>, because it does not involve a constructor. 

273 
\<close> 

19761  274 
lemmas elim_rls = NE ProdE SumE PlusE FE 
275 
and elimL_rls = NEL ProdEL SumEL PlusEL FEL 

276 

63505  277 
text \<open>OMITTED: \<open>eqC\<close> are \<open>TC\<close> because they make rewriting loop: \<open>p = un = un = \<dots>\<close>\<close> 
19761  278 
lemmas comp_rls = NC0 NC_succ ProdC SumC PlusC_inl PlusC_inr 
279 

63505  280 
text \<open>Rules with conclusion \<open>a:A\<close>, an elem judgement.\<close> 
19761  281 
lemmas element_rls = intr_rls elim_rls 
282 

63505  283 
text \<open>Definitions are (meta)equality axioms.\<close> 
19761  284 
lemmas basic_defs = fst_def snd_def 
285 

63505  286 
text \<open>Compare with standard version: \<open>B\<close> is applied to UNSIMPLIFIED expression!\<close> 
58977  287 
lemma SumIL2: "\<lbrakk>c = a : A; d = b : B(a)\<rbrakk> \<Longrightarrow> <c,d> = <a,b> : Sum(A,B)" 
65338  288 
by (rule sym_elem) (rule SumIL; rule sym_elem) 
19761  289 

290 
lemmas intrL2_rls = NI_succL ProdIL SumIL2 PlusI_inlL PlusI_inrL 

291 

63505  292 
text \<open> 
293 
Exploit \<open>p:Prod(A,B)\<close> to create the assumption \<open>z:B(a)\<close>. 

294 
A more natural form of product elimination. 

295 
\<close> 

19761  296 
lemma subst_prodE: 
297 
assumes "p: Prod(A,B)" 

298 
and "a: A" 

58977  299 
and "\<And>z. z: B(a) \<Longrightarrow> c(z): C(z)" 
19761  300 
shows "c(p`a): C(p`a)" 
63505  301 
by (rule assms ProdE)+ 
19761  302 

303 

60770  304 
subsection \<open>Tactics for type checking\<close> 
19761  305 

60770  306 
ML \<open> 
19761  307 
local 
308 

56250  309 
fun is_rigid_elem (Const(@{const_name Elem},_) $ a $ _) = not(is_Var (head_of a)) 
310 
 is_rigid_elem (Const(@{const_name Eqelem},_) $ a $ _ $ _) = not(is_Var (head_of a)) 

311 
 is_rigid_elem (Const(@{const_name Type},_) $ a) = not(is_Var (head_of a)) 

19761  312 
 is_rigid_elem _ = false 
313 

314 
in 

315 

316 
(*Try solving a:A or a=b:A by assumption provided a is rigid!*) 

63505  317 
fun test_assume_tac ctxt = SUBGOAL (fn (prem, i) => 
318 
if is_rigid_elem (Logic.strip_assums_concl prem) 

319 
then assume_tac ctxt i else no_tac) 

19761  320 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

321 
fun ASSUME ctxt tf i = test_assume_tac ctxt i ORELSE tf i 
19761  322 

63505  323 
end 
60770  324 
\<close> 
19761  325 

63505  326 
text \<open> 
327 
For simplification: type formation and checking, 

328 
but no equalities between terms. 

329 
\<close> 

19761  330 
lemmas routine_rls = form_rls formL_rls refl_type element_rls 
331 

60770  332 
ML \<open> 
59164  333 
fun routine_tac rls ctxt prems = 
334 
ASSUME ctxt (filt_resolve_from_net_tac ctxt 4 (Tactic.build_net (prems @ rls))); 

19761  335 

336 
(*Solve all subgoals "A type" using formation rules. *) 

59164  337 
val form_net = Tactic.build_net @{thms form_rls}; 
338 
fun form_tac ctxt = 

339 
REPEAT_FIRST (ASSUME ctxt (filt_resolve_from_net_tac ctxt 1 form_net)); 

19761  340 

341 
(*Type checking: solve a:A (a rigid, A flexible) by intro and elim rules. *) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

342 
fun typechk_tac ctxt thms = 
59164  343 
let val tac = 
344 
filt_resolve_from_net_tac ctxt 3 

345 
(Tactic.build_net (thms @ @{thms form_rls} @ @{thms element_rls})) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

346 
in REPEAT_FIRST (ASSUME ctxt tac) end 
19761  347 

348 
(*Solve a:A (a flexible, A rigid) by introduction rules. 

349 
Cannot use stringtrees (filt_resolve_tac) since 

350 
goals like ?a:SUM(A,B) have a trivial headstring *) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

351 
fun intr_tac ctxt thms = 
59164  352 
let val tac = 
353 
filt_resolve_from_net_tac ctxt 1 

354 
(Tactic.build_net (thms @ @{thms form_rls} @ @{thms intr_rls})) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

355 
in REPEAT_FIRST (ASSUME ctxt tac) end 
19761  356 

357 
(*Equality proving: solve a=b:A (where a is rigid) by long rules. *) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

358 
fun equal_tac ctxt thms = 
59164  359 
REPEAT_FIRST 
63505  360 
(ASSUME ctxt 
361 
(filt_resolve_from_net_tac ctxt 3 

362 
(Tactic.build_net (thms @ @{thms form_rls element_rls intrL_rls elimL_rls refl_elem})))) 

60770  363 
\<close> 
19761  364 

60770  365 
method_setup form = \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD (form_tac ctxt))\<close> 
366 
method_setup typechk = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (typechk_tac ctxt ths))\<close> 

367 
method_setup intr = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (intr_tac ctxt ths))\<close> 

368 
method_setup equal = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (equal_tac ctxt ths))\<close> 

19761  369 

370 

60770  371 
subsection \<open>Simplification\<close> 
19761  372 

63505  373 
text \<open>To simplify the type in a goal.\<close> 
58977  374 
lemma replace_type: "\<lbrakk>B = A; a : A\<rbrakk> \<Longrightarrow> a : B" 
63505  375 
apply (rule equal_types) 
376 
apply (rule_tac [2] sym_type) 

377 
apply assumption+ 

378 
done 

19761  379 

63505  380 
text \<open>Simplify the parameter of a unary type operator.\<close> 
19761  381 
lemma subst_eqtyparg: 
23467  382 
assumes 1: "a=c : A" 
58977  383 
and 2: "\<And>z. z:A \<Longrightarrow> B(z) type" 
63505  384 
shows "B(a) = B(c)" 
385 
apply (rule subst_typeL) 

386 
apply (rule_tac [2] refl_type) 

387 
apply (rule 1) 

388 
apply (erule 2) 

389 
done 

19761  390 

63505  391 
text \<open>Simplification rules for Constructive Type Theory.\<close> 
19761  392 
lemmas reduction_rls = comp_rls [THEN trans_elem] 
393 

60770  394 
ML \<open> 
19761  395 
(*Converts each goal "e : Eq(A,a,b)" into "a=b:A" for simplification. 
396 
Uses other intro rules to avoid changing flexible goals.*) 

59164  397 
val eqintr_net = Tactic.build_net @{thms EqI intr_rls} 
58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

398 
fun eqintr_tac ctxt = 
59164  399 
REPEAT_FIRST (ASSUME ctxt (filt_resolve_from_net_tac ctxt 1 eqintr_net)) 
19761  400 

401 
(** Tactics that instantiate CTTrules. 

402 
Vars in the given terms will be incremented! 

403 
The (rtac EqE i) lets them apply to equality judgements. **) 

404 

27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

405 
fun NE_tac ctxt sp i = 
60754  406 
TRY (resolve_tac ctxt @{thms EqE} i) THEN 
59780  407 
Rule_Insts.res_inst_tac ctxt [((("p", 0), Position.none), sp)] [] @{thm NE} i 
19761  408 

27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

409 
fun SumE_tac ctxt sp i = 
60754  410 
TRY (resolve_tac ctxt @{thms EqE} i) THEN 
59780  411 
Rule_Insts.res_inst_tac ctxt [((("p", 0), Position.none), sp)] [] @{thm SumE} i 
19761  412 

27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

413 
fun PlusE_tac ctxt sp i = 
60754  414 
TRY (resolve_tac ctxt @{thms EqE} i) THEN 
59780  415 
Rule_Insts.res_inst_tac ctxt [((("p", 0), Position.none), sp)] [] @{thm PlusE} i 
19761  416 

417 
(** Predicate logic reasoning, WITH THINNING!! Procedures adapted from NJ. **) 

418 

419 
(*Finds f:Prod(A,B) and a:A in the assumptions, concludes there is z:B(a) *) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

420 
fun add_mp_tac ctxt i = 
60754  421 
resolve_tac ctxt @{thms subst_prodE} i THEN assume_tac ctxt i THEN assume_tac ctxt i 
19761  422 

61391  423 
(*Finds P\<longrightarrow>Q and P in the assumptions, replaces implication by Q *) 
60754  424 
fun mp_tac ctxt i = eresolve_tac ctxt @{thms subst_prodE} i THEN assume_tac ctxt i 
19761  425 

426 
(*"safe" when regarded as predicate calculus rules*) 

427 
val safe_brls = sort (make_ord lessb) 

27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

428 
[ (true, @{thm FE}), (true,asm_rl), 
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

429 
(false, @{thm ProdI}), (true, @{thm SumE}), (true, @{thm PlusE}) ] 
19761  430 

431 
val unsafe_brls = 

27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

432 
[ (false, @{thm PlusI_inl}), (false, @{thm PlusI_inr}), (false, @{thm SumI}), 
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

433 
(true, @{thm subst_prodE}) ] 
19761  434 

435 
(*0 subgoals vs 1 or more*) 

436 
val (safe0_brls, safep_brls) = 

437 
List.partition (curry (op =) 0 o subgoals_of_brl) safe_brls 

438 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

439 
fun safestep_tac ctxt thms i = 
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

440 
form_tac ctxt ORELSE 
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
59164
diff
changeset

441 
resolve_tac ctxt thms i ORELSE 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
59164
diff
changeset

442 
biresolve_tac ctxt safe0_brls i ORELSE mp_tac ctxt i ORELSE 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
59164
diff
changeset

443 
DETERM (biresolve_tac ctxt safep_brls i) 
19761  444 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

445 
fun safe_tac ctxt thms i = DEPTH_SOLVE_1 (safestep_tac ctxt thms i) 
19761  446 

59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
59164
diff
changeset

447 
fun step_tac ctxt thms = safestep_tac ctxt thms ORELSE' biresolve_tac ctxt unsafe_brls 
19761  448 

449 
(*Fails unless it solves the goal!*) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

450 
fun pc_tac ctxt thms = DEPTH_SOLVE_1 o (step_tac ctxt thms) 
60770  451 
\<close> 
19761  452 

60770  453 
method_setup eqintr = \<open>Scan.succeed (SIMPLE_METHOD o eqintr_tac)\<close> 
454 
method_setup NE = \<open> 

63120
629a4c5e953e
embedded content may be delimited via cartouches;
wenzelm
parents:
61391
diff
changeset

455 
Scan.lift Args.embedded_inner_syntax >> (fn s => fn ctxt => SIMPLE_METHOD' (NE_tac ctxt s)) 
60770  456 
\<close> 
457 
method_setup pc = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD' (pc_tac ctxt ths))\<close> 

458 
method_setup add_mp = \<open>Scan.succeed (SIMPLE_METHOD' o add_mp_tac)\<close> 

58972  459 

48891  460 
ML_file "rew.ML" 
60770  461 
method_setup rew = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (rew_tac ctxt ths))\<close> 
462 
method_setup hyp_rew = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (hyp_rew_tac ctxt ths))\<close> 

58972  463 

19761  464 

60770  465 
subsection \<open>The elimination rules for fst/snd\<close> 
19761  466 

58977  467 
lemma SumE_fst: "p : Sum(A,B) \<Longrightarrow> fst(p) : A" 
63505  468 
apply (unfold basic_defs) 
469 
apply (erule SumE) 

470 
apply assumption 

471 
done 

19761  472 

63505  473 
text \<open>The first premise must be \<open>p:Sum(A,B)\<close>!!.\<close> 
19761  474 
lemma SumE_snd: 
475 
assumes major: "p: Sum(A,B)" 

476 
and "A type" 

58977  477 
and "\<And>x. x:A \<Longrightarrow> B(x) type" 
19761  478 
shows "snd(p) : B(fst(p))" 
479 
apply (unfold basic_defs) 

480 
apply (rule major [THEN SumE]) 

481 
apply (rule SumC [THEN subst_eqtyparg, THEN replace_type]) 

63505  482 
apply (typechk assms) 
19761  483 
done 
484 

65447
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

485 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

486 
section \<open>The twoelement type (booleans and conditionals)\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

487 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

488 
definition Bool :: "t" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

489 
where "Bool \<equiv> T+T" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

490 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

491 
definition true :: "i" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

492 
where "true \<equiv> inl(tt)" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

493 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

494 
definition false :: "i" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

495 
where "false \<equiv> inr(tt)" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

496 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

497 
definition cond :: "[i,i,i]\<Rightarrow>i" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

498 
where "cond(a,b,c) \<equiv> when(a, \<lambda>_. b, \<lambda>_. c)" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

499 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

500 
lemmas bool_defs = Bool_def true_def false_def cond_def 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

501 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

502 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

503 
subsection \<open>Derivation of rules for the type \<open>Bool\<close>\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

504 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

505 
text \<open>Formation rule.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

506 
lemma boolF: "Bool type" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

507 
unfolding bool_defs by typechk 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

508 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

509 
text \<open>Introduction rules for \<open>true\<close>, \<open>false\<close>.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

510 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

511 
lemma boolI_true: "true : Bool" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

512 
unfolding bool_defs by typechk 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

513 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

514 
lemma boolI_false: "false : Bool" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

515 
unfolding bool_defs by typechk 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

516 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

517 
text \<open>Elimination rule: typing of \<open>cond\<close>.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

518 
lemma boolE: "\<lbrakk>p:Bool; a : C(true); b : C(false)\<rbrakk> \<Longrightarrow> cond(p,a,b) : C(p)" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

519 
unfolding bool_defs 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

520 
apply (typechk; erule TE) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

521 
apply typechk 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

522 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

523 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

524 
lemma boolEL: "\<lbrakk>p = q : Bool; a = c : C(true); b = d : C(false)\<rbrakk> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

525 
\<Longrightarrow> cond(p,a,b) = cond(q,c,d) : C(p)" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

526 
unfolding bool_defs 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

527 
apply (rule PlusEL) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

528 
apply (erule asm_rl refl_elem [THEN TEL])+ 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

529 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

530 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

531 
text \<open>Computation rules for \<open>true\<close>, \<open>false\<close>.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

532 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

533 
lemma boolC_true: "\<lbrakk>a : C(true); b : C(false)\<rbrakk> \<Longrightarrow> cond(true,a,b) = a : C(true)" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

534 
unfolding bool_defs 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

535 
apply (rule comp_rls) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

536 
apply typechk 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

537 
apply (erule_tac [!] TE) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

538 
apply typechk 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

539 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

540 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

541 
lemma boolC_false: "\<lbrakk>a : C(true); b : C(false)\<rbrakk> \<Longrightarrow> cond(false,a,b) = b : C(false)" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

542 
unfolding bool_defs 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

543 
apply (rule comp_rls) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

544 
apply typechk 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

545 
apply (erule_tac [!] TE) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

546 
apply typechk 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

547 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

548 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

549 
section \<open>Elementary arithmetic\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

550 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

551 
subsection \<open>Arithmetic operators and their definitions\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

552 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

553 
definition add :: "[i,i]\<Rightarrow>i" (infixr "#+" 65) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

554 
where "a#+b \<equiv> rec(a, b, \<lambda>u v. succ(v))" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

555 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

556 
definition diff :: "[i,i]\<Rightarrow>i" (infixr "" 65) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

557 
where "ab \<equiv> rec(b, a, \<lambda>u v. rec(v, 0, \<lambda>x y. x))" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

558 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

559 
definition absdiff :: "[i,i]\<Rightarrow>i" (infixr "" 65) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

560 
where "ab \<equiv> (ab) #+ (ba)" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

561 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

562 
definition mult :: "[i,i]\<Rightarrow>i" (infixr "#*" 70) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

563 
where "a#*b \<equiv> rec(a, 0, \<lambda>u v. b #+ v)" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

564 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

565 
definition mod :: "[i,i]\<Rightarrow>i" (infixr "mod" 70) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

566 
where "a mod b \<equiv> rec(a, 0, \<lambda>u v. rec(succ(v)  b, 0, \<lambda>x y. succ(v)))" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

567 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

568 
definition div :: "[i,i]\<Rightarrow>i" (infixr "div" 70) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

569 
where "a div b \<equiv> rec(a, 0, \<lambda>u v. rec(succ(u) mod b, succ(v), \<lambda>x y. v))" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

570 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

571 
lemmas arith_defs = add_def diff_def absdiff_def mult_def mod_def div_def 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

572 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

573 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

574 
subsection \<open>Proofs about elementary arithmetic: addition, multiplication, etc.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

575 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

576 
subsubsection \<open>Addition\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

577 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

578 
text \<open>Typing of \<open>add\<close>: short and long versions.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

579 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

580 
lemma add_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #+ b : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

581 
unfolding arith_defs by typechk 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

582 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

583 
lemma add_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a #+ b = c #+ d : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

584 
unfolding arith_defs by equal 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

585 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

586 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

587 
text \<open>Computation for \<open>add\<close>: 0 and successor cases.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

588 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

589 
lemma addC0: "b:N \<Longrightarrow> 0 #+ b = b : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

590 
unfolding arith_defs by rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

591 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

592 
lemma addC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) #+ b = succ(a #+ b) : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

593 
unfolding arith_defs by rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

594 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

595 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

596 
subsubsection \<open>Multiplication\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

597 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

598 
text \<open>Typing of \<open>mult\<close>: short and long versions.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

599 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

600 
lemma mult_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* b : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

601 
unfolding arith_defs by (typechk add_typing) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

602 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

603 
lemma mult_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a #* b = c #* d : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

604 
unfolding arith_defs by (equal add_typingL) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

605 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

606 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

607 
text \<open>Computation for \<open>mult\<close>: 0 and successor cases.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

608 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

609 
lemma multC0: "b:N \<Longrightarrow> 0 #* b = 0 : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

610 
unfolding arith_defs by rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

611 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

612 
lemma multC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) #* b = b #+ (a #* b) : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

613 
unfolding arith_defs by rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

614 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

615 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

616 
subsubsection \<open>Difference\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

617 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

618 
text \<open>Typing of difference.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

619 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

620 
lemma diff_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a  b : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

621 
unfolding arith_defs by typechk 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

622 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

623 
lemma diff_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a  b = c  d : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

624 
unfolding arith_defs by equal 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

625 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

626 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

627 
text \<open>Computation for difference: 0 and successor cases.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

628 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

629 
lemma diffC0: "a:N \<Longrightarrow> a  0 = a : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

630 
unfolding arith_defs by rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

631 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

632 
text \<open>Note: \<open>rec(a, 0, \<lambda>z w.z)\<close> is \<open>pred(a).\<close>\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

633 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

634 
lemma diff_0_eq_0: "b:N \<Longrightarrow> 0  b = 0 : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

635 
unfolding arith_defs 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

636 
apply (NE b) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

637 
apply hyp_rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

638 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

639 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

640 
text \<open> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

641 
Essential to simplify FIRST!! (Else we get a critical pair) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

642 
\<open>succ(a)  succ(b)\<close> rewrites to \<open>pred(succ(a)  b)\<close>. 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

643 
\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

644 
lemma diff_succ_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a)  succ(b) = a  b : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

645 
unfolding arith_defs 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

646 
apply hyp_rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

647 
apply (NE b) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

648 
apply hyp_rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

649 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

650 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

651 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

652 
subsection \<open>Simplification\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

653 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

654 
lemmas arith_typing_rls = add_typing mult_typing diff_typing 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

655 
and arith_congr_rls = add_typingL mult_typingL diff_typingL 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

656 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

657 
lemmas congr_rls = arith_congr_rls intrL2_rls elimL_rls 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

658 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

659 
lemmas arithC_rls = 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

660 
addC0 addC_succ 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

661 
multC0 multC_succ 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

662 
diffC0 diff_0_eq_0 diff_succ_succ 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

663 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

664 
ML \<open> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

665 
structure Arith_simp = TSimpFun( 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

666 
val refl = @{thm refl_elem} 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

667 
val sym = @{thm sym_elem} 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

668 
val trans = @{thm trans_elem} 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

669 
val refl_red = @{thm refl_red} 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

670 
val trans_red = @{thm trans_red} 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

671 
val red_if_equal = @{thm red_if_equal} 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

672 
val default_rls = @{thms arithC_rls comp_rls} 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

673 
val routine_tac = routine_tac @{thms arith_typing_rls routine_rls} 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

674 
) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

675 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

676 
fun arith_rew_tac ctxt prems = 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

677 
make_rew_tac ctxt (Arith_simp.norm_tac ctxt (@{thms congr_rls}, prems)) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

678 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

679 
fun hyp_arith_rew_tac ctxt prems = 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

680 
make_rew_tac ctxt 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

681 
(Arith_simp.cond_norm_tac ctxt (prove_cond_tac ctxt, @{thms congr_rls}, prems)) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

682 
\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

683 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

684 
method_setup arith_rew = \<open> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

685 
Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (arith_rew_tac ctxt ths)) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

686 
\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

687 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

688 
method_setup hyp_arith_rew = \<open> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

689 
Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (hyp_arith_rew_tac ctxt ths)) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

690 
\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

691 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

692 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

693 
subsection \<open>Addition\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

694 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

695 
text \<open>Associative law for addition.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

696 
lemma add_assoc: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #+ b) #+ c = a #+ (b #+ c) : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

697 
apply (NE a) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

698 
apply hyp_arith_rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

699 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

700 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

701 
text \<open>Commutative law for addition. Can be proved using three inductions. 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

702 
Must simplify after first induction! Orientation of rewrites is delicate.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

703 
lemma add_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #+ b = b #+ a : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

704 
apply (NE a) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

705 
apply hyp_arith_rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

706 
apply (rule sym_elem) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

707 
prefer 2 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

708 
apply (NE b) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

709 
prefer 4 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

710 
apply (NE b) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

711 
apply hyp_arith_rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

712 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

713 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

714 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

715 
subsection \<open>Multiplication\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

716 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

717 
text \<open>Right annihilation in product.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

718 
lemma mult_0_right: "a:N \<Longrightarrow> a #* 0 = 0 : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

719 
apply (NE a) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

720 
apply hyp_arith_rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

721 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

722 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

723 
text \<open>Right successor law for multiplication.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

724 
lemma mult_succ_right: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* succ(b) = a #+ (a #* b) : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

725 
apply (NE a) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

726 
apply (hyp_arith_rew add_assoc [THEN sym_elem]) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

727 
apply (assumption  rule add_commute mult_typingL add_typingL intrL_rls refl_elem)+ 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

728 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

729 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

730 
text \<open>Commutative law for multiplication.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

731 
lemma mult_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* b = b #* a : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

732 
apply (NE a) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

733 
apply (hyp_arith_rew mult_0_right mult_succ_right) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

734 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

735 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

736 
text \<open>Addition distributes over multiplication.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

737 
lemma add_mult_distrib: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #+ b) #* c = (a #* c) #+ (b #* c) : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

738 
apply (NE a) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

739 
apply (hyp_arith_rew add_assoc [THEN sym_elem]) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

740 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

741 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

742 
text \<open>Associative law for multiplication.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

743 
lemma mult_assoc: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #* b) #* c = a #* (b #* c) : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

744 
apply (NE a) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

745 
apply (hyp_arith_rew add_mult_distrib) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

746 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

747 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

748 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

749 
subsection \<open>Difference\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

750 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

751 
text \<open> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

752 
Difference on natural numbers, without negative numbers 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

753 
\<^item> \<open>a  b = 0\<close> iff \<open>a \<le> b\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

754 
\<^item> \<open>a  b = succ(c)\<close> iff \<open>a > b\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

755 
\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

756 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

757 
lemma diff_self_eq_0: "a:N \<Longrightarrow> a  a = 0 : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

758 
apply (NE a) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

759 
apply hyp_arith_rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

760 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

761 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

762 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

763 
lemma add_0_right: "\<lbrakk>c : N; 0 : N; c : N\<rbrakk> \<Longrightarrow> c #+ 0 = c : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

764 
by (rule addC0 [THEN [3] add_commute [THEN trans_elem]]) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

765 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

766 
text \<open> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

767 
Addition is the inverse of subtraction: if \<open>b \<le> x\<close> then \<open>b #+ (x  b) = x\<close>. 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

768 
An example of induction over a quantified formula (a product). 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

769 
Uses rewriting with a quantified, implicative inductive hypothesis. 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

770 
\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

771 
schematic_goal add_diff_inverse_lemma: 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

772 
"b:N \<Longrightarrow> ?a : \<Prod>x:N. Eq(N, bx, 0) \<longrightarrow> Eq(N, b #+ (xb), x)" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

773 
apply (NE b) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

774 
\<comment> \<open>strip one "universal quantifier" but not the "implication"\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

775 
apply (rule_tac [3] intr_rls) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

776 
\<comment> \<open>case analysis on \<open>x\<close> in \<open>succ(u) \<le> x \<longrightarrow> succ(u) #+ (x  succ(u)) = x\<close>\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

777 
prefer 4 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

778 
apply (NE x) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

779 
apply assumption 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

780 
\<comment> \<open>Prepare for simplification of types  the antecedent \<open>succ(u) \<le> x\<close>\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

781 
apply (rule_tac [2] replace_type) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

782 
apply (rule_tac [1] replace_type) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

783 
apply arith_rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

784 
\<comment> \<open>Solves first 0 goal, simplifies others. Two sugbgoals remain. 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

785 
Both follow by rewriting, (2) using quantified induction hyp.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

786 
apply intr \<comment> \<open>strips remaining \<open>\<Prod>\<close>s\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

787 
apply (hyp_arith_rew add_0_right) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

788 
apply assumption 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

789 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

790 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

791 
text \<open> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

792 
Version of above with premise \<open>b  a = 0\<close> i.e. \<open>a \<ge> b\<close>. 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

793 
Using @{thm ProdE} does not work  for \<open>?B(?a)\<close> is ambiguous. 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

794 
Instead, @{thm add_diff_inverse_lemma} states the desired induction scheme; 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

795 
the use of \<open>THEN\<close> below instantiates Vars in @{thm ProdE} automatically. 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

796 
\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

797 
lemma add_diff_inverse: "\<lbrakk>a:N; b:N; b  a = 0 : N\<rbrakk> \<Longrightarrow> b #+ (ab) = a : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

798 
apply (rule EqE) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

799 
apply (rule add_diff_inverse_lemma [THEN ProdE, THEN ProdE]) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

800 
apply (assumption  rule EqI)+ 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

801 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

802 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

803 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

804 
subsection \<open>Absolute difference\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

805 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

806 
text \<open>Typing of absolute difference: short and long versions.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

807 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

808 
lemma absdiff_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a  b : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

809 
unfolding arith_defs by typechk 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

810 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

811 
lemma absdiff_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a  b = c  d : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

812 
unfolding arith_defs by equal 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

813 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

814 
lemma absdiff_self_eq_0: "a:N \<Longrightarrow> a  a = 0 : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

815 
unfolding absdiff_def by (arith_rew diff_self_eq_0) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

816 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

817 
lemma absdiffC0: "a:N \<Longrightarrow> 0  a = a : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

818 
unfolding absdiff_def by hyp_arith_rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

819 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

820 
lemma absdiff_succ_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a)  succ(b) = a  b : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

821 
unfolding absdiff_def by hyp_arith_rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

822 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

823 
text \<open>Note how easy using commutative laws can be? ...not always...\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

824 
lemma absdiff_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a  b = b  a : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

825 
unfolding absdiff_def 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

826 
apply (rule add_commute) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

827 
apply (typechk diff_typing) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

828 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

829 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

830 
text \<open>If \<open>a + b = 0\<close> then \<open>a = 0\<close>. Surprisingly tedious.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

831 
schematic_goal add_eq0_lemma: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> ?c : Eq(N,a#+b,0) \<longrightarrow> Eq(N,a,0)" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

832 
apply (NE a) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

833 
apply (rule_tac [3] replace_type) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

834 
apply arith_rew 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

835 
apply intr \<comment> \<open>strips remaining \<open>\<Prod>\<close>s\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

836 
apply (rule_tac [2] zero_ne_succ [THEN FE]) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

837 
apply (erule_tac [3] EqE [THEN sym_elem]) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

838 
apply (typechk add_typing) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

839 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

840 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

841 
text \<open> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

842 
Version of above with the premise \<open>a + b = 0\<close>. 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

843 
Again, resolution instantiates variables in @{thm ProdE}. 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

844 
\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

845 
lemma add_eq0: "\<lbrakk>a:N; b:N; a #+ b = 0 : N\<rbrakk> \<Longrightarrow> a = 0 : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

846 
apply (rule EqE) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

847 
apply (rule add_eq0_lemma [THEN ProdE]) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

848 
apply (rule_tac [3] EqI) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

849 
apply typechk 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

850 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

851 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

852 
text \<open>Here is a lemma to infer \<open>a  b = 0\<close> and \<open>b  a = 0\<close> from \<open>a  b = 0\<close>, below.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

853 
schematic_goal absdiff_eq0_lem: 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

854 
"\<lbrakk>a:N; b:N; a  b = 0 : N\<rbrakk> \<Longrightarrow> ?a : Eq(N, ab, 0) \<times> Eq(N, ba, 0)" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

855 
apply (unfold absdiff_def) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

856 
apply intr 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

857 
apply eqintr 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

858 
apply (rule_tac [2] add_eq0) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

859 
apply (rule add_eq0) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

860 
apply (rule_tac [6] add_commute [THEN trans_elem]) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

861 
apply (typechk diff_typing) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

862 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

863 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

864 
text \<open>If \<open>a  b = 0\<close> then \<open>a = b\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

865 
proof: \<open>a  b = 0\<close> and \<open>b  a = 0\<close>, so \<open>b = a + (b  a) = a + 0 = a\<close>. 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

866 
\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

867 
lemma absdiff_eq0: "\<lbrakk>a  b = 0 : N; a:N; b:N\<rbrakk> \<Longrightarrow> a = b : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

868 
apply (rule EqE) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

869 
apply (rule absdiff_eq0_lem [THEN SumE]) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

870 
apply eqintr 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

871 
apply (rule add_diff_inverse [THEN sym_elem, THEN trans_elem]) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

872 
apply (erule_tac [3] EqE) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

873 
apply (hyp_arith_rew add_0_right) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

874 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

875 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

876 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

877 
subsection \<open>Remainder and Quotient\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

878 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

879 
text \<open>Typing of remainder: short and long versions.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

880 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

881 
lemma mod_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a mod b : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

882 
unfolding mod_def by (typechk absdiff_typing) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

883 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

884 
lemma mod_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a mod b = c mod d : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

885 
unfolding mod_def by (equal absdiff_typingL) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

886 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

887 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

888 
text \<open>Computation for \<open>mod\<close>: 0 and successor cases.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

889 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

890 
lemma modC0: "b:N \<Longrightarrow> 0 mod b = 0 : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

891 
unfolding mod_def by (rew absdiff_typing) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

892 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

893 
lemma modC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

894 
succ(a) mod b = rec(succ(a mod b)  b, 0, \<lambda>x y. succ(a mod b)) : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

895 
unfolding mod_def by (rew absdiff_typing) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

896 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

897 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

898 
text \<open>Typing of quotient: short and long versions.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

899 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

900 
lemma div_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a div b : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

901 
unfolding div_def by (typechk absdiff_typing mod_typing) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

902 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

903 
lemma div_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a div b = c div d : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

904 
unfolding div_def by (equal absdiff_typingL mod_typingL) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

905 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

906 
lemmas div_typing_rls = mod_typing div_typing absdiff_typing 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

907 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

908 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

909 
text \<open>Computation for quotient: 0 and successor cases.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

910 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

911 
lemma divC0: "b:N \<Longrightarrow> 0 div b = 0 : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

912 
unfolding div_def by (rew mod_typing absdiff_typing) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

913 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

914 
lemma divC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

915 
succ(a) div b = rec(succ(a) mod b, succ(a div b), \<lambda>x y. a div b) : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

916 
unfolding div_def by (rew mod_typing) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

917 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

918 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

919 
text \<open>Version of above with same condition as the \<open>mod\<close> one.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

920 
lemma divC_succ2: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

921 
succ(a) div b =rec(succ(a mod b)  b, succ(a div b), \<lambda>x y. a div b) : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

922 
apply (rule divC_succ [THEN trans_elem]) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

923 
apply (rew div_typing_rls modC_succ) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

924 
apply (NE "succ (a mod b) b") 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

925 
apply (rew mod_typing div_typing absdiff_typing) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

926 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

927 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

928 
text \<open>For case analysis on whether a number is 0 or a successor.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

929 
lemma iszero_decidable: "a:N \<Longrightarrow> rec(a, inl(eq), \<lambda>ka kb. inr(<ka, eq>)) : 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

930 
Eq(N,a,0) + (\<Sum>x:N. Eq(N,a, succ(x)))" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

931 
apply (NE a) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

932 
apply (rule_tac [3] PlusI_inr) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

933 
apply (rule_tac [2] PlusI_inl) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

934 
apply eqintr 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

935 
apply equal 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

936 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

937 

fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

938 
text \<open>Main Result. Holds when \<open>b\<close> is 0 since \<open>a mod 0 = a\<close> and \<open>a div 0 = 0\<close>.\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

939 
lemma mod_div_equality: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a mod b #+ (a div b) #* b = a : N" 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

940 
apply (NE a) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

941 
apply (arith_rew div_typing_rls modC0 modC_succ divC0 divC_succ2) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

942 
apply (rule EqE) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

943 
\<comment> \<open>case analysis on \<open>succ(u mod b)  b\<close>\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

944 
apply (rule_tac a1 = "succ (u mod b)  b" in iszero_decidable [THEN PlusE]) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

945 
apply (erule_tac [3] SumE) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

946 
apply (hyp_arith_rew div_typing_rls modC0 modC_succ divC0 divC_succ2) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

947 
\<comment> \<open>Replace one occurrence of \<open>b\<close> by \<open>succ(u mod b)\<close>. Clumsy!\<close> 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

948 
apply (rule add_typingL [THEN trans_elem]) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

949 
apply (erule EqE [THEN absdiff_eq0, THEN sym_elem]) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

950 
apply (rule_tac [3] refl_elem) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

951 
apply (hyp_arith_rew div_typing_rls) 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

952 
done 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
65338
diff
changeset

953 

19761  954 
end 